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A difficulty in the theory of a thin elastic interface
is that series expansions in its thickness become
disordered in the high contrast limit, i.e. when the
interface is much softer or much stiffer than the media
on either side. We provide a mathematical analysis of
such series for an annular coating around a cylindrical
fibre embedded in an elastic matrix subject to biaxial
forcing. We determine the order of magnitude of
successive terms in the series, and hence the terms
which need to be retained in order to ensure that
every neglected term is smaller in order of magnitude
than at at least one retained term. In this way, we
obtain uniform approximations for quantities such as
the jump in the displacement and stress across the
coating, and explain some peculiarities which have
been observed in numerical work. A key finding
is that it is essential to distinguish three types of
boundary-value problem, corresponding to ’distant
forcing’, ’localised forcing’, and ‘the homogeneous
problem’, since they give different patterns of
disorder in the corresponding series expansions.
This provides a meaningful correspondence between
physical principles and our mathematical results.

1. Introduction
A widely used method in the theory of a thin elastic
interface is that of effective boundary conditions. The
idea is that within an elastic layer one may place an
imaginary hypothetical surface and determine boundary
conditions at this surface to reproduce as closely as
possible the fields outside the layer. The surface may be
anywhere in the layer, e.g. at its centre or coincident with
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one of its boundaries, and the fields in the adjacent media are envisaged as being extended by
analytic continuation up to the hypothetical surface, so that the original three-phase problem
is replaced by a simpler two-phase problem. A variant of the approach is not to introduce a
hypothetical surface at all, but simply to determine jump conditions across the layer, and then
work only with the surrounding media and the jump in displacement and traction between them.
This likewise gives a two-phase problem. A basic ingredient of either approach is the construction
of series expansions in the thickness of the layer, truncated appropriately for the geometry and
parameter regime of interest.

The method has a long history and an extensive literature. Some early papers are [1] on thin-
film planar layers for the guiding of surface waves, and [2,3] on spherical and cylindrical annular
layers in the theory of composites. Series expansions have been obtained for spheroidal inclusions
[4], layers of general shape [5–7], and anisotropic planar layers [8–10]. An asymptotic approach
which includes variable curvature and rational scalings for soft or stiff layers is given in [11],
the relation to the theory of a Steigmann-Ogden interface is given in [12], and surface operators
are constructed in [13]. An early treatment related to a Galerkin boundary integral method is
presented in [14]. Recent analytical and numerical results for a coated circular inhomogeneity are
in [15–17], and for a coated spherical inhomogeneity in [18]. As an indication of the enormous
scope of the underlying physical problem we are addressing, we may cite the comprehensive
review paper [19], with over 700 references, and also mention specific physical effects such
as thermoelasticity [20] and the adhesion properties of joints and interphases (e.g. [21,22]) as
representative of another enormous literature. The subject spans mathematics, physics, and
engineering to a high degree.

The aim of the present paper is to resolve a difficulty encountered directly in [17] (but also
known about from much earlier, e.g. [7,21]). This is the loss of accuracy of layer models in certain
parameter regimes, which is found empirically to be strongly associated with a highly irregular
dependence of truncation error on the number of terms retained in an expansion. Our approach
in this paper is to determine the analytic structure of the exact solution of a carefully chosen
canonical problem when the solution is expressed as a series expansion in the dimensionless
thickness ε of the thin layer, with coefficients which depend on the stiffnesses of the different
phases and their Poisson’s ratios. The problem we have chosen is that of a coated cylindrical
fibre perfectly bonded to a matrix under biaxial forcing. Thus the material parameters are the
shear moduli (µf , µc, µm) together with Poisson’s ratios (νf , νc, νm), and all field variables are
proportional to cos 2θ or sin 2θ, where θ is the angular variable in cylindrical coordinates. Here
and throughout, subscripts or superscripts (f, c,m) denote (fibre, coat, matrix). We have found
that this apparently simple and well-explored problem displays a quite remarkably complex and
irregular behaviour when analysed from the point of view of what can go wrong in a truncated
Taylor series expansion in the layer thickness. As problems can arise unexpectedly in late terms,
after a sequence of tame early terms, it is necessary to present a large number of series in some
detail, and we have done this. These details are needed if a sound judgement is to be formed of
what is likely to occur in more complicated problems.

The two decisive quantities for our purposes are the softness parameter α and the stiffness
parameter β, both dimensionless, defined by

α=
µc

min(µf , µm)
, β =

µc
max(µf , µm)

. (1.1)

We shall refer to a coat as soft if α� 1, i.e. if it is much softer than the surrounding fibre and
matrix; similarly we refer to it as stiff if β� 1, i.e. much stiffer than its surrounding media. These
parameters make it easy to state the mathematical idea underlying the paper. Let us suppose
that for a soft coat we encounter a series expansion in which the terms have successive orders of
magnitude

(O(αn0), O(αn1ε), O(αn2ε2), . . .), (1.2)
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where (n0, n1, n2, . . .) is a sequence of integers (with no restriction on their sign). Then if for a
particular k≥ 1 it should happen that nk <nk−1, the series is disordered at position k, because if α
is small enough at fixed ε, then αnkεk� αnk−1εk−1. The degree of smallness for this to happen
is easily quantified as α� ε1/(nk−1−nk). This occurs for many series, and moreover can occur for
more than one k in a given series. Similarly, for a stiff coat a series expansion of the form

(O(βn0), O(βn1ε), O(βn2ε2), . . .) (1.3)

is disordered at any position k for which nk >nk−1, because then βnkεk� βnk−1εk−1 if β is large
enough. Quantitatively, this occurs when β� 1/ε1/(nk−nk−1).

Thus to obtain a uniform approximation to either of the two types of disordered series, one
must go at least as far as the latest disordered term. If the disorder continues indefinitely, because
the sequence (n0, n1, n2, . . .) has no minimum in the first case, or no maximum in the second case,
then a uniform approximation in the form of a truncated series does not exist. Of course, a series
may not be disordered anywhere; it is then well-ordered, but perhaps surprisingly there appear
to be few well-ordered series in the theory of elastic interfaces, or more generally in the theory of
multi-phase media. We believe therefore that the type of analysis presented in this paper, with its
sharp focus on exactly quantified orders of magnitude, is of wide generality.

One might ask whether it is possible to say in advance what the powers (n0, n1, n2, . . .)

will be for the quantities of interest in an interface problem, most notably the displacements
and stresses in or near the interface itself. We have found that this is not possible. The powers
vary unpredictably (as noted, a late disordered term may unexpectedly appear, and often does).
Moreover, in calculating the jump between two accurately calculated quantities, a sequence of
consecutive early terms in the two series may cancel, including among them disordered terms,
so that the disorder in a jump is usually different from that in the quantities used in defining the
jump, again unpredictably. Thus the fact that a disordered term may cancel out at a later stage in
a calculation needs to be constantly borne in mind.

For the above reasons, we have thought it worthwhile to revisit the classical problem
referred to above, of a coated fibre under uniform load. We calculate series expansions of the
important physical quantities and jumps, and determine their degree of disorder, i.e. the powers
(n0, n1, n2, . . .) in the high-contrast limits α� 1 and β� 1. Thereby we construct ‘minimal
uniform approximations’, containing the necessary powers of ε but no more. For any other form
of approximation, e.g. up to a lower power of ε, our method determines where in parameter space
it is expected to be accurate, and where it will fail. Our approximations determine which terms are
needed in effective boundary conditions for them to be uniform in the high-contrast limit. These
approximations are consistent with the asymptotic theory in [11], which we thus confirm. In §9
we give illustrative examples of the theory. The reader may find it helpful to look ahead to this
section on occasion, to inspect some uniform approximations in which the numerical coefficients
are given explicitly.

Physically, the origin of the disorder is that a thin elastic layer may deform by both stretching
and bending, the former described by low powers of ε, the latter by high powers of ε. Thus
a deformation dominated by bending requires high powers of ε to be retained, whereas these
powers are negligible in a deformation dominated by stretching [11]. The present paper provides
a complete mathematical analysis of these cases in a canonical problem.

