
CODED MATRIX COMPUTATIONS FOR D2D-ENABLED
LINEARIZED FEDERATED LEARNING

Anindya Bijoy Das† Aditya Ramamoorthy⋆ David J. Love† Christopher G. Brinton†

†School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907 USA
⋆Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50010 USA

ABSTRACT
Federated learning (FL) is a popular technique for training a
global model on data distributed across client devices. Like
other distributed training techniques, FL is susceptible to strag-
gler (slower or failed) clients. Recent work has proposed to
address this through device-to-device (D2D) offloading, which
introduces privacy concerns. In this paper, we propose a novel
straggler-optimal approach for coded matrix computations
which can significantly reduce the communication delay and
privacy issues introduced from D2D data transmissions in
FL. Moreover, our proposed approach leads to a considerable
improvement of the local computation speed when the gener-
ated data matrix is sparse. Numerical evaluations confirm the
superiority of our proposed method over baseline approaches.

Index Terms— Distributed Computing, Federated Learn-
ing, Stragglers, Heterogeneous Edge Computing, Privacy.

1. INTRODUCTION

Contemporary computing platforms are hard-pressed to sup-
port the growing demands for AI/ML model training at the
network edge. While advances in hardware serve as part of the
solution, the increasing complexity of data tasks and volumes
of data will continue impeding scalability. In this regard, feder-
ated learning (FL) has become a popular technique for training
machine learning models in a distributed manner [1–3]. In
FL, the edge devices carry out the local computations, and the
server collects, aggregates and updates the global model.

Recent approaches have looked at linearizing the training
operations in FL [1, 4]. This is advantageous as it opens the
possibility for coded matrix computing techniques that can im-
prove operating efficiency. Specifically, in distributed settings
like FL, the overall job execution time is often dominated by
slower (or failed) worker nodes, which are referred to as strag-
glers. Recently, a number of coding theory techniques [5–14]
have been proposed to mitigate stragglers in distributed ma-
trix multiplications. A toy example [5] of such a technique
for computing ATx across three clients is to partition A as
A = [A0 | A1], and to assign them the job of computing
AT

0 x, AT
1 x and (A0 +A1)

T
x, respectively. In a linearized

FL setting, A ∈ Rt×r is the data matrix and x ∈ Rt is the
model parameter vector. While each client has half of the total

computational load, the server can recover ATx if any two
clients return their results, i.e., the system is resilient to one
straggler. If each of n clients computes 1/kA fraction of the
whole job of computing ATx, the number of stragglers that
the system can be resilient to is upper bounded by n− kA [7].

In contemporary edge computing systems, task offloading
via device-to-device (D2D) communications has also been pro-
posed for straggler mitigation. D2D-enabled FL has recently
been studied [2, 15, 16], but can add considerable communica-
tion overhead as well as compromise data privacy. In this work,
we exploit matrix coding in linearized FL to mitigate these
challenges. Our straggler-optimal matrix computation scheme
reduces the communication delay significantly compared to
the techniques in [7, 9, 12]. Moreover, unlike [7, 9, 12, 13, 17],
our scheme allows a client to access a limited fraction of matrix
A, and provides a considerable protection against information
leakage. In addition, our scheme is specifically suited to sparse
matrices with a significant gain in computation speed.

2. NETWORK AND LEARNING ARCHITECTURE

We consider a D2D-enabled FL architecture consisting of
n = kA + s clients, denoted as Wi for i = 0, 1, . . . , n − 1.
The first kA of them are active clients (responsible for both
data generation and local computation) and the next s < kA
are passive clients (responsible for local computation only).

