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The quantum free energy of a system governed by a standard Hamiltonian is larger than its
classical counterpart. The lowest-order correction, first calculated by Wigner, is proportional to
72 and involves the sum of the mean squared forces. We present an elementary derivation of this
result by drawing upon the Zassenhaus formula, an operator-generalization for the main
functional relation of the exponential map. Our approach highlights the central role of non-
commutativity between kinetic and potential energy and is more direct than Wigner’s original
calculation, or even streamlined variations thereof found in modern textbooks. We illustrate the
quality of the correction for the simple harmonic oscillator (analytically) and the purely quartic
oscillator (numerically) in the limit of high temperature. We also demonstrate that the Wigner
correction fails in situations with sufficiently rapidly changing potentials, for instance, the
particle in a box. © 2023 Published under an exclusive license by American Association of Physics Teachers.
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I. INTRODUCTION

The development of a quantum theory owes much to
experimental work on cold systems, as quantum effects man-
ifest most visibly at low temperatures. For instance, the
unexpected drop in the heat capacities of solids was a promi-
nent experimental puzzle; Einstein’s solution,1 later refined
by Debye,” constituted a triumph of the emerging theory.
Similarly, Planck’s solution to the ultraviolet catastrophe
relies on the fact that kg7 is small compared to the photon
energy associated with high frequency modes.?
Bose—Einstein condensation requires very low temperatures
in order to simultaneously satisfy the conditions of low den-
sity (i.e., ideal gas case) but high phase space density (i.e.,
degeneracy).*”

Formally, we frequently think of 7 — O as the classical
limit, with quantum corrections arising in powers of 7.
However, since the value of /i cannot be changed in experi-
ment, tuning the temperature turns out to be the next best
option to explore the classical limit. Quantum statistical
physics is, hence, the natural framework in which to consider
quantum corrections, and T — oo has become a frequent
proxy for the classical limit. The two limits are not equiva-
lent, though: The fact that the exponent —fBH in the canoni-
cal state becomes small in the high temperature limit does
not necessarily imply that the Hamiltonian H is proportional
to K. Instead, the terms that are small are those that arise
because position and momentum contributions to the
Hamiltonian do not commute.

More precisely, quantum effects have two different ori-
gins. First, quantum operators (representing classical observ-
ables) need not commute. Second, the spin-statistics theorem
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imposes symmetry constraints on multi-particle quantum
states, which gives rise to Fermi—Dirac and Bose—FEinstein
statistics. As it turns out, the former effect creates quantum
corrections of order 7%, while the latter creates effects of
order /i*—assuming a three-dimensional system in the non-
degenerate limit /; (N/V) < 1, where Ay, = h/\/2rnmkgT is
the thermal de Broglie wavelength and N/V is the particle
density (for details, see Sec. SM 1 in the supplementary
material®). Under many important conditions, Fermi or Bose
considerations are, therefore, subleading to commutation
considerations. Remarkably, the lowest order effect is not
linear in 7.

Wigner was the first to present a systematic analysis of the
h2-corrections, in a famous 1932 paper.” He clearly under-
stood that non-commutativity was central to his result, but
this connection is somewhat obscured by his ingenious yet
roundabout calculation—so much so that at the end of his
paper he muses on the possibility of a more direct derivation.
Modern statistical physics textbooks tend to omit the subject;
the few that do treat it™ present a streamlined version of
Wigner’s argument—again leaving the key role of non-
commutativity opaque. A very elegant derivation using path
integrals can be found in Feynman/Hibbs,'® and a more for-
mal presentation of Wigner’s approach, as further developed
by Kirkwood, is given in a textbook by Brack and Bhaduri,
which more broadly covers semi-classical methods.'' Huang
(in his textbook'?) and Harper'? both approach the question
from an operator perspective, but neither author consistently
expands the exponential of non-commuting operators to the
required order to get the correct result. Our goal is to fill an
apparent gap and present a derivation of Wigner’s leading
order quantum correction highlighting the fundamental role
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of non-commutativity, while remaining accessible to undergrad-
uates. Our central tool will be a formula typically attributed to
Zassenhaus, which disentangles the non-commuting kinetic and
potential terms in the Boltzmann factor, thereby allowing for a
systematic construction of quantum corrections.'*'>