All our formulae are exact, given the starting-point of linear elasticity. We use Mathematica to
calculate series expansions analytically, without approximation. The code with its output is in the
supplementary material.

2. Boundary-value problems for a coated fibre in a matrix

(a) Geometry and boundary conditions
The fibre problem in §1 reduces to one of plane-strain elasticity. We take a cross-section of the fibre
to be a disc of radius a, shear modulus µf , and Poisson’s ratio νf , occupying the region 0≤ r < a
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in a cylindrical coordinate system (r, θ). The fibre has an annular coat with parameters (µc, νc)

occupying a< r < b, and this is perfectly bonded to a matrix with parameters (µm, νm) occupying
r > b. Thus the fibre-coat interface is r= a and the coat-matrix interface is r= b; in formulae, it is
somewhat easier to use instead of the Poisson’s ratios themselves, the Kolosov constants [23, p. 43]
defined by

(κf , κc, κm) = (3− 4νf , 3− 4νc, 3− 4νm). (2.1)

The displacement and stress components are (ûr, ûθ, σ̂rr, σ̂rθ), representing real functions of r
and θ (we shall not need σ̂θθ). For biaxial forcing, we write these in the form

(ûr, ûθ, σ̂rr, σ̂rθ) =Re{(ur, iuθ, σrr, iσrθ)e2iθ}, (2.2)

where (ur, uθ, σrr, σrθ)≡ (ur(r), uθ(r), σrr(r), σrθ(r)) are real functions of r; the argument r is
omitted where this is clear. For convenience, we call these functions of r the displacement and
stress components, leaving understood a factor of cos 2θ or sin 2θ determined by (2.2). Phases will
be indicated by superscripts (f, c,m) and interfaces by subscripts (a, b), so that, for example, the
value of the radial displacement ufr(r) at the interface r= a is denoted ufra, this being a shorthand
for ufr(a).

We define a state vector u≡ u(r) = (ur, uθ, σrr, σrθ)
T , and indicate phases and interfaces by,

for example,

uf ≡ uf(r) = (ufr, u
f
θ, σ

f
rr, σ

f
rθ)

T , uf
a ≡ uf(a) = (ufra, u

f
θa, σ

f
rra, σ

f
rθa)

T , (2.3)

and so on correspondingly. In this way, all the required properties throughout a phase or at an
interface can be represented by a single vector symbol. It is convenient to use both a and b as
reference lengths, and define dimensionless state vectors by

ṽf
a ≡ ṽf

a(r) = (2ufr(r)/a, 2u
f
θ(r)/a, σ

f
rr(r)/(2µf), σ

f
rθ(r)/(2µf))

T (2.4)

and similarly for ṽc
a, ṽc

b , and ṽm
b , in which the subscripts denote the reference length used in the

first two components. Thus in the coat we may use either ṽc
a or ṽc

b , depending on which reference
length gives simpler formulae. The reason for the tildes here is that the ṽ quantities are mostly
needed at the values r= a or r= b, and the corresponding values (ṽf

a(a), ṽ
c
a(a), ṽ

c
b(b), ṽ

m
b (b))

are written without tildes in the compact form

(vf
a, v

c
a, v

c
b, v

m
b )≡ (ṽf

a(a), ṽ
c
a(a), ṽ

c
b(b), ṽ

m
b (b)). (2.5)

The boundary conditions are (i) continuity of displacement and traction at interfaces, i.e. uf
a =

uc
a and uc

b = um
b ; (ii) continuity of displacement at the origin, i.e. (ufr, u

f
θ)→ (0, 0) as r→ 0;

(iii) bounded stress at infinity; and (iv) a forcing condition. Here (i)–(iii) are homogeneous
boundary conditions, and (iv) is an inhomogeneous boundary condition. As we see below, (iii)
and (iv) are scalar expressions, thus making the number of boundary conditions twelve in total.

In the interests of a unified treatment of different boundary-value problems, we shall introduce
the notion of a forcing amplitude F in all cases. One option is to leave F unspecified and arbitrary,
so that F is simply a multiplying factor for each field variable, because the problem is linear,.
We shall call this the homogeneous problem, and refer to it as problem (a). Alternatively, the
forcing may be specified precisely, in which case we need to say whether the forcing is ‘distant’,
i.e. applied at infinity, or is ‘localised’, i.e. applied to the fibre and/or coating. These options give
the distant forcing problem and the localised forcing problem, respectively, and we refer to them
as problems (b) and (c). It is then necessary to determine F in relation to the given data of the
problem. Our approach does this in a straightforward way, and in general F turns out to be a
function of ε, which depends on the boundary-value problem being solved.

In this paper, we concentrate on problems (a) and (b), and in case (b) specify the distant forcing
by

(σ̂rr, σ̂rθ)→ (σ∞ cos 2θ, −σ∞ sin 2θ) (r→∞), (2.6)

or equivalently
(σmrr, σ

m
rθ)→ (σ∞, σ∞) (r→∞), (2.7)
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(see (2.2) for the notation), where σ∞ is a prescribed constant. This forcing corresponds to uniform
far-field strain. Note that it is the choice of F which ensures that σ∞ in (2.6) and (2.7) is a constant
independent of ε. For problem (c), localised forcing, the required choice of F would give a far-
field stress of a similar form, but with σ∞ now a function of ε, fully determined by this different
forcing.

The literature contains examples of all three problems (a), (b), and (c). For example, [11] is
largely concerned with (a), but includes (c) in the final discussion, where external loadings on the
coating are introduced. References [15–17] are concerned with case (b).

(b) Form of solution
The boundary-value problems just specified have a known solution, given implicitly by inversion
of an 8× 8 matrix [3], or explicitly by evaluation of the Kolosov-Muskhelishvili potentials [14–17].
Its functional form is that of Michell’s solution [23, p. 118] in each phase, conveniently expressed
in terms of matrices defined by

M̃ f
a = M̃(a, κf , r) =


2(a/r)3 −2r/a (κf + 1)a/r (κf − 3)(r/a)3

−2(a/r)3 −2r/a (κf − 1)a/r −(κf + 3)(r/a)3

−3(a/r)4 −1 −2(a/r)2 0

3(a/r)4 −1 (a/r)2 −3(r/a)2

 (2.8)

in the fibre, and similarly for M̃c
a , M̃c

b , and M̃m
b in the coat and matrix. We maintain our

convention that a tilde indicates a function of r. The two different forms M̃c
a and M̃c

b for Michell’s
solution in the coat correspond to the use of r/a and r/b respectively as the non-dimensional
version of the radial variable r.

The dimensionless field in the fibre is ṽf
a = M̃ f

aa
f , with ṽf

a ≡ ṽf
a(r) as defined in (2.4) and

af ≡ (af1, a
f
2, a

f
3, a

f
4)

T (2.9)

is a vector of dimensionless coefficients. These coefficients, and any other quantity we describe as
a coefficient, does not depend on r. Here af1 = 0 and af3 = 0, corresponding to the absence of terms
in ((a/r)3, a/r) in both ufr and ufθ , as required by continuity of displacement at the origin.

In the coat we may write either ṽc
a = M̃c

aa
c or ṽc

b = M̃c
bb

c, depending on which dimensionless
variable ṽc

a ≡ ṽc
a(r) or ṽc

b ≡ ṽc
b(r) is used. Here the coefficient vectors are

ac = (ac1, a
c
2, a

c
3, a

c
4)

T , bc = (bc1, b
c
2, b

c
3, b

c
4)

T , (2.10)

and a check of definitions shows that bc =Dac where

D=diag((a/b)4, 1, (a/b)2, (b/a)2). (2.11)

In the matrix phase, we have ṽm
b = M̃m

b bm, with ṽm
b ≡ ṽm

b (r), and the vector of dimensionless
coefficients is now

bm = (bm1 , b
m
2 , b

m
3 , b

m
4 )T . (2.12)

Here bm4 = 0, which corresponds to the absence of a term in (r/b)2 in σmrθ , as required by bounded
stress at infinity.