Assume that the i-th device has local data (Di,yi), where
Di and yi are the block-rows of full system dataset (D,y).
Under a linear regression-based ML model, the global loss
function is quadratic, i.e., f(βℓ) = ||Dβℓ − y||2, where the
model parameter after iteration ℓ is obtained through gradient
methods as βℓ = βℓ−1 − µℓ∇βf(βℓ−1) and µℓ is the stepsize.
Based on the form of∇βf(βℓ), the FL local model update at
each device includes multiplying the local data matrix Di with
parameter βℓ. For this reason, recent work has also investigated
linearizing non-linear models for FL by leveraging kernel em-
bedding techniques [1]. Thus, our aim is to compute ATx – an
arbitrary matrix operation during FL training – in a distributed
fashion such that the system is resilient to s stragglers. Our as-
sumption is that any active client Wi generates a block-column
of matrix A, denoted as Ai, i = 0, 1, . . . , kA − 1, such that

A =
[
A0 A1 . . . AkA−1

]
. (1)IC

A
SS

P
20

23
 -

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

co
us

tic
s,

Sp
ee

ch
 a

nd
 S

ig
na

l P
ro

ce
ss

in
g

(I
C

A
SS

P)
 |

97
8-

1-
72

81
-6

32
7-

7/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

A
SS

P4
93

57
.2

02
3.

10
09

54
50

Authorized licensed use limited to: Iowa State University. Downloaded on July 18,2024 at 16:51:21 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Proposed scheme for distributed
matrix-vector multiplication

Input :Matrix Ai generated in active client i for
i = 0, 1, . . . , kA − 1, vector x, total n
clients including s < kA passive clients.

1 Set weight ωA = s+ 1 ;
2 Denote client i as Wi, for i = 0, 1, . . . , n− 1;
3 for i← 0 to kA − 1 do
4 Define Ti = {i+ 1, . . . , i+ ωA − 1} (mod kA);
5 Send Aj , where j ∈ Ti, from Wj to Wi;
6 Client Wi creates a random vector r of length kA,

computes Ãi =
∑

q∈Ti
rqAq and ÃT

i x;
7 end
8 for i← 0 to s− 1 do
9 Wi creates random vector r̃ of size kA, computes

ÃkA+i =
∑

q∈Ti
r̃qAq and sends to WkA+i;

10 Client WkA+i computes ÃT
kA+ix;

11 end
Output :The server recovers ATx from the returned

results by the fastest kA clients.

In our approach, every client is responsible to compute the
product of a coded submatrix (linear combinations of some
block-columns of A) and the vector x. Stragglers will arise
in practice from computing speed variations or failures experi-
enced by the clients at particular times [8,17,18]. Now, similar
to [15,16,19], we assume that there is a set of trusted neighbor
clients for every device to transmit its data via D2D commu-
nications. The passive clients receive coded submatrices only
from active clients. Unlike the approaches in [1, 3, 4, 20], we
assume that the server cannot access to any uncoded/coded
local data generated in the edge devices and is only responsible
for transmission of vector x and for decoding ATx once the
fastest clients return the computed submatrix-vector products.

3. HOMOGENEOUS EDGE COMPUTING

Here we assume that each active client generates equal number
of columns of A (i.e. all Ai’s have the same size in (1)) and all
the clients are rated with the same computation speed. In this
scenario, we propose a distributed matrix-vector multiplication
scheme in Alg. 1 which is resilient to any s stragglers.

The main idea is that any active client Wj generates Aj ,
for 0 ≤ j ≤ kA − 1 and sends it to another active client Wi, if
j = i+ 1, i+ 2, . . . , i+ ωA − 1 (modulo kA). Here we set
ωA = s+ 1, thus, any data matrix Aj needs to be sent to only
ωA − 1 = s other clients. Then, active client Wj computes a
linear combination of Ai,Ai+1, . . . ,Ai+ωA−1 (indices mod-
ulo kA) where the coefficients are chosen randomly from a
continuous distribution. Next, active client Wi sends another
random linear combination of the same submatrices to Wi+kA

(a passive client), when i = 0, 1, . . . , s − 1. Note that all n
clients receive the vector x from the server. Now the job of
each client is to compute the product of their respective coded

submatrix and the vector x. Once the fastest kA clients finish
and send their computation results to the server, it decodes
ATx using the corresponding random coefficients. The follow-
ing theorem establishes the resiliency of Alg. 1 to stragglers.

Theorem 1. Assume that a system has n clients including kA
active and s passive clients. If we assign the jobs according to
Alg. 1, we achieve resilience to any s = n− kA stragglers.

Proof. In order to recover ATx, according to (1), we need
to decode all kA vector unknowns, AT

0 x,A
T
1 x, . . . ,A

T
kA−1x;

we denote the set of these unknowns as B. Now we choose
an arbitrary set of kA clients each of which corresponds to an
equation in terms of ωA of those kA unknowns. Denoting the
set of kA equations as C, we have |B| = |C| = kA.

