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ABSTRACT
The advent of Large Language Models (LLMs) has enabled advance-
ment in automated code generation, translation, and summarization.
Despite their promise, evaluating the use of LLMs in repairing real-
world code vulnerabilities remains underexplored. In this study, we
address this gap by evaluating the capability of advanced LLMs,
such as ChatGPT-4 and Claude, in fixing memory corruption vul-
nerabilities in real-world C/C++ code. We meticulously curated
223 real-world C/C++ code snippets encompassing a spectrum of
memory corruption vulnerabilities, ranging from straightforward
memory leaks to intricate buffer errors. Our findings demonstrate
the proficiency of LLMs in rectifying simple memory errors like
leaks, where fixes are confined to localized code segments. However,
their effectiveness diminishes when addressing complicated vulner-
abilities necessitating reasoning about cross-cutting concerns and
deeper program semantics. Furthermore, we explore techniques for
augmenting LLM performance by incorporating additional knowl-
edge. Our results shed light on both the strengths and limitations
of LLMs in automated program repair on genuine code, underscor-
ing the need for advancements in reasoning abilities for handling
complex code repair tasks.

CCS CONCEPTS
• Security and privacy → Domain-specific security and privacy
architectures.
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INTRODUCTION
Addressing code vulnerabilities is a significant challenge faced by
developers, encompassing flaws or defects within software that, if
exploited, can jeopardize system and application security. These
vulnerabilities pose severe risks to data integrity, user privacy, and
the overall stability of systems. However, manually rectifying these
vulnerabilities is a demanding and error-prone process, requiring
skilled developers to meticulously analyze the code, identify the
root causes of issues, and apply precise patches. This approach
often proves time-consuming. To streamline this critical task, recent
efforts have turned to employing Large Language Models (LLMs)
to automate code vulnerability repairs [2, 8].

Despite the increasing prevalence of LLMs in various code-
related tasks, a significant gap remains in the literature regarding
their evaluation, particularly in repairing real-world vulnerabilities.
This gap primarily arises due to the inherent complexity in assess-
ing LLMs when applied to actual code, which commonly presents
intricate structures, interdependencies, and extensive contextual
nuances. For instance, vulnerabilities related to memory corruption
often involve intricate interactions among functions, variables, or
structures, demanding a deep understanding of code logic, pos-
ing a stringent challenge for LLMs [22]. Moreover, the absence
of standardized benchmarks and comprehensive datasets further
complicates the evaluation process, hindering definitive assessment
of LLMs’ capabilities in code repair. Existing evaluations primarily
focus on self-contained issues that can be resolved within a few
lines of code, leaving LLMs’ applicability in handling complex, real-
world scenarios largely unexplored [2, 3, 6, 8, 11, 21]. While these
evaluations offer insights into LLMs’ strengths, substantial gaps
persist in understanding their limitations, especially in addressing
intricate and multifaceted code repair tasks [7, 16, 23].

This paper extensively evaluates LLMs for repairing memory cor-
ruption vulnerabilities, specifically focusing on widely used C/C++
programming languages. The prominence of C/C++ in industrial
applications and the prevalence of memory corruption vulnera-
bilities make these languages an ideal domain for examination.
Our meticulous curation and assessment of 223 real-world C/C++
code snippets aimed to evaluate the repair capabilities of advanced
LLMs like ChatGPT-4 and Claude. These snippets cover a wide
spectrum of memory corruption vulnerabilities, from simple cases
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like memory leaks to intricate scenarios involving multifaceted
code structures.

Our results revealed that existing LLMs exhibit proficiency in
repairing simple memory errors like memory leaks, particularly in
localized code segments. However, their efficacy diminishes when
handling complex vulnerabilities requiring in-depth analysis of
cross-cutting concerns and intricate program semantics. Further-
more, we discuss strategies to enhance LLM performance on intri-
cate vulnerabilities by incorporating additional knowledge, such
as context of variables, external functions, data structures, or vari-
ables, and logic of the vulnerable code. Our findings offer essential
insights into both the capabilities and limitations of LLMs in auto-
mated program repair on real code. They serve as a motivator for
future research aimed at expanding the reasoning abilities of LLMs
for handling complex code repair tasks.

RELATEDWORK
Automatic program repair (APR) refers to the process of automati-
cally identifying and fixing software bugs, errors, or vulnerabilities
without human intervention. Various approaches such as search
based, symbolic execution based, and deep learning based methods
are used to generate these patches [1, 4, 5]. Search based meth-
ods utilize evolutionary algorithms, heuristic search, or optimiza-
tion techniques to explore patch spaces and derive effective solu-
tions [13]. Symbolic execution based methods delve into program
paths symbolically to derive constraints guiding the patch genera-
tion process [14]. These methods analyze exploit code or test cases,
applying repair strategies to generate patches. However, their effi-
cacy might be limited for intricate bugs where the patch space is
complex. Deep learning based methods leverage extensive datasets
of faulty and corrected programs to train neural networks. These
models can then predict patches directly for new bugs [17]. These
advancements indicate the potential of LLMs such as GPT-4, ca-
pable of understanding and generating code, becoming pivotal in
APR tasks, showcasing promising abilities in automated patch gen-
eration. Their capacity to analyze code structures and relationships
might offer valuable contributions to enhancing the efficiency and
accuracy of automated patching systems.

Existing research utilizing LLMs for code repair involves diverse
methodologies. Some methods employ LLMs to generate initial
code snippets containing vulnerabilities and subsequently repair
the generated code using the same models [2, 9, 11]. However, this
approach assumes that LLMs accurately understand the vulnera-
bilities they generate, which may not always hold true. Another
approach involves employing LLMs to analyze and repair code
problems from platforms like LeetCode [3]. Additionally, the suc-
cess of LLM based code repair heavily relies on the model’s ability
to precisely analyze textual descriptions found in reports such as
CWE or LeetCode problem statements. Researchers are exploring
the combination of LLMs with static analysis techniques to rec-
tify vulnerable code. Static tools are utilized to prompt program
errors, which are then examined by LLMs. Upon analyzing these
errors, LLMs generate relevant code snippets and offer real-time
feedback and suggestions, leveraging the information provided by
the queries [19, 21].

The prevailing state-of-the-art in LLM based program repair
predominantly concentrates on particular languages such as Java

or Python and are often restricted to smaller-scale test programs,
which imposes certain constraints [3, 9, 19, 20]. Exsiting work has
discussed that existing LLMs and APR models fix very few Java
vulnerabilities [20]. However, directly porting the results of a Java
or Python program to C++ can present challenges. The languages
differ in syntax and core features. For instance, as depicted in Exam-
ple 1, Java lacks explicit pointers like those in C++. Java manages
references to objects, but these references are not directly manipu-
latable as pointers in C++. Conversely, C++ utilizes explicit pointers
for memory management and direct memory access. Moreover,
Java employs automatic memory management through garbage
collection, demonstrated in Example 2, where ’str’ is automatically
deallocated when it’s no longer referenced or goes out of scope.
In contrast, C++ necessitates manual memory management using
operations such as ’new’ for allocation and ’delete’ for deallocation.
Failure to explicitly deallocate memory in C++ can lead to memory
leaks.