(c) The Michell matrix
Define the Michell matrix by

M =M(κ) =


2 −2 κ+ 1 κ− 3

−2 −2 κ− 1 −(κ+ 3)

−3 −1 −2 0

3 −1 1 −3

 . (2.13)
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This is a function of an arbitrary Kolosov constant κ, but of no other quantity, and we denote its
values in the fibre, coat, and matrix by

(Mf , Mc, Mm) = (M(κf), M(κc), M(κm)). (2.14)

Thus at r= a in the fibre, the relation ṽf
a = M̃ f

aa
f given after (2.8) may be written as vf

a =Mfa
f ,

where vf
a is the first vector defined in (2.5). At r= a on the coat side, the corresponding relation

is vc
a =Mca

c. Likewise, we have the two relations vc
b =Mcb

c and vm
b =Mmbm, corresponding

to the two sides of r= b. Here the vectors vc
a, vc

b , and vm
b are the last three quantities in (2.5).

The Michell matrix has a non-trivial property which simplifies the subsequent algebra. This is
that although det(M) =−12(κ+ 1)2, nevertheless a factor κ+ 1 is common to every term in the
adjugate of M , and so cancels out everywhere in the inverse of M , to leave

M−1 =
1

6(κ+ 1)


0 −3 −(κ− 3) κ+ 3

−6 3 −3(κ+ 1) −3(κ− 1)

3 3 −6 −6
3 −3 2 −2

 . (2.15)

Thus although one might have expected the displayed terms in (2.15) to be quadratic expressions
in κ, they are in fact only linear. The underlying reason for this is that M is only of rank 2 when
κ=−1.

With the aid of (2.15), the coefficient vectors (af ,ac,bc,bm) are expressible in terms of the
dimensionless boundary values (vf

a,v
c
a,v

c
b,v

m
b ) through the relations af =M−1f vf

a, etc. Note that
the interface conditions uf

a = uc
a and uc

b = um
b given in §2(a) are for dimensional quantities. To find

their dimensionless versions, we use the relations

(uf
a, u

c
a, u

c
b, u

m
b ) = (Df

av
f
a, D

c
av

c
a, D

c
bv

c
b, D

m
b vm

b ) (2.16)

involving four diagonal matrices defined by, for example,

Df
a =diag(a/2, a/2, 2µf , 2µf), (2.17)

and so on. Then the interface conditions become

vf
a =Dc

f v
c
a, vc

b =Dm
c vm

b , (2.18)

or equivalently

vc
a =Df

cv
f
a, vm

b =Dc
mvc

b, (2.19)

involving a second family of four diagonal matrices defined according to the pattern

Dc
f =diag(1, 1, µc/µf , µc/µf) (2.20)

and so on. Matrices of the form (2.17) are defined with respect to a phase and a boundary, whereas
those of the form (2.20) are defined with respect to two phases.

3. Method of solution
With the above definitions and relations, we have available a method of solution of the boundary-
value problems defined in §2(a). The method involves two ideas. The first is that given any one of
the twelve four-vectors we have defined, i.e. any coefficient vector selected from (af ,ac,bc,bm),
or any boundary vector selected from either (uf

a,u
c
a,u

c
b,u

m
b ) or (vf

a,v
c
a,v

c
b,v

m
b ), the value of

any other quantity may be written down as a product of this vector by a sequence of matrices
with known entries. These matrices are those we have defined, and is the reason we have given
prominence to the Michell matrix and its inverse. The problem thus resolves itself into finding
a single four-vector, and this may be any one of the twelve available. The second idea is that of
‘propagation of linear relations’, which now follows.
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(a) Propagation of linear relations
Let us suppose that we are given or have calculated a linear relation between the components
of any of the vectors above. For example, if this vector is bm, a linear relation between its
components is of the form `Tbm = 0 where `= (l1, l2, l3, l4)

T specifies the relation, and is taken
as given. Since bm =M−1m vm

b , we may write (`TM−1m )vm
b = 0, which is a linear relation between

the components of vm
b ; then vm

b =Dc
mvc

b gives (`TM−1m Dc
m)vc

b = 0, a linear relation between the
components of vc

b , and proceeding in this way we obtain also

(`TM−1m Dc
mMc)b

c = 0 and (`TM−1m Dc
mMcD)ac = 0. (3.1)

Further applications give a similar but longer expression in af . Thus the original linear relation
between the components of bm (which relates to the matrix phase) has propagated first to the
coat, in the form of a relation between the components of bc or ac, and then to the fibre, as a
relation between the components of af . Similarly, whichever vector one starts with, in any phase,
an arbitrary linear relation between its components may be propagated anywhere by means of a
product of the matrices defined in §2.

(b) Effect of remote boundary conditions
We refer to the boundary conditions as r→ 0 and r→∞ as ‘remote’, in that they apply at a
distance from the coat. These boundary conditions, given in §2(a), are equivalent to (af1, a

f
3) =

(0, 0) and bm4 = 0, as required to remove terms of order ((a/r)3, a/r) in the displacement near the
origin, and terms of order (r/b)2 in the distant stress. Thus the remote boundary conditions are
equivalent to three linear relations which may be written

(`(1)Taf , `(3)Taf , `(4)Tbm) = (0, 0, 0), (3.2)

where
`(1) = (1, 0, 0, 0)T , `(3) = (0, 0, 1, 0)T , `(4) = (0, 0, 0, 1)T . (3.3)

Let us now propagate these relations to the coat. For definiteness, we propagate to ac, though
an alternative would be to propagate to bc, which differs only in being based on the reference
length b instead of a, and satisfies bc =Dac with D as defined in (2.11). Thus we obtain three
linear relations satisfied by the components of ac, of the form

(n(1)Tac, n(3)Tac, n(4)Tac) = (0, 0, 0) (3.4)

in which, apart from arbitrary constants of proportionality, (n(1),n(3),n(4)) are products of
matrices defined in §2. For example, we have in effect calculated n(4) in (3.1)2, since `= `(4)

gives

n(4) ∝ (`(4)TM−1m Dc
mMcD)T . (3.5)

The expressions for (n(1),n(3)) are similar, but involve matrices defined in the fibre rather than
the matrix.

Geometrically, the above shows that ac is perpendicular to three vectors in four-space, namely
(n(1),n(3),n(4)). These vectors are linearly independent, because the boundary conditions
are independent, and so ac is perpendicular to the hyperplane they generate. Hence ac is
proportional to the cross-product of (n(1),n(3),n(4)), and we may write

ac = Fn(1) × n(3) × n(4), (3.6)

which is non-zero. Here F is the forcing amplitude, as discussed in §2(a). For the homogeneous
problem (a), as there defined, F is arbitrary, whereas for a distant or localised forcing problem it is
determined by the remaining boundary condition. In (3.6), the constants of proportionality used
in defining (n(1),n(3),n(4)) may be chosen arbitrarily, but should then not be varied, so that F is
well defined.
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Thus the solution of the problem is reduced to evaluation of a triple product in four-space. The
reason ac gives the full solution is that we may ‘propagate back’ from ac to any other quantity, in
any phase, on multiplying ac by a sequence of known small matrices. The quantities obtained are
coefficient vectors (af ,ac,bc,bm), boundary vectors (uf

a,u
c
a,u

c
b,u

m
b ) and (vf

a,v
c
a,v

c
b,v

m
b ), and

field vectors (uf ,uc,um) and (ṽf
a, ṽ

c
a, ṽ

c
b, ṽ

m
b ). The field vectors are functions of r (the dependence

on θ is implicit, but may be recovered using (2.2)), and quantities containing the symbol v or ṽ

are dimensionless. Identities in the above are uf
a = uc

a and uc
b = um

b , by the interface boundary
conditions. The parameters appearing in the solution are the shear moduli (µf , µc, µm), the
Poisson’s ratios (νf , νc, νm) defined via the Kolosov constants (κf , κc, κm), and the interface radii
(a, b).