Now we consider a bipartite graph G = C ∪ B, where
any vertex (equation) in C is connected to some vertices (un-
knowns) in B which have participated in the corresponding
equation. Thus, each vertex in C has a neighborhood of cardi-
nality ωA in B. Our goal is to show that there exists a perfect
matching among the vertices of C and B. We argue this ac-
cording to Hall’s marriage theorem [21] for which we need to
show that for any C̄ ⊆ C, the cardinality of the neighbourhood
of C̄, denoted as N (C̄) ⊆ B, is at least as large as |C̄|. Thus,
for |C̄| = m ≤ kA, we need to show that |N (C̄)| ≥ m.

Case 1: First we consider the case that m ≤ 2s. We
assume that m = 2p, 2p−1 where 1 ≤ p ≤ s. Now according
to Alg. 1, the participating unknowns are shifted in a cyclic
manner among the equations. If we choose any δ clients out of
the first kA clients (W0,W1,W2, . . . ,WkA−1), according to
the proof of cyclic scheme in Appendix C in [8], the minimum
number of total participating unknowns is min(ωA+δ−1, kA),
where ωA = s+ 1. Now according to Alg. 1, same unknowns
participate in two different equations corresponding to two
different clients, Wj and WkA+j , where j = 0, 1, . . . , s − 1.
Thus, for any |C̄| = m = 2p, 2p− 1 ≤ 2s, we have
|N (C̄)| ≥ min (ωA + ⌈m/2⌉ − 1, kA)

= min (ωA + p− 1, kA) = min (s+ p, kA) ≥ m.

Case 2: Now we consider the case where m = 2s + q,
1 ≤ q ≤ kA − 2s. We need to find the minimum number of
unknowns which participate in any set of m equations. Now,
the same unknowns participate in two different equations cor-
responding to two different clients, Wj and WkA+j , where
j = 0, 1, . . . , s − 1. Thus, the additional q equations corre-
spond to at least q additional unknowns until the total number
of participating unknowns is kA. Therefore, in this case
|N (C̄)| ≥ min (ωA + ⌈2s/2⌉+ q − 1, kA)

= min (ωA + s+ q − 1, kA) = min (2s+ q, kA) ≥ m.

Thus, for any m ≤ kA (where |C̄| = m), we have shown that
|N (C̄)| ≥ |C̄|. So, there exists a perfect matching among the
vertices of C and B according to Hall’s marriage theorem.

Now we consider the largest matching where vertex ci ∈ C
is matched to vertex bj ∈ B, which indicates that bj partici-
pates in the equation corresponding to ci. Let us consider a

Authorized licensed use limited to: Iowa State University. Downloaded on July 18,2024 at 16:51:21 UTC from IEEE Xplore. Restrictions apply.

W0 W1 W2 W8 W9

A0 A1 A2 A8 A9

.

(a): Data generation among the active clients.

W0 W9 W10 W11

{A0,A1,A2} {A9,A0,A1}
.

{A0,A1,A2} {A1,A2,A3}

(b): Coded submatrix allocation among all the clients.

Fig. 1: (a) Data generation and (b) submatrix allocation for n = 12
clients according to Alg. 1 including kA = 10 active and s = 2
passive clients. Any {Aj ,Ak,Aℓ} indicates a random linear combi-
nation of the corresponding submatrices. Any Wi obtains a random
linear combination of Ai,Ai+1 and Ai+2 (indices reduced mod 10).

kA × kA system matrix where row i corresponds to the equa-
tion associated to ci. Now we replace this row i by ej which
is a unit row-vector of length kA with j-th entry being 1, and 0
otherwise. Thus we have a kA×kA matrix where each row has
only one non-zero entry which is 1. Since we have a perfect
matching, this kA × kA matrix has only one non-zero entry in
every column. This is a permutation of the identity matrix, and
thus, is full rank. Since the matrix is full rank for a choice of
definite values, according to Schwartz-Zippel lemma [22], it
will be full rank for random choices of non-zero entries. Thus,
the server can recover all kA unknowns from any kA clients,
hence the system is resilient to any s = n−kA stragglers. ■

