
Preserving Sparsity and Privacy in
Straggler-Resilient Distributed Matrix Computations

Anindya Bijoy Das∗, Aditya Ramamoorthy†, David J. Love∗, Christopher G. Brinton∗
∗School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907 USA
†Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50010 USA

das207@purdue.edu, adityar@iastate.edu, djlove@purdue.edu, cgb@purdue.edu

Abstract—Existing approaches to distributed matrix compu-
tations involve allocating coded combinations of submatrices to
worker nodes, to build resilience to stragglers and/or enhance
privacy. In this study, we consider the challenge of preserving input
sparsity in such approaches to retain the associated computational
efficiency enhancements. First, we find a lower bound on the
weight of coding, i.e., the number of submatrices to be combined to
obtain coded submatrices to provide the resilience to the maximum
possible number of stragglers (for given number of nodes and
their storage constraints). Next we propose a distributed matrix
computation scheme which meets this exact lower bound on the
weight of the coding. Further, we develop controllable trade-off
between worker computation time and the privacy constraint for
sparse input matrices in settings where the worker nodes are
honest but curious. Numerical experiments conducted in Amazon
Web Services (AWS) validate our assertions regarding straggler
mitigation and computation speed for sparse matrices.

Index Terms—Distributed computing, MDS Codes, Stragglers,
Sparsity, Privacy.

I. INTRODUCTION

Computing platforms are constantly stressed to meet the
growing demands of end users for data processing. The
increasing complexity of data tasks, such as deep neural
network AI/ML models, and the sheer volumes of data to
be processed, continue to hinder scalability.

Matrix computations serve as the fundamental building
blocks for many data processing tasks in AI/ML and opti-
mization. As data sizes increase, these computations involve
high-dimensional matrices, requiring larger runtimes with all
else constant. The underlying concept behind distributed com-
putation is to break down the entire operation into smaller tasks
and distribute them across multiple worker nodes. However, in
these distributed systems, the overall execution time of a job
can be significantly affected by slower or failed worker nodes,
commonly known as “stragglers” [1].

Recently, a number of coding theory techniques [2]–[13]
have been proposed to mitigate the effect of stragglers. A
simple example is presented in [2] to illustrate a technique for
computing ATx using three workers. The technique involves
partitioning the matrix A into two block-columns, denoted as
A = [A0|A1]. The workers are then assigned specific tasks:
one computes AT

0 x, another computes AT
1 x, and the third

computes (A0 +A1)
Tx. Each worker then handles only half

of the computational load, the system can recover ATx if
any two out of the three workers return their results. This

means that the system is resilient to the failure or delay of one
straggler. In general, the recovery threshold is an important
metric defined as the minimum number of workers (τ) required
to complete their tasks, enabling the recovery of ATx from
any subset of τ worker nodes.

While there are several works that achieve the optimal
recovery threshold [3], [5], [12], [13] for given number of nodes
and storage constraints, they possess certain limitations. Real-
world datasets, utilized in various domains such as optimization,
deep learning, power systems, computational fluid dynamics etc.
often consist of sparse matrices. An efficient exploitation of this
sparsity can significantly decrease the overall time required for
matrix computations [14]. However, techniques based on MDS
codes [3], [5], [12], [13] construct dense linear combinations
of submatrices; this eliminates the inherent sparsity in the
matrix structure. As a consequence, the computation speed of
worker nodes can be severely reduced. In this work, one of our
objectives is to develop approaches that combine a relatively
small number of submatrices while maintaining an optimal
recovery threshold.

Another significant issue in distributed computation is the
information leakage of the associated “input” matrix [15]–[18].
The assumption is that the input matrix A is known to the
central node, but the assigned smaller tasks should involve a
protection against information leakage at the worker nodes.
Several works [15]–[17] propose adding random matrices to the
linear combinations of submatrices introduced by MDS codes
with the goal of reducing the mutual information between the
assigned encoded submatrices and the original matrix A. This
is again problematic for sparse matrices since the addition
of dense random matrices can destroy the sparsity. Thus, we
also aim to develop codes that optimize the trade-off between
privacy and efficiency.

In this work, first we formulate the problem (Sec. II) and find
a lower bound on the number of submatrices to be combined
(Sec. III) for coded submatrices that will provide resilience
to the maximum number of stragglers in a given system.
Next, we develop a novel approach for distributed matrix-
vector multiplication (Sec. IV) which meets that lower bound,
maximizing sparsity preservation while providing resilience to
the maximum number of stragglers. Our proposed approach
involves a computationally efficient process to find a “good”
set of random coefficients that make the system numerically

20
23

 5
9t

h
A

nn
ua

l A
lle

rto
n

C
on

fe
re

nc
e

on
 C

om
m

un
ic

at
io

n,
 C

on
tro

l,
an

d
C

om
pu

tin
g

(A
lle

rto
n)

 |
97

9-
8-

35
03

-2
81

4-
1/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

A
lle

rto
n5

81
77

.2
02

3.
10

31
34

73

Authorized licensed use limited to: Iowa State University. Downloaded on July 18,2024 at 16:54:45 UTC from IEEE Xplore. Restrictions apply.

stable. Our approach also addresses the privacy issue through
a controllable trade-off between privacy leakage and worker
computation time for sparse input matrices (Sec. IV-B). Finally,
we carry out experiments on an Amazon Web Services (AWS)
which verify the effectiveness of our proposed methodology
compared with baseline approaches in terms of different time,
stability, and privacy metrics (Sec. V).

II. PROBLEM FORMULATION

In this work, we examine a distributed system comprising
n worker nodes. The primary objective of this system is to
calculate the product ATx, where A ∈ Rt×r represents a
sparse matrix and x ∈ Rt denotes a vector. It is assumed that
the workers are identical in terms of their memory capacity
and computational speed. Specifically, each worker can store
γA = 1

kA
fraction of the whole matrix A, and also, the entire

vector x. In practical situations, stragglers may arise due to
variations in computational speed or failures experienced by
certain assigned workers at specific times [3].

