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ABSTRACT
Federated learning (FL) is a framework for collaborative learning

among users through a coordinating server. A recentHyperNetwork-

based personalized FL framework, called HyperNetFL, is used to

generate local models using personalized descriptors optimized

for each user independently. However, HyperNetFL introduces un-

known privacy risks. This paper introduces a novel approach to

preserve user-level differential privacy, dubbed User-level DP, by

providing formal privacy protection for data owners in training

a HyperNetFL model. To achieve that, our proposed algorithm,

called UDP-Alg, optimizes the trade-off between privacy loss and

model utility by tightening sensitivity bounds. An intensive evalu-

ation using benchmark datasets shows that our proposed UDP-Alg

significantly improves privacy protection at a modest cost in utility.

CCS CONCEPTS
• Computing methodologies→Machine learning; • Security
and privacy→ Privacy-preserving protocols.

KEYWORDS
Federated Learning; Differential Privacy; Hypernetworks

ACM Reference Format:
Vaisnavi Nemala, Phung Lai, and NhatHai Phan. 2023. Differential Privacy

in HyperNetworks for Personalized Federated Learning. In Proceedings
of the 32nd ACM International Conference on Information and Knowledge
Management (CIKM ’23), October 21–25, 2023, Birmingham, United Kingdom.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3583780.3615203

1 INTRODUCTION
Federated learning (FL) allows a server to jointly train a model

through multiple local users, without the need to share the users’

data. This is vital when privacy concerns are raised and the shar-

ing of sensitive local data must be prevented [21]. Examples of

FL addressing privacy risks are when data can reveal potentially

sensitive information about the users, such as sensitive medical
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reports and data, financial transactions, or personal data disclosing

racial/ethnic, political, or religious affiliations. However, data dis-

tribution often varies amongst users, such as varying geographic

backgrounds or use case scenarios. Thus, Personalized Federated

Learning [27] addresses the heterogeneity of users through the

introduction of a personalized model for each user (versus a shared

global model).

Among existing approaches, Hypernetwork-based personalized

FL Framework (HyperNetFL) allows us to benefit from joint training

of a HyperNetwork, which is used to generate the users’ person-

alized models [26]. Although effective, this unique personalized

federated training of HyperNetFL can lead to previously unknown

concerns for maintaining privacy for the users.

We seek to address these challenges by focusing on preserving

differential privacy in HyperNetFL. We specifically explore user-

level differential privacy (User-level DP), which investigates the

effects of the presence or absence of a user’s full records on a dataset.

However, unlike the User-level DP applied on recurrent language

models [20], in HyperNetFL, without a global model aggregation at

the server, it is non-trivial on how to carefully calibrate the noise

added into the training process, so that the server will generate

User-level DP model parameters without an undue cost in model

utility.

Key Contributions. Motivated by this, we structure our pa-

per around the following significant contributions: (1) A novel

algorithm, called UDP-Alg, to provide a formal User-level DP guar-

antee for HyperNetFL; (2) An optimization of the trade-off between

privacy protection with model utility, conducted on a series of ex-

periments on image classification using benchmark datasets; and

(3) An exploration of various effects of DP hyperparameters (such

as clipping bound, noise scale, etc.) on the trade-off and from that,

making a suggestion on which hyperparameters practitioners could

use to better balance the trade-off.

Outline. The paper is organized as follows. We briefly review

background in Section 2. Section 3 discusses the algorithm for

guaranteeing User-level DP in the HyperNetFL framework in depth.

Section 4 explores experimental results to empirically demonstrate

the interplay between User-level DP and model utility. We conclude

the paper in Section 5.