Example 1. Consider a homogeneous system of kA = 10
active clients and s = 2 passive clients. According to Alg. 1,
ωA = s+1 = 3, and client Wi (0 ≤ i ≤ 11) has a random lin-
ear combination of Ai,Ai+1 and Ai+2 (indices modulo 10)
as shown in Fig. 1. Thus, according to Theorem 1, this system
is resilient to s = 2 stragglers. Note that our scheme requires
any active client to send its local data matrix to only up to
s + 1 = 3 other clients, thus involves a significantly lower
communication cost in comparison to the approaches in [7, 9].

Remark 1. In comparison to [7,9,13], our proposed approach
is specifically suited to sparse data matrices, i.e., most of the
entries of A are zero. The approaches in [7,9,13] assign dense
linear combinations of the submatrices which can destroy the
inherent sparsity of A, leading to slower computation speed
for the clients. On the other hand, our approach assigns linear
combinations of limited number of submatrices which preserve
the sparsity up to certain level that leads to faster computation.

4. HETEROGENEOUS EDGE COMPUTING

In this section, we extend our approach in Alg. 1 to het-
erogenous system where the clients may have different data
generation capability and different computation speeds. We
assume that we have λ different types of devices in the system,
with client type j = 0, 1, . . . , λ − 1. Moreover, we assume
that any active client Wi generates αi = cijα columns of
data matrix A and any client Wi has a computation speed

βi = cijβ, where Wi is of client type j and cij ≥ 1 is an
integer. Thus, a higher cij indicates a “stronger” type client
Wi which can process at a cij times higher computation speed
than the “weakest” type device, where α is the number of the
assigned columns and β is the number of processed columns
per unit time in the “weakest” type device. Note that λ = 1
and all cij = 1 lead us to the homogeneous system discussed
in Sec. 3 where 0 ≤ i ≤ n− 1 and j = 0.

Now, we have n = kA + s clients including kA active and
s passive clients in the heterogeneous system. Aligned to the
homogeneous system, we assume that the number of passive
clients of any type j is less than the number of active clients
of the same type. Next, without loss of generality, we sort
the indices of active clients in such a way so that, cij ≥ ckj
if i ≤ k, for 0 ≤ i, k ≤ kA − 1. We do the similar sorting
for the passive clients too so that cij ≥ ckj if i ≤ k, for
kA ≤ i, k ≤ n − 1. Now if a client Wi is of client type j,
it requires the same time to process cij ≥ 1 block-columns
(each consisting of α columns) of A as the “weakest” device
to process cij = 1 such block-column. Moreover, if it is an
active client, it also generates αi = cijα columns of data
matrix A. Thus, client Wi can be thought as a collection of
cij homogeneous clients of “weakest” types where each of the
active “weakest” clients generates equally α columns of A and
each of the “weakest” clients processes equally α columns.

Theorem 2. (a) A heterogeneous system of kA active and
s passive clients of different types can be considered as a
homogeneous system of k̄A =

∑kA−1
i=0 cij active and s̄ =∑n−1

i=kA
cij passive clients of the “weakest” type. Next (b)

if the jobs are assigned according to Alg. 1 in the modified
homogeneous system of n̄ = k̄A + s̄ “weakest” clients, the
system can be resilient to s̄ such clients.

Proof. Each Ak (generated in Wk) in (1) is a block-column
consisting of ckjα columns of A when client Wk is of client
type j. Thus, for any k = 0, 1, . . . , kA − 1, we can partition
Ak as Ak =

[
Ām Ām+1 . . . Ām+ckj−1

]
, where m =∑k−1

i=0 cij and each Āℓ is a block-column consisting of α
columns of A, m ≤ ℓ ≤ m + ckj − 1. Thus using (1),
we can write A =

[
A0 A1 . . . Ak̄A−1

]
, where k̄A =∑kA−1

i=0 cij . Now from the matrix generation perspective, kA
active clients in a heterogeneous system generating k̄A block-
columns can be considered as the same as k̄A active clients in
a homogeneous system generating one block-column each.

