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ABSTRACT

Federated learning (FL) is a framework for collaborative learning
among users through a coordinating server. A recent HyperNetwork-
based personalized FL framework, called HyperNetFL, is used to
generate local models using personalized descriptors optimized
for each user independently. However, HyperNetFL introduces un-
known privacy risks. This paper introduces a novel approach to
preserve user-level differential privacy, dubbed User-level DP, by
providing formal privacy protection for data owners in training
a HyperNetFL model. To achieve that, our proposed algorithm,
called UDP-Alg, optimizes the trade-off between privacy loss and
model utility by tightening sensitivity bounds. An intensive evalu-
ation using benchmark datasets shows that our proposed UDP-Alg
significantly improves privacy protection at a modest cost in utility.
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1 INTRODUCTION

Federated learning (FL) allows a server to jointly train a model
through multiple local users, without the need to share the users’
data. This is vital when privacy concerns are raised and the shar-
ing of sensitive local data must be prevented [21]. Examples of
FL addressing privacy risks are when data can reveal potentially
sensitive information about the users, such as sensitive medical
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reports and data, financial transactions, or personal data disclosing
racial/ethnic, political, or religious affiliations. However, data dis-
tribution often varies amongst users, such as varying geographic
backgrounds or use case scenarios. Thus, Personalized Federated
Learning [27] addresses the heterogeneity of users through the
introduction of a personalized model for each user (versus a shared
global model).

Among existing approaches, Hypernetwork-based personalized
FL Framework (HyperNetFL) allows us to benefit from joint training
of a HyperNetwork, which is used to generate the users’ person-
alized models [26]. Although effective, this unique personalized
federated training of HyperNetFL can lead to previously unknown
concerns for maintaining privacy for the users.

We seek to address these challenges by focusing on preserving
differential privacy in HyperNetFL. We specifically explore user-
level differential privacy (User-level DP), which investigates the
effects of the presence or absence of a user’s full records on a dataset.
However, unlike the User-level DP applied on recurrent language
models [20], in HyperNetFL, without a global model aggregation at
the server, it is non-trivial on how to carefully calibrate the noise
added into the training process, so that the server will generate
User-level DP model parameters without an undue cost in model
utility.

Key Contributions. Motivated by this, we structure our pa-
per around the following significant contributions: (1) A novel
algorithm, called UDP-Alg, to provide a formal User-level DP guar-
antee for HyperNetFL; (2) An optimization of the trade-off between
privacy protection with model utility, conducted on a series of ex-
periments on image classification using benchmark datasets; and
(3) An exploration of various effects of DP hyperparameters (such
as clipping bound, noise scale, etc.) on the trade-off and from that,
making a suggestion on which hyperparameters practitioners could
use to better balance the trade-off.

Outline. The paper is organized as follows. We briefly review
background in Section 2. Section 3 discusses the algorithm for
guaranteeing User-level DP in the HyperNetFL framework in depth.
Section 4 explores experimental results to empirically demonstrate
the interplay between User-level DP and model utility. We conclude
the paper in Section 5.

2 BACKGROUND
2.1 Federated Learning (FL)

FL is a multi-round communication protocol between a server and
N users. At each round ¢, the server sends the latest model 6;
to a random subset of users U;. These selected users use their
local data Dy, to train the model, and compute their local gradients
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ABY = 0 — 0;, and send them back to the server. Then, the server
aggregates all the received gradients from the users in U; using
an aggregation function G : RIUIXn _ RM \where n is the size
of Af;. The aggregated gradient is added to 0, which is 0741
0; — AG({20¢ }ycu, ), where A is the server’s learning rate. FedAvg
is a well-applied aggregation in FL algorithms [11], as 041 = 0; —
A(ZMEU, ny X Ag?)/ZueU, Ny.

Personalized Federated Learning (pFed). FL methods often
encounter a significant variation in data distributions across users,
which results in a substantial difference in the model’s effectiveness
[4, 28]. Therefore, pFed techniques have been proposed to overcome
this problem by achieving personalized performance that can adapt
to the varying data [8, 10, 26]. pFed approaches can be broadly
categorized into four research lines: (1) Regularization-based Ap-
proaches, which modify local training through regularization or
penalization to address data distribution drifting, resulting in a di-
vergence between the weights of local and global models [12, 17, 23];
(2) Clustering-based Approaches, where the server assigns users to
clusters and aggregate local models within each cluster [9, 25]; (3)
Knowledge Distillation, where the server ensembles users’ knowl-
edge by a generator or a consensus distributed across the network
[16, 26, 29]; and (4) Meta Learning, which leverages the concept of
meta-training and meta-testing. In meta-training, a sensitive initial
model is learned, which can quickly adapt to various tasks, typi-
cally using techniques like Model Agnostic Meta-Learning (MAML).
This initial model is then mapped to the global model, and in the
meta-testing step, it is further adapted to specific tasks on the users’
side.