2 BACKGROUND
2.1 Federated Learning (FL)
FL is a multi-round communication protocol between a server and

𝑁 users. At each round 𝑡 , the server sends the latest model 𝜃𝑡
to a random subset of users 𝑈𝑡 . These selected users use their

local data 𝐷𝑢 to train the model, and compute their local gradients
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△𝜃𝑢𝑡 = 𝜃𝑢𝑡 − 𝜃𝑡 , and send them back to the server. Then, the server

aggregates all the received gradients from the users in 𝑈𝑡 using

an aggregation function G : 𝑅 |𝑈𝑡 |×𝑛 → 𝑅𝑛 where 𝑛 is the size

of △𝜃𝑡 . The aggregated gradient is added to 𝜃𝑡 , which is 𝜃𝑡+1 =

𝜃𝑡 − 𝜆G({△𝜃𝑢𝑡 }𝑢∈𝑈𝑡 ), where 𝜆 is the server’s learning rate. FedAvg

is a well-applied aggregation in FL algorithms [11], as 𝜃𝑡+1 = 𝜃𝑡 −
𝜆(∑𝑢∈𝑈𝑡 𝑛𝑢 × △𝜃𝑢𝑡 )/∑𝑢∈𝑈𝑡 𝑛𝑢 .

Personalized Federated Learning (pFed). FL methods often

encounter a significant variation in data distributions across users,

which results in a substantial difference in the model’s effectiveness

[4, 28]. Therefore, pFed techniques have been proposed to overcome

this problem by achieving personalized performance that can adapt

to the varying data [8, 10, 26]. pFed approaches can be broadly

categorized into four research lines: (1) Regularization-based Ap-
proaches, which modify local training through regularization or

penalization to address data distribution drifting, resulting in a di-

vergence between theweights of local and global models [12, 17, 23];

(2) Clustering-based Approaches, where the server assigns users to
clusters and aggregate local models within each cluster [9, 25]; (3)
Knowledge Distillation, where the server ensembles users’ knowl-

edge by a generator or a consensus distributed across the network

[16, 26, 29]; and (4) Meta Learning, which leverages the concept of

meta-training and meta-testing. In meta-training, a sensitive initial

model is learned, which can quickly adapt to various tasks, typi-

cally using techniques like Model Agnostic Meta-Learning (MAML).

This initial model is then mapped to the global model, and in the

meta-testing step, it is further adapted to specific tasks on the users’

side.

HyperNet-based Personalized FL. One of the state-of-the-

art pFed approaches is using a single large network at the server

ℎ(𝜑, 𝑣𝑢 ), called HyperNetFL [26], to generate local models 𝜃𝑢 , given

the user’s descriptors 𝑣𝑢 . In fact, HyperNetFL learns a family of

personalized models {𝜃𝑢 = ℎ(𝑣𝑢 , 𝜑)}𝑢∈[𝑁 ] , such that the users and

the server minimize their loss functions:

arg min

𝜑,{𝑣𝑢 }𝑢∈ [𝑁 ]

1

𝑁

∑︁
𝑢∈[𝑁 ]

𝐿𝑢 (ℎ(𝑣𝑢 , 𝜑)) (1)

2.2 Differential Privacy
Differential Privacy (DP) [5–7] provides the guarantee that adver-

saries are limited in learning about private data by ensuring similar

model outcomes, regardless if any single training sample is in the

database or not. The definition of DP is as follows:

Definition 2.1. (𝜖, 𝛿)-DP: A randomized mechanismM: D → R
with a domain D (e.g., possible training datasets) and range R
(e.g., all possible trained outcomes) satisfies (𝜖 ,𝛿)-DP, if for any two

adjacent datasets 𝐷, 𝐷′ ∈ D and for any subset of outputs 𝑆 ⊆ R,
it holds that:

𝑃𝑟 [M(𝐷) ∈ 𝑆] ≤ 𝑒𝜖𝑃𝑟 [M(𝐷′) ∈ 𝑆] + 𝛿 (2)

The privacy budget 𝜖 controls how similarity between the two

outcomes when𝐷 and𝐷′ may differ. A smaller 𝜖 enforces a stronger

privacy protection. The broken probability 𝛿 is the upper bound

probability for the worst-case scenarios when an adversary can

infer the presence of a data sample in the training set [14].