Similarly, any client Wi of type j can process cijα
columns in the same time when the “weakest” type device
can process α columns. Thus, from the computation speed
perspective, kA active clients and s passive clients in the het-
erogeneous system can be thought as k̄A =

∑kA−1
i=0 cij active

clients and s̄ =
∑n−1

i=kA
cij passive clients, respectively, in a

homogeneous system by assigning α coded block-columns
to each client. Hence, we are done with the proof of part
(a). Moreover, part (b) of the proof is straight-forward from
Theorem 1 when we have k̄A active and s̄ passive clients. ■

Authorized licensed use limited to: Iowa State University. Downloaded on July 18,2024 at 16:51:21 UTC from IEEE Xplore. Restrictions apply.

W2
W1W0

W3 W4

Ā4 Ā5 Ā6

Ā2

Ā3

Ā0

Ā1

(a): Data generation among the active clients.

W2
W1W0

W3

W4 W5 W6

{Ā4, Ā5, Ā6} {Ā5, Ā6, Ā0}

{Ā6, Ā0, Ā1}

{Ā2, Ā3, Ā4}

{Ā3, Ā4, Ā5}

{Ā0, Ā1, Ā2}

{Ā1, Ā2, Ā3}

{Ā0, Ā1, Ā2} {Ā1, Ā2, Ā3}

(b): Coded submatrix allocation among all the clients.

Fig. 2: A heterogeneous system of n = 7 clients where kA = 5 and
s = 2. (a) Each of W0 and W1 generates 2α columns and each of
W2,W3 and W4 generates α columns of A ∈ Rt×r , where α = r/7.
(b) Once the jobs are assigned, the system is resilient to stragglers.

Remark 2. The heterogeneous system is resilient to s̄ block-
column processing. The number of straggler clients that the
system is resilient to can vary depending on the client types.

Example 2. Consider the example in Fig. 2 consisting of
n = 7 clients. There are kA = 5 active clients which are
responsible for data matrix generation. Let us assume, W0

and W1 are of type 1 clients which generate twice as many
columns of A than W2,W3 and W4 which are of type 0 clients.
The jobs are assigned to all clients (including s = 2 passive
clients) according to Fig. 2(b). It can be verified that this
scheme is resilient to two type 0 clients or one type 1 client.

5. NUMERICAL EVALUATION

In this section, we compare the performance of our proposed
approach against different competing methods [7, 9, 13] in
terms of different metrics for distributed matrix computations
from the federated learning aspect. Note that the approaches
in [1, 4] require the edge devices to transmit some coded
columns of matrix A to the server which is not aligned with
our assumptions. In addition, the approaches in [8] and [11]
do not follow the same network learning architecture as ours.
Therefore, we did not include them in our comparison.

Communication Delay: We consider a homogeneous sys-
tem of n = 20 clients each of which is a t2.small ma-
chine in AWS (Amazon Web Services) Cluster. Here, each
of kA = 18 active clients generates Ai of size 12000× 1000,
thus the size of A is 12000 × 18000. The server sends the
parameter vector x of length 12000 to all 20 clients including
s = 2 passive clients. Once the preprocessing and computa-
tions are carried out according to Alg. 1, the server recovers
ATx as soon as it receives results from the fastest kA = 18
clients, thus the system is resilient to any s = 2 stragglers.

Table 1: Comparison among different approaches in terms of com-
munication delay for a system with n = 20, kA = 18 and s = 2.

POLY ORTHO- RKRP CONV. PROP.
CODE [7] POLY [9] CODE [13] CODE [17] SCH.

14.13 s 14.02 s 2.49 s 2.56 s 2.21 s

Table 2: Per client product computation time where n = 30, kA =

28, s = 2 and ζ = 95%, 98% or 99% entries of A are zero.

METHODS
PRODUCT COMP. TIME (IN MS)
ζ = 99% ζ = 98% ζ = 95%

POLY CODE [7] 54.7 55.2 53.7
ORTHO-POLY [9] 54.3 54.8 55.2
RKRP CODE [13] 55.1 53.4 53.7
CONV. CODE [17] 56.2 55.8 56.8
PROP. SCHEME 14.9 21.1 29.6

Table 1 shows the comparison of the corresponding com-
munication delays (caused by data matrix transmission) among
different approaches. The approaches in [7,9] require all active
clients to transmit their generated submatrices to all other edge
devices. Thus, they lead to much more communication delay
than our proposed method which needs an edge device to trans-
mit data to only up to s+ 1 = 3 other devices. Note that the
methods in [13,17] involve similar amounts of communication
delay as ours, however, they have other limitations in terms of
privacy and computation time as discussed next.