In line with previous approaches, our initial step involves
partitioning matrix A into kA distinct block-columns. Subse-
quently, we will distribute to each worker node a random linear
combination of certain block-columns from A along with the
vector x. Nevertheless, as discussed in Sec. I, assigning dense
linear combinations could lead to the loss of inherent sparsity
in the corresponding matrices. To avoid this issue, our goal is
to allocate linear combinations involving a smaller number of
submatrices [9], [19]. In order to quantify this approach, we
introduce the concept of “weight” for the encoded submatrices.
This measure serves as a crucial metric when dealing with
sparse matrices in distributed computations.

Definition 1. We define the “weight” (ωA) of the submatrix
encoding procedure as the number of submatrices that are
linearly combined to obtain each encoded submatrix. We
assume homogeneous weights of the encoded submatrices
across the worker nodes, i.e., every node will be assigned linear
combinations of the same number of uncoded submatrices.

Thus, our goal is to obtain the optimal recovery threshold
(τ = kA) while maintaining ωA (for the assigned encoded
submatrices) as low as possible. We also consider the privacy
implications of our approach assuming that the worker nodes
are honest but curious.

III. MINIMUM WEIGHT OF CODING

We consider a coded matrix-vector multiplication scheme
with homogeneous weight, ωA, where matrix A is partitioned
into kA disjoint block-columns, A0,A1,A2, . . . ,AkA−1. Now
we state the following proposition which provides a lower
bound on ωA for any coded matrix-vector multiplication scheme
with resilience to s = n− kA stragglers.

Proposition 1. Consider a coded matrix-vector multiplication
scheme aiming at resilience to s = n− kA stragglers out of n
total nodes each of which can store 1/kA fraction of matrix A.
Any scheme that partitions A into kA disjoint block-columns
has to maintain a minimum homogeneous weight ⌈ (n−s)(s+1)

n ⌉.

W0 W1 W2 W3 W4 W5

{A0,A1} {A1,A2} {A2,A3} {A3,A0} {A0,A1} {A2,A3}

Fig. 1: Submatrix allocation for a system with n = 6, s = 2
and γA = 1

4
according to Alg. 1. Here, the weight of every coded

submatrix is ωA =
⌈

kA(s+1)
kA+s

⌉
= 2. Any {Ai,Aj} indicates a

random linear combination of Ai and Aj .

Proof. Since the scheme aims at resilience to any s stragglers,
any scheme needs to ensure the presence of any Ai (where
i = 0, 1, . . . , kA − 1) in at least s+1 different nodes. In other
words, Ai has to participate within the encoded submatrices in
at least s+ 1 different nodes. Now, we assume homogeneous
weight ωA, i. e., each of these n nodes is assigned a linear
combination of ωA uncoded submatrices from A. Thus, we
can say n ωA ≥ kA(s+ 1), hence,

ωA ≥
(n− s)(s+ 1)

n
.

Thus, the minimum homogeneous weight, ω̂A =
⌈
(n−s)(s+1)

n

⌉
.

■

Now we state the following corollary (of Proposition 1)
which considers different values of kA in terms of s, and
provides the corresponding optimal weights for coded sparse
matrix-vector multiplication.

Corollary 1. Consider the same setting as Prop. 1 for coded
matrix-vector multiplication. Now,

• (i) if kA > s2, then ω̂A = s+ 1.
• (ii) if s ≤ kA ≤ s2, then ⌈ s+1

2 ⌉ ≤ ω̂A ≤ s.

Proof. Since n = kA + s, from Prop. 1, we have

ω̂A =
⌈kA(s+ 1)

kA + s

⌉
=

⌈ 1 + s

1 + s
kA

⌉
; (1)

hence, ω̂A is a non-decreasing function of kA for fixed s.
Part (i): When kA > s2, we have s

kA
< 1

s , and 1+s
1+ s

kA

>
1+s
1+ 1

s

= s. Thus, from (1), ω̂A > s. In addition, from (1), for
any s ≥ 0, we have ω̂A ≤ s+ 1. Thus, we have ω̂A = s+ 1.
Part (ii): If kA = s2, from (1), we have ω̂A = s. Similarly,
if kA = s, from (1), we have ω̂A = ⌈ s+1

2 ⌉. Thus, the non-
decreasing property of ω̂A in terms of kA concludes the proof.

■

Now we describe a motivating example below where the
encoding scheme meets the lower bound mentioned in Prop. 1.

Example 1. Consider a toy system with n = 6 worker nodes
each of which can store 1/4 fraction of matrix A. We partition
matrix A into kA = 4 disjoint block-columns, A0,A1,A2,A3.
According to Prop. 1, the optimal weight ωA can be as low
as

⌈
kA(s+1)
kA+s

⌉
= 2. Now, we observe that the way the jobs

are assigned in Fig. 1 meets that lower bound, where random
linear combinations of ωA = 2 submatrices are assigned to

Authorized licensed use limited to: Iowa State University. Downloaded on July 18,2024 at 16:54:45 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Proposed scheme for distributed matrix-
vector multiplication

Input : Matrix A, vector x, n-number of workers,
s-number of stragglers, storage fraction
γA = 1

kA
, such that kA ≥ s.

1 Partition A into kA disjoint block-columns;

2 Set weight ωA =
⌈
kA(s+1)
kA+s

⌉
;

3 for i← 0 to n− 1 do
4 if i < kA then
5 Define T = {i, i+ 1, . . . , i+ ωA − 1} (reduced

modulo kA);
6 else
7 Define T = {iωA, iωA + 1, . . . , (i+ 1)ωA − 1}

(reduced modulo kA);
8 end
9 Create a random vector r of length kA with entries

rm, 0 ≤ m ≤ kA − 1;
10 Create a random linear combination of Aq’s where

q ∈ T , thus Ãi =
∑
q∈T

rqAq;

11 Assign encoded submatrix Ãi and the vector x to
worker node Wi;

12 end
Output : The central node recovers ATx from the

returned results by the fastest kA nodes.

the nodes. It can be verified that this system has a recovery
threshold τ = kA = 4, and thus, it is resilient to any s = 2
stragglers.