In Definition 2.1, the explanation of adjacent databases leaves

open. It depends on the application to determine the level of DP

Figure 1: HyperNetFL with User-level DP guarantee.

protection needed. Based on defining the adjacent databases, there

are different levels of DP protection, which can be categorized into

four research lines, as discussed next.

Sample-level DP. Traditional DP mechanisms [7, 22, 24] ensure

DP at the sample-level, in which𝐷 and𝐷′ are different from at most

a single training sample. This DP level only protects the privacy

of individual training samples, whereas we are seeking to provide

privacy for the whole user histories in the training dataset.

Element-level DP. Element-level DP [2] ensures that an adversary

cannot infer whether users have a sensitive element in their data.

Similar to sample-level DP, element-level DP is different from our

goal, since it does not provide DP protection for users.

Local DP (LDP). Different from our purpose of protecting user

membership information, the key idea of local DP is to protect users’

data. By observing the outcomes, it ensures adversaries cannot

distinguish whether the outcomes are from input values 𝑥 or 𝑥 ′.
However, LDP approaches typically add significant amount of noise

to the data/model parameters to preserve DP, resulting remarkable

model utility drop.

User-level DP. [20] proposed a User-level DP that confirms the

presence of an arbitrary user in the training dataset. To provide

such protection, the adjacent datasets 𝐷 and 𝐷′ differ on all the

samples belonging to an arbitrary user.

User-level DP is similar to our purpose of protecting user mem-

bership information; however, without an aggregation at the server

as in traditional FL frameworks [11, 19], it is challenging to bound

the sensitivity of users’ queries and to quantify the amount of noise

added to the model parameters so that the network at the server

ℎ(𝜑, ·)will generate User-level DPmodel parameters {𝜃𝑢 }𝑁𝑢=1. There-
fore, protecting user membership information in HyperNetFL is

not trivial.

3 USER-LEVEL DP IN HYPERNETFL
In this section, we focus on answering the question: Could we
protect user membership information in HyperNetFL and how? Based
upon that, we propose our approach to preserve User-level DP in

HyperNetFL.

To protect the generated model parameters {𝜃𝑢 }𝑁𝑢=1, a naive

solution is to simply add noise, e.g., Gaussian noise or Laplacian

noise [1] into the output of the HyperNetFL before sending them to

users. However, this can severely alter the value of the parameters
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Algorithm 1 UDP-Alg in HyperNetFL

1: Input: Number of users𝑁 , number of rounds𝑇 , number of local rounds

𝐾 , server’s learning rates 𝜆 and 𝜁 , users’ learning rate 𝜂, clipping bound

𝑆 , clipping function ClipFn(Δ, 𝑆), a hyper-parameter 𝑧, and 𝐿𝑢 (𝐵) is
the loss function 𝐿𝑢 (𝜃 ) on a mini-batch 𝐵

2: Initialize ℎ (𝜑, · ) and moments accountantM
3: 𝑤𝑢 ← min( |𝐷𝑢 |

𝑤̂𝑢
, 1) for all users 𝑢 # where 𝑤̂𝑢 is per-user data sample

cap

4: 𝑊 ← ∑𝑁
𝑢=1 𝑤𝑢

5: for 𝑡 = 1, . . . ,𝑇 do
6: 𝑈𝑡 ← Sample a set of users with probability 𝑞

7: for each user 𝑢 ∈ 𝑈𝑡 do
8: set 𝜃𝑢𝑡 = ℎ (𝜑, 𝑣𝑢 ) and ˜𝜃𝑢 = 𝜃𝑢

9: for 𝑘 = 1, . . . , 𝐾 do
10: sample mini-batch 𝐵𝑘 ⊂ 𝐷𝑢
11: △𝜃𝑢

𝑘+1 =
˜𝜃𝑢
𝑘
− 𝜂 ▽ ˜𝜃𝑢

𝑘
𝐿𝑢 (𝐵𝑘 )