The Zassenhaus formula is a sophisticated identity, and
proving it in generality requires a deep appreciation of Lie
algebras and Lie groups. It might, thus, seem disingenuous
to call our derivation of Wigner’s result “elementary,” but
we shall summon the following two points to our defense:
First, we find it useful to separate the mathematical idiosyn-
crasies of non-commuting operators from the physical ques-
tion at hand. Second, proving Wigner’s correction does not
require the “full” Zassenhaus formula, i.e., the infinite series
expansion. Its first two terms suffice, and we offer a straight-
forward (albeit not especially elegant) derivation of those.

We investigate how well the correction works by studying
several examples. For the simple harmonic oscillator, every-
thing can be calculated analytically. In other cases, calculat-
ing the quantum free energy typically requires resorting to
numerics, or approximate methods such as WKB. We will
also look at an ideal gas in a box and show that in this case
the Wigner correction fails.

Systematically expanding exponentials of non-commuting
operators is a well-travelled road and has led to many fruitful
applications over the years. For instance, Suzuki published a
series of articles in the 1990s, applying this procedure to
quantum statistical mechanics (see Ref. 16 and references
therein). It is also worth emphasizing that this formalism also
has numerical applications. Notably, Takahashi and Imada
used it to speed up the Monte Carlo evaluation of a quantum
path integral.'” They start with another widely used approach
to evaluate the exponential of non-commuting quantum
operators—namely, the Lie-Trotter product formula—and
then speed up its convergence by an ingenious application of
the Wigner correction. Indeed, their derivation relies on the
same systematic operator expansions we will discuss here.

II. INTRODUCING WIGNER’S CORRECTION

We will examine quantum corrections arising for standard
Hamiltonians of the form

N P2
H({Pi,Qi}) = Z; U({Q:}) =K +U, (1)

where N is the number of particles, all of mass m, and where
the potential energy U generally depends on all their coordi-
nates. The position and momentum operators are {Q;} and
{P;}, respectively. We will use lowercase letters {¢;} and
{pi} to denote their eigenvalues.

The essence of the order /> “operator correction” is fully
contained in the single-particle situation. As explained in
Sec. I (and the supplementary material), the inclusion of
multiple particles leads to “exchange corrections,” which are
typically higher order in 7. To declutter the math, let us then
first consider just a single degree of freedom,

P2
H=>-+UQ) =K+U. )

The quantum and classical partition functions for this
Hamiltonian are
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Zo = Tr(e "), (3a)

dpdq

Z —Phipa), 3b
- J 2mh ¢ (3b)
where “Tr(-)” denotes the trace over Hilbert space and

p=1/(kgT). Let us recall that h(p, ¢) is the classical
Hamiltonian belonging to the Hamilton operator H(P, Q).
In both cases, the free energy is given by

Our goal is to find a relation between Fg and Fc.

A. Prelude: An inequality between quantum and classical
free energy

We begin b
due to Golden

noting that the well known trace inequality
8 and Thompson'®

Tr(e*™?) < Tr(ee?) (%)

(for selfadjoint operators A and B) implies that the classical
partition function constitutes an upper bound to the quantum
partition function, as can be seen as follows:

Zo = Tr(e PE+D) (6a)
< Tr(e PKe=PY) (6b)
= |dg <q|efﬂPz/2mefﬁU(Q>|q> (6¢)
= | dgdp (gle """/ |p) (ple "D |q) (6d)
= [dgdp (gle " />"p) (ple VD) (6e)
_ dqdp efﬁ[p2/2m+U(q)} =Zc. (6f)

) 2xnh

In Eq. (6¢c), we evaluate the trace in the position basis; in
Eq. (6d), we inserted a momentum-basis representation of
unity, 1= [dplp) (p| in Eq. (6e), we replaced operators act-
ing on eigenvectors their eigenvalues; in Eq. (6f), we
used (g|p) = = elra/h / \/27: (a plane wave in Dirac normaliza-
tion). In consequence, we get

Fq > Fc. )

Quantum fluctuations can only increase the free energy com-
pared to the classical limit.