4. Calculation of the coefficient vectors
In §3(b), we showed how to determine linearly independent vectors n(1), n(3), and n(4) which
are perpendicular to the coefficient vector ac. A suitable choice is

n(1) =


2(µf + κfµc)

2(µf − µc)
−(κc − 1)µf + (κf − 1)µc
−(κc + 3)µf − (κf + 3)µc

 , n(3) =


0

−(µf − µc)
(κcµf + µc)/2

−3(µf − µc)/2

 , n(4) =


2(µc − µm)a6b2

0

(µc − µm)a4b4

−(µc + κcµm)b8

 .

(4.1)

Then with ac as in (3.6), the other coefficient vectors are given by the propagation formulae of §3.
The result takes the form

af = F (a6b2af62 + a4b4af44 + b8af08), (4.2)

ac = F (a6b2ac62 + a4b4ac44 + b8ac08), (4.3)

bc = F (a8bc
80 + a6b2bc

62 + a4b4bc
44 + a2b6bc

26 + b8bc
08), (4.4)

bm = Fγ(a8bm
80 + a6b2bm

62 + a4b4bm
44 + a2b6bm

26 + b8bm
08), (4.5)

where γ = 1/{(κm + 1)µm}. Here the vector terms in parentheses in (4.2)–(4.4) have components
which are cubics in (µf , µc, µm) with coefficients which depend on (κf , κc, κm); (4.5) is similar,
but with quartics. In (4.2) and (4.5), a check of the algebra is that we must have

(af1, a
f
3, b

m
4 ) = (0, 0, 0), (4.6)

because these are among the boundary conditions we started with.
So far, a and b are arbitrary, subject only to a< b. For a thin coat, we define its dimensionless

thickness ε and mean radius a0 by

ε= (b− a)/a0, a0 = (a+ b)/2, (4.7)

so that
a= a0(1− ε/2), b= a0(1 + ε/2) (ε� 1). (4.8)

Then the coefficient vectors (af ,ac) are sextics in ε, with expansions of the form

af = F

6∑
i=0

afiε
i, ac = F

6∑
i=0

aci ε
i, (4.9)

and the coefficient vectors (bc,bm) are octics, with expansions

bc = F

8∑
i=0

bc
i ε
i, bm = Fγ

8∑
i=0

bm
i ε

i. (4.10)

Here the coefficients of the powers of ε inherit their polynomial form from (4.2)–(4.5); i.e. cubic
in (µf , µc, µm) for (af ,ac,bc) and quartic for bm. The same type of polynomial expansion
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is obtained if ε is defined by b= a(1 + ε), except that the coefficients depend differently on
(κf , κc, κm).

(a) Evaluation of the forcing amplitude F

We now evaluate F for the boundary-value problem of type (b) as specified in §2(a), i.e. distant
forcing. This corresponds to a specified value of σ∞ in the relation (σmrr, σ

m
rθ)→ (σ∞, σ∞) as r→

∞, as given in (2.7). On returning to the definitions in §2, it is found that the relation ṽm
b = M̃m

b bm

given after (2.11) yields

(σmrr, σ
m
rθ)→−2b

m
2 (µm, µm) (r→∞). (4.11)

Hence σ∞ and bm2 are related by
σ∞ =−2µmbm2 , (4.12)

so that bm2 must be a constant. But in (4.10) we have an expression for bm in terms of F , and its
2-component is

bm2 = Fγ

8∑
i=0

(bm
i )2 ε

i. (4.13)

Hence substitution of (4.13) into (4.12) gives

F =
−σ∞/µm

2γ
∑8
i=0(b

m
i )2 εi

. (4.14)

With this value of F , which depends on ε, all field values may be determined completely, in a
form proportional to the specified σ∞. A crucial feature is the occurrence of denominators which
are octics in ε, and numerators in which the maximum power of ε is usually in the range 6–8,
but in no case exceeds 9. Instead of powers of ε, one may equivalently use powers of a and b, by
means of (4.2)–(4.5) instead of (4.9)–(4.10).

For a boundary-value problem of type (c), i.e. localised forcing, the analysis is similar, but
typically involves field values specified in the fibre or coat, rather than the matrix, and leads to
a different expression for F . As discussed after (2.7), the limiting values of (σmrr, σmrθ) as r→∞
will now depend on ε, in contrast to the above. One may also leave F unspecified, i.e. solve the
homogeneous problem (a). Although in principle this covers all cases, it should be remembered
that many choices of F do not correspond to boundary-value problems which would arise in
practice. For example, if F were taken to be independent of ε, then all distant and localised
boundary values would depend on ε in a complicated way, and it is not easy to imagine what
simple set of specified boundary conditions could lead to this.

(b) Non-uniformity in denominators for a stiff coat
Henceforth, we shall concentrate on the distant-forcing problem, and take the forcing amplitude
F to be as given by (4.14). Let us define the denominator polynomial of F by

Dm =Dm(ε) =

8∑
i=0

(bm
i )2 ε

i, (4.15)

and examine its coefficients for a stiff coat, i.e. µc�max(µf , µm). This is β� 1 in the notation
of (1.1). Then in each coefficient in Dm, the highest-degree power of µc dominates the lower
powers. On evaluating these coefficients, i.e. the quantities(bm

i )2 for i= 0, 1, . . . , 8, and picking
out the highest powers, we find that the orders of magnitude of successive terms when β� 1 are
in the ratio

(1, βε, βε2, βε3, β2ε4, βε5, βε6, βε7, ε8). (4.16)

Here the power of β increases between the first and second terms, and between the fourth and
fifth terms; hence for an expansion to be uniform with respect to β when β� 1, it is necessary to
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keep the first, second, and fifth terms, i.e.

(1, βε, β2ε4), (4.17)

because any one of these could be the largest depending on the value of β relative to
(1/ε, 1/ε2, 1/ε3). For example, the term in β2ε4 is largest if β� 1/ε3. The third and fourth terms
in (4.16) are not needed for β� 1 because in these terms the power of β is no higher than in
any preceding term: in progressing from the third to the fourth term, only the power of ε has
increased, and for a thin coat we have ε� 1, by definition. The same argument shows that terms
beyond the fifth are not needed.

Without a theory such as that in the present paper, a numerical approach could be misleading.
For example, if the first four terms were retained, i.e. up to order ε3, it might appear numerically
that convergence has occurred, because the the third and fourth terms are so much smaller than
the first two; but in fact, the fifth term can be larger than any of these first four. Conversely, how
one would know when to stop, if it has been found numerically that the fifth term is the largest?
The above analysis provides an important conclusion for practical computation: however large
the value of β, it is not necessary to go beyond the fifth term in approximation ofDm(ε) for β� 1;
but to cover all cases, it is necessary that this fifth term be retained.

(c) Non-uniformity in denominators for a soft coat
When the coat is soft, i.e. α� 1 in the notation of (1.1), it is the lowest-degree powers of µc which
dominate in the coefficients in Dm, and successive terms have orders of magnitude in the ratio

(α2, αε, ε2, αε3, ε4, αε5, ε6, αε7, α2ε8). (4.18)

Here the powers of α decrease between the first and second terms, and between the second and
third terms. Therefore when α� 1, it is necessary to keep the first three terms, i.e.

(α2, αε, ε2), (4.19)

but the remaining six terms may be discarded, because they are small compared with at least one of
these first three terms when ε� 1.

(d) Non-uniformity in numerators
We have performed a similar analysis to the above for the numerator polynomials of the vectors
listed in (4.9)–(4.10) for both α� 1 and β� 1, amounting to an inspection of 32 series in all.
These polynomials are defined by the summations in (4.9)–(4.10), i.e. the right-hand sides without
F and γ. One might have expected a simple pattern to emerge in the powers of α and β which
occur, but none appears to be present. Thus to find out which powers of ε are important in a
coefficient vector, direct calculation along the above lines appears to be called for. In general it is
not necessary to go beyond the first five terms, i.e. beyond terms in ε4; however, for particular
values of material parameters, some coefficients turn out to be zero, and then further terms are
needed. We give examples of this in §9. It seems fair to say that in the series we are studying, the
degree of disorder is severe and unpredictable.