12: △𝜃𝑢𝑡 = ˜𝜃𝑢
𝐾
− 𝜃𝑢𝑡

13: △𝑢𝑡 ←− ClipFn( (▽𝜑𝜃𝑢𝑡 )⊤ △ 𝜃𝑢𝑡 , 𝑆 )
14: ▽𝜑 =

∑
𝑢∈𝑈𝑡 𝑤𝑢△

𝑢
𝑡

𝑞𝑊

15: 𝜎 ←− 𝑧max(𝑤𝑢 )𝑆
𝑞𝑊

16: 𝜑 = 𝜑 − 𝜆[▽𝜑 + N(0, 𝐼𝜎2 ) ]
17: ∀𝑢 ∈ 𝑈𝑡 : 𝑣𝑢 = 𝑣𝑢 − 𝜁 ▽𝑣𝑢 𝜑⊤ △ 𝜃𝑢𝑡
18: M.accum_priv_spending(z)

19: ClipFn(Δ, 𝑆): return 𝜋 (Δ, 𝑆 ) ← Δ · min

(
1, 𝑆
∥Δ∥

)
and adversely affect the model utility. Therefore, it is needed to

carefully calibrate the DP noise added to optimize the trade-off

between privacy protection and model utility.

UDP-Alg. To achieve User-level DP in HyperNetFL (Algorithm

1 and Figure 1) without an undue cost in model utility, at each

iteration 𝑡 , we randomly sample 𝑈𝑡 users from 𝑁 users with the

sample rate𝑞 (Line 5). Then, each of the selected users𝑢 in𝑈𝑡 update

their model 𝜃𝑢 using the local data𝐷𝑢 (Lines 8-10). We compute the

gradients of model parameters for a particular user, denoted as Δ𝑢𝑡
(Line 11). Here, we clip the per-user gradients so that its 𝐿2-norm

is bounded by a predefined gradient clipping bound 𝑆 (Lines 12, 18).

Next, a weighted-average estimator 𝑓 is employed to compute the

average gradient Δ𝑡 using the clipped gradients Δ𝑢𝑡 gathered from

all the selected users (Line 13). Finally, we add random Gaussian

noise N(0, 𝐼𝜎2) to the model update (Line 14). During the training,

the moments accountantM is used to compute the𝑇 training steps’

privacy budget consumption, which is incremented at every step

of the training process (Line 17).

To tighten the sensitivity bound, our weighted-average estimator

𝑓 for per-user vectors Δ𝑢 (Line 13) is as follows:

𝑓 (𝑆𝑡 ) =
∑
𝑢∈𝑈𝑡 𝑤𝑢 △ 𝜃

𝑢
𝑡

𝑞𝑊
(3)

where Δ𝑢𝑡 is the clipped gradients of local gradients △𝜃𝑢𝑡 over the

network parameters at the server 𝜑 . The weight 𝑤𝑢 is a weight

associated with a user 𝑢, capturing the influence of a user to the

model outcome and𝑊𝑢 =
∑𝑁
𝑢=1𝑤𝑢 .

Since E[∑𝑢∈𝑆𝑡 𝑤𝑢 ] = 𝑞𝑊 , the estimator 𝑓 is unbiased. The sensi-

tivity of the estimator S(𝑓 ) is computed as: S(𝑓 ) = max𝑢′,𝑒′ ∥ 𝑓 ({𝑆𝑡∪
𝑢′}) − 𝑓 ({𝑆𝑡 })∥2. S(𝑓 ) is bounded in the following lemma.

Lemma 3.1. If for all users 𝑢 we have ∥Δ𝑡𝑢 ∥2 ≤ 𝑆 , then S(𝑓 ) ≤
max(𝑤𝑢 )𝑆

𝑞𝑊
.