IV. PROPOSED APPROACH

In this section, we detail our overall approach for dis-
tributed matrix-vector multiplication which is outlined in
Alg. 1. We partition matrix A into kA block columns,
A0,A1,A2, . . . ,AkA−1, and assign a random linear combina-
tion of ωA (weight) submatrices of A to every worker node. We
show that for given n and kA, our proposed approach provides
resilience to maximum number of stragglers, s = n− kA. In
addition, our coding scheme maintains the minimum weight
of coding as mentioned in Prop. 1.

Formally, we set ωA =
⌈
kA(s+1)
kA+s

⌉
, and assign a linear combi-

nation of Ai,Ai+1,Ai+2, . . . ,Ai+ωA−1 (indices modulo kA)
to worker node Wi, for i = 0, 1, 2, . . . , kA − 1, where the
linear coefficients are chosen randomly from a continuous
distribution. Next, we assign a random linear combination of
AiωA

,AiωA+1,AiωA+2, . . . ,A(i+1)ωA−1 (indices modulo kA)
to worker node Wi, for i = kA, kA + 1, . . . , n− 1. Note that
every worker node also receives the vector x. Once the fastest
τ = kA worker nodes finish and return their computation
results, the central node decodes ATx. Note that we assume
kA ≥ s, i.e., at most half of the nodes may be stragglers.

A. Straggler Resilience Guarantee

Next we state the following lemma which would assist us
to prove Theorem 1 which discusses straggler resilience of our
proposed scheme.

Lemma 1. Choose any m ≤ kA worker nodes out of all n
nodes in the distributed system. Now, if we assign the jobs
to the worker nodes according to Alg. 1, the total number of
participating uncoded A submatrices within those m worker
nodes is lower bounded by m.

Proof. First we partition all n worker nodes into two sets where
the first set, W0 includes the first kA nodes and the second
set, W1, includes the next s worker nodes, i.e., we have

W0 = {W0,W1,W2, . . . ,WkA−1} ;
and W1 = {WkA

,WkA+1, . . . ,Wn−1} .

Thus, we have |W0| = kA and |W1| = s ≤ kA. Now, we
choose any m ≤ kA worker nodes, where we choose m0 nodes
from W0 and m1 nodes from W1, so that m = m0 +m1. We
denote set of the participating uncoded A submatrices within
those nodes as A0 and A1, respectively. Hence, to prove the
lemma, we need to show |A0 ∪ A1| ≥ m, for any m ≤ kA.

First, according to Alg. 1, we assign a random linear combi-
nation of Ai,Ai+1,Ai+2, . . . ,Ai+ωA−1 (indices modulo kA)
to worker node Wi ∈ W0. Thus, the participating submatrices
are assigned in a cyclic fashion [20], and the total number of
participating submatrices within any m0 nodes of W0 is

|A0| ≥ min(m0 + ωA − 1, kA). (2)

Next, we state the following claim for the number of partici-
pating submatrices in W1, with the proof in Appendix A.

Claim 1. Choose any m1 ≥ ωA nodes from W1. The number
of participating submatrices within these nodes, |A1| = kA.

Now, if m1 ≤ ωA − 1, from (2) we have

|A0 ∪ A1| ≥ |A0| = min(m0 + ωA − 1, kA)

≥ min(m0 +m1, kA) ≥ m,

since m = m0 +m1 ≤ kA. And, if m1 ≥ ωA, from Claim 1
we can say,

|A0 ∪ A1| ≥ |A1| = kA ≥ m,

which concludes the proof of the lemma. ■

Example 2. Consider the same scenario in Example 1, where
kA = 4 and s = 2, therefore, W0 = {W0,W1,W2,W3}
and W1 = {W4,W5}. Now, choose m = 3 nodes, W0,W1

and W4. Thus, m0 = 2 and m1 = 1. Now, from the figure,
we have A0 = {A0,A1,A2} and A1 = {A0,A1}. Hence,
|A0 ∪ A1| = 3 ≥ m. Similar properties can be shown for any
choice m ≤ kA = 4 different nodes.

Now we state the following theorem which provides the
guarantee of resilience to maximum number of stragglers for
given storage constraints.

Authorized licensed use limited to: Iowa State University. Downloaded on July 18,2024 at 16:54:45 UTC from IEEE Xplore. Restrictions apply.

c0

c1

c2

c3

c4

b0

b1

b2

b3

b4

C B

Fig. 2: A bipartite graph G = C ∪ B with |C| = |B| = 5 where the
set of equations is C and the set of unknowns is B. Here, ωA = 3.

Theorem 1. Assume that a system has n worker nodes each
of which can store 1/kA fraction of matrix A and the whole
vector x for the distributed matrix-vector multiplication ATx.
If we assign the jobs according to Alg. 1, we achieve resilience
to s = n− kA stragglers.

Proof. According to Alg. 1, first we partition matrix A into
kA disjoint block-columns. Thus, to recover the matrix-vector
product, ATx, we need to decode all kA vector unknowns,
AT

0 x,A
T
1 x,A

T
2 x, . . . ,A

T
kA−1x. We denote the set of these

kA unknowns as B. Now we choose an arbitrary set of kA
worker nodes each of which corresponds to an equation in
terms of ωA of those kA unknowns. Denoting the set of kA
equations as C, we can say, |B| = |C| = kA.

Now we consider a bipartite graph G = C ∪ B, where any
vertex (equation) in C is connected to some vertices (unknowns)
in B which participate in the corresponding equation. Thus,
each vertex in C has a neighborhood of cardinality ωA in B.
An example with kA = 5 and ωA = 3 is shown in Fig. 2.