The inequality Fo > Fc (as well as the fact that at large
temperatures F'q — Fc) relies on the use of 21 when non-
dimensionalizing the phase space volume in Eq. (3b). From
a purely classical perspective, any constant with the dimen-
sion of an action would do, but picking Planck’s constant
enables this smooth link to the quantum description. In that
sense, even the classical free energy depends (fairly
benignly) on 7.

B. The main result: Wigner’s correction

What is the leading correction that quantifies the extent by
which the quantum free energy exceeds its classical counterpart?
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In 1932, Wigner showed that if we ignore particle exchange
complications, the answer for the standard Hamiltonian (1) is

s o*U .
= 0
Fq=Fc ST ?:1 < o7 > +O(1"). (8)

That this increases the free energy is plausible, considering
that we expect a stable potential to be convex up; but it can
be made obvious by integrating the expectation value by
parts,

(") =5

1 0
—— 1 _ 2 ) e PU@
Zc daUa) < 6Q> )
= daU'(q) (BU'(g)) e~
C

= B(U)), )

which leads to the manifestly positive correction

(154
Fc + 24kaT2Z<<8q,>>+€(h)' (10)

Our goal is now to provide an elementary derivation of this
result.

dqU"(q)e @

Fq =

ITII. PROVING WIGNER’S CORRECTION

Our main tool in the proof is an operator identity: The
“Zassenhaus formula.”'*'> Like its more famous counter-
part, the Baker—Campbell-Hausdorff formula,>® the
Zassenhaus formula provides corrections to the functional
relation €™ = e*e’ that arise when non-commuting objects
A and B are exponentiated:

0o
:etAetB Heft C,,/n!7 (11)

n=2

et(A+B)

where ¢ is a constant and the “correction operators” C,, are
nested commutators comprising n occurrences of either A or
B. The first few are given by

C, =[A,B], (12a)
Cs = [[A, B],A] + 2[[A, B, B], (12b)
Cs =[[[A,B],A],A] + 3[[[A, B], A], B]

+3([[[A, B]. B, B, (12¢)

where as usual [A, B] = AB — BA. Higher order C, involve
increasingly cumbersome expressions, which can be
obtained recursively.'>**?® In the Appendix, we offer an
elementary derivation of the correction operators C, and C3,
which suffice for our purposes. Observe also that if A and B
commute, all C,, vanish and Eq. (11) reduces to the conven-
tional functional relation.

In our case, we need to work with the quantum canonical
state, proportional to the operator e #K+U) "and this suggests
the identification A=K, B=U, and t = —f5. We will need a
few commutators to proceed which follow straightforwardly
from the elementary identity [Q, P] = ifi,
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K, U =—-—UP—_—U", (13a)
m 2m
hZ
(K, U], U] = —E(U’)z, (13b)
hZ
[IK, U}, K] =7 (U"P? +2PU"P + P?U") (13¢)
h2
= WU”PZ + O(R). (13d)

These can be derived swiftly by recalling that [P,f(Q)]
= —ifif'(Q) for some function f of the operator Q.
Furthermore, from Eq. (13c) to Eq. (13d), we used the fact that
switching the order of the P and U”(Q) operators creates extra
terms, which however are higher order in 7. At the relevant
order, the key correction operators C, and C5 then become

in i
C=—= {U’P U”}, (14a)
m 2
2r* |, P?
C;="— {U” — (U’)z] . (14b)
m 2m

Observe that Cp = @’(@ while C3 = (). The correction
C, turns out to be (%), and since we aim for the leading
quantum correction at order h*, we can terminate the
Zassenhaus expansion with C3. To be clear: even though P =
—ih(0/0q) in position representation, the occurrence of a
momentum operator does not by itself signal a factor of 7i. The
momentum is not proportional to 7, for otherwise particles
would classically always be at rest. Instead, 7 only arises
whenever we switch the order of a P- and a Q-type operator.