Example 1: Syntax difference in Java and C++

Java:
String str = "Hello";

C++:
std::string* ptrToStr = nullptr;
std::string str = "Hello";
ptrToStr = &str;

Example 2: Memory management in Java and C++

Java:
List<Integer> ptr = new ArrayList<>();

C++:
int* ptr = new int(5);
std::cout << “Value: " << *ptr << std::endl;
delete ptr;

Another limitation involves the transition from simplified test
programs to real-world applications. Real-world software systems
are complex, interconnected, and subject to various constraints and
dependencies that may not be adequately addressed by current re-
pair methods [2, 9, 11]. While LLMs excel in generating initial code
snippets or providing feedback based on provided queries, they
often face challenges dealing with intricate vulnerabilities such as
memory corruption. Memory corruption spans across the entirety
of code context, involving intricate data structures and memory
management techniques. This study aims to assess the capabilities
of LLMs in automatically generating patches for real-world C/C++
programs, focusing particularly on addressing memory corruption
vulnerabilities. These vulnerabilities, encompassing various scenar-
ios like buffer overflows or double-free errors, are critical security
risks in software systems. By delving into the LLMs’ proficiency
in analyzing the memory handling intricacies within C/C++ code-
bases, the study seeks to understand the extent to which LLMs can
effectively identify and rectify these vulnerabilities.
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BACKGROUND
Memory corruption vulnerabilities represent a critical category of
security flaws in software, capable of causing severe consequences
when exploited by attackers. These vulnerabilities typically encom-
passmanipulations or corruptions withinmemory areas, potentially
resulting in unauthorized access, data leaks, system crashes, or even
enabling remote code execution.

In this paper, we discuss the following memory corruption vul-
nerabilities and their corresponding Common Weakness Enumera-
tion (CWE) identifiers [15]:

• Buffer Error (CWE-119): It occurs when data is read from
or written to a buffer that is not in the boundary of the buffer.
This can lead to memory corruption and potentially code
execution.

• Buffer Copy without Checking Size of Input (CWE-
120): This vulnerability relates to copying data to a buffer
without verifying the input’s size, which can result in buffer
overflows.

• Integer Overflow (CWE-190): Integer overflow vulnera-
bilities happen when an integer value exceeds its maximum
representable value, causing data corruption and unexpected
program behavior.

• Double Free (CWE-415): Double-free vulnerabilities occur
when a program tries to free the samememory location more
than once. This can lead to memory corruption or crashes.

• Use After Free (CWE-416): Use-after-free vulnerabilities
happen when a program tries to access memory that has al-
ready been deallocated. This can lead to memory corruption
or crashes.

• Memory Leaks (CWE-401): Memory leaks occur when
a program allocates memory but forgets to deallocate it.
Although not a direct memory corruption issue, it can lead
to inefficient memory usage and eventual exhaustion.

• NULL Pointer Dereference (CWE-476): Dereferencing a
null pointer can lead to crashes or unpredictable behavior,
which is a form of memory corruption.

The vulnerabilities chosen for examination in this paper span a
spectrum, including relatively straightforward instances like mem-
ory leaks (CWE-401) and more intricate cases such as Buffer errors
(CWE-119). Memory leaks are generally considered less complex
as they involve the accidental failure to deallocate memory, while
Buffer errors, on the other hand, encompass a range of issues like
buffer overflows or underflows, often requiring intricate under-
standing of memory allocation, data structure, and code logic. Un-
derstanding and addressing these vulnerabilities are critical in en-
suring the development of secure software and applications. These
weaknesses, if exploited, can significantly compromise data in-
tegrity, breach confidentiality, and undermine the reliability of soft-
ware systems. Our investigation aims to explore the extent to which
LLMs can effectively handle these diverse cases of vulnerabilities.

CODE PATCH GENERATION
This paper studies the following research questions:

• “Can LLMs effectively generate patches for vulnerable code
when supplied with the vulnerability’s definition and bug
location?" This question serves as an evaluation of LLMs’

CWE-119

CWE-190

CWE-416

CWE-401

CWE-476

CWE-120

CWE-415

LLMs Generated

Patches

Issue

Identification

Figure 1: Overview of our study

proficiency in autonomously devising secure code modifi-
cations when presented with vulnerability information. It
explores their capacity to contribute to automated patch
generation.

• “Under which conditions and scenarios do LLMs encounter
challenges in producing proficient code patches for vulnera-
bilities?" This research question seeks to elucidate the con-
textual constraints and scenarios in which LLMs may falter
in generating effective patches for code vulnerabilities.

Our assessment of LLMs’ performance regarding real-world
code vulnerabilities commences by retrieving code snippets from
GitHub. These snippets originate from reported instances of mem-
ory corruption vulnerabilities in the National Vulnerability Data-
base (NVD) [15]. Our goal in this process is to pinpoint both the
functions containing vulnerabilities and the exact locations within
the code necessitating patching.

Figure 1 provides an overview of our study. First, we constructed
a novel dataset encompassing 223 C++ code snippets, each intri-
cately associated with specific memory corruption vulnerabilities.
These vulnerabilities were categorized as follows: roughly 30% were
classified under CWE-119, 20% under CWE-190, 17% under CWE-
416, and 18% under CWE-476, with the remaining samples falling
under CWE-401, CWE-120, and CWE-415 categories. Then, we
evaluated the effectiveness of LLMs ChatGPT4 and Claude in ad-
dressing these vulnerabilities. For each code snippet, we provided
the vulnerability definition and identified the sections requiring
modification within the code. Finally, the patches were meticulously
scrutinized through manual verification to ascertain their accuracy
and identify the issues within incorrect patches. Both the resulting
code snippets and their repaired versions have been made publicly
available on GitHub [10].

Results of Automated Patching
To prompt LLMs for code patch generation in response to each
code snippet, we adopt a structured approach. Initially, we pro-
vide a concise introduction outlining the specific vulnerabilities
associated with the code. Following this, we instruct the LLMs by
specifying that, within the vulnerable code, the “start-bug" marker
designates the initiation point of lines requiring modification, while
the “end-bug" marker indicates the conclusion of the lines requiring
changes. We explicitly emphasize that any code beyond the bound-
aries of “start-bug" and “end-bug" should remain unaltered. This
clear delineation ensures that LLMs understand the precise scope
of the required patching within the vulnerable code. Subsequently,
we present the vulnerable code and explicitly ask the LLMs to re-
pair the vulnerable code by modifying code between “start-bug"
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and “end-bug" markers. This systematic process ensures that LLMs
receive the scope of the required patching.

After we collect the patched code from LLMs, we conduct a
comparative analysis between these generated code snippets and
the provided patch codes. This analysis involves calculating the
edit distance between the generated code snippets and the correct
patch codes, followed by a manual verification process to ascertain
the reasons for the generated code snippets’ inaccuracies. This
comparative examination enables us to assess the efficacy of LLMs
in addressing the identified vulnerabilities and in producing code
modifications consistent with the provided patches.

The results, as depicted in Table 1, reveal success rates for both
ChatGPT-4 andClaude in effectively patching code snippets. ChatGPT-
4 successfully patched approximately 16.5% of the analyzed code
snippets, while Claude exhibited a slightly lower patching rate of
11.6%. Within the subset of correctly patched code, a significant
proportion, around 43% and 53% respectively, originally has the
CWE-401 vulnerability, a prevalent issue where memory allocation
occurs but fails to be deallocated.