Our goal is to show that there exists a perfect matching
among the vertices of C and B. To do so, we consider C̄ ⊆ C,
where |C̄| = m ≤ kA. Now, we denote the neighbourhood of C̄
as N (C̄) ⊆ B. Thus, according to Lemma 1, for any m ≤ kA,
we can say that |N (C̄)| ≥ m. So, according to Hall’s marriage
theorem [21], we can say that there exists a perfect matching
among the vertices of C and B.

Next we consider the largest matching where the vertex
ci ∈ C is matched to the vertex bj ∈ B, which indicates
that bj participates in the equation corresponding to ci. Now,
considering kA equations and kA unknowns, we construct
the kA × kA coding (or decoding) matrix H where row
i corresponds to the equation associated to ci where bj
participates. We replace row i of H by ej where ej is a
unit row-vector of length kA with the j-th entry being 1, and 0
otherwise. Thus we have a kA×kA matrix where each row has
only one non-zero entry which is 1. In addition, since we have
a perfect matching, H will have only one non-zero entry in
every column. Thus, H is a permutation of the identity matrix,

W0 W1 W2 W3

W4 W5 W6 W7

W8 W9 W10 W11

{A0,A1,A2} {A1,A2,A3} {A2,A3,A4} {A3,A4,A5}

{A4,A5,A6} {A5,A6,A7} {A6,A7,A8} {A7,A8,A0}

{A8,A0,A1} {A0,A1,A2} {A3,A4,A5} {A6,A7,A8}

Fig. 3: Submatrix allocation for n = 12 workers and s = 3
stragglers, with γA = 1

9
according to Alg. 1. Here, the weight of every

submatrix is ωA =
⌈

kA(s+1)
kA+s

⌉
= 3. Any {Ai,Aj ,Ak} indicates a

random linear combination of the corresponding submatrices where the
coefficients are chosen i.i.d. at random from a continuous distribution.

and therefore, H is full rank. Since the matrix is full rank for a
choice of definite values, according to Schwartz-Zippel lemma
[22], the matrix continues to be full rank for random choices
of non-zero entries. Thus, the central node can recover all kA
unknowns from any set of kA worker nodes. ■

Example 3. Consider a system with n = 12 nodes each of
which can store 1/9-th fraction of matrix A. We partition A
as A0,A1, . . . ,A8. According to Alg. 1, we set the weight
ωA =

⌈
kA(s+1)
kA+s

⌉
= 3, and assign random linear combinations

of ωA submatrices to each node as shown in Fig. 3. It can
be verified that ATx can be recovered from any τ = kA = 9
nodes, therefore, the scheme is resilient to any s = 3 stragglers.

Remark 1. While our proposed approach meets the lower
bound on the weight as mentioned in Prop. 1, the approach
in [11] assigns a weight min(s + 1, kA) which can often be
higher than ours (e.g., Examples 1 and 3), and thus, may lead
to reduction in worker computation speed.

1) Computational Complexity for a Worker Node: In this
work, we assume that the “input” matrix, A ∈ Rt×r, is sparse,
i.e., most of the entries of A are zero. Let us assume that
the probability for any entry of A to be non-zero is µ, where
µ > 0 is very small. According to Alg. 1, we combine ωA

submatrices (of size t× r/kA) to obtain the coded submatrices
and assign them to the worker nodes. Hence, the probability for
any entry of any coded submatrix to be non-zero is 1−(1−µ)ωA

which can be approximated by ωAµ. Thus, in our approach, the
per worker node computational complexity is O

(
ωAµ× rt

kA

)
where ωA =

⌈
kA(s+1)
kA+s

⌉
.

On the other hand, the dense coded approaches [5], [12],
[13] combine kA submatrices for encoding, hence, their per
worker node computational complexity is O

(
kAµ× rt

kA

)
=

Authorized licensed use limited to: Iowa State University. Downloaded on July 18,2024 at 16:54:45 UTC from IEEE Xplore. Restrictions apply.

O (µ× rt) which is kA

ωA
≈ s+kA

s+1 times higher than that of ours.
Moreover, the recent sparse matrix computations approach
in [11] combines s + 1 submatrices for encoding (when
s < kA). Thus, its corresponding computational complexity
is O

(
(s+ 1)µ× rt

kA

)
; approximately (1 + s/k) times higher

than that of ours. We clarify this with the following example.

Example 4. Consider the same setting in Example 3 where
n = 12, kA = 9 and s = 3. In this scenario, the recent work
[11] assigns random linear combinations of min(s+1, kA) = 4
submatrices to each node. Thus, our proposed approach enjoys
a 25% decrease in computational complexity, which could
significantly enhance the overall computational speed.

2) Numerical Stability and Coefficient Determination Time:
In this section, we discuss the numerical stability of our pro-
posed distributed matrix computations scheme. The condition
number is widely regarded as a significant measure of numerical
stability for such a system [3], [12], [13]. In the context of a
system consisting of n workers and s stragglers, the worst-case
condition number (κworst) is defined as the highest condition
number among the decoding matrices when considering all
possible combinations of s stragglers. In methods involving
random coding like ours, the idea is to generate random
coefficients multiple (e.g., 20) times and selecting the set of
coefficients that results in the lowest κworst among those trials.

In our proposed method, we partition matrix A into kA
disjoint block-columns, which underscores the necessity to
recover kA vector unknowns. Consequently, in each attempt,
we must determine the condition numbers of

(
n
kA

)
decoding

matrices, each of size kA× kA. This whole process has a total
complexity of O

((
n
kA

)
k3A

)
. On the other hand, the recent

sparse matrix computation techniques, such as sparsely coded
straggler (SCS) optimal scheme discussed in [20] or the class-
based scheme discussed in [9] partition matrix A into ∆A =
LCM(n, kA) block-columns. Thus, in each attempt, they need
to ascertain the condition numbers of

(
n
kA

)
matrices, each of

which has a size ∆A ×∆A, resulting in a total complexity of
O
((

n
kA

)
∆3

A

)
. Since ∆A can be considerably larger than kA,

those methods involve significantly more complexity compared
to our proposed scheme. For instance, if we consider a scenario
where n and kA are co-prime, then ∆A = nkA, and thus
the complexity of the approaches presented in [9], [20] is
approximately O

(
n3

)
times higher than our method.