Because the C,, commutators all contain at least one factor
of i, we can Taylor-expand the exponentials appearing in the
Zassenhaus formula for small argument. Considering that we
wish to go up to order 7% and that C, = (%), we need to
expand the C,-exponential up to second order

e HC:/2 — 1-—/30 +- /3C2+0(h3) (15a)
—1+ﬁ[U’P—ﬁU”}
a 2m 2
hzﬁ h //:|2 3
0 3
T [UP 2U + O(1°) (15b)
—1+@ +—ﬁ2U”
2m 4dm
2
—Z—’i(U’PU’ P) + O(R®). (15¢)

The mixed operator term in the last line can be rewritten as

U'PU'P = (U')*P2 4 O(h), and so the first factor becomes
_ﬁZCZ/Z =1 |: U U// U/ 2P2 O h3 .
¢ T om (5P TRV g, W O

(16)
It suffices to expand the exponential of Cj to first order
np

SRSV
3m

{U” > (U’)2] +0(r). (17)
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Multiplying the C,- and Cz-exponentials, we obtain the cor-
rection factor up to order 7,

202 [: 2 )
—BC2/2-FC3/6 _ 4 np |:l U'P lU// _ﬁ_ U 2P_
© ¢ + 2m Lh +2 2( ) 2m
2 P?
e

3 m

(U’)zﬂ + 0.
(18)

Next we evaluate the quantum partition function, using the
brute-factorized quantum canonical state amended by the
corrections up to order 7*. The required steps are closely
analogous to Egs. (6)—except that we have the additional
factor from Eq. (18) in the trace. This causes no new compli-
cations: we simply arrive at six individual terms, the first of
which is the classical partition function. The other terms
become classical canonical averages, up to a missing factor
of 1/Z¢. Hence, at order K,

Zq hzﬁz / " ﬁz /
—=1+—|-(U U') ——= (U
Zc i 2m h< p)+ 2< ) 2 ( ) 2m
2 P’ 2
B (U =) —((U o’ 19
+3ﬁ<< 2 >>> row). (o)
where (---) denotes a classical canonical average. Since

position and momentum in the classical counterpart of
Hamiltonian (2) decouple, we get

(W) = (W) ) = 0. 200
2 2
(WrE )y =@wp (5 ) =@r5; e
2
W= wh(L) = W= @R @0

where we used the classical equipartition theorem, (p?/2m)
= 1/2 kgT, as well as Eq. (9) in the last step of Eq. (20c).
Putting everything together, we find

Z hz[)) ﬁ 1\2
Zo 1 L By
1" 1 72 (%3
+—ﬁ(<U> y <<U>>)]+o<h>
203
h2ﬁ3 N2 3
= 1= ((U)) + O). 1)

From there, we readily obtain the free energy

FQ = —kBT lOgZQ

o)
= —kgT log { {1 - %((U’f} + C“(h3)} }
2.3
)
_ Fe +%<( U + O). 22)
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This proves Wigner’s correction for a single degree of
freedom.