5. Jump in the field values across the coat
Since the state vector u is continuous at interfaces, as represented by the boundary conditions
uf
a = uc

a and uc
b = um

b , we may omit the superscripts and write the interface values as ua and ub,
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or in component form

ua = (ura, uθa, σrra, σrθa), ub = (urb, uθb, σrrb, σrθb). (5.1)

The jump across the coat is [u] = [u]ba = ub − ua, or equivalently

[u] = ([ur], [uθ], [σrr], [σrθ]) = ([ur]
b
a, [uθ]

b
a, [σrr]

b
a, [σrθ]

b
a). (5.2)

There are various ways to write the dimensionless jump, and we select

[v] = [v]ba = ([ur]/b, [uθ]/b, [σrr]/µc, [σrθ]/µc) (5.3)

as being the most convenient for later formulae.
From (4.2)–(4.5) and the functional relations in §2(c), the dimensionless interface vectors vf

a

and vm
b and jump vector [v] are found to have the form

vf
a = F (a6b2vf

62 + a4b4vf
44 + b8vf

08), (5.4)

vm
b = Fγ(a8vm

80 + a6b2vm
62 + a4b4vm

44 + a2b6vm
26 + b8vm

08), (5.5)

[v] = F (a8[v]80 + a7b[v]71 + · · · + ab7[v]17 + b8[v]08), (5.6)

where γ is as defined after (4.5). On the right-hand sides here, the components of (5.4) and (5.6)
are cubic in the shear moduli (µf , µc, µm) with coefficients which depend on (κf , κc, κm); the
components of (5.5) are similar, but are quartic in (µf , µc, µm).

Some components of the vectors on the right of (5.4)–(5.6) are zero, and hence certain powers
of a and b are absent from components of the corresponding vectors. For example, the last two
components of [v], namely ([σrr]/µc, [σrθ]/µc), contain only even powers of a and b, and the first
two components, ([ur]/b, [uθ]/b), lack a term in a3b5. One aspect of [v] is that it must be zero when
a= b, because of the continuity of the state vector. A check reveals that this is so, and hence that
[v] is divisible by b− a. On removing this factor, we could instead of (5.6) write [v] as proportional
to an expression in

(a7, a6b, . . . , ab6, b7), (5.7)

but there is no advantage in doing so, and the resulting expressions are longer.
As in §4, the above expressions in a and b may be written as polynomials in the dimensionless

thickness ε. Thus (vf
a,v

m
b , [v]) are octics in ε, with expansions of the form

vf
a = F

8∑
i=0

vf
aiε

i, vm
b = Fγ

8∑
i=0

vm
biε

i, [v] = F

8∑
i=1

[v]iε
i. (5.8)

The vector coefficients vf
ai and [v]i have components which are cubic in (µf , µc, µm), while the

components of vm
bi are quartic. The expansion of [v] has no term with i= 0, because [v] = 0 when

ε= 0. On converting these dimensionless formulae to their dimensional counterparts, using the
definitions at the start of this section, and examining components, we find for example that [ur]
and [uθ] include terms up to ε9. Since the stress components in [v] are made dimensionless by a
factor µc, it follows that [σrr] and [σrθ] are quartic in (µf , µc, µm). Here we are defining ε so that
a= a0(1− ε/2) and b= a0(1 + ε/2), from (4.7)–(4.8). If ε is defined by b= a(1 + ε), the results are
similar, except that the coefficients have a different dependence on (κf , κc, κm).

(a) Numerators of the jump across a stiff coat
To determine the jump across the coat, we need the field values

(ura, uθa, σrra, σrθa) and (urb, uθb, σrrb, σrθb), (5.9)

at a and b respectively, from which the jump

([ur], [uθ], [σrr], [σrθ]) (5.10)
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is obtained by subtraction. These quantities are proportional to F , from (5.8), and so have
the denominator Dm(ε) defined in (4.15). By omitting the factor F , we obtain the numerator
polynomials, and as in §4(b) we may determine which powers of ε are needed for an
approximation to be uniformly valid. On carrying this out for a stiff coat, i.e. β� 1, the result
is that for the numerators of

(ura, uθa, σrra, σrθa, urb, uθb) (5.11)

two terms must be kept, with orders of magnitude in the ratio (1, βε), whereas for each of

(σrrb, σrθb) (5.12)

a further term proportional to ε4 is required, and terms in the ratio (1, βε, β2ε4) must be kept. For the
jump (5.10), the numerators require two terms, but which two depends on the component: they
are in the ratio (ε, βε4) for ([ur], [σrr], [σrθ]), and (ε, βε2) for [uθ].

The significance of these results is that for an approximation to cover the entire range of β for
β� 1, the above terms are needed, but no others. In particular regimes, for example β ∼ 1/ε, or
β ∼ 1/ε3, individual terms can be neglected, but no term can be neglected for the entire range
β� 1. The irregularity of the retained terms is noteworthy. Once all these terms are known, it it
natural to inspect them in search of a pattern which would determine the terms to be retained;
but none is evident.

(b) Cancellation and promotion
A noteworthy point in determining the jumps from the field values at a and b is that some
terms cancel out exactly. In consequence, a knowledge of the dominant terms in ura and urb,
for example, is not sufficient to determine the dominant terms in [ur], because any or all of these
terms in ura and urb might cancel, and then later terms are ‘promoted’. In general, one may
use the term promotion to refer to the process in which a term which is negligible at one stage of a
calculation becomes dominant at a later stage. To determine when this occurs, there is no escape from
accurate calculation of higher order terms in field values. In general, the coefficients of these terms
are complicated functions of (µf , µc, µm) and (κf , κc, κm), and advance warning is not available
about when two of these coefficients, one for the field at a and one for the field at b, will turn out
to be exactly equal. Thus although the final result, namely the terms to be retained in the jumps, is
easy enough to state as above, the amount of analytical work required to obtain it is considerable,
and is beyond the powers of hand calculation if one insists, as we do in this paper, that all results
are to be obtained rigorously from the full elastostatic equations.

(c) Numerators of the jump across a soft coat
A soft coat is defined by α� 1. We now find that two terms must be kept in the numerators of

(ura, uθa, σrra, σrθa, σrrb, σrθb), (5.13)

the orders of magnitude being in the ratio (α, ε), whereas three terms must be kept for

(urb, uθb), (5.14)

the orders being in the ratio (α2, αε, ε2). For the jump, two terms are required in the numerators,
as for a stiff coat; for ([ur], [uθ], [σrθ]) the orders of these terms are in the ratio (αε, ε2), whereas
for [σrr] the orders are in the ratio (αε, ε4). Our earlier remarks about the irregularity of these
terms, and the importance of accounting for cancellation and promotion, apply here just as for a
stiff coat.
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(d) Disorder in cross-coat Taylor series
Our approach above has been to analyse numerators and denominators separately, giving
approximations by means of rational functions of ε. An alternative is to calculate Taylor series
approximations, which requires division byDm. Now we saw in (4.17) and (4.19) that for problem
(b), distant forcing, the dominant terms in Dm are in the ratio (1, βε, β2ε4) for a stiff coat, and in
the ratio (α2, αε, ε4) for a soft coat. Hence on dividing by Dm, and expanding in powers of ε by
means of the binomial theorem, the resulting series are disordered or divergent whenever β� 1/ε

or α� ε. Moreover, the terms in the series may decrease only slowly (and therefore be of limited
use) under the much less restrictive conditions β ≥O(1/ε) or α≤O(ε). Thus the conditions for
the series to be useful may be quite onerous, for example when ε∼ 1/10.