B. Private Matrix-vector Multiplication

Now, we discuss how we can modify Alg. 1 to add protection
against information leakage of the “input” matrix A in the
worker nodes, which we assume are honest but curious.
The traditional idea developed in several private distributed
computations approaches [15], [16] is to add dense random
matrices to the submatrices of the “input” matrix. While this
can provide protection against information leakage up to certain
levels, it substantially increases the number of non-zero entries
in the encoded submatrices of an originally sparse input matrix,
which can reduce the overall computation speed.

Algorithm 2: Proposed scheme for Private distributed
matrix-vector multiplication for non-colluding nodes

Input : Matrix A ∈ Ft×r, vector x ∈ Ft×1, n-number
of nodes, storage fraction 1

kA
, where n > kA.

1 Create a sparse random matrix S ∈ Ft×r/kA , where the
probability of any entry to be non-zero is η;

2 Create a random vector r of length n;
3 for i← 0 to n− 1 do
4 Create encoded submatrix Ãi according to Alg. 1;
5 Assign submatrix Āi = Ãi + riS to worker Wi;
6 Assign vector x to worker node Wi;
7 end

Output : The central node recovers ATx from the
returned results by the fastest kA + 1 nodes.

In our scheme, we propose that the central node will generate
a sparse matrix S ∈ Ft×r/kA where the probability of any entry
being non-zero is η. Next, the central node will add S to all
the encoded submatrices to be assigned to the worker nodes
according to Alg. 1. In other words, if the central node was
supposed to send the encoded submatrix Ãi to worker node Wi

according to Alg. 1, then for private sparse matrix computations,
the central node will send Āi = Ãi+S to worker node Wi. The
upcoming corollary proves that the central node can recover the
final result, ATx from any kA +1 nodes (in a similar process
as in Sec. IV). Note that the central node sends the vector x
to all n nodes. The overall procedure for private matrix-vector
multiplication is outlined in Alg. 2.

Corollary 2. Assume that a system has n worker nodes each
of which can store 1/kA fraction of matrix A for conducting
private matrix-vector multiplication ATx. If we assign the jobs
according to Alg. 2 to achieve our desired level of protection
against information leakage of A, we achieve resilience to
s = n− (kA + 1) stragglers.

Proof. We prove the corollary in a similar fashion as we
have proved Theorem 1. Instead of kA vector unknowns,
AT

0 x,A
T
1 x,A

T
2 x, . . . ,A

T
kA−1x, to recover ATx, we have one

more unknown, STx involved in this process. Similar to the
proof of Theorem 1, we denote the set of these kA+1 unknowns
as B, and choose an arbitrary set of kA +1 worker nodes each
of which corresponds to an equation in terms of ωA + 1 of
those kA + 1 unknowns. Denoting the set of kA + 1 equations
as C, we can say, |B| = |C| = kA + 1.

We again consider a bipartite graph G = C ∪ B, and claim
that a perfect matching exists between the vertices in C and B.
The reason is that the new unknown STx participates in every
equation, hence, the size of the of neighborhood of C̄ ∈ C
will always increase by 1 (as compared to Theorem 1) when
|C̄| = m ≤ kA. Thus, for any C̄, when |C̄| = m ≤ kA + 1, the
size of the neighborhood |N (C̄)| ≥ m. This proves the perfect
matching, and then, similar to the proof of Theorem 1, using
Schwartz-Zippel lemma [22], we can prove the corollary. ■

Authorized licensed use limited to: Iowa State University. Downloaded on July 18,2024 at 16:54:45 UTC from IEEE Xplore. Restrictions apply.

We consider a system of non-colluding worker nodes which
are honest but curious. In this setting, in order to be private
from an information-theoretic standpoint, the encoded matrices
Āi should not leak any information about the data matrix A.
In this regard, denote the mutual information of two random
variables X and Y as I(X,Y). A perfectly private scheme in
our setting must satisfy the information-theoretic constraint,
I
(
Āi,A

)
= 0, for i = 0, 1, . . . , n− 1. Denoting H(X,Y) as

the joint entropy of two random variables X and Y , for our
scheme we can write

I
(
Āi;A

)
= I

(
Ãi + S;A

)
=H

(
Ãi + S

)
−H

(
Ãi + S|A

)
= H

(
Ãi + S

)
−H (S|A)

Now, for small µ, the number of non-zero entries in any Ãi

is approximately ωAµ× rt
kA

. Thus, we have

s I
(
Āi;A

)
≈ (ωAµ + η − ωAηµ)

rt

kA
log|F| − η

rt

kA
log|F|

= ωAµ (1− η)
rt

kA
log|F| (3)

Thus, I
(
Āi,A

)
decreases with the increase of η; if the central

node uses a denser S, the system will have more protection, at
the expense of longer computation times due to sparsity being
destroyed. The system will be fully protected if η = 1, in other
words, when S is fully dense.

Remark 2. A recent work [23] also studied this privacy issue in
sparse matrix computations for a different setting of distributed
computation. In that setting, the worker nodes are partitioned
into two non-communicating clusters, the untrusted cluster and
the partly trusted cluster, and different number of tasks are
assigned to different nodes. This objective is different than our
focus on being resilient to the maximum number of stragglers.

