78

ARTIFICIAL INTELLIGENCE/MACHINE LEARNING

Using Explainable
Al for Neural
Network-Based
Network Attack
Detection

Qingtian Zou™, The Pennsylvania State University

Lan Zhang ™, Northern Arizona University

Xiaoyan Sun, Worcester Polytechnic Institute

Anoop Singhal™, National Institute of Standards and Technology

Peng Liu*, The Pennsylvania State University

Neural network (NN)-based network
intrusion detection systems (NIDSs) are
becoming popular these days due to their
notable advantages. This article reviews
the current application of explainable
artificial intelligence technigues and tools
for explaining the behavior of the NIDS.
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ecently, deep learning and neu-

ral networks (NNs) have demon-

strated exceptional performances

in many areas, including im-
age recognition, robotics, and natural
language processing. Compared to tradi-
tional machine learning models (for ex-
ample, decision trees (DTs), random for-
ests, support vector machines, and so on),
NNs have notable advantages including
the abilities of dealing with complex data,
reduced reliance on feature extraction,
comparatively better performances, and
so on.

However, due to the black-box nature
of NNs, understanding how models make
decisions is often difficult, both in a gen-
eral sense (explanation) and in the context
of a specific input (interpretation). This
has hindered the applications of NNs in
some critical missions where understand-
ing rationales of the decision-making is
imperative. This is especially true in the
security domain. System administrators
want to not only determine if the system
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is under attack but also identify what
indicators signal the potential attack,
as the indicators are often the cues for
knowing the root causes. For exam-
ple, an NN-based network intrusion
detection system (NIDS) usually de-
tects intrusions including denial of
service, probing, botnet, and other
logic flaw exploiting attacks.! It can
take network packets or postprocess-
ing network data (for example, net-
work flow data) as input and report
whether (specific kinds of) attacks
exist. If a NN-based NIDS detects an
attack, the security analyst will want
to know which packets lead to the at-
tack, where the attack packets come
from, and sometimes even which
bytes of the packets are malicious. To
achieve this goal, explainable artifi-
cial intelligence (XAI) is a valuable
tool that can be used to “crack open
the black box.”

Generally speaking, XAI tech-
niques can be categorized into two
categories. One is to explain the NN
as a whole, and the other is to inter-
pret why a specific output is given for
a specific input. The first category
provides network-level explanations,
while the second category provides
per-data-sample explanations. In the
literature, the second category has
been extensively investigated, result-
ing in development of well-known
tools such as Shapley additive expla-
nations (SHAP)? and local interpre-
table model-agnostic explanations
(LIME).3 In contrast, the first category
is less investigated. Nevertheless, DTs
recently attracted researchers’ atten-
tions as a promising way to provide
network-level explanations. With the
provided training data samples and
the corresponding NN's outputs (for
each sample), the goal is to train a
DT to emulate the performance of the
NN, so that the NN's decision-making
process can be approximated using the
learned DT.

In this article, we seek to provide
a critical review within the NIDS do-
main about the current applications
of XAI techniques/tools in both the
network-level explanations category
and the per-data-sample interpretation
category. To make the review insight-
ful, we focus on the subtle connections
between network-level explanations
and per-data-sample interpretations.
We have also conducted preliminary

identify the most important features
for making predictions, as well as to
understand the decision-making pro-
cess used by the model. Humans can
comprehend and retrace how Al mod-
els came to a specific output based on
the DTs. However, DTs also have some
limitations when used for explaining
black-box deep learning models. For
example, DTs may not be able to cap-
ture complex relationships between

This has hindered the applications of NNs in some
critical missions where understanding rationales of
the decision-making is imperative.

experiments to compare the two expla-
nations using the NN-based Domain
Name System (DNS) cache poisoning
detection as a case study.