Privacy: Information leakage is introduced in FL when we
consider the transmission of local data matrices to other edge
devices. To protect against privacy leakage, any particular
client should have access to a limited portion of the whole
data matrix. Consider the heterogeneous system in example 2
where the clients are honest but curious. In this scenario, the
approaches in [7, 9, 13, 17] would allow clients to access the
whole matrix A. In our approach, as shown in Fig. 2, clients
W0 and W1 only have access to 4/7-th fraction of A and
clients W2, W3 and W4 have access to 3/7-th fraction of A.
This provides significant protection against privacy leakage.

Product Computation Time for Sparse Matrices: Con-
sider a system with n = 30 clients where kA = 28 and s = 2.
We assume that A is sparse, where each active client generates
a sparse submatrix of size 40000× 1125. We consider three
different scenarios with three different sparsity levels for A
where randomly chosen 95%, 98% and 99% entries of A are
zero. Now we compare our proposed Alg. 1 against different
methods in terms of per client product computation time (the
required time for a client to compute its assigned submatrix-
vector product) in Table 2. The methods in [7, 9, 13, 17] assign
linear combinations of kA = 28 submatrices to the clients.
Hence, the inherent sparsity of A is destroyed in the encoded
submatrices. On the other hand, our approach combines only
s+ 1 = 3 submatrices to obtain the coded submatrices. Thus,
the clients require a significantly less amount of time to finish
the respective tasks in comparison to [7, 9, 13, 17].

Authorized licensed use limited to: Iowa State University. Downloaded on July 18,2024 at 16:51:21 UTC from IEEE Xplore. Restrictions apply.

6. REFERENCES

[1] Saurav Prakash, Sagar Dhakal, Mustafa Riza Akdeniz,
Yair Yona, Shilpa Talwar, Salman Avestimehr, and
Nageen Himayat, “Coded computing for low-latency
federated learning over wireless edge networks,” IEEE
Jour. on Sel. Areas in Comm., vol. 39, no. 1, pp. 233–250,
2020.

[2] Su Wang, Seyyedali Hosseinalipour, Maria Gorlatova,
Christopher G Brinton, and Mung Chiang, “Uav-assisted
online machine learning over multi-tiered networks: A
hierarchical nested personalized federated learning ap-
proach,” IEEE Trans. on Net. and Serv. Manag., 2022.

[3] Jer Shyuan Ng, Wei Yang Bryan Lim, Zehui Xiong, Xi-
anbin Cao, Dusit Niyato, Cyril Leung, and Dong In Kim,
“A hierarchical incentive design toward motivating partic-
ipation in coded federated learning,” IEEE J. Sel. Areas
Commun., vol. 40, no. 1, pp. 359–375, 2022.

[4] Sagar Dhakal, Saurav Prakash, Yair Yona, Shilpa Talwar,
and Nageen Himayat, “Coded federated learning,” in
IEEE Globecom Workshop, 2019, pp. 1–6.

[5] Kangwook Lee, Maximilian Lam, Ramtin Pedarsani,
Dimitris Papailiopoulos, and Kannan Ramchandran,
“Speeding up distributed machine learning using codes,”
IEEE Trans. on Info. Th., vol. 64, no. 3, pp. 1514–1529,
2018.

[6] Sanghamitra Dutta, Viveck Cadambe, and Pulkit Grover,
“Short-dot: Computing large linear transforms distribut-
edly using coded short dot products,” in Proc. of Adv. in
Neur. Inf. Proc. Syst., 2016, pp. 2100–2108.

[7] Qian Yu, Mohammad Maddah-Ali, and Salman Aves-
timehr, “Polynomial codes: an optimal design for high-
dimensional coded matrix multiplication,” in Proc. of
Adv. in Neur. Inf. Proc. Syst., 2017, pp. 4403–4413.