The ease in patching CWE-401 vulnerabilities is primarily due
to the code’s reliance solely on local variables. In the context of
C/C++, memory allocation is governed by pointers, denoted by an
asterisk (*) preceding the variable name. LLMs demonstrate a no-
table proficiency in identifying pointers, which notably streamlines
the modification process for CWE-401 vulnerabilities. Once these
pointer objects are accurately identified, LLMs adeptly proceed to
manage the process by releasing the associated memory through
the suitable deallocation functions.

Example 3: Handling simple vulnerabilities

I will provide a code that has bug: CWE-401. The product does
not sufficiently track and release allocated memory after it has
been used, which slowly consumes remaining memory.
In the vulnerable code, the “start-bug" marks the beginning of
lines that should be modified, and “end-bug" is the end of lines
to be modified. The code that is not within “start-bug" and “end-
bug" should remain unchanged.
Please only modify the code inside “start-bug" and “end-bug".
Code:
1 s t a t i c i n t r t l 8 x x xu _ s u bm i t _ i n t _ u r b ( s t r u c t ieee80211_hw ∗hw)

{
2 s t r u c t r t l 8 x x x u _ p r i v ∗ p r i v = hw−> p r i v ;
3 s t r u c t urb ∗ urb ;
4 u32 v a l 3 2 ;
5 i n t r e t ;
6 urb = u s b _ a l l o c _ u r b ( 0 , GFP_KERNEL ) ;
7 i f ( ! urb ) r e t u r n −ENOMEM;
8 u s b _ f i l l _ i n t _ u r b ( urb , p r iv −>udev , p r iv −> p i p e _ i n t e r r u p t ,

p r iv −> in t _bu f , USB_INTR_CONTENT_LENGTH ,
r t l 8 x x xu_ i n t _ c omp l e t e , p r iv , 1 ) ;

9 usb_anchor_urb ( urb , &pr iv −> in t _ an cho r ) ;
10 r e t = usb_submi t_urb ( urb , GFP_KERNEL ) ;
11 i f ( r e t ) {
12 usb_unanchor_urb ( urb ) ;
13 / ∗ ∗< s t a r t −bug > ∗ ∗ /
14 / ∗ ∗<end−bug > ∗ ∗ /
15 goto e r r o r ;
16 }
17 v a l 3 2 = r t l 8 x x xu _ r e a d 3 2 ( p r iv , REG_USB_HIMR ) ;
18 v a l 3 2 | = USB_HIMR_CPWM ;
19 r t l 8 x x x u _w r i t e 3 2 ( p r iv , REG_USB_HIMR , v a l 3 2 ) ;
20 e r r o r :

Table 1: Patch results of ChatGPT-4 and Claude

CWE NUM LLMs Incorrect Correct Total

CWE-119 ChatGPT-4 65 1 66Claude 65 1

CWE-190 ChatGPT-4 42 4 46Claude 44 2

CWE-416 ChatGPT-4 33 6 39Claude 37 2

CWE-401 ChatGPT-4 1 16 17Claude 3 14

CWE-476 ChatGPT-4 32 9 41Claude 35 6

CWE-120 ChatGPT-4 8 0 8Claude 8 0

CWE-415 ChatGPT4 6 1 7Claude 6 1

21 r e t u r n r e t ;
22 }

Reply from ChatGPT (shorten to save space): In the given code, once the
urb is unanchored using ‘usb_unanchor_urb(urb)‘, the memory allocated for
urb is not being freed, which is causing memory leak. To fix this bug, we should
call ‘usb_free_urb(urb)‘ to free the memory allocated for urb. Updated code:
1 . . .
2 / ∗ ∗< s t a r t −bug > ∗ ∗ /
3 u s b _ f r e e _u r b ( urb ) ;
4 / ∗ ∗<end−bug > ∗ ∗ /
5 . . .

Take Example 3 for illustration, the code snippet showcases a
function, 𝑟𝑡𝑙8𝑥𝑥𝑥𝑢_𝑠𝑢𝑏𝑚𝑖𝑡_𝑖𝑛𝑡_𝑢𝑟𝑏, responsible for submitting an
interrupt 𝑢𝑟𝑏 in a device driver. Within this function, an object 𝑢𝑟𝑏
is allocated using𝑢𝑠𝑏_𝑎𝑙𝑙𝑜𝑐_𝑢𝑟𝑏. However, if an error occurs during
the 𝑢𝑠𝑏_𝑠𝑢𝑏𝑚𝑖𝑡_𝑢𝑟𝑏 function call, the code jumps to the error label,
where cleanup operations are supposed to take place. The ChatGPT
response correctly identifies the issue within the code. It recog-
nizes that after the 𝑢𝑠𝑏_𝑢𝑛𝑎𝑛𝑐ℎ𝑜𝑟_𝑢𝑟𝑏 (𝑢𝑟𝑏) call, there is a failure
to release the memory allocated for the 𝑢𝑟𝑏. To rectify this vulnera-
bility, the proposed fix involves inserting the 𝑢𝑠𝑏_𝑓 𝑟𝑒𝑒_𝑢𝑟𝑏 (𝑢𝑟𝑏)
function call between the “start-bug" and “end-bug" markers. This
action explicitly frees the allocated 𝑢𝑟𝑏 memory, addressing the
CWE-401 memory leak issue and ensuring proper memory man-
agement within the code. Notably, even in scenarios where specific
information about the deallocation function is absent, LLMs can
reliably deduce the appropriate function, such as 𝑢𝑠𝑏_𝑓 𝑟𝑒𝑒_𝑢𝑟𝑏, for
freeing the allocated memory.

Issues in Patching the Code
Table 2 illustrates a substantial proportion of incorrectly patched
samples, accounting for 83.5% in ChatGPT-4 and 88.4% in Claude.
These inaccuracies in patching can be segmented into four distinct
categories:

• C1: Missing Patched Code context: This category encom-
passes vulnerabilities that lack related information. Chal-
lenges arise due to insufficient context within the code snip-
pet itself, where essential information like function and struc-
ture definitions exists beyond the snippet’s scope.
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Table 2: Incorrect Cases of ChatGPT-4 and Claude

CWE NUM LLMs Incorrect Cases

C1 C2 C3 C4

CWE-119 ChatGPT-4 53 0 8 4
Claude 45 0 16 4

CWE-190 ChatGPT-4 35 1 2 4
Claude 31 0 11 2

CWE-416 ChatGPT-4 23 0 7 3
Claude 22 0 14 1

CWE-401 ChatGPT-4 0 0 1 0
Claude 1 0 2 0

CWE-476 ChatGPT-4 29 0 1 2
Claude 23 0 8 4

CWE-120 ChatGPT-4 7 0 0 1
Claude 5 0 1 2

CWE-415 ChatGPT4 4 0 2 0
Claude 3 0 3 0

• C2: New Issues in the Patched Code: Within this category,
the patched code resolves the initially identified vulnerability
but inadvertently introduces new issues. This highlights
the potential for unintended consequences when addressing
vulnerabilities. Careful consideration of potential side effects
is crucial during the patching process.

• C3: Error in Identifying the Vulnerable Code: Vulner-
abilities in this category result from inaccuracies in pin-
pointing the vulnerable section within the code snippet. The
primary issue lies in accurately understanding the root cause
of the vulnerability. Consequently, the patches provided fail
to effectively resolve the underlying issues as they don’t
accurately target the source of the problem.