Proof. If for all users ∥Δ𝑡𝑢 ∥2 ≤ 𝑆 , then we have:

S(𝑓 ) =
∑
𝑢∈𝑆𝑡∪𝑢′ 𝑤𝑢Δ

𝑡
𝑢 −

∑
𝑢∈𝑆𝑡 𝑤𝑢Δ

𝑡
𝑢

𝑞𝑊
≤ 𝑤 ′𝑢Δ

𝑡
𝑢

𝑞𝑊
≤ max(𝑤𝑢 )𝑆

𝑞𝑊

Consequently, Lemma 3.1 holds. □

Once the sensitivity of the estimator 𝑓 is bounded, we can add

Gaussian noise scaled to the sensitivity S(𝑓 ) to obtain a privacy

guarantee. By applying Lemma 3.1, the noise scale 𝜎 becomes:

𝜎 = 𝑧S(𝑓 ) = 𝑧max(𝑤𝑢 )𝑆
𝑞𝑊

(4)

User-level DP Guarantee. Given the bounded sensitivity of the

estimator, the moments accountantM [1] is used to bound the total

User-level DP privacy consumption of𝑇 steps of the Gaussianmech-

anismwith the noiseN(0, 𝐼𝜎2) (Line 14). Since𝜑 is (𝜖, 𝛿)-User-level
DP, the generated model parameters {𝜃𝑢 }𝑁𝑢=1 and the user descrip-

tor {𝑣𝑢 }𝑁𝑢=1 are also User-level DP thanks to the post-processing

property [7]. As a result, Algorithm 1 preserves User-level DP with

the noise scale 𝑧 = 𝜎/S(𝑓 ) as in the following Theorem.

Theorem 3.2. For the estimator 𝑓 , the moments accountant of
the sampled Gaussian mechanism correctly computes User-level DP
privacy loss with the scale 𝑧 = 𝜎/S(𝑓 ) for 𝑇 training steps.

Proof. At each step, users are selected randomly with probabil-

ities 𝑞 For the estimator 𝑓 , if the 𝑙2-norm of each user’s gradient

update is bounded by S(𝑓 ), then the moments accountant can be

bounded by that of the sampled Gaussian mechanism with sensi-

tivity 1, the scale 𝑧 = 𝜎/S(𝑓 ), and sampling probability 𝑞. Thus,

we can apply the composability as in Theorem 2.1 [1] to correctly

compute the User-level DP privacy loss with the scale 𝑧 = 𝜎/S(𝑓 )
for 𝑇 training steps. □

4 EXPERIMENTAL RESULTS
We conduct extensive experiments to shed light on understanding

1) the interplay between privacy and model utility and 2) the im-

mediate effects of DP hyperparameters, such as the clipping bound,

learning rate, noise scale, etc., on the trade-off betweenmodel utility

and privacy protection.

4.1 Datasets
To achieve our goal, we conduct an extensive experiment using

the CIFAR-10 [13], FEMNIST (Federated Extended MNIST) [3], and

CelebA datasets [18]. For these datasets, we generate non-iid data

distribution across users in terms of the number of local training

data. In the CIFAR-10 dataset, there are 50, 000 training and 10, 000

testing samples across 100 users. In the FEMNIST dataset, we re-

move some users that have a very small number of data samples (i.e.,

less than 30 samples); therefore, we use 3, 400 users with 600, 000

training samples and 150, 000 testing samples. In the CelebA dataset,

there are 155, 529 training and 19, 962 testing samples with 6, 348

clients. There are 10 classes, 62 classes, and 2 classes in the CIFAR-

10, FEMNIST, and CelebA datasets, respectively.
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(a) CIFAR-10 dataset (b) FEMNIST dataset

Figure 2: Image classification on the CIFAR-10 and FEMNIST datasets.

Figure 3: Image classification on the CelebA dataset.

4.2 Model Configurations and Evaluation
We adopt the model configuration in [26], in which we use a LeNet-

based network [15] with two convolution and two fully connected

layers for the local model and a fully-connected network with three

hidden layers and multiple linear heads per target weight tensor

for the HyperNetFL. SGD optimizers with a learning rate of 0.01

for the HyperNetFL and 0.001 for the local models are used.