We have seen that for the fully specified distant-forcing boundary-value problem, it is
necessary to divide all field quantities by Dm. Hence these onerous conditions cannot be evaded
when the Taylor series is constructed. On the other hand, for the homogeneous problem, in which
F is regarded as ‘arbitrary constant’, it is natural not to expand F , and then the series expansions
are of the numerators only, which are polynomials. Questions of convergence would not then
arise. However, such expansions raise difficulties of interpretation, particularly in relation to the
question ‘What is being held constant when ε is varied?’. It seems safer to consider always a fully
specified boundary-value problem, in which case a denominator which is a function of ε will
always be present.

(e) Normalised cross-coat jumps
Let us define normalised jumps by

([ur]/urb, [uθ]/uθb, [σrr]/σrrb, [σrθ]/σrθb). (5.15)

These do not depend on F , because it cancels out, and in particular they do not depend on which
of the boundary-value problems (a), (b), or (c) is being solved. Their orders of magnitude, in a
compact notation, are

(
[ur]

urb
,
[uθ]

uθb
,
[σrr]

σrrb
,
[σrθ]

σrθb

)
∼



(
ε+ βε4

1 + βε
,
ε+ βε2

1 + βε
,

βε+ β2ε4

1 + βε+ β2ε4
,

βε+ β2ε4

1 + βε+ β2ε4

)
(β� 1)

(
αε+ ε2

α2 + αε+ ε2
,

αε+ ε2

α2 + αε+ ε2
,
αε+ ε4

α+ ε
,
αε+ ε2

α+ ε

)
(α� 1)

(5.16)
for the two cases of a stiff coat and soft coat, respectively. All order-one coefficients here have been
replaced by 1, so that, for example, the first displayed term on the right indicates that [ur]/urb
may be approximated for β� 1 by the ratio of the sum of two terms of orders (ε, βε4) to the
sum of two terms of orders (1, βε). The exact coefficients are functions of (κf , κc, κm). Alternative
normalisations can be based on field values at a, or the mean of the field values at a and b, giving
results of the same type as (5.16).

The expressions in (5.16) simplify if α or β are scaled with appropriate powers of ε, because
individual terms in a numerator or denominator can then be ignored. For example, consider the
relation

[σrr]

σrrb
∼ αε+ ε4

α+ ε
(5.17)

for a soft coat. Here the significant regimes, obtained by balancing orders of magnitude, are α∼ ε3

and α∼ ε. Since ε3� ε, we can use the fact that if α� ε3 then α� ε, and likewise if α� ε then
α� ε3. Hence five different regimes may be identified, defined by the relations

α� ε3, α∼ ε3, ε3� α� ε, α∼ ε, α� ε, (5.18)
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and correspondingly the dimensionless jump, written in our compact notation, takes the five
different forms

ε3, α+ ε3, α,
αε

α+ ε
, ε. (5.19)

Here again, order-one factors have been replaced by 1, to emphasize functional forms without
extraneous detail. The same type of scaling analysis can be applied to all the terms on the right of
(5.16), giving a large number of identifiable regimes.

Because F cancels out in the normalised jumps, the following phenomenon may occur, which
could be very trying numerically in certain parameter regimes: individual field values and jumps,
such as (ura, urb) and [ur], may have badly disordered or even divergent series expansions in ε,
but the normalised jump [ur]/urb (or any alternative form such as [ur]/ura) may nevertheless be
well-ordered and convergent. This will happen when the disorder arises from F rather than from
the field values and jumps without this factor, i.e. the numerators. It is another example of the
great variability of the types of series which can be encountered.

6. Analytic continuation to the coat mid-surface
In deriving effective boundary conditions for an interface, it is often convenient to replace the
original interface, of non-zero thickness, by a surface of zero thickness, and determine the jumps
across this surface. To do this accurately, it is necessary to extend the field values by analytic
continuation from outside the interface to a hypothetical surface inside the interface. We now
carry this out by extending the field in the fibre and matrix to the mid-surface of the coat,
defined as a cylinder of radius a0 = (a+ b)/2. Recall our definition in (4.7) that the dimensionless
thickness of the coat is ε= (b− a)/a0, so that a= a0(1− ε/2) and b= a0(1 + ε/2). Therefore the
field values in the fibre are to be extended from their original domain r≤ a up to r≤ a0, and the
values in the matrix from r≥ b down to r≥ a0. This gives effective values of fibre and matrix
quantities at the mid-surface, from which the jumps in field values across it are obtained by
subtraction. These will be compared with the jumps calculated in §6, which are across the entire
thickness of the coat.

The analytic continuation is immediate, since all quantities are polynomials or rational
functions of r, and so we may use the formulae derived already, but evaluate them at arbitrary r.
The notation we shall use is that a subscript 0 denotes evaluation at the mid-surface, so that the
analytically continued field values on its two sides are uf

0 and um
0 , or in component form

(ufr0, u
f
θ0, σ

f
rr0, σ

f
rθ0) and (umr0, u

m
θ0, σ

m
rr0, σ

m
rθ0). (6.1)

The jump across the mid-surface is [u0] = [u0]
m
f = um

0 − uf
0, or equivalently

[u0] = ([ur0], [uθ0], [σrr0], [σrθ0]). (6.2)

As in §5(a), these quantities are proportional to F , and so have the denominator Dm(ε). By
omitting F , we obtain the numerator polynomials, and our aim is to calculate their series
expansions in ε, keeping only those terms needed for approximations to be uniformly valid for an
arbitrarily stiff or soft coat. As the method is similar to that of §5, we simply give the main results,
indicating where these differ from the cross-coat jumps.

(a) Numerators of the mid-surface jump for a stiff coat
For a stiff coat, we have β� 1. When the numerators of the eight components listed in (6.1) are
expanded in powers of ε, it is found that they fall into three groups. The first group consists of the
four components of uf

0, each requiring two terms in the ε-series of the numerator to be kept, these
being in the ratio (1, βε). The second group consists of the two displacement components umr0 and
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umθ0, each requiring three terms in the numerator, in the ratio

(1, βε, β2ε5). (6.3)

The third group consists of the stress components σmrr0 and σmrθ0, which also require three terms
in the ε-series of the numerators, but in the different ratio

(1, βε, β2ε4). (6.4)

Turning now to the jump components (6.2), we find that they fall into two groups: the
displacement jumps [ur0] and [uθ0], which require three terms in the numerators, in the ratio

(ε, βε2, β2ε5), (6.5)

and the stress jumps [σrr0] and [σrθ0], which require only two terms, in the ratio

(βε, β2ε4). (6.6)

In (6.3) and (6.5), the occurrence of terms proportional to ε5 is surprising, being without
counterpart in the cross-coat series. These terms are needed if the mid-surface series for a stiff coat
are to be uniformly valid for arbitrarily large β. We discuss this further in §8, under the heading
of possible anomalies introduced by analytic continuation. Just as for the cross-coat series, there
is no obvious pattern in the mid-surface series found here.

(b) Numerators of the mid-surface jump for a soft coat
For a soft coat, α� 1, the three groups of components are the the same as in (a) above. In the first
group, namely the four components of uf

0, each component requires two terms in the ε-series of
the numerator, in the ratio (α, ε). The other two groups each require three terms, but these differ
between the two groups: the displacement components umr0, and umθ0 require numerator terms in
the ratio

(α2, αε, ε2), (6.7)

whereas for the stress components σmrr0 and σmrθ0 the numerator terms are in the ratio

(α2, αε, ε3). (6.8)

The displacement jumps [ur0] and [uθ0] require only two terms in their numerators, namely

(αε, ε2), (6.9)

whereas the stress jumps [σrr0] and [σrθ0] require

(α2ε, αε2, ε3). (6.10)

The terms in ε3 in (6.8 ) and (6.10 ) are surprising, and are discussed in §8.