• C4: Error in Understanding the Code: This category en-
compasses vulnerabilities originating from misconceptions
or misinterpretations regarding the code’s logic or function-
ality. As a result, patches generated based on these miscon-
ceptionsmay prove ineffective in addressing the actual issues
within the code.

C1: Missing Patched Code context. This category comprises vulner-
abilities that miss important information to patch the code. Patched
code relies on variables, structures, or functions absent in the pro-
vided snippet, resulting in incomplete or inaccurate patches. To
effectively address vulnerabilities, LLMs must access all pertinent
information within the code snippet.

In the given example 4, the code snippet exhibits a vulnera-
bility classified under CWE-416. The snippet involves a function
𝑑𝑒𝑠𝑡𝑟𝑜𝑦_𝑠𝑒𝑟𝑣𝑒𝑟_𝑐𝑜𝑛𝑛𝑒𝑐𝑡 responsible for handling server connec-
tions.Within this function,memory allocated for the 𝑖𝑟𝑐𝑐𝑜𝑛𝑛 pointer
is freed for 𝑢𝑠𝑒𝑟𝑚𝑜𝑑𝑒 and 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒_𝑛𝑖𝑐𝑘 pointers. The function
𝑔_𝑓 𝑟𝑒𝑒_𝑛𝑜𝑡_𝑛𝑢𝑙𝑙 designed to free memory only if the pointer is
not NULL, preventing potential crashes or errors that might occur
from trying to free an already deallocated memory or an unini-
tialized pointer. ChatGPT attempted to propose a solution to ad-
dress CWE-416 vulnerability by suggesting setting 𝑢𝑠𝑒𝑟𝑚𝑜𝑑𝑒 and
𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒_𝑛𝑖𝑐𝑘 as NULL after freeing them. The intention behind
this solution was to prevent potential issues related to access-
ing freed memory. However, ChatGPT’s solution deviated from

the correct patch required to resolve this vulnerability. The ac-
curate fix should involve freeing the pointers 𝑠𝑎𝑠𝑙_𝑢𝑠𝑒𝑟𝑛𝑎𝑚𝑒 and
𝑠𝑎𝑠𝑙_𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑 within the 𝑖𝑟𝑐𝑐𝑜𝑛𝑛 structure. The reason for Chat-
GPT’s inability to provide the correct patch lies in its limited under-
standing of the code’s internal structure (𝑖𝑟𝑐𝑐𝑜𝑛𝑛). This limitation
stems from ChatGPT’s reliance on provided information within the
code snippet and its lack of broader context or knowledge about
the specific structures involved.

Example 4: Handing code independence

I will provide a code that has bug: CWE-416. Referencing mem-
ory after it has been freed can cause a program to crash, use
unexpected values, or execute code. ...(shorten to save space)
1 s t a t i c vo id d e s t r o y _ s e r v e r _ c onn e c t ( SERVER_CONNECT_REC ∗ conn )

{
2 IRC_SERVER_CONNECT_REC ∗ i r c c onn ;
3 i r c c onn = IRC_SERVER_CONNECT ( conn ) ;
4 i f ( i r c c onn == NULL )
5 r e t u r n ;
6 g _ f r e e _ n o t _ n u l l ( i r c conn −>usermode ) ;
7 g _ f r e e _ n o t _ n u l l ( i r c conn −> a l t e r n a t e _ n i c k ) ;
8 / ∗ ∗< s t a r t −bug > ∗ ∗ /
9 / ∗ ∗<end−bug > ∗ ∗ /
10 }

Reply from ChatGPT (shorten to save space): The pointer 𝑖𝑟𝑐𝑐𝑜𝑛𝑛 is freed
but it is not set to NULL, and can therefore risk being used after it has been freed.
In order to avoid this issue, we should set the pointer to NULL after freeing it.
1 . . .
2 / ∗ ∗< s t a r t −bug > ∗ ∗ /
3 i r c conn −>usermode = NULL ;
4 i r cconn −> a l t e r n a t e _ n i c k = NULL ;
5 / ∗ ∗<end−bug > ∗ ∗ /
6 . . .

Correct patch:
1 . . .
2 / ∗ ∗< s t a r t −bug > ∗ ∗ /
3 g _ f r e e _ n o t _ n u l l ( i r c conn −> sa s l _u se rname ) ;
4 g _ f r e e _ n o t _ n u l l ( i r c conn −> sa s l _pa s swo rd ) ;
5 / ∗ ∗<end−bug > ∗ ∗ /
6 . . .

C2: New Issues in the Patched Code. This category involves scenarios
where the patched code initially succeeds in resolving the identified
vulnerability. However, the application of the patch inadvertently
introduces a new issue into the codebase. In essence, while one
problem is successfully fixed, another issue arises, underscoring
the importance of exercising caution and thorough consideration
when applying code patches to anticipate potential side effects.

In Example 5, the function 𝑝ℎ𝑝_ℎ𝑡𝑚𝑙_𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 processes strings
𝑠𝑡𝑟 and performs HTML entity encoding using another function
𝑝ℎ𝑝_𝑒𝑠𝑐𝑎𝑝𝑒_ℎ𝑡𝑚𝑙_𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠_𝑒𝑥 , converting special characters to their
corresponding HTML entities. However, there is a vulnerability in
this code related to CWE-190, indicating a potential integer overflow
or wraparound when dealing with 𝑛𝑒𝑤_𝑙𝑒𝑛. To address this vulner-
ability, ChatGPT attempts to check if the value of 𝑛𝑒𝑤_𝑙𝑒𝑛 exceeds
the maximum allowed integer value ( 𝐼𝑁𝑇_𝑀𝐴𝑋 ). If this condition
is true, it triggers an error message using the 𝑝ℎ𝑝_𝑒𝑟𝑟𝑜𝑟_𝑑𝑜𝑐𝑟𝑒 𝑓
function, which is retrieved from ChatGPT training dataset, and
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returns 𝐹𝐴𝐿𝑆𝐸 to signal an error state. This check aims to prevent
any issues resulting from the integer overflow by flagging it as an
error and avoiding potential vulnerabilities that might arise from
data loss or unexpected behavior due to integer wraparound. How-
ever, the code lacks a crucial step: deallocating the 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑑 pointer
before returning, which can potentially cause memory leaks. This
additional step ensures that the fix doesn’t inadvertently introduce
new issues, highlighting the necessity for a meticulous approach
to code patching to prevent unintended consequences.