We evaluate our method with image classification using a model

accuracy and privacy budget 𝜖 . The higher the accuracy is, the better

model is. The lower the 𝜖 is, the better privacy protection is. We

compare our work with a Noiselessmodel, which is a HyperNetFL

trained without any privacy-preserving mechanisms.

To examine the effects of DP hyperparameters on the trade-off

between utility and privacy, we tested a wide range of hyperpa-

rameters, including the gradient clipping bound 𝑆 ∈ [0.05, 0.1, 0.2],
the scale 𝑧 ∈ [5, 10], and the sample rate 𝑞 ∈ [0.05, 0.1, 0.2]. The
broken probability is 𝛿 = 10

−5
.

4.3 Experimental Results
To answer our evaluation questions, we conducted the following

experiments: (1) investigating the interplay between privacy bud-

get and model utility and (2) studying the impacts of different

hyperparameters on the privacy budget and model utility.

Privacy Budget (𝜖, 𝛿) and Model Utility. In the CIFAR-10

dataset, UDP-Alg achieves a good model performance at a tight

privacy budget 𝜖 (Figure 2a). At 𝜖 = 4, the model accuracy is 53.95%.

It significantly improves and reaches the upper-bound Noiseless

model performance when 𝜖 = 10 with 82.23% accuracy. This result

is obtained when the noise 𝜎 = 0.05 and the clipping bound 𝑆 = 0.1.

In the FEMNIST and CelebA datasets (Figures 2b and 3), we observe

a similar phenomenon, but obtain a good model performance at

smaller privacy budgets. In the FEMNIST dataset, at 𝜖 = 3, the gap

between the UDP-Alg model that has 𝜎 = 0.0015 and 𝑆 = 0.05 with

the Noiseless model is only 5.31%. In the CelebA dataset, the gap is

even smaller, with only 3.84%, at a more rigorous privacy budget

𝜖 = 1.25. These results are promising and consistent across the

datasets, showing the effectiveness of our proposed algorithm in

providing User-level DP in HyperNetFL.

Effects of Different Noise and Clipping Tradeoffs onModel
Utility. Figures 2a, 2b, and 3 show model accuracy of our mecha-

nism with varying levels of clipping 𝑆 and noise 𝜎 , across different

datasets. Given that 𝑆 remains unchanged, when 𝜎 decreases, the

model accuracy slightly increases. For example, in the CIFAR-10

dataset, given 𝑆 = 0.1, with 𝜎 = 0.1, the model accuracy is 21.27%

and with 𝜎 = 0.05, the model accuracy remarkably improves to

82.23%. We observe the same phenomenon in the FEMNIST dataset.

When 𝜎 remains constant, we notice that as the clipping bound 𝑆

decreases, there is an increase inmodel accuracy. For example, in the

CIFAR-10 dataset, given 𝜎 = 0.05, when 𝑆 = 0.2, the model accuracy

is 69.67%. Decreasing 𝑆 = 0.1, the accuracy significantly improves

to 82.23%. This trend is prominent in the FEMNIST dataset.

When the noise is large, it significantly modifies the parameter

values, leading to a detrimental impact on the model performance.

The results suggest that using a small 𝜎 and correspondingly small

𝑆 (thus fixing 𝑧 so the privacy consumption of each round is un-

changed) provides better model utility and privacy trade-offs.

5 CONCLUSION AND FUTURE WORKS
In this work, we developed a novel approach to preserve user-level

DP in HyperNetFL. By incorporating user sampling in the training

process and tightening sensitivity bounds, we mitigated the trade-

off between model utility and privacy loss. Rigorous evaluations

show that UDP-Alg achieves good results at small privacy budgets

indicating rigorous privacy protection.

Our work opens several research directions in the near future.

We will examine UDP-Alg in a variety of datasets and applications.

That will provide meaningful observation to guide us how to design

private algorithms with adaptive hyperparameters across training

rounds. This will significantly improve model utility and stability

of HyperNetFL models under the same privacy protection.
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