Ignoring exchange symmetry considerations, the calcula-
tion for multiple degrees of freedom—i.e., the Hamiltonian
(1)—goes through virtually unchanged. This is because posi-
tion and momentum operators for different degrees of free-
dom commute, and so Egs. (13) simply acquire a sum over
all degrees of freedom on the right hand side. Mixed terms
can then only arise from squaring, and this only affects one
term, (U’)*p?. However, the multi-particle counterpart of its

Canonlcal average IS
QUOU  \ = /OUBU\ ms;
zij: < 9q; 0q; p,p,> - Z < dg; q; > p
2
=5 < (aql ) > @9

yielding again just a single sum.** This then readily general-
izes Eq. (22) to Eq. (10).

For the interested reader, we provide an alternative and
faster derivation of this result in supplementary material SM
2, which relies on a suitably symmetrized version of the
Zassenhaus formula.’

IV. EXAMPLE ILLUSTRATIONS

To see how well Wigner’s correction works, and when it
fails, let us now look at a couple of examples. We w111 exam-
ine the harmonic oscillator and the general |x| -potential,
later specializing to k=4 (quartic oscillator) and k — oo
(particle in a box).

A. The harmonic oscillator

The harmonic oscillator with frequency w is described by
the Hamiltonian

2

P 1

and has the well-known spectrum®
1
En:hw<n+§>, n € Np. (25)

Its quantum partition function is

Zo = i e—Bio(n+1/2) _ 1

— (26)
= 2 sinh (£42)
and so the quantum free energy turns out to be
n
Fo = ksTlog {2 sinh <ﬁ7w>] . 27
Expanding this expression for small fhim, we get
Fo = ksT1lo <hw> D) O L) M 0 (i)
QT8 \keT) " 24ksT 2880 (kgT)’ '
(28)

The first term is the classical result, and so the next term
must be Wigner’s correction. Indeed, since U”(q) = mw?,
we obtain from Eq. (8) the correction
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_ B gy o (o)
24mkgT 24 kT’

AFy (29)

exactly as expected.

Figure 1 compares the Wigner-corrected free energy with
the classical and quantum free energy. For kgT/lio = 1/2,
the leading order correction to the classical result cannot be
distinguished from the quantum free energy in this plot.
Indeed, examining the next term in the expansion Eq. (28)
we see that the leading correction approaches the quantum
free energy with rapid 1/T° asymptotics. The subleading
term’s prefactor is also two orders of magnitude smaller than
that of the leading one.

At sufficiently low temperatures, the Wigner-corrected
classical free energy fails qualitatively: it diverges from the
correct quantum free energy and, for kgT/hw < 1/+/12, it
acquires a positive curvature—and hence a negative heat
capacity C = —T(9?F /0T?). Of course, the correction was
derived assuming fhm < 1, so we expect the approximation
to fail at low temperatures, but it remains impressive how far
down it fares well.

B. The power-law oscillator with potential |x\k
1. General considerations

It is instructive and fairly straightforward to extend this
reasoning to the monomial oscillator

H = P + Alx[*
= xS, (30)
2m

with k£ > 2. It proves convenient to rescale

1
hz )m
7 t= (2mA

The classical partition function can be calculated easily

Ze — ro dpdg g2 /2m)+aigt)

oo 2mh
2 1™
= (ﬁA)*l/l‘fJ dr /Tt (33)
Jah kJo
1/k
:2{(1@) r(1+1), (34)
Ath \ € k

where I'(x) is the Gamma-function (Ref. 27, Chap. 6).

Calculating Wigner’s correction of the associated classical
free energy involves another straightforward integral that
evaluates to a Gamma function

J dgk(k — 1)AgF2 e PAd
<U//> — 0

e (353)
J dg e PAG
0
1
2me ok F(l B E)
= kBThT (Be)* (k — 1)71’ (35b)
{1+ E)

which together with Eq. (8) yields

(1)

— N\ (36)
I (1 + k)

This reduces to the special case of the harmonic oscillator,
Eq. (29), if k=2.