Example 5: Introducing new issues

I will provide a code that has bug: CWE-190. The product per-
forms a calculation that can produce an integer overflow or
wraparound, when the logic assumes that the resulting value
will always be larger than the original value. This can intro-
duce other weaknesses when the calculation is used for resource
management or execution control. ...(shorten to save space)
1 s t a t i c vo id p hp _h tm l _ e n t i t i e s ( INTERNAL_FUNCTION_PARAMETERS ,

i n t a l l ) {
2 char ∗ s t r , ∗ h i n t _ c h a r s e t = NULL ;
3 i n t s t r _ l e n , h i n t _ c h a r s e t _ l e n = 0 ;
4 s i z e _ t new_len ;
5 long f l a g s = ENT_COMPAT ;
6 char ∗ r e p l a c e d ;
7 zend_boo l doub le_encode = 1 ;
8 i f ( z end_pa r s e_pa r ame t e r s (ZEND_NUM_ARGS ( ) TSRMLS_CC , " s |

l s ! b " , &s t r , &s t r _ l e n , &f l a g s , &h i n t _ c h a r s e t , &
h i n t _ c h a r s e t _ l e n , &doub le_encode ) == FAILURE ) {

9 r e t u r n ;
10 }
11 r e p l a c e d = php_ e s c a p e _h tm l _ en t i t i e s _ e x ( s t r , s t r _ l e n , &

new_len , a l l , ( i n t ) f l a g s , h i n t _ c h a r s e t , doub le_encode
TSRMLS_CC ) ;

12 / ∗ ∗< s t a r t −bug > ∗ ∗ /
13 / ∗ ∗<end−bug > ∗ ∗ /
14 RETVAL_STRINGL ( r ep l a c ed , ( i n t ) new_len , 0 ) ;
15 }

Reply from ChatGPT (shorten to save space): Because size_t is an unsigned
integer type and its width is not less than that of int, when a value of type size_t,
which exceeds the maximum value of int, is assigned/casted to a variable of
type int, only the lower part is taken and this results in apparent data loss.
1 . . .
2 / ∗ Check f o r i n t e g e r ove r f l ow ∗ /
3 i f ( new_len > INT_MAX) {
4 php_ e r r o r _do c r e f (NULL TSRMLS_CC , E_WARNING , " I n t e g e r

ove r f l ow d e t e c t e d in new_len " ) ;
5 RETURN_FALSE ;
6 r e t u r n ;
7 }
8 . . .

Correct patch:
1 . . .
2 / ∗ ∗< s t a r t −bug > ∗ ∗ /
3 i f ( new_len > INT_MAX ) {
4 e f r e e ( r e p l a c e d ) ;
5 RETURN_FALSE ;
6 }
7 / ∗ ∗<end−bug > ∗ ∗ /
8 . . .

C3: Error in Identifying the Vulnerable Code. Vulnerabilities catego-
rized under C3 arise due to inaccuracies in pinpointing the specific
section of the code that is vulnerable. The primary challenge lies

in accurately identifying the vulnerable segment within the given
code snippet. As a consequence, the generated patches do not effec-
tively address the underlying issues, as they fail to precisely target
the actual source of the problem.

For instance, consider Example 6, the 𝑔𝑑𝐼𝑚𝑎𝑔𝑒𝑊𝐵𝑀𝑃𝑃𝑡𝑟 func-
tion aims to extract data from a GD image. However, it contains
vulnerabilities related to CWE-415, specifically a potential double-
free error that might occur due to inappropriate handling of the
𝑔𝑑𝐼𝑂𝐶𝑡𝑥 structure (𝑜𝑢𝑡 ). If the 𝑔𝑑𝐼𝑚𝑎𝑔𝑒𝑊𝐵𝑀𝑃𝐶𝑡𝑥 function fails
to successfully obtain the 𝑔𝑑𝐼𝑂𝐶𝑡𝑥 structure, resulting in the 𝑜𝑢𝑡
variable being NULL. Subsequently, attempting to extract data us-
ing this out pointer when it is NULL would cause issues. ChatGPT
faces challenges due to two primary reasons. Firstly, ChatGPT mis-
interprets the code markers (e.g., “start-bug” and “end-bug”) as
standard text elements instead of recognizing them as indicators
for segments requiring modification, especially when there are
multiple makers. Consequently, this misunderstanding prevents
the model from grasping the importance of these markers in pin-
pointing the vulnerable sections for patching, particularly those
related to potential NULL-pointer issues in handling the 𝑜𝑢𝑡 pointer
within the 𝑔𝑑𝐼𝑚𝑎𝑔𝑒𝑊𝐵𝑀𝑃𝑃𝑡𝑟 function. Second, similar to C1 and
C4 categories, the model struggles when analyzing the intricate
context of the code, resulting in difficulties in precisely identify-
ing the segments that contain vulnerabilities. This lack of accurate
identification leads to generated code modifications that may not
effectively align with the intended changes, reducing the overall
accuracy of the patches provided.

Example 6: Error in identifying modification markers

I will provide a code that has bug: CWE-415. The product calls
free twice on the same memory address, potentially leading to
modification of unexpected memory locations. ...(shorten to save
space)
1 vo id ∗ gdImageWBMPPtr ( gd ImagePtr im , i n t ∗ s i z e , i n t f g ) {
2 vo id ∗ rv ;
3 gdIOCtx ∗ out = gdNewDynamicCtx ( 2 0 4 8 , NULL ) ;
4 / ∗ ∗< s t a r t −bug > ∗ ∗ /
5 gdImageWBMPCtx ( im , fg , out ) ;
6 / ∗ ∗<end−bug > ∗ ∗ /
7 rv = gdDPExtrac tData ( out , s i z e ) ;
8 / ∗ ∗< s t a r t −bug > ∗ ∗ /
9 / ∗ ∗<end−bug > ∗ ∗ /
10 out −> gd_ f r e e ( out ) ;
11 r e t u r n rv ;
12 }

Reply from ChatGPT (shorten to save space): The problem is that the
code doesn’t store a copy of the pointer 𝑜𝑢𝑡 before it’s freed. The fact ‘out-
>gd_free(out);‘ might led to a double free error in later executions. To fix this
bug, we can use a temporary pointer to free 𝑜𝑢𝑡 so the original pointer 𝑜𝑢𝑡
doesn’t get modified. This way, we prevent a potential double freeing.
1 vo id ∗ gdImageWBMPPtr ( gd ImagePtr im , i n t ∗ s i z e , i n t f g ) {
2 vo id ∗ rv ;
3 gdIOCtx ∗ out = gdNewDynamicCtx ( 2 0 4 8 , NULL ) ;
4 gdIOCtx ∗ tmpOut = out ;
5 / ∗ ∗< s t a r t −bug > ∗ ∗ /
6 gdImageWBMPCtx ( im , fg , tmpOut ) ;
7 / ∗ ∗<end−bug > ∗ ∗ /
8 rv = gdDPExtrac tData ( tmpOut , s i z e ) ;
9 tmpOut−> gd_ f r e e ( tmpOut ) ;
10 r e t u r n rv ;
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11 }

Correct patch:
1 vo id ∗ gdImageWBMPPtr ( gd ImagePtr im , i n t ∗ s i z e , i n t f g ) {
2 vo id ∗ rv ;
3 gdIOCtx ∗ out = gdNewDynamicCtx ( 2 0 4 8 , NULL ) ;
4 / ∗ ∗< s t a r t −bug > ∗ ∗ /
5 i f ( ! _gdImageWBMPCtx ( im , fg , out ) ) {
6 / ∗ ∗<end−bug > ∗ ∗ /
7 rv = gdDPExtrac tData ( out , s i z e ) ;
8 / ∗ ∗< s t a r t −bug > ∗ ∗ /
9 } e l s e {
10 rv = NULL ;
11 }
12 / ∗ ∗<end−bug > ∗ ∗ /
13 out −> gd_ f r e e ( out ) ;
14 r e t u r n rv ;
15 }

C4: Error in Understanding the Code. This category encompasses
vulnerabilities resulting from a fundamental misinterpretation of
the code. Such vulnerabilities arise from misconceived perceptions
or misunderstandings regarding the code’s inherent logic and func-
tionality. As a consequence, patches generated under these miscon-
ceptions may fall short in addressing the actual issues within the
code. Patching these vulnerabilities demands a deeper analysis of
the code’s internal operations.