V. NUMERICAL EXPERIMENTS

In this section, we evaluate the effectiveness of our proposed
approach by conducting numerical experiments and comparing
its performance with various competing methods [5], [9], [11]–
[13], [20]. Note that there are several other works specifically
developed for sparse matrix computations. Among them, the
approach in [14] does not provide resilience to maximum
number of stragglers for given storage constraints. The approach
in [23] partitions the worker nodes into untrusted and partly
trusted cluster, which is not aligned to our assumption. The
approach in [24] assigns some jobs to the central node to reduce
the probability of rank-deficiency in the decoding, which is also
not in line of our assumptions. So, in the numerical experiment
section, we do not consider these approaches.

We explore two different distributed systems: the first one
consists of n = 30 worker nodes with s = 5 stragglers and
the other consists of n = 36 nodes with s = 8 stragglers.
We focus on a sparse input matrix A sized 40, 000× 31, 500
and a dense vector x of length 40, 000. We consider two
distinct scenarios in which the sparsity of A is 98%, and

99%, respectively. This implies that randomly selected 98%
and 99% entries, respectively, in the matrix A are zero. It
is worth noting that there exist numerous practical instances
where data matrices demonstrate such (or, even more) levels of
sparsity (refer to [25] for specific examples). The experiments
are carried out on an AWS (Amazon Web Services) cluster,
utilizing a c5.18xlarge machine as the central node and
t2.small machines as the worker nodes.

Worker computation time: Table I presents a comparison
among different methods based on the computation time
required by worker nodes to complete their respective tasks. In
these scenarios, where kA = 25 or 28, the approaches described
in [5], [12], [13] allocate linear combinations of kA submatrices
to the worker nodes. Consequently, the original sparsity of
matrix A is lost within the encoded submatrices. As a result, the
worker nodes experience a significantly increased processing
time for their tasks compared to our proposed approach or
the methods outlined in [9], [11], [20], which are specifically
designed for sparse matrices and involve smaller weights.

To discuss the effectiveness of our approach in more details,
we compare the weight of the coding of our approach against
the approach in [11]. In the first scenario, when n = 30

and s = 5, our approach sets the weight
⌈
(n−s)(s+1)

n

⌉
=⌈

25×6
30

⌉
= 5, whereas the approach in [11] uses a weight

min(s+1, kA) = min(6, 25) = 6. Thus, our approach involves
around 17% less computational complexity per worker node,
which is supported by the results in Table I. Similarly, when
n = 36 and s = 8, our proposed approach involves a weight⌈
28×9
36

⌉
= 7, which is smaller than the corresponding weight,

s+ 1 = 9, used by the approach in [11].

Communication delay: Table I also illustrates the delay
incurred during the transmission of encoded submatrices from
the central node to the worker node. The approaches presented
in [5], [12], and [13] employ dense linear combinations of
submatrices, resulting in a significant increase in the number of
non-zero entries within the encoded submatrices. Consequently,
transmitting these large number of non-zero entries leads to a
substantial communication delay within the system. In contrast,
our proposed scheme mitigates this issue by utilizing encoded
submatrices formed through linear combinations of only a
limited number of uncoded submatrices which significantly
reduces the corresponding communication delay.

For example, consider the scenario when n = 36, s = 8 and
A is 99% sparse. In this scenario, the approach in [5] needs to
transmit up to 0.01× 28× 40,000×31,500

28 = 1.26× 107 number
of non-zero entries to each node. The corresponding number for
the approach in [11], [19] is 0.01× (s+ 1)× 40,000×31,500

28 =
4.05× 106. On the other hand, the corresponding number for
our proposed method is 0.01×

⌈
kA(s+1)

n

⌉
× 40,000×31,500

28 =

3.15×106, which is smaller than the previous ones, and clarifies
the reduction of communication delay as mentioned in Table I.

Numerical stability: Next, we assess the numerical stability
of distributed systems using different coded matrix computation

Authorized licensed use limited to: Iowa State University. Downloaded on July 18,2024 at 16:54:45 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Comparison of worker computation time and communication delay (matrix transmission time) for matrix-vector multiplication for
n = 30, s = 5, and n = 36, s = 8, when randomly chosen 98% and 99% entries of matrix A are zero.

METHODS
n = 30 AND s = 5 n = 36 AND s = 8

COMP. TIME (IN MS) COMM. DELAY (IN S) COMP. TIME (IN MS) COMM. DELAY (IN S)
99% 98% 99% 98% 99% 98% 99% 98%

POLY. CODE [5] 61.4 62.3 0.67 1.14 55.7 56.3 0.52 0.95
ORTHO POLY [12] 62.2 61.7 0.69 1.17 56.2 56.4 0.49 0.91
RKRP CODE [13] 60.3 61.1 0.65 1.11 56.8 57.4 0.51 0.93

SCS OPT. SCH. [20] 24.1 38.3 0.24 0.37 28.1 41.3 0.28 0.42
CLASS-BASED [9] 17.3 28.2 0.20 0.31 22.1 33.7 0.24 0.35

CYCLIC CODE [11] 19.5 33.4 0.23 0.35 26.7 37.6 0.27 0.39
Proposed Scheme 16.7 27.7 0.19 0.32 21.8 33.9 0.24 0.34

TABLE II: Comparison among different approaches in terms of
worst case condition number (κworst) and the corresponding required
time for 10 trials to find a good set of random coefficients

METHODS
κworst FOR REQ. TIME FOR

n = 30, s = 5 10 TRIALS (IN S)

POLY. CODE [5] 1.47× 1013 0
ORTHO-POLY [12] 1.40× 108 0
RKRP CODE [13] 1.76× 106 81.84

SCS OPT. SCH. [20] 4.68× 107 1138.6
CLASS BASED [9] 7.16× 106 1479.3

CYCLIC CODE [11] 1.06× 107 78.38
PROP. SCHEME 8.21× 106 77.41

techniques. We examine the condition numbers of the decoding
matrices for various combinations of n workers and s stragglers.
By comparing the worst-case condition number (κworst) across
different methods, we present the κworst values in Table II.
The polynomial code approach [5] involves ill-conditioned
Vandermonde matrices and demonstrates significant numerical
instability, as evidenced by its notably high value of κworst.
Our proposed approach, among the numerically stable methods,
exhibits smaller κworst value compared to the method in [12]
where the condition numbers increases exponentially in terms
of s = n−kA. Note that the approach in [13] provides slightly
smaller κworst value than ours; however, as mentioned in Table
I, the worker computation time and the communication delay
are significantly higher in that case, since they assign dense
linear combinations to the worker nodes.