HyperNet-based Personalized FL. One of the state-of-the-
art pFed approaches is using a single large network at the server
h(@,vy), called HyperNetFL [26], to generate local models 8,,, given
the user’s descriptors vy,. In fact, HyperNetFL learns a family of
personalized models {0y, = h(vy, ) }y,e[N], such that the users and
the server minimize their loss functions:

5 > Tulh(ou0)

ue[N]

min

arg
¢,{Uu}uE[N]

)

2.2 Differential Privacy

Differential Privacy (DP) [5-7] provides the guarantee that adver-
saries are limited in learning about private data by ensuring similar
model outcomes, regardless if any single training sample is in the
database or not. The definition of DP is as follows:

Definition 2.1. (e, §)-DP: A randomized mechanism M: D — R
with a domain D (e.g., possible training datasets) and range R
(e.g., all possible trained outcomes) satisfies (¢,8)-DP, if for any two
adjacent datasets D, D’ € D and for any subset of outputs S C R,
it holds that:

Pr(M(D) € S] < e Pr[M(D’) € S] + 6 2)

The privacy budget € controls how similarity between the two
outcomes when D and D’ may differ. A smaller € enforces a stronger
privacy protection. The broken probability ¢ is the upper bound
probability for the worst-case scenarios when an adversary can
infer the presence of a data sample in the training set [14].

In Definition 2.1, the explanation of adjacent databases leaves
open. It depends on the application to determine the level of DP
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Figure 1: HyperNetFL with User-level DP guarantee.

protection needed. Based on defining the adjacent databases, there
are different levels of DP protection, which can be categorized into
four research lines, as discussed next.

Sample-level DP. Traditional DP mechanisms [7, 22, 24] ensure
DP at the sample-level, in which D and D’ are different from at most
a single training sample. This DP level only protects the privacy
of individual training samples, whereas we are seeking to provide
privacy for the whole user histories in the training dataset.

Element-level DP. Element-level DP [2] ensures that an adversary
cannot infer whether users have a sensitive element in their data.
Similar to sample-level DP, element-level DP is different from our
goal, since it does not provide DP protection for users.

Local DP (LDP). Different from our purpose of protecting user
membership information, the key idea of local DP is to protect users’
data. By observing the outcomes, it ensures adversaries cannot
distinguish whether the outcomes are from input values x or x’.
However, LDP approaches typically add significant amount of noise
to the data/model parameters to preserve DP, resulting remarkable
model utility drop.

User-level DP. [20] proposed a User-level DP that confirms the
presence of an arbitrary user in the training dataset. To provide
such protection, the adjacent datasets D and D’ differ on all the
samples belonging to an arbitrary user.

User-level DP is similar to our purpose of protecting user mem-
bership information; however, without an aggregation at the server
as in traditional FL frameworks [11, 19], it is challenging to bound
the sensitivity of users’ queries and to quantify the amount of noise
added to the model parameters so that the network at the server
h(ep, -) will generate User-level DP model parameters {6, }uNzl. There-
fore, protecting user membership information in HyperNetFL is
not trivial.

3 USER-LEVEL DP IN HYPERNETFL

In this section, we focus on answering the question: Could we
protect user membership information in HyperNetFL and how? Based
upon that, we propose our approach to preserve User-level DP in
HyperNetFL.

To protect the generated model parameters {Hu}f:[:l, a naive
solution is to simply add noise, e.g., Gaussian noise or Laplacian
noise [1] into the output of the HyperNetFL before sending them to
users. However, this can severely alter the value of the parameters
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Algorithm 1 UDP-Alg in HyperNetFL

1: Input: Number of users N, number of rounds T, number of local rounds
K, server’s learning rates A and ¢, users’ learning rate 5, clipping bound
S, clipping function ClipFn(A, S), a hyper-parameter z, and L, (B) is
the loss function L, (8) on a mini-batch B

2: Initialize h(¢, -) and moments accountant M
[Dy|

Wy

3: wy, < min( , 1) for all users u # where W, is per-user data sample

cap

4 W« ZuN=1 wy

5: fort=1,...,T do

6: U « Sample a set of users with probability g
7. for each user u € Uy do

8: set 07 = h(¢,v,) and ou = ov

9: fork=1,...,K do

10: sample mini-batch By C Dy,
11: AQ;:H :Qz—r]VéZ Ly, (Bg)
12: AGY = 0% - 0¥

13 AY «ClipFn((v,0%)T A 0%,5)
14 Vo= 72“6[;";%?

15: o — zmax(wy)S

16: @=¢—A[Ve+N(0,Ic?)]