The original code in Example 7, showcases a vulnerability related
to CWE-119, where the function tokenadd operates on a memory
buffer (𝑝->𝑡𝑜𝑘𝑒𝑛𝑏𝑢𝑓 ). This function aims to append a character (𝑐)
to the buffer and handles its expansion when required. The code
begins with an assertion to ensure that the current position within
the buffer (𝑝->𝑡𝑜𝑘𝑒𝑛𝑝𝑜𝑠) equals the allocated length (𝑝->𝑡𝑜𝑘𝑒𝑛𝑙𝑒𝑛).
If the condition holds true, the code doubles the allocated size
of the buffer and reallocates memory using the 𝑗𝑣_𝑚𝑒𝑚_𝑟𝑒𝑎𝑙𝑙𝑜𝑐
function. While ChatGPT correctly identifies the need for memory
allocation when 𝑡𝑜𝑘𝑒𝑛𝑝𝑜𝑠 reaches 𝑡𝑜𝑘𝑒𝑛𝑙𝑒𝑛, it fails to precisely
understand the buffer’s maximum index range. The issue arises
from the assumption that the maximum index for 𝑡𝑜𝑘𝑒𝑛𝑝𝑜𝑠 should
be 𝑡𝑜𝑘𝑒𝑛𝑙𝑒𝑛, which is incorrect. Instead, the buffer 𝑡𝑜𝑘𝑒𝑛𝑏𝑢𝑓 should
add up if 𝑡𝑜𝑘𝑒𝑛𝑝𝑜𝑠 is greater than or equal to 𝑡𝑜𝑘𝑒𝑛𝑙𝑒𝑛 − 1.

Example 7: Error in understanding the code snippet

I will provide a code that has bug: CWE-119. The product per-
forms operations on a memory buffer, but it can read from or
write to a memory location that is outside of the intended bound-
ary of the buffer. ...(shorten to save space)
1 s t a t i c vo id tokenadd ( s t r u c t j v _ p a r s e r ∗ p , char c ) {
2 a s s e r t ( p−> tokenpos <= p−> token l en ) ;
3 / ∗ ∗< s t a r t −bug > ∗ ∗ /
4 i f ( p−> tokenpos == p−> token l en ) {
5 / ∗ ∗<end−bug > ∗ ∗ /
6 p−> token l en = p−> token l en ∗ 2 + 2 5 6 ;
7 p−> tokenbu f = jv_mem_rea l l o c ( p−> tokenbuf , p−>

token l en ) ;
8 }
9 a s s e r t ( p−> tokenpos < p−> token l en ) ;
10 p−> tokenbu f [ p−> tokenpos ++] = c ;
11 }

Reply from ChatGPT (shorten to save space): The issue here is that there’s a
potential to write outside of the allocated memory for 𝑡𝑜𝑘𝑒𝑛𝑏𝑢𝑓 in the last line
of code. If 𝑝->𝑡𝑜𝑘𝑒𝑛𝑝𝑜𝑠 is equal to 𝑝->𝑡𝑜𝑘𝑒𝑛𝑙𝑒𝑛 then it allocates new memory
but it doesn’t check then if 𝑡𝑜𝑘𝑒𝑛𝑝𝑜𝑠 was updated to a value larger than
𝑡𝑜𝑘𝑒𝑛𝑙𝑒𝑛 in multithreaded scenarios, or if 𝑗 𝑣_𝑚𝑒𝑚_𝑟𝑒𝑎𝑙𝑙𝑜𝑐 didn’t allocate
memory correctly (failure case).
1 . . .
2 / ∗ ∗< s t a r t −bug > ∗ ∗ /
3 i f ( p−> tokenpos >= p−> token l en ) {
4 p−> token l en = p−> token l en ∗2+256 ;
5 char ∗ newbuf = jv_mem_rea l l o c ( p −> tokenbuf , p −>

token l en ) ;
6 i f ( newbuf == NULL ) {
7 f p r i n t f ( s t d e r r , "Memory a l l o c a t i o n f a i l e d \ n " ) ;
8 r e t u r n ;
9 }
10 p −> tokenbu f = newbuf ;
11 }
12 / ∗ ∗<end−bug > ∗ ∗ /
13 a s s e r t ( p −> tokenpos < p −> token l en ) ;
14 . . .

Correct patch:
1 . . .
2 / ∗ ∗< s t a r t −bug > ∗ ∗ /
3 i f ( p−> tokenpos >= ( p −> token l en − 1 ) ) {
4 / ∗ ∗<end−bug > ∗ ∗ /
5 . . .

TECHNIQUES TO IMPROVE VULNERABILITY
REPAIR
The analysis of code vulnerabilities by LLMs can be limited by
several factors. These constraints often arise from the intricate
nature of code context, the precision of the prompt description, and
the potential vagueness within textual depictions of vulnerabilities.
LLMs heavily depend on the details in the prompt to create code.
If the prompt is not comprehensive, LLMs might struggle to grasp
the precise nature of the vulnerability [18]. This limitation could
result in generating patches that address the symptoms rather than
the underlying root cause, potentially leading to incomplete or
ineffective solutions.

Improving the efficacy of LLMs in addressing code vulnerabilities
relies on supplementing them with additional contextual knowl-
edge. The study conducted by Zhang et al. delves into the signifi-
cance of code context by examining the consequences of removing
surrounding correct lines in a vulnerable code snippet [23]. How-
ever, solely providing the lines vulnerable to a security flaw and
asking LLMs to repair the code is not sufficient. For instance, con-
sider the code snippet in Example 7, where presenting only the
vulnerable line 4 without context may lead LLMs to struggle in an-
alyzing the cause of the vulnerability and thus impede their ability
to resolve the issue effectively.

In our paper, we focus on augmenting LLMs with additional
knowledge that encompasses various elements such as the context
of variables, understanding of external functions, data structures
or variables, and the underlying logic of the vulnerable code. This
augmented information aims to provide LLMs with a deeper under-
standing of the code’s intricacies, enabling them to discern the root
cause of vulnerabilities and devise more accurate and contextually
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appropriate patches. The following sections discuss different kind
of additional knowledge.

Context of Variables
Understanding the contextual significance of variables proves piv-
otal in LLMs’ adeptness at patching code vulnerabilities. This infor-
mation involves grasping the variable’s scope, its potential values,
and its usage patterns within the code snippet.

For example, in the given case study 1, aimed at addressing the
vulnerabilities in the Example 5, we explicitly explain the impor-
tance of the 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑑 variable in managing memory. By elucidating
that 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑑 can trigger memory corruption, LLMs can generate
patches that handle memory overflow issues more effectively. This
contextual information significantly enhances the LLM’s ability
to generate more accurate and contextually aware code patches,
thereby addressing vulnerabilities more effectively while maintain-
ing the code’s intended functionality.

Case Study 1: Adding explanation of variables

Additional knowledge: The allocated memory 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑑

should be freed if an error is detected.