[8] Anindya Bijoy Das and Aditya Ramamoorthy, “Coded
sparse matrix computation schemes that leverage partial
stragglers,” IEEE Trans. on Info. Th., vol. 68, no. 6, pp.
4156–4181, 2022.

[9] M. Fahim and V. R. Cadambe, “Numerically stable
polynomially coded computing,” IEEE Trans. on Info.
Th., vol. 67, no. 5, pp. 2758–2785, 2021.

[10] Rashish Tandon, Qi Lei, Alexandros G Dimakis, and
Nikos Karampatziakis, “Gradient coding: Avoiding strag-
glers in distributed learning,” in Proc. of Intl. Conf. on
Mach. Learn., 2017, pp. 3368–3376.

[11] Anindya Bijoy Das and Aditya Ramamoorthy, “A unified
treatment of partial stragglers and sparse matrices in
coded matrix computation,” IEEE Jour. on Sel. Area. in
Info. Th., vol. 3, no. 2, pp. 241–256, 2022.

[12] Sanghamitra Dutta, Mohammad Fahim, Farzin Had-
dadpour, Haewon Jeong, Viveck Cadambe, and Pulkit
Grover, “On the optimal recovery threshold of coded
matrix multiplication,” IEEE Trans. on Info. Th., vol. 66,
no. 1, pp. 278–301, 2020.

[13] A. M. Subramaniam, A. Heidarzadeh, and K. R.
Narayanan, “Random Khatri-Rao-product codes for
numerically-stable distributed matrix multiplication,” in
Proc. of Annual Conf. on Comm., Control, and Comput-
ing (Allerton), Sep. 2019, pp. 253–259.

[14] Lev Tauz and Lara Dolecek, “Variable coded batch ma-
trix multiplication,” IEEE Jour. on Sel. Area. in Info. Th.,
vol. 3, no. 2, pp. 306–320, 2022.

[15] Su Wang, Mengyuan Lee, Seyyedali Hosseinalipour,
Roberto Morabito, Mung Chiang, and Christopher G
Brinton, “Device sampling for heterogeneous federated
learning: Theory, algorithms, and implementation,” in
Proc. of Intl. Conf. on Comp. Comm., 2021, pp. 1–10.

[16] Yuwei Tu, Yichen Ruan, Satyavrat Wagle, Christopher G
Brinton, and Carlee Joe-Wong, “Network-aware opti-
mization of distributed learning for fog computing,” in
Proc. of Intl. Conf. on Comp. Comm., 2020, pp. 2509–
2518.

[17] Anindya Bijoy Das, Aditya Ramamoorthy, and Namrata
Vaswani, “Efficient and robust distributed matrix compu-
tations via convolutional coding,” IEEE Trans. on Info.
Th., vol. 67, no. 9, pp. 6266–6282, 2021.

[18] Seyyedali Hosseinalipour, Christopher G Brinton, Vaneet
Aggarwal, Huaiyu Dai, and Mung Chiang, “From feder-
ated to fog learning: Distributed machine learning over
heterogeneous wireless networks,” IEEE Comm. Mag.,
vol. 58, no. 12, pp. 41–47, 2020.

[19] Satyavrat Wagle, Seyyedali Hosseinalipour, Naji Khos-
ravan, Mung Chiang, and Christopher G Brinton, “Em-
bedding alignment for unsupervised federated learning
via smart data exchange,” in Proc. of IEEE Glob. Comm.
Conf. IEEE, 2022, pp. 1–6.

[20] Naoya Yoshida, Takayuki Nishio, Masahiro Morikura,
Koji Yamamoto, and Ryo Yonetani, “Hybrid-fl for wire-
less networks: Cooperative learning mechanism using
non-iid data,” in Proc. of IEEE Intl. Conf. Comm. IEEE,
2020, pp. 1–7.

[21] JR Marshall. Hall, Combinatorial theory, Wiley, 1986.

[22] Jacob T Schwartz, “Fast probabilistic algorithms for
verification of polynomial identities,” Jour. of the ACM
(JACM), vol. 27, no. 4, pp. 701–717, 1980.

Authorized licensed use limited to: Iowa State University. Downloaded on July 18,2024 at 16:51:21 UTC from IEEE Xplore. Restrictions apply.