172 YueUr oy =0y —{ Vo, @' 2 06¥
18: M.accum_priv_spending(z)

19: ClipFn(A, S): return 7 (A, S) < A - min (1, ﬁ)

and adversely affect the model utility. Therefore, it is needed to
carefully calibrate the DP noise added to optimize the trade-off
between privacy protection and model utility.

UDP-Alg. To achieve User-level DP in HyperNetFL (Algorithm
1 and Figure 1) without an undue cost in model utility, at each
iteration t, we randomly sample U; users from N users with the
sample rate g (Line 5). Then, each of the selected users u in U; update
their model 6,, using the local data D,, (Lines 8-10). We compute the
gradients of model parameters for a particular user, denoted as A}
(Line 11). Here, we clip the per-user gradients so that its Ly-norm
is bounded by a predefined gradient clipping bound S (Lines 12, 18).
Next, a weighted-average estimator f is employed to compute the
average gradient A’ using the clipped gradients AY gathered from
all the selected users (Line 13). Finally, we add random Gaussian
noise NV (0, I5?) to the model update (Line 14). During the training,
the moments accountant M is used to compute the T training steps’
privacy budget consumption, which is incremented at every step
of the training process (Line 17).

To tighten the sensitivity bound, our weighted-average estimator
f for per-user vectors A* (Line 13) is as follows:

ZuEUt Wy A 9?

o ®

f(sh=

where A} is the clipped gradients of local gradients A8} over the
network parameters at the server ¢. The weight wy, is a weight
associated with a user u, capturing the influence of a user to the
model outcome and W;, = ZuNz 1 Wu.

Since B[} ,,c5t wu] = qW, the estimator f is unbiased. The sensi-
tivity of the estimator S(f) is computed as: S(f) = max, ¢ || f ({S*U
u'}) — F{SPIl2. S(f) is bounded in the following lemma.
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LemMA 3.1. If for all users u we have ||AL]l2 < S, then S(f) <
max(wy,)S
W

Proor. If for all users ||AY]|2 < S, then we have:

7 AL
WuAu

qw

S(f) _ ZuEStUu’ WMAL, - ZuES’ WuAltt <
qWw

Consequently, Lemma 3.1 holds.

< max(wy)S
< W

[m]

Once the sensitivity of the estimator f is bounded, we can add
Gaussian noise scaled to the sensitivity S(f) to obtain a privacy
guarantee. By applying Lemma 3.1, the noise scale o becomes:

zmax(wy)S
qw
User-level DP Guarantee. Given the bounded sensitivity of the
estimator, the moments accountant M [1] is used to bound the total
User-level DP privacy consumption of T steps of the Gaussian mech-
anism with the noise N (0, I6?) (Line 14). Since ¢ is (e, §)-User-level
DP, the generated model parameters {t9u}u]\]=1 and the user descrip-

o=2z8(f) = ©)

tor {v, }fy: , are also User-level DP thanks to the post-processing
property [7]. As a result, Algorithm 1 preserves User-level DP with
the noise scale z = o/S(f) as in the following Theorem.

THEOREM 3.2. For the estimator f, the moments accountant of
the sampled Gaussian mechanism correctly computes User-level DP
privacy loss with the scale z = o /S(f) for T training steps.

PRrROOF. At each step, users are selected randomly with probabil-
ities q For the estimator f, if the l;-norm of each user’s gradient
update is bounded by S(f), then the moments accountant can be
bounded by that of the sampled Gaussian mechanism with sensi-
tivity 1, the scale z = /S(f), and sampling probability q. Thus,
we can apply the composability as in Theorem 2.1 [1] to correctly
compute the User-level DP privacy loss with the scale z = o/S(f)
for T training steps. O

4 EXPERIMENTAL RESULTS

We conduct extensive experiments to shed light on understanding
1) the interplay between privacy and model utility and 2) the im-
mediate effects of DP hyperparameters, such as the clipping bound,
learning rate, noise scale, etc., on the trade-off between model utility
and privacy protection.