Reply from ChatGPT (shorten to save space):
1 . . .
2 / ∗ ∗< s t a r t −bug > ∗ ∗ /
3 i f ( new_len > INT_MAX ) {
4 php_ e r r o r _do c r e f (NULL TSRMLS_CC , E_WARNING , " I n t e g e r

ove r f l ow d e t e c t e d in new_len " ) ;
5 e f r e e ( r e p l a c e d ) ;
6 RETURN_FALSE ;
7 }
8 / ∗ ∗<end−bug > ∗ ∗ /
9 . . .

External Functions, Data Structures or Variables
Code vulnerabilities can also manifest due to improper handling of
external functions, data structures or variables. Equipping LLMs
with knowledge about these external information, including return
values, data types, and access patterns, allows them to identify
potential memory corruption vulnerabilities and generate repair
patches that adhere to safe memory management practices.

As shown in the case study 2 for the example 4, adding detailed
information about the 𝑢𝑠𝑒𝑟𝑛𝑎𝑚𝑒 and 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑 variables within
the 𝑆𝐸𝑅𝑉𝐸𝑅_𝐶𝑂𝑁𝑁𝐸𝐶𝑇_𝑅𝐸𝐶 structure proves invaluable. By em-
phasizing that these variables should be freed to ensure complete
memory management, we equip the LLM with a broader context of
the vulnerability.

Case Study 2: Adding explanation of data structures

Additional knowledge: 𝑢𝑠𝑒𝑟𝑛𝑎𝑚𝑒 and 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑 in
𝑆𝐸𝑅𝑉𝐸𝑅_𝐶𝑂𝑁𝑁𝐸𝐶𝑇_𝑅𝐸𝐶 structure should also be freed.

Reply from ChatGPT (shorten to save space):
1 . . .
2 / ∗ ∗< s t a r t −bug > ∗ ∗ /
3 g _ f r e e _ n o t _ n u l l ( i r c conn −>username ) ;
4 g _ f r e e _ n o t _ n u l l ( i r c conn −>password ) ;

5 i r c conn −>usermode = NULL ;
6 i r cconn −> a l t e r n a t e _ n i c k = NULL ;
7 i r cconn −>username = NULL ;
8 i r cconn −>password = NULL ;
9 / ∗ ∗<end−bug > ∗ ∗ /
10 . . .

Logic of the Vulnerable Code
Understanding the logic and functionality of the vulnerable code is
essential for generating meaningful patches. LLMs should be aware
of the expected behavior of the code, the purpose of different code
segments, and the intended flow of the function.

For instance, in case study 3, which corresponds to the example
6, explanations of external functions such as 𝑔𝑑𝐼𝑚𝑎𝑔𝑒𝑊𝐵𝑀𝑃𝐶𝑡𝑥 ,
_𝑔𝑑𝐼𝑚𝑎𝑔𝑒𝑊𝐵𝑀𝑃𝐶𝑡𝑥 , and 𝑔𝑑𝐷𝑃𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝐷𝑎𝑡𝑎 is essential. By high-
lighting that the double-free issue originates from not checking
the success of writing the WBMP file into the output stream, and
suggesting the utilization of _𝑔𝑑𝐼𝑚𝑎𝑔𝑒𝑊𝐵𝑀𝑃𝐶𝑡𝑥 as an indicator
of successful file writing, LLMs can craft more informed patches.
Consequently, the LLMs can leverage this information to generate
repair patches that check for successful writing of the WBMP file
before proceeding further, ensuring safer and more robust code
practices.

Similarly, in case study 4 associated with example 7, providing
comprehensive information about the vulnerable code’s logic and
the relationship between the variables 𝑝->𝑡𝑜𝑘𝑒𝑛𝑝𝑜𝑠 and 𝑝->𝑡𝑜𝑘𝑒𝑛𝑙𝑒𝑛
is crucial to aid LLMs in generating effective patches. This ad-
ditional knowledge should involve explaining the fundamental
logic behind the vulnerability, emphasizing the potential disparity
between 𝑝->𝑡𝑜𝑘𝑒𝑛𝑝𝑜𝑠 and 𝑝->𝑡𝑜𝑘𝑒𝑛𝑙𝑒𝑛, and clarifying the proper
boundary conditions. Specifically, elucidating that 𝑝->𝑡𝑜𝑘𝑒𝑛𝑏𝑢𝑓 is
capable of holding 𝑝->𝑡𝑜𝑘𝑒𝑛𝑙𝑒𝑛 elements, making the maximum
index 𝑝->𝑡𝑜𝑘𝑒𝑛𝑝𝑜𝑠 should be 𝑝->𝑡𝑜𝑘𝑒𝑛𝑙𝑒𝑛 − 1.
Case Study 3: Adding explanation of external functions and logic

Additional knowledge: The double free is caused by not check-
ing if 𝑖𝑚𝑎𝑔𝑒 has successfully been written into 𝑜𝑢𝑡 . If 𝑖𝑚𝑎𝑔𝑒 has
been successfully written into 𝑜𝑢𝑡 , _𝑔𝑑𝐼𝑚𝑎𝑔𝑒𝑊𝐵𝑀𝑃𝐶𝑡𝑥 will re-
turn 0. Therefore, we could use _𝑔𝑑𝐼𝑚𝑎𝑔𝑒𝑊𝐵𝑀𝑃𝐶𝑡𝑥 instead of
𝑔𝑑𝐼𝑚𝑎𝑔𝑒𝑊𝐵𝑀𝑃𝐶𝑡𝑥 to check if writing the WBMP file is success-
ful. If it is successful, in 𝑔𝑑𝐷𝑃𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝐷𝑎𝑡𝑎, it cleans up the data
block and returns to 𝑟𝑣 . Otherwise, 𝑟𝑣 should be set to NULL. Here
is the definition of 𝑔𝑑𝐼𝑚𝑎𝑔𝑒𝑊𝐵𝑀𝑃𝐶𝑡𝑥 , _𝑔𝑑𝐼𝑚𝑎𝑔𝑒𝑊𝐵𝑀𝑃𝐶𝑡𝑥 ,
and 𝑔𝑑𝐷𝑃𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝐷𝑎𝑡𝑎. (shorten to save space)
1 / ∗ Func t i on : gdImageWBMPCtx
2 Write the image as a wbmp f i l e
3 Pa rame te r s :
4 image − gd image s t r u c t u r e
5 fg − the index o f the fo r eg round c o l o r . any o the r va l u e

w i l l be c on s i d e r e d as background and w i l l not be
w r i t t e n

6 out − the s t ream where to wr i t e
7 ∗ /
8 BGD_DECLARE ( vo id ) gdImageWBMPCtx ( gdImagePtr image , i n t fg ,

gdIOCtx ∗ out )
9 {
10 _gdImageWBMPCtx ( image , fg , out ) ;
11 }

56



Evaluating Large Language Models for Real-World Vulnerability Repair in C/C++ Code IWSPA ’24, June 21, 2024, Porto, Portugal

12 / ∗ Func t i on : _gdImageWBMPCtx
13 Re tu rns 0 on succe s s , 1 on f a i l u r e
14 ∗ /
15 s t a t i c i n t _gdImageWBMPCtx ( gd ImagePtr image , i n t fg , gdIOCtx