Unfortunately, the quantum free energy cannot be
obtained so easily, because the spectrum of the |x|k-oscillat0r
is not analytically known for general k. A tempting work-
around invokes a semi-classical approximation such as
WKB. This seems particularly apt given that WKB is known
to become asymptotically exact for large eigenvalues and
thus, one would hope, large temperatures. If a = (E /A)'/ s

the classical turning point of the potential, then the WKB
quantization condition becomes®®

AFy k-1

2/k
. o (o)

Fig. 1. Free energy of the har-
monic oscillator as a function of
temperature. The three curves
correspond to: Classical result
(“C,” blue); quantum result

101 (“Q,” orange); classical result
plus Wigner’s leading order cor-
rection (“C+W,” red). The
inset shows a log-log plot of the

difference between the quantum
and the classical free energy as a
solid green curve, and the
Wigner correction from Eq.
(29), which scales ~T7!, as a
black dashed line.

= = Al = ) 31
¢ 2m£2 ,gl""% ( )
(12 /2m)*
which permits us to write the potential as
=)
Ux) = — . 32
1!0 0 N
3 10 k| \\\
IS .
o107t
|
5 0-51 1072
< 10-2 10°1_ 10°
Vg
0.0
-0. - -
%.0 0.5 1.0
kBT/ hw
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(37a)

oo o
_hf(E"f %(7

— ) (37b)
7o)
which yields the spectrum

2%/ (2+k)
3 1
24
(2+k>

E,=¢ F(l—’—l>ﬁ<n+;)

aw\»~ >>\»~

with n € INj.

(38)

The associated quantum partition function is
o0
Zo=Y e, (39)
n=0

which can be approximated numerically with a finite number
of terms. To see how well the Wigner approximation (and its
WKB competitor) fare, let us now look at two special cases.

2. The purely quartic oscillator

Consider the potential U(x) = Ax*. Specializing Eq. (34)
for k=4 yields the classical partition function, while the
WKB spectrum follows from Eq. (38):

4/3
E 1
—":a<n+—> , (40)
3 2

with o = [3y/aT(3/4)/T(1/4)]* ~ 2.185. When inserted
into Eq. (39), it permits us to numerically evaluate Zg. The
Wigner correction follows from Eq. (36):

o r(3) - o
() Vor =

Notice that this decays more slowly with temperature than in
the case of the harmonic oscillator, where we found a 1/T
scaling instead—see Eq. (29).

Figure 2 compares the classical result, the Wigner-
corrected free energy, and the WKB approximation.
Remarkably, the answer perplexes: Fwgp matches the
Wigner-corrected classical free energy quite poorly, but in
the absence of an exact answer it is unclear whether WKB or
Wigner are at fault. Nevertheless, the fact that even at large
temperatures WKB is closer to the classical than to the
Wigner-corrected result does not bode well for WKB,
because we know that the Wigner formula is the unique lead-
ing order correction. (In Sec. SM 3 of the supplementary
material, we argue that the failure of WKB is due to more
than just a few incorrectly predicted low-lying energy
states.6)

To perform a true comparison, we need the actual quan-
tum free energy, not just a semi-classical approximation.
Luckily, the quartic oscillator has been extensively studied.
For instance, Banerjee et al. give the first 25 eigenvalues of
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H in Ref. 29, which is more than enough to calculate Fo(T)
for 0 < kgT /e < 10 at the accuracy we need. The resulting
free energy is added as the orange curve into Fig. 2. Once
again we see that the Wigner-corrected classical result is an
excellent approximation to the true quantum free energy, as
long as kgT /e = 0.5—well below the point where the classi-
cal free energy has a positive slope and, thus, a negative
entropy S = —(0F/0T),, ,,. The Wigner-corrected result is in
fact far superior to WKB, which—being semi-classical in
nature—appears biased towards the classical answer. (To be
fair, WKB avoids two major low-temperature sins: It never
predicts a negative entropy; and it never becomes convex,
unlike the Wigner correction, thus averting a negative heat
capacity.)