PRIOR WORKS
XAI has several aspects. Aside from
the existence of explanation, there are
also principles in XAI such as mean-
ingfulness, explanation accuracy, and
knowledge limits.* Generally speak-
ing, the goal of XAI is to reveal the
decision-making process of Al mod-
els. There are also different criteria to
categorize XAl techniques.® For exam-
ple, whether the model is self-explain-
able,®7:8 or post hoc explanation is
applied on a given model?; whether to
surrogate a complicated model with a
simpler or even self-explainable one?;
and whether to explain individual
data samples!© or explain the model’s
overall behavior.11:12.13.14

One of the XAI techniques that
have been tailored to cybersecurity
problems with domain-specific knowl-
edge is Trustee.? It learned high-fi-
delity and low-complexity DTs for
network security problems. The DT is
easy to interpret and can be used to

input features, and they may be sen-
sitive to noise and outliers in the data.
Therefore, it is important to carefully
evaluate the use of DTs for explaining
Almodels used in network security.

DEEP LEARNING FOR
DETECTING NETWORK
ATTACKS

To demonstrate using XAl techniques
for NN explanation, we will use an
example NN from our prior work.!
In the prior work, we proposed to use
deep learning for detecting two net-
work attacks: address resolution pro-
tocol (ARP) poisoning and DNS cache
poisoning attacks. In this article, we
choose the DNS cache poisoning de-
tection rather than the ARP poisoning
detection as the example to demon-
strate the XAl techniques. This is due
to the following reasons: 1) traditional
machine learning techniques such as
DTs and random forests can already
achieve good performance for ARP
poisoning detection; 2) the CNN for
DNS cache poisoning detection is a
more complex NN model compared to
the MLP model for ARP poisoning, so
it can better show the benefits of XAI
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techniques. Data and codes for train-
ing the detection NN have been pub-
lished on GitHub.?

DNS poisoning works by spoofing
DNS responses, with which the attacker
can trick the victim into falsified map-
pingsbetween domainnamesandIPad-
dresses and, thus, redirect the network
communication. It exploits the lack

dataset, a trained NN will generate a
prediction for each data sample. To ex-
plain this NN, a DT can be trained with
data samples and the NN's predictions.
Note that the NN's predictions but not
ground truths are used because DT
here is used for explaining the NN but
not for solving the original problem.
The basic assumption for tree-based

For example, DTs may not be able to capture
complex relationships between input features,
and they may be sensitive to noise and outliers

in the data.

of response verification in the corre-
sponding protocol. As a result, the vic-
tims cannot verify whether the packets
come from a genuine host or attacker.
DNS poisoningis difficult to be detected
with traditional detection methods (for
example, signatures, rules, anomaly de-
tections, and so on) because spoofing is
applied (that is, attacker packets are in-
tentionally crafted to be indistinguish-
able from normal packets). Therefore,
our prior work proposed to use a convo-
lutional neural network (CNN) for de-
tecting DNS cache poisoning. The mod-
el's accuracy, F1 score, and detection
rate are all above 99%. However, little is
known about how the CNN judges data
samples to achieve this performance.

TWO COMMON
EXPLANATION METHODS

Explanation DT

As a traditional machine learning tech-
nique, DTs are known for extracting
decision rules that are easy to under-
stand, and they have been repurposed
to explain the complex NNs. The basic
idea is to let the trained NN tutor the
DT. Suppose there is a dataset con-
taining data samples and their corre-
sponding ground truths. Based on this

2Chapter 5in https://github.com/PSUCyberSecurity
Lab/AlforCybersecurity.
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explanation is that, if the DT and the NN
can reach consensuses on the majority of
data samples, then the DT should have
learned the inner logic of the NN.

Figure 1 shows a learned explanation
DT withrespect tothe DNS cache poison-
ing detection NN. We used TRUSTEE,? a
framework to explain machine learning
models, to generate the DT. From the DT,
asecurity analyst can gain the following
insights of the tutor NN.

Feature importance. Which features
are used to classify a data sample can
be easily known from which features
are shown in those judgment nodes. If
a feature does not appear in the DT, it
means that it is not important for DT’s
classifications at all. The importance
of those features can also be inferred
based on where they are located in the
DT. The better a certain feature can
separate the benign and malicious
data samples, the closer this feature
will appear to the root node in the tree.