∗ out )
16 {
17 i n t x , y , pos ;
18 Wbmp ∗wbmp ;
19 / ∗ c r e a t e the WBMP ∗ /
20 . . .
21 / ∗ f i l l up the WBMP s t r u c t u r e ∗ /
22 . . .
23 / ∗ wr i t e the WBMP to a gd f i l e d e s c r i p t o r ∗ /
24 i f ( writewbmp (wbmp , &gd_putout , out ) ) {
25 freewbmp (wbmp) ;
26 gd_e r r o r ( " Could not save WBMP\ n " ) ;
27 r e t u r n 1 ;
28 }
29 freewbmp (wbmp) ;
30 r e t u r n 0 ;
31 }
32 BGD_DECLARE ( vo id ∗ ) gdDPExtrac tData ( gd IOCtxPt r c tx , i n t ∗

s i z e )
33 {
34 dynamicPtr ∗ dp ;
35 dpIOCtx ∗ dc tx ;
36 vo id ∗ da t a ;
37 dc t x = ( dpIOCtx ∗ ) c t x ;
38 dp = dctx −>dp ;
39 / ∗ c l e an up the da t a b l o ck and r e t u r n i t ∗ /
40 i f ( dp−>dataGood ) {
41 trimDynamic ( dp ) ;
42 ∗ s i z e = dp−> l o g i c a l S i z e ;
43 da t a = dp−>da t a ;
44 } e l s e {
45 ∗ s i z e = 0 ;
46 da t a = NULL ;
47 i f ( ( dp−>da t a != NULL ) && ( dp−>freeOK ) ) {
48 gdFree ( dp−>da t a ) ;
49 }
50 }
51 dp−>da t a = NULL ;
52 dp−> r e a l S i z e = 0 ;
53 dp−> l o g i c a l S i z e = 0 ;
54 r e t u r n da t a ;
55 }

Reply from ChatGPT (shorten to save space):
1 . . .
2 i f ( _gdImageWBMPCtx ( im , fg , out ) == 0 ) {
3 rv = gdDPExtrac tData ( out , s i z e ) ;
4 } e l s e {
5 rv = NULL ; / / I n d i c a t e s f a i l u r e , rv shou ld be s e t

as NULL
6 }
7 . . .

Case Study 4: Adding explanation of code logic

Additional knowledge: Off-by-one error in the tokenadd func-
tion allows remote attackers to cause a denial of service (crash),
which triggers a heap-based buffer overflow. If 𝑝->𝑡𝑜𝑘𝑒𝑛𝑝𝑜𝑠 is
more than or equal to the end of buffer, resize the buffer. The end
of buffer should be 𝑝->𝑡𝑜𝑘𝑒𝑛𝑙𝑒𝑛 − 1 not 𝑝->𝑡𝑜𝑘𝑒𝑛𝑙𝑒𝑛.

Reply from ChatGPT (shorten to save space):
1 . . .
2 / ∗ ∗< s t a r t −bug > ∗ ∗ /

3 i f ( p −> tokenpos >= p −> token l en − 1 ) {
4 p −> token l en = p −> token l en ∗ 2 + 256 ;
5 char ∗ newbuf = jv_mem_rea l l o c ( p−> tokenbu f , p−>

token l en ) ;
6 i f ( newbuf == NULL ) {
7 f p r i n t f ( s t d e r r , "Memory a l l o c a t i o n f a i l e d \ n " ) ;
8 r e t u r n ;
9 }
10 p−> tokenbu f = newbuf ;
11 }
12 / ∗ ∗<end−bug > ∗ ∗ /
13 . . .

DISCUSSION
While this study presents valuable insights into leveraging LLM
based approaches for automatic vulnerability repair, the focus of fu-
ture research involves refining the approach by generalizing prompt
templates to enhance vulnerability repair. When encountering sim-
ilar issues across different codes, consistent prompts can effectively
enhance the quality of the generated patched code even when differ-
ent variables are involved. Clustering prompts to create templates
for vulnerability repairs offers a structured way to address com-
mon vulnerabilities. In a case study like 1, where ChatGPT faced
challenges related to freeing objects, this acquired knowledge could
help create specialized templates, such as “The allocated memory
variable name should be freed if an error is detected." However,
certain cases, such as case study 3, cannot be generalized into tem-
plates. A deeper understanding of the vulnerable code’s logic is
required for substantial improvement in the patched code.

Another promising avenue for future exploration involves fine-
tuning LLMs using datasets specifically curated for code repair
tasks. Training LLMs on meticulously crafted datasets tailored for
these tasks has the potential to significantly enhance their analysis
of programming structures, error patterns, and appropriate reme-
dial actions. However, it’s critical to note that fine-tuning the model
solely with vulnerable code snippets lacking contextual informa-
tion is impractical. Consider Case Study 2—without the context
of the external data structure in the training dataset, patching the
code becomes an insurmountable challenge. Hence, comprehensive
datasets encompassing complete contexts and pertinent libraries
are imperative for effective model refinement. These datasets play
a crucial role in empowering LLMs with the essential information
required to identify intricate vulnerabilities and generate accurate
patches. Since LLMs are black-box models, it is challenging to in-
terpret which features are learned by the models and why different
LLMs produce different outputs for the same input. If a fine-tuned
model is available, interpreting its output using techniques like
attention visualization or concept activation vectors could aid in
understanding the results of LLMs and identifying potential biases
or limitations.

Finally, in our experiments, we provided the incorrect lines in
the prompts and tasked LLMs to repair these lines following the
methodology of existing work [2, 9, 11, 12]. While this approach
is useful for evaluating the LLM’s ability to generate patches for
known vulnerabilities, it may not fully capture the LLM’s potential
for vulnerability detection and localization. It would be worthwhile
to test whether LLMs have the ability to detect vulnerabilities and
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locate the bug lines independently, without being provided with
the specific vulnerable lines. This could involve providing the LLM
with the complete source code and tasking it to analyze the code,
identify and highlight potentially vulnerable lines or functions, and
optionally suggest repairs. Such an approach would more closely
resemble real-world scenarios where the location of vulnerabilities
is not known a priori and would require the LLM to leverage its
understanding of programming constructs, security best practices,
and potential attack vectors.

CONCLUSION
In conclusion, this study presents a extensive evaluation of LLMs
for automated code repair in the context of memory corruption
vulnerabilities. Our analysis, encompassing a diverse range of real-
world code snippets associated with various CWE categories, sheds
light on both the capabilities and limitations of LLMs in addressing
code vulnerabilities.

The results shows while LLMs have showcased promising po-
tential in handling simpler vulnerabilities like memory leaks, their
efficacy diminishes when addressing more complex issues involv-
ing external dependencies, nuanced contextual information, and
intricate code structures. The categorization of challenges faced by
LLMs, such as issues with missing information, introduction of new
issues, misidentification of vulnerable code, and misunderstanding
of code logic, provides valuable insights into the areas where further
advancements are needed. Moreover, the exploration of additional
knowledge incorporation, including contextual variables, external
functions, data structures, and logic explanation, demonstrates the
potential for enhancing LLM performance in code repair tasks.

This work contributes by highlighting the need for more sophis-
ticated methodologies and additional contextual information to
enable LLMs to address multifaceted code vulnerabilities effectively.
Future research directions could focus on refining LLM training
methods, devising strategies for better contextual understanding,
and developing standardized benchmarks for extensive evaluations
in the domain of automated code repair.

DISCLAIMER
Commercial products are identified in order to adequately specify
certain procedures. In no case does such identification imply recom-
mendation or endorsement by the National Institute of Standards
and Technology, nor does it imply that the identified products are
necessarily the best available for the purpose.
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