(c) Disorder in mid-surface Taylor series
If the Taylor series of the mid-surface jumps are required, they are found by the method of §5(d),
involving division by Dm(ε). The details are as before, because Dm(ε) is the same in each case.
As previously, the conditions for the resulting series to be neither disordered nor divergent can
be quite onerous.
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(d) Normalised mid-surface jumps
In the same notation as §5(e), the normalised jumps at the mid-surface, for a stiff coat and soft
coat, are(

[ur0]

umr0
,
[uθ0]

umθ0
,
[σrr0]

σmrr0
,
[σrθ0]

σmrθ0

)

∼



(
ε+ βε2 + β2ε5

1 + βε+ β2ε5
,
ε+ βε2 + β2ε5

1 + βε+ β2ε5
,

βε+ β2ε4

1 + βε+ β2ε4
,

βε+ β2ε4

1 + βε+ β2ε4

)
(β� 1)

(
αε+ ε2

α2 + αε+ ε2
,

αε+ ε2

α2 + αε+ ε2
,
α2ε+ αε2 + ε3

α2 + αε+ ε3
α2ε+ αε2 + ε3

α2 + αε+ ε3

)
(α� 1).

(6.11)

The symbol ∼ indicates that order-one multiplying factors on the right-hand side have been
replaced by 1. Individual regimes can be identified by scaling α or β with appropriate powers
of ε; each scaling gives a reduced form. Since several regimes exist for each jump on the right of
(6.11), the number of reduced forms is large. As in §5(e), a factor F is not present in normalised
jumps, even when it is present earlier. Hence normalised jumps may be well-ordered despite the
fact that field values and jumps are disordered.

7. Analytic continuation to arbitrary radius in the coat
Let us now extend the field in the fibre and matrix not just to a cylinder of radius a0 = (a+ b)/2 as
above, but to a cylinder of arbitrary radius dividing the interval [a, b] in the ratio k : 1− k, where
0≤ k≤ 1. This radius is

a
(k)
0 = (1− k)a+ kb, (7.1)

or equivalently

a
(k)
0 = a0

(
1 +

(
k − 1

2

)
ε
)
, (7.2)

since a= a0(1− ε/2) and b= a0(1 + ε/2). Thus our previous results are for k= 1/2, with a(1/2)0 =

a0. Although the effect of placing an interface at an arbitrary radius within the coat has been
analysed previously (see the review article [19] and citations therein for a variety of approaches),
we have not found an approach similar to ours in the literature, and the following analysis and
results appear to be new.

The question of interest is whether different sets of dominant terms could arise through
the dependence of coefficients on k; this would happen if previously non-zero coefficients for
k= 1/2 become zero when k 6= 1/2, or conversely if new terms with non-zero coefficients arise.
The functional dependence of all coefficients on k is readily calculated, and it shows that the
formulae just given still apply for any fixed value of k in the range 0≤ k < 1. (We deal separately
with the case k= 1 below.) For example, consider the value k= 0, corresponding to analytical
continuation of the field in the matrix down to r= a. Few coefficients are then zero, and none
of these is in a dominant term; hence no change arises in the terms to be included or excluded in
series expansions in ε, though of course the numerical values of the coefficients are different. Note
that placing the hypothetical surface at r= a, and extending the field in the matrix down to this
interface with the fibre, is different from solving a three-phase problem with a coat of vanishingly
small thickness at r= a: in this latter case, the field is continuous at r= a , but in the former case,
there is a jump between the field values on the two sides of r= a.

Matters are different for k= 1, i.e. analytic continuation up to r= b from the fibre. Explicit
formulae, in the form of functions of k, reveal that many coefficients contain k − 1 as a factor, and
so vanish when k= 1. For example, in §6(a) we saw that for a stiff coat, the numerators of the
mid-coat jumps [ur0] and [uθ0] require terms in the ratio (ε, βε2, β2ε5). However, the coefficient
of β2ε5 contains k − 1 as a factor, so that the term is absent when k= 1. In this case, it is necessary
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to inspect later terms in the series, for example terms of order

β2ε6, β2ε7, . . . , (7.3)

as they could be promoted; that is, although they are negligible compared with the term of order
β2ε5 when k 6= 1, one of them could become dominant when k= 1. On inspecting these later
terms, we find that every term of order β2εn for n≥ 5 has a factor k − 1 in its coefficient. In
conjunction with the fact that there are no terms of order βmεn for m> 2, this implies that the
numerators of the mid-coat jumps [ur0] and [uθ0] each require only two terms, in the ratio

(ε, βε2). (7.4)

The same phenomenon occurs in the numerators of the field values umr0 and umθ0, where the terms
needed are now only

(1, βε). (7.5)

For the other field values and jumps for a stiff coat, the required dominant terms for k= 1 are the
same as for k < 1.

Turning now to a soft coat for, we find that in the jumps [σrr0] and [σrθ0] the coefficients of
(αε2, ε3) in the numerator each contain a factor k − 1, but a later term of order αε4 does not, and
hence the terms to be retained when k= 1 are in the ratio

(α2ε, αε4). (7.6)

Here we use the fact that although the coefficients contain a term of order αε3, nevertheless this
term contains a factor k − 1; without this factor, the term αε3 would be retained in preference
to αε4, since αε3� αε4 when ε� 1. Similarly the numerators of the field values σmrr0 and σmrθ0
require terms in the ratio

(α2, αε) (7.7)

when k= 1; this requires the fact that every term of order εn for n≥ 3 has a factor k − 1 in its
coefficient, as otherwise another term would be needed. There is no term of order ε or ε2 for any
k. For other field values and jumps for a soft coat, the dominant terms for k= 1 are as for k < 1. It
will be appreciated that the type of inference we are making in this and the previous paragraph
requires careful attention to logic.

8. Anomalous terms introduced by analytic continuation
To explain the behaviour of the series in §8 when the parameter k is varied, a suitable starting-
point is an examination of all the series presented in this paper so far. Such an examination reveals
that a small number of terms appear to be anomalous, in that they do not fit the pattern of the
results taken as a whole. These are the cross-surface terms in β2ε5 for a stiff coat and the cross-
surface terms in ε3 for a soft coat, present when k < 1. The question therefore arises as to whether
they are artefacts introduced by analytic continuation.

A check reveals that such terms are produced by continuation from the matrix phase in the
direction of decreasing r, but not by continuation in the opposite direction, i.e. from the fibre
phase while increasing r. Let us therefore make the hypothesis that the cause of the anomalous
terms is analytic continuation in the direction of decreasing r.

This hypothesis is tentative, but it fits the facts. In particular, it explains two features of our
results. First, it is consistent with the observation that there are no anomalous terms in the cross-
layer jumps: these jumps do not involve analytic continuation at all. Second, it explains why there
are no anomalous terms in the cross-surface jumps for k= 1: these jumps involve only analytic
continuation in the direction of increasing r, because when k= 1 we have a(k)0 = b. For k < 1 there
is some analytic continuation in the direction of decreasing r, from r= b down to the lesser value
r= (1− k)a+ kb.
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Moreover, the explanation is robust in the following sense. One might argue that for the surface
jumps as a function of k, the small parameter ε= (b− a)/a0 is artificial, and a more natural choice
would be

ε(k) = (b− a)/a(k)0 , (8.1)

based on the actual position of the surface at a(k)0 rather than the mid-coat position a0. Therefore
we repeated the calculations to obtain all quantities as series expansions in ε(k) instead of ε. The
coefficients in the resulting series become different functions of k from those obtained before; but
in every case the presence or absence of a factor k − 1 in a coefficient is unaltered, even when
the dominant terms to be retained in an expansion depend on this factor being present in a large
number of terms. Thus the the order-of-magnitude behaviour of the series expansions presented
in the paper does not depend on the particular form of the small parameter used to represent the
thickness of the coat.

The field in the fibre contains only positive powers of r (because it must be finite and
continuous at the origin), whereas the field in the matrix includes negative powers of r. Perhaps
this explains why analytic continuation outwards from the fibre to larger r does not produce
anomalous terms, but continuation inwards from the matrix does produce them. In advance
of further investigation this is speculative; however, the occurrence of anomalous terms which can
be dominant in certain parameter regimes for a stiff or soft coat after analytic continuation is definitely
established by our results, and our demonstration of their existence appears to be a new result.