Class distribution. Class distribution
isshowninthe “values” in every node of
the DT, which represent the numbers of
benign and malicious data samples in
the specific node. For example, the root
node in Figure 1 shows “value = [9,419,
9,215],” meaning that there are 9,419 be-
nign data samples and 9,215 malicious
data samples. Following the left branch

from the root node, the next judgment
node shows “value = [9,419, 1,718],”
meaning that there are 9,419 benign
data samples and 1,718 malicious data
samples. The other 9,215-1,718=7,497
data samples, which are all malicious,
are directed to the right branch follow-
ing the root node. Similarly, by looking
at this value in every node, the class
distribution between benign and mali-
cious can be clearly inferred.

Shapley values

Shapley values produced by SHAP? a
widely used tool to provide per-data-
sample explanations, are used for
measuring the impact of a certain
feature’s value toward the predicted re-
sult. Different from TRUSTEE, Shapley
values are used for local interpretation.
In other words, it is used to interpret
how a prediction result is reached for a
specific data sample. Specifically, Shap-
ley values can tell how each feature
contributes to the predicted results.

For example, Table 1 shows the inter-
pretation for a benign data sample in DNS
cache poisoning detection. A positive
Shapley value means that the feature's
value pushes the classification result
toward being malicious, and a negative
Shapley value does the contrary. Only
the top-10 most positively and nega-
tively contributing features and their
Shapley values are shown. Specifically
for this data sample, the most positively-
contributing feature is the bit 1 of the
DNS layer’s authority RR field in the
fourth packet in the data sample. The
most negatively-contributing feature is
the bit 6 of the IP layer's ttl field in the
fourth packet in the data sample.

CONNECTIONS BETWEEN
NETWORK-LEVEL AND
PER-DATA-SAMPLE
EXPLANATIONS

Since the explanations provided by DTs
and SHAP are two different kinds of ex-
planations, we believe that no meaning-
ful conclusions on “which explanations
are better” could be drawn. However,
we observe that from the perspective
of whether the explanations are in
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agreement with the experts’ domain
knowledge, the explanations provided
by both DTs and SHAP are actually lo-
cated on the same spectrum. In par-
ticular, the DT explanations provided
by TRUSTEE are located near the right
end of the spectrum due to the fact that
TRUSTEE requires the decision rules in

whether the explanations are in agree-
ment with the experts’ domain knowl-
edge, researchers could gain new in-
sights through the “distance” between
the explanations near the left end of
the spectrum and those near the right
end. Since the explanations provided
by DTs and SHAP are not located on the

Note that the NN'’s predictions but not ground truths
are used because DT here is used for explaining
the NN but not for solving the original problem.

DTs “to be largely in agreement with the
experts’ domain knowledge.”? In con-
trast, the Shapley value explanations
provided by SHAP are located near the
left end of the spectrum since the Shap-
ley value of each feature is determined
by the feature’s average marginal con-
tribution, which is calculated based on
the output (that is, probabilities of each
of the classes/labels involved in the clas-
sification task) of the black-box model it-
self. In other words, the explanations on
the left end tend to illustrate the inner
workings of the black-box model.

The aforementioned observation
indicates that on the “spectrum” of

same side of the spectrum, the extent
to which they are “aligned with each
other” indicates the extent to which ex-
pert-comprehensible explanations are
aligned with the inner workings of the
black-box model. To gain new insights
into the extent to which expert-com-
prehensible explanations are aligned
with the inner workings of the black-
box model, we want to assess the extent
to which the explanations provided by
DTsand SHAParealigned. However, we
must avoid directly checking whether
the high-Shapley-value features play a
major role in the DTs because the Shap-
ley values provided by SHAP explain

TABLE 1. Shapley values for an example benign data sample.