It is less obvious how to obtain the speed of convergence
between the quantum and the Wigner-corrected classical
result. However, we can offer the following heuristics: The
Wigner correction scales like £/ ~ . Wigner’s original
treatment suggests that the next term in the expansion is in
fact of order %*, which would scale like &*. Hence, AFy /e is
proportional to ¢ and for dimensional reasons, must scale
like 1/T2. This is indeed what numerics suggests.

3. The particle in a box

As a second special case, let us look at the limit k£ — oo of
Eq. (32). We can easily recognize this as the particle in a box
of length L = 2/, since U(x) converges to zero for |x| < ¢ while
it diverges to infinity otherwise.

Sending k& — oo in Eq. (34) yields the classical partition
function Z¢c = L/ Ay, which is exactly the right answer for a
single gas particle in a box of length L. Taking the limit in
the WKB spectrum (38), we get

2 h? 1 2
limE, =~ (n4=) . 42
Qe =0, \ s (42)

This is almost the box spectrum, except that we have
(n+ 1/2)% instead of (n + 1)*.3!

Both results look promising, but our luck runs out when
we look at the Wigner correction. Equation (36) shows that
for large k,

AFv k
e 12’

(43)

which is divergent. Hence, Wigner’s result does not produce a
well-defined quantum correction for the infinite square well.
However, take note of what we are trying to do here: We are
evaluating the (classical) thermal expectation value of U”(x)
(see Eq. (35a)), and even though this is perfectly well-defined
for all k, the limit k — oo is singular because the potential
becomes singular. We have no guarantee that this will not
interfere with other analytic aspects of the problem—and indeed
here it does. The Wigner correction has the form
(1/48m) 25 (U"(x)), and this only makes sense as the first term
of an expansion as long as the expansion parameter—essentially
iﬁl—is small compared to the average (inverse) potential curva-
ture. This evidently fails in view of the diverging curvature at
the “corners” of our box.

There is of course a quantum correction to the ideal gas,
but it looks quite different from the Wigner expression. It
can be obtained analytically from the partition function
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Fig. 2. Free energy of the quar-
tic oscillator as a function of
temperature. The four curves
correspond to: Classical result
(“C,” blue); WKB approxima-

w \\\\\
~ 100; s
1.51 w
C+W I
g
1.0 Q _
L WKB
.
0.51
C
0.0

tion (“WKB,” purple); quantum
result (“Q,” orange); classical
result plus Wigner’s leading
order correction (“C + W,” red).
The inset shows a log-log plot
of the difference between the
quantum and the classical free

energy as a solid green curve,
and the Wigner correction from
Eq. (41), which scales ~T~'/2,
as a black dashed line.

03% 05 10 15 20 25

kB-I.-/E

Zo =3 e lm, (44
n=1

where the ground state energy is Ey = nh*/2mL>. We can
express Zq as a Jacobi theta function (Ref. 27, Chap. 16), but
this is unwieldy. If we replace the sum by an integral, we get
a Gaussian that readily leads to the classical ideal gas law.
However, we can also do the replacement more systemati-
cally, using the Euler—Maclaurin summation formula,32
which yields

x o1 L1
Zo~ | dne PR — — = :
Q JO e 2" n 2

(45)

The extra “—1/2” shifts the partition function and adds a first
quantum correction to the classical free energy

L 1 ]
Fo ~ —ksT log (ﬁ_ 5) — Fe — kgT'log (1 —%>
“l

lth kBT /] 7'CkBT
=Fc+—1/ .
oL <tV om

Remarkably, this leading correction is /inear in h, unlike the
Wigner term. It also depends more weakly on the mass:
1/+/m as opposed to the 1/m Wigner scaling. The existence
of this lower order term elucidates the divergence of the
Wigner correction: it can by construction not appear in the
regular series expansion, and this forces the first allowed
term to diverge. As an almost trivial illustration, consider the
expansion

3 3
(0% =@ 4 5 Var+ 7o + 0,

The constant and linear term converge (here: to zero) in the
singular limit @ — 0, but the quadratic one diverges—
because the function itself apgroaches /2 in that limit,
which is “of lower order” than x~.