4.1 Datasets

To achieve our goal, we conduct an extensive experiment using
the CIFAR-10 [13], FEMNIST (Federated Extended MNIST) [3], and
CelebA datasets [18]. For these datasets, we generate non-iid data
distribution across users in terms of the number of local training
data. In the CIFAR-10 dataset, there are 50, 000 training and 10, 000
testing samples across 100 users. In the FEMNIST dataset, we re-
move some users that have a very small number of data samples (i.e.,
less than 30 samples); therefore, we use 3,400 users with 600, 000
training samples and 150, 000 testing samples. In the CelebA dataset,
there are 155, 529 training and 19, 962 testing samples with 6, 348
clients. There are 10 classes, 62 classes, and 2 classes in the CIFAR-
10, FEMNIST, and CelebA datasets, respectively.
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(a) CIFAR-10 dataset
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Figure 2: Image classification on the CIFAR-10 and FEMNIST datasets.
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Figure 3: Image classification on the CelebA dataset.

4.2 Model Configurations and Evaluation

We adopt the model configuration in [26], in which we use a LeNet-
based network [15] with two convolution and two fully connected
layers for the local model and a fully-connected network with three
hidden layers and multiple linear heads per target weight tensor
for the HyperNetFL. SGD optimizers with a learning rate of 0.01
for the HyperNetFL and 0.001 for the local models are used.

We evaluate our method with image classification using a model
accuracy and privacy budget €. The higher the accuracy is, the better
model is. The lower the ¢ is, the better privacy protection is. We
compare our work with a Noiseless model, which is a HyperNetFL
trained without any privacy-preserving mechanisms.

To examine the effects of DP hyperparameters on the trade-off
between utility and privacy, we tested a wide range of hyperpa-
rameters, including the gradient clipping bound S € [0.05,0.1,0.2],
the scale z € [5,10], and the sample rate ¢ € [0.05,0.1,0.2]. The
broken probability is § = 107>,

4.3 Experimental Results

To answer our evaluation questions, we conducted the following
experiments: (1) investigating the interplay between privacy bud-
get and model utility and (2) studying the impacts of different
hyperparameters on the privacy budget and model utility.
Privacy Budget (¢, 5) and Model Utility. In the CIFAR-10
dataset, UDP-Alg achieves a good model performance at a tight
privacy budget € (Figure 2a). At € = 4, the model accuracy is 53.95%.
It significantly improves and reaches the upper-bound Noiseless
model performance when e = 10 with 82.23% accuracy. This result
is obtained when the noise o = 0.05 and the clipping bound S = 0.1.
In the FEMNIST and CelebA datasets (Figures 2b and 3), we observe
a similar phenomenon, but obtain a good model performance at
smaller privacy budgets. In the FEMNIST dataset, at € = 3, the gap
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between the UDP-Alg model that has o = 0.0015 and S = 0.05 with
the Noiseless model is only 5.31%. In the CelebA dataset, the gap is
even smaller, with only 3.84%, at a more rigorous privacy budget
€ = 1.25. These results are promising and consistent across the
datasets, showing the effectiveness of our proposed algorithm in
providing User-level DP in HyperNetFL.

Effects of Different Noise and Clipping Tradeoffs on Model
Utility. Figures 2a, 2b, and 3 show model accuracy of our mecha-
nism with varying levels of clipping S and noise o, across different
datasets. Given that S remains unchanged, when o decreases, the
model accuracy slightly increases. For example, in the CIFAR-10
dataset, given S = 0.1, with o = 0.1, the model accuracy is 21.27%
and with ¢ = 0.05, the model accuracy remarkably improves to
82.23%. We observe the same phenomenon in the FEMNIST dataset.

When o remains constant, we notice that as the clipping bound S
decreases, there is an increase in model accuracy. For example, in the
CIFAR-10 dataset, given o = 0.05, when S = 0.2, the model accuracy
is 69.67%. Decreasing S = 0.1, the accuracy significantly improves
to 82.23%. This trend is prominent in the FEMNIST dataset.

When the noise is large, it significantly modifies the parameter
values, leading to a detrimental impact on the model performance.
The results suggest that using a small ¢ and correspondingly small
S (thus fixing z so the privacy consumption of each round is un-
changed) provides better model utility and privacy trade-offs.

5 CONCLUSION AND FUTURE WORKS

In this work, we developed a novel approach to preserve user-level
DP in HyperNetFL. By incorporating user sampling in the training
process and tightening sensitivity bounds, we mitigated the trade-
off between model utility and privacy loss. Rigorous evaluations
show that UDP-Alg achieves good results at small privacy budgets
indicating rigorous privacy protection.

Our work opens several research directions in the near future.
We will examine UDP-Alg in a variety of datasets and applications.
That will provide meaningful observation to guide us how to design
private algorithms with adaptive hyperparameters across training
rounds. This will significantly improve model utility and stability
of HyperNetFL models under the same privacy protection.
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