Negatively-

contributing
Positively-contributing features features
pkt-4_DNS_authority-RR_bit_1 0.008292 pkt-4_IP ttl bit 6 -0.025208
pkt-5_DNS_authority-RR_bit_1 0.006 453 pkt-4_IP_ttl_bit_7 -0.023393
pkt-3_UDP_src-port_bit_15 0.005 856 pkt-5_IP ttl bit 5 -0.022140
pkt-5_IP total-len_bit_1 0.005790 pkt-5_IP ttl bit_1 -0.020 732
pkt-3_DNS_flags reserved_bit ** | 0.004 204 pkt-5_IP ttl bit_3 —0.018 543
pkt-5_UDP len_bit 7 0.003944 pkt-1_ UDP len bit 3 | —0.016 521
pkt-4_UDP_len_bit_7 0.003764 pkt-5_IP_ttl bit o -0.016 137
pkt-4_IP total-len bit 1 0.003 690 pkt-4_IP ttl bit 3 -0.015278
pkt-4_UDP _len_bit_5 0.003 503 pkt-5_IP ttl_bit 2 —0.015 069
pkt-4_IP total-len_bit_5 0.003 455 pkt-1_DNS_flags -0.014 437

_non-auth
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how ablack-box model makes decisions
near a particular data point. On the
other hand, based on the observation
that each root-node-to-leave-node path
ina DT explains how a black-box model
makes decisions for a subset of the data
samples, subset-level alignment assess-
ment could be conducted.

First, since the entire subset corre-
sponds to the same decision-making
path in the DT, the DT explanations
“tell” a domain expert that the subset
of the data samples are classified based
on the features on the corresponding
root-node-to-leave-node path in the
DT. We call this set of features Set 1 fea-
tures. Second, since SHAP can provide
the Shapley values of each contribut-
ing feature in classifying each member
of the subset of data samples, we may
differentiate all the involved features
based on whether a feature contributes
to the decision-making of majority of
the data samples. We call this set of
features Set 2 features. By neglecting
the features that only contribute to the
decision-making of a minority of the
data samples, we reduce the risk intro-
duced by SHAP sometimes providing
misleading explanations for some par-
ticular data samples. Third, if Set 1 is a
subset of Set 2, we say that expert-com-
prehensible explanations are not con-
flicting with the inner workings of the
black-box model; if Set 2 has quite a few
members that are not in Set 1, we say
that expert-comprehensible explana-
tions are not completely reflecting the
inner workings of the black-box model.

Specifically, we aggregate Shapley
local interpretations of multiple data
samples to simulate global interpreta-
tions. Shapley values of multiple data
samples are added up with respect to
every feature, and then we find the top
positively-contributing features and
top negatively-contributing features,
similar to what is presented in Table 1.
Due to time and computing resource
constraints, it is not feasible to apply
Shapley to all data samples. Instead,
we decided to look into a specific group
of data samples. The selected group of
data samples includes only benign data
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samples, corresponding to the leafnode
with the most benign data samples as
shown in Figure 1 (referred to as ma-
jor benign path). We randomly chose
100 data samples from the group, upon
which Shapley local interpretation is
applied to save computation resources.
We have done this multiple times and
found that they all show similar results.

For example, they all choose the same
most important features, and SHAP's
ranking of them is also the same. In
the following paragraphs, we will only
show two result charts for simplicity.
Figure 2(a) shows the Shapley values
for features shown in the major benign
path. If the Shapley value is negative, it
means that the value for this feature is

pushing the classification result to be
benign; if the Shapley value is positive,
it means that the classification result is
being pushed to be malicious. For every
data sample, one point will be added to
every feature because there will be one
Shapley value for every feature. To the
left of the figure, we also show the ratio
of negative data points to positive data