Coefficient determination time: Next, Table II shows a
comparative analysis of various methods with respect to the
time required for performing 20 trials to obtain a “good” set
of random coefficients that ensures numerical stability of the
system. As explained in Section IV-A2, the techniques proposed
in [20] and [9] involve partitioning matrix A into ∆A =
LCM(n, kA) block-columns. For instance, when n = 30 and
s = 5, ∆A = 150 is significantly larger than kA = 25, which
denotes the partition level in our approach. Consequently, when
dealing with higher-sized matrices to determine the condition
number, the methods proposed in [20] and [9] necessitate
considerably more time compared to our approach.

Trade-off between privacy and worker computation time:
Next, we compare the trade-off between protection against
information leakage and the worker node computation time.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

Probability of an entry of S to be non-zero, η
W

or
ke

r
co

m
pu

ta
tio

n
tim

e
(i

n
m
s)

n = 36, s = 8
n = 30, s = 5

Fig. 4: Trade-off between the protection against information leakage
and the worker computation time. A larger η enhances the protection,
but reduces the computation speed.

Consider a 99% sparse matrix A of size 40, 000×31, 500, i.e.,
99% entries of A are zero. We assume the nodes to be honest
but curious. Now, according to the discussion in Sec. IV-B, we
add matrix S to the encoded submatrices of A. Fig. 4 shows
the trade-off between the privacy (in terms of η) and the worker
computation time for two different scenarios of n and s. The
extreme case η = 0 indicates that the worker node receives
only the coded submatrices as outlined by Alg. 1, and in that
case, the computation speed is very high. On the other extreme,
as clarified in (3), when η = 1, i.e., dense noise is added to the
assigned submatrices, then I

(
Āi;A

)
= 0, which indicates the

full protection against information leakage from the honest but
curious worker nodes. However, that comes with a sacrifice in
the worker node computation speed. In this experiment, we
see that the worker computation time is most sensitive at small
values of η, i.e., when less than 20% non-zero entries are being
added. After this point, privacy can be improved with little
downside to computational time. Note that the approaches in
[9], [20], while being specifically suited to sparse matrices, do
not address the privacy issue.

VI. CONCLUSION

In this study, we devised a distributed scheme for multiplying
large matrices by vectors, specifically designed for sparse
input matrices. First we found a lower bound on the weight
for the encoding of any scheme for the resilience to the
maximum number of stragglers for given storage constraints.
Our proposed straggler-optimal approach meets the lower bound

Authorized licensed use limited to: Iowa State University. Downloaded on July 18,2024 at 16:54:45 UTC from IEEE Xplore. Restrictions apply.

and maintains the inherent sparsity of the input matrix A up
to a certain extent. As a result, it substantially reduces both
computation and communication delays compared to dense
coded methods. We also explored the privacy aspect of sparse
matrix computations when the nodes are honest but curious. We
achieved a controllable balance between the preserved sparsity
level and information leakage. Our claims were corroborated
through numerical experiments conducted on an AWS cluster.

A future direction can include developing schemes for sparse
distributed matrix-matrix multiplication which meets the lower
bound on the weight. Another direction may include developing
sparsely coded schemes with protection against information
leakage when the worker nodes can collude among them.

APPENDIX

A. Proof of Claim 1

Proof. Consider the worker nodes in W1. According
to Alg. 1, we assign a linear combination of
AiωA

,AiωA+1,AiωA+2, . . . ,A(i+1)ωA−1 (indices modulo kA)
to worker node Wi, for i = kA, kA + 1, . . . , n − 1.
Thus, the participating submatrices in worker node
WkA

are A0,A1, . . . ,AωA−1 (indices reduced modulo kA).
Similarly, the participating submatrices in WkA+1 are
AωA

,AωA+1, . . . ,A2ωA−1 (indices reduced modulo kA). In
a consequence, ωA number of submatrices participate in each
of those s worker nodes sequentially in an increasing order in
terms of their indices (reduced modulo kA).

Now, denote the number of appearances of any submatrix Ai

within the nodes in W1 by vi ≥ 0. Thus, for any 0 ≤ j, k ≤
kA − 1, we have |vj − vk| ≤ 1, where

∑kA−1
i=0 vi = sωA.

Thus, the average of these vi’s is ρ = sωA

kA
. If ρ is an integer,

then vi = ⌊ρ⌋ = ρ for i = 0, 1, 2, . . . , kA − 1, since for every
pair of j, k, we have |vj − vk| ≤ 1. Similarly, if ρ is not an
integer, then vi ≥ ⌊ρ⌋. Thus, within all s nodes of W1, every
submatrix participates in at least ⌊ρ⌋ times over ⌊ρ⌋ distinct
nodes. In other words, any submatrix may not participate in at
most s− ⌊ρ⌋ nodes within the nodes of W1.

First, consider the case, kA = s. Here, every submatrix
participates in ⌊ρ⌋ = ωA nodes, therefore, any submatrix does
not participate in s−ωA nodes. But, we choose any m1 ≥ ωA

nodes in W1, where ωA = ⌈ s+1
2 ⌉, since kA = s. Thus,

2ωA ≥ s+ 1 > s which indicates that, ωA > s− ωA.

In addition, since m1 ≥ ωA, we claim that m1 > s − ωA.
Thus, every submatrix will participate at least once within
those chosen m1 nodes, hence |A1| = kA.