9. Illustrative examples
To illustrate the above theory, we now present detailed formulae for the jump in the radial
displacement for a stiff coat, i.e. β� 1. We do this for both the mid-surface jump and the cross-
coat jump, and by selecting particular numerical values for shear moduli and Poisson’s ratios, we
give examples of promotion of terms, as described in §5(b). One example included in this scheme
is that of incompressible media, for which the Kolosov constants all take the value 2, and we show
that in this case the radial jump is of a smaller order of magnitude than for other values; this is in
accord with physical intuition, and is another confirmation of the theory.

For definiteness, we take µf = µm in what follows, and chose a system of units in which
µm = 1 and a0 = 1. Since all quantities may be expressed in terms of µm, a0, and dimensionless
quantities, this imposes no restriction; it may be checked that (Dm, γ, F ) are proportional to
(µ4ma

8
0, 1/µm, 1/(µ

3
ma

8
0)), consistent with [ur0] having the dimension of a0. Recall that F is

defined by (3.6), and (n(1),n(3),n(4)) by (4.1); other definitions are possible, but the advantage
of those used here is that most quantities are then polynomials, and so can be evaluated exactly
without convergence theory.

(a) Mid-surface jump in radial displacement
We saw in (6.5) that for a stiff coat, the mid-surface jump [ur0] requires, in general, three terms for
a uniform approximation to its numerator, in the ratio (ε, βε2, β2ε5). In more detail, this jump is

[ur0] =
Fβ2

κm + 1

{
− 2(κf + 1)(κ2c − 1)(κm + 1)ε − 4(2κfκm + κf − κm − 2)(κc + 1)βε2

− 16κf(κm − 1)β2ε5 + O(ε/β, ε2, βε3, β2ε6, . . .)
}
. (9.1)

For example, when (κf , κc, κm) = (1, 2, 2), we obtain

[ur0] ' Fβ2
(
− 12ε− 4βε2 − 16

3
β2ε5

)
. (9.2)

However, it may happen that some or all of the displayed coefficients are zero. For example,
suppose that all three media are incompressible, i.e. (κf , κc, κm) = (1, 1, 1), corresponding to
the three Poisson’s ratios (νf , νc, νm) all taking the value 1/2. In this special case, all three
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displayed coefficients in (9.1) are zero, which means that a number of previously neglected
terms must now be promoted. This requires inspection of the coefficients of the terms indicated
by O(ε/β, ε2, βε3 . . .) indicated in (9.1). We find that the dominant terms then arise from the
expression

[ur0] =
Fβ2

κm + 1

{
− (11κfκm − 28κf − 4κm + 5)(κc + 1)βε3 + 4κf(5− κm)β2ε6

+ O(ε3, βε4, β2ε7, . . .)
}
, (9.3)

evaluated at (κf , κc, κm) = (1, 1, 1), which gives

[ur0] ' Fβ2(16βε3 + 8β2ε6). (9.4)

Thus in the incompressible case, the expansion begins with a term in ε3 rather than merely ε.
If the three media have identical parameters, then in effect there is only one medium, and all

mid-surface jumps must be zero when calculated without approximation. We have checked that
all our general formulae satisfy this condition when µf = µc = µm and κf = κc = κm. As a simple
illustration, the full series for which (9.4) is a uniform approximation is

[ur0] = F
{
(16β3 − 28β2 + 12β)ε3 + (8β3 + 16β2 − 40β + 16)ε4

+ (19β3 − 10β2 − 9β)ε5 + (8β4 − 2β3 + 2β − 8)ε6 + · · ·
}
. (9.5)

The value β = 1 here corresponds to µf = µc = µm (recall that we are taking µf = µm), and then the
coefficients in (9.5), together with those not displayed, become zero, giving [ur0] = 0, as expected.
Similarly, we also obtain [uθ0] = 0, [σrr0] = 0, and [σrθ0] = 0 in this case.

In the above expressions, the forcing term F contains the denominator Dm, defined in (4.15).
We saw in (4.17) that Dm requires three terms for its uniform approximation, in the ratio
(1, βε, β2ε4). In more detail, we have

Dm = β2
{
− (κf + 1)(κc + 1)2(κm + 1) − 2(4κfκm + 3κf + κm)(κc + 1)βε

− 16κfκmβ
2ε4 + O(ε, βε2, βε3, . . .)

}
. (9.6)

Here the displayed coefficients cannot be zero, and so promotion of later terms does not take place
for any parameter values. However, some of the neglected terms can be identically zero, rather
than merely smaller in order of magnitude than the retained terms. For example, the O(ε) term
has coefficient

− 2(2κfκm + κf − κm − 2)(κ2c − 1), (9.7)

and the O(βε2) term has coefficient

− 6(2κfκm − κf − κm)(κc + 1), (9.8)

and these can be zero for a variety of values of (κf , κc, κm).

(b) Cross-coat jump in radial displacement
As noted in §5(a), the cross-coat jump [ur] for β� 1 requires two terms for uniform approximation
to its numerator, in the ratio (ε, βε4). In more detail,

[ur] = Fβ2
{
(κf + 1)(κc + 1)(3− κc)ε − 2κf(3κc − 5)βε4 +O(ε/β, ε2, βε5, . . .)

}
. (9.9)

When (κf , κc, κm) = (1, 2, 2), this gives

[ur] ' Fβ2(6ε− 2βε4). (9.10)

The coefficient of βε4 in (9.9) is zero when κf = 5/3, i.e. νc = 1/3, and in this case the term of
order βε5 within parentheses is promoted. Its coefficient is 8κf . When (κf , κc, κm) = (1, 5/3, 2),
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this gives

[ur] =
8

9
Fβ2

{
8ε+ 9βε5 +O(ε/β, ε2, βε6, . . .)

}
. (9.11)

In these expressions, the denominator Dm in F is the same as for the mid-surface jump, i.e. is
given by (9.6).

10. Conclusion
The problem addressed in this paper, namely that of determining the elastic displacements and
stresses in a three-phase circular cylindrical configuration subject to biaxial forcing, is classical
and appears to be simple. But in fact, we have found great complexity in its solution as soon as
one proceeds to take the limit of a thin coating, ε� 1, while taking account of other parameters
in the problem. The underlying physical reason for this is that a coating supports bending
deformation as well as dilatation and shear, and the relative importance of the different types
of deformation introduces different scaling regimes. This was the point of view adopted in [11],
in which asymptotic regimes were identified at the outset, and used to construct the leading terms
in series expansions. Our work may be regarded as an extension and confirmation of that work, in
which we do not posit regimes but deduce them. This is achieved by starting with the exact solution of
boundary-value problems formulated and solved within linear elasticity theory, and calculating
their series expansions in ε. The detailed results in [11] for our case (a), the homogeneous problem,
and in [16,17] for our case (b), the distant forcing problem, have proved invaluable, because they
give explicit expressions for many coefficients. We have compared these with our results, and
found agreement in all cases. This provides a powerful check, since the methods used are so
different.

Our work provides underpinning theory for assessing the likely accuracy of different types
of effective boundary conditions for a thin coating in the high-contrast limit. For the three-
phase configuration investigated, we have pinpointed which of the terms in the various series
expansions must be kept in any given parameter regime of shear moduli and coat thickness, and
which may be discarded without introducing significant error. Importantly, we have shown that
the forcing amplitude F must be calculated explicitly as function of the coat thickness ε in any
particular boundary-value problem, since the form of its Taylor series expansion in ε provides the
most onerous restrictions on the range of validity of any proposed approximation. In effect, F
provides the denominator of the solution of a problem, indicated in our notation by the function
Dm(ε), and as commonly occurs in mathematical physics, the denominator is the crucial function
for determining analytic structure and convergence behaviour.

We have identified parameter regimes in which terms up to high order must be kept. No doubt
in more complicated examples than analysed here, the details and scalings encountered will be
different, but our results give an indication of what might be expected in general. Especially, they
suggest that irregular and unpredictable disorder in the magnitude of early and middle terms of series
expansions in the thickness may be the usual behaviour rather than the exception, and to understand this
disorder it is essential to consider a fully specified boundary-value problem.
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