Negative to
Positive Ratio Feature Names
$ g g
100:0 pkt-5_IP_ttl_bit 44 © e @ o,'gu.’.i{?‘ od gfﬂ'ﬁc :
LY L]
WHVRE
A0
97:3 pkt-5_DNS_flags_reserved_bit_**- . 23 ,{
H
100:0 pkt-0_DNS_flags_AD A % .
[J
100:0 pkt-4_IP_ttl_bit_1- o o -.{gg% o
1000 pkt-3_IP_ttl_bit_3- o oo df &2 0ot
)
kt-4_IP_ttl_bit_4 . .
99:1 pit-4_IP_t_bit_ g ,“E
T T T T T =I T
Lo 0 o N & @ N
N N : Q > Q
PO SN P P
(@)
Negative to Positive Ratio Feature Names
100:0 pkt-5_IP_ttl_bit_5-
100:0 pkt-5_IP_ttl_bit_31
100:0 pkt-5_IP_ttl_bit_14
100:0 pkt-5_IP_ttl_bit_24
100:0 pkt-5_IP_ttl_bit_0+
100:0 pkt-4_IP_ttl_bit_34
5ol o
100:0 pkt-3_IP_ttl_bit_ 74 = ols0ep Saddepcecde safee
‘: w&;: i g
57:43 kt-4_IP_ttl_bit_6- L g? '!.{{ §4
58:42 pkt-3_IP_ttl_bit_11 gean e
100:0 pki-3_IP_tl_bit 3 .«{;’.@:{
(b) -0.03 -0.02 —-0.01 0

FIGURE 2. Beeswarm charts for 100 randomly selected data samples in the major benign path of TRUSTEE. (a) Shapley results for
features selected by TRUSTEE. (b) Shapley results for other important features.
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points: the number of data points with
negative Shapley values to the number
with positive Shapley values. It can
be inferred from this figure that most
Shapley values are negative, meaning
that Shapley local interpretation agrees
with TRUSTEE that, for the selected
data samples, these six features’ values
are pushing them toward being benign.

Figure 2(b) shows the Shapley values
for features that are most negatively
affecting. By most negatively affect-
ing, we mean that these features have
the smallest summation of Shapley

TRUSTEE and Shapley’s “important
features” do not have the same mean-
ing. TRUSTEE’s important features are
“important” because these features
can effectively discriminate benign
data samples from malicious ones,
while Shapley’simportant features are
“important” because these features’
values contribute the most to the data
samples’ classification results. These
two sets of “important features” are
important in different aspects, so it
might be reasonable that the two sets
include different features.

These two sets of “important features”
are important in different aspects, so it might
be reasonable that the two sets include
different features.

values of all randomly selected data
samples from the major benign path.
Feature pkt-3_IP_ttl_bit_3 is iden-
tified by Shapley as one of the top-10
most negatively-contributing fea-
tures, but all other important fea-
tures chosen by TRUSTEE are not in
the top-10 list. Clearly, Shapley thinks
that there are features that have larger
negative impact on data samples’ clas-
sification results, more impactful than
the six features chosen by TRUSTEE.
This is probably due to the fact that
TRUSTEE and Shapley local interpreta-
tion inspect different amount of data
samples. The TRUSTEE DT is built by
inspecting all data samples, but Shap-
ley local interpretation only inspects
a subset of data samples. Specifically,
the DT shown in Figure 1 inspects
18,644 data samples, of which 9,419 are
benign data samples, and 9,215 are ma-
licious data samples. However, Shap-
ley local interpretation results shown
in Figure 2(a), and (b) are from 100 data
samples randomly sampled from the
leftmost leaf node in Figure 1, where
there are only 8,876 benign data sam-
ples. Clearly, the two results are based
on different distributions of data sam-
ples. Another reason might be that
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Main finding

On the one hand, expert-comprehen-
sible DT explanations do not conflict
with the inner workings of the black-
box model; on the other hand, ex-
pert-comprehensible DT explanations
are not completely reflecting the inner
workings of the black-box model.

his article compares two XAI

techniques, TRUSTEE and SHAP,

in explaining the neutral net-
works. The results show that different
explanation methods may not fully
agree with each other at some points.
Differences may stem from different
explanation mechanisms, the choice
of data sample subsets, or different
perspectives of the explanations. In
the future work, we will investigate
the potential causes for such misalign-
ment between explanations provided
by the DTs and SHAP.
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