Next, consider the other case when kA > s. Again, since we
choose any arbitrary m1 ≥ ωA nodes in W1, we are leaving
s−m1 nodes in W1. But

s−m1 ≤ s− ωA < s− ⌊ρ⌋.

The second inequality holds since s < kA. Thus, every
submatrix will participate at least once within those m1 ≥ ωA

nodes, hence |A1| = kA. ■

REFERENCES

[1] A. Ramamoorthy, A. B. Das, and L. Tang, “Straggler-resistant distributed
matrix computation via coding theory: Removing a bottleneck in large-
scale data processing,” IEEE Sig. Proc. Mag., vol. 37, no. 3, pp. 136–145,
2020.

[2] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.
Info. Th., vol. 64, no. 3, pp. 1514–1529, 2018.

[3] A. B. Das, A. Ramamoorthy, and N. Vaswani, “Efficient and robust
distributed matrix computations via convolutional coding,” IEEE Trans.
Info. Th., vol. 67, no. 9, pp. 6266–6282, 2021.

[4] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear
transforms distributedly using coded short dot products,” in Proc. of Adv.
in Neur. Inf. Proc. Syst. (NeurIPS), 2016, pp. 2100–2108.

[5] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an optimal
design for high-dimensional coded matrix multiplication,” in Proc. of
Adv. in Neur. Inf. Proc. Syst. (NeurIPS), 2017, pp. 4403–4413.

[6] A. B. Das, L. Tang, and A. Ramamoorthy, “C3LES : Codes for
coded computation that leverage stragglers,” in Proc. of IEEE Info.
Th. Workshop, 2018, pp. 1–5.

[7] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation in
distributed matrix multiplication: Fundamental limits and optimal coding,”
IEEE Trans. Info. Th., vol. 66, no. 3, pp. 1920–1933, 2020.

[8] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in Proc. of Intl. Conf.
on Mach. Learn. (ICML), 2017, pp. 3368–3376.

[9] A. B. Das and A. Ramamoorthy, “A unified treatment of partial stragglers
and sparse matrices in coded matrix computation,” IEEE Jour. on Sel.
Area. in Info. Th., vol. 3, no. 2, pp. 241–256, 2022.

[10] A. K. Pradhan, A. Heidarzadeh, and K. R. Narayanan, “Factored LT and
factored raptor codes for large-scale distributed matrix multiplication,”
IEEE Jour. Sel. Area. Info. Th., vol. 2, no. 3, pp. 893–906, 2021.

[11] A. B. Das, A. Ramamoorthy, D. J. Love, and C. G. Brinton, “Coded
matrix computations for D2D-enabled linearized federated learning,” in
Proc. of IEEE Intl. Conf. on Acoustics, Speech and Sig. Proc. (ICASSP),
2023, pp. 1–5.

[12] M. Fahim and V. R. Cadambe, “Numerically stable polynomially coded
computing,” IEEE Trans. Info. Th., vol. 67, no. 5, pp. 2758–2785, 2021.

[13] A. M. Subramaniam, A. Heidarzadeh, and K. R. Narayanan, “Random
Khatri-Rao-product codes for numerically-stable distributed matrix
multiplication,” in Proc. of Annu. Allerton Conf. Commun. Control
Comput, Sep. 2019, pp. 253–259.

[14] S. Wang, J. Liu, and N. Shroff, “Coded sparse matrix multiplication,” in
Proc. of Intl. Conf. on Mach. Learn. (ICML), 2018, pp. 5152––5160.

[15] W.-T. Chang and R. Tandon, “On the capacity of secure distributed matrix
multiplication,” in Proc. of IEEE Glob. Comm. Conf. (GLOBECOM),
2018, pp. 1–6.

[16] M. Aliasgari, O. Simeone, and J. Kliewer, “Private and secure distributed
matrix multiplication with flexible communication load,” IEEE Trans.
Inf. Forensics Secur., vol. 15, pp. 2722–2734, 2020.

[17] J. Li and C. Hollanti, “Private and secure distributed matrix multiplication
schemes for replicated or mds-coded servers,” IEEE Trans. Inf. Forensics
Secur., vol. 17, pp. 659–669, 2022.

[18] Q. Yu and A. S. Avestimehr, “Coded computing for resilient, secure,
and privacy-preserving distributed matrix multiplication,” IEEE Trans.
on Comm., vol. 69, no. 1, pp. 59–72, 2021.

[19] A. B. Das, A. Ramamoorthy, D. J. Love, and C. G. Brinton, “Distributed
matrix computations with low-weight encodings,” in Proc. of IEEE Intl.
Symp. on Info. Th., 2023.

[20] A. B. Das and A. Ramamoorthy, “Coded sparse matrix computation
schemes that leverage partial stragglers,” IEEE Trans. Info. Th., vol. 68,
no. 6, pp. 4156–4181, 2022.

[21] J. Marshall. Hall, Combinatorial theory. Wiley, 1986.
[22] J. T. Schwartz, “Fast probabilistic algorithms for verification of polyno-

mial identities,” Jour. of the ACM, vol. 27, no. 4, pp. 701–717, 1980.
[23] M. Xhemrishi, R. Bitar, and A. Wachter-Zeh, “Distributed matrix-vector

multiplication with sparsity and privacy guarantees,” in Proc. of IEEE
Intl. Symp. on Info. Th., 2022, pp. 1028–1033.

[24] R. Ji, A. Heidarzadeh, and K. R. Narayanan, “Sparse random khatri-rao
product codes for distributed matrix multiplication,” in Proc. of IEEE
Info. Th. Workshop, 2022, pp. 416–421.

[25] SuiteSparse Matrix Collection. [Online]. Available: https://sparse.tamu.
edu/

Authorized licensed use limited to: Iowa State University. Downloaded on July 18,2024 at 16:54:45 UTC from IEEE Xplore. Restrictions apply.