The limit kK — oo renders the potential in Eq. (32) non-
analytic, but it also has a more subtle effect: It confines the
particle to a finite region (of width 2/¢). It turns out that this
confinement alone, even if done analytically, can cause the

(47)
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Wigner correction to fail. We sketch a proof of this in Sec.
SM 4 of the Supplementary Material, where we calculate the
large-T asymptotics of the Wigner correction for a particu-
larly easy case of smooth confinement.

Incidentally, difficulties arising from steeply repulsive
potentials are the main reason why Feynman and Hibbs con-
sider the Wigner correction to be of limited use (after just
having derived it most elegantly using path integrals)."
They consider a typical “use case” to be colliding molecules
in a gas, pointing out that “the potential rises very sharply so
that there is a violent repulsion at small distances.” We
believe their assessment to be too pessimistic, though. If we
alternatively consider atoms in a solid, their lattice vibrations
are more benign, essentially harmonic, and then Wigner’s
approximation is applicable.

V. CONCLUSIONS

We have presented a new proof of Wigner’s leading order
quantum correction to the classical free energy of a standard
Hamiltonian. Our approach relies on the Zassenhaus for-
mula, which highlights the role of non-commuting operators.
We also offer an elementary proof of the Zassenhaus formula
itself in an Appendix—at least to the order required here.
Wigner showed that the sub-leading order is quartic in 7,
which is unfortunately difficult to see in our approach: At
several places we ignored (’(7) contributions, and it is not
obvious that these will all cancel. However, since the sub-
leading term will generally be preempted by a spin-statistics
correction of order /°, this may not be a grievous problem.

We applied the correction to the harmonic and the quartic
oscillator, demonstrating it to be an accurate approximation
to the full result for a large range of temperatures. In particu-
lar, Wigner’s correction outperforms the semi-classical
WKB approximation in the high-T limit—which is not sur-
prising, given that it is the unique leading order correction.

We have also shown that Wigner’s correction does not
work in all cases, because the classical canonical expecta-
tion values might not converge to a physically permissible
result. For instance, the Wigner correction diverges when
modeling an ideal gas in a box as the k — oo limit of a
confining potential |x|k. Furthermore, smoothly confining
particles via diverging potentials could give rise to Wigner
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corrections that dominate the classical result for large
enough temperatures.

The mathematics required to follow our operator-based
proof is accessible to advanced physics undergraduates. In
fact, one of us has successfully test-driven several key ideas
of this paper (in homeworks and exams) in the course
“Thermal Physics II,” aimed at Junior physics students at
Carnegie Mellon. Together with the applications, and the
comparison to the complementary spin-statistics correction,
we feel that this subject could provide valuable insight into
some foundational questions—both in Statistical Physics
and Quantum Mechanics—that appear to be rarely covered.
We would be delighted if our exposition served as an
inspiration.

ACKNOWLEDGMENTS

M.D. gratefully acknowledges partial support from the
National Science Foundation under Award Nos. CHE-
1764257 and CHE-2102316.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

APPENDIX: THE CLASSICAL ZASSENHAUS
FORMULA

The Zassenhaus formula expresses the exponential of the
sum of two operators A and B as the product of their expo-
nentials, times an infinite product of exponentials of increas-
ingly higher order nested commutators of A and B,

e[(AJrB) — e[Ae[B H e*f”Cu/”!. (Al)
n=2

The first few C,, are explicitly given in Eq. (12). Formally, we
can think of A and B as elements of a Lie algebra corresponding
to some Lie group. Since e, e, and e**? then all represent
group elements, we know we can transform them into one
another by additional group operations, each generated by ele-
ments of the Lie algebra spanned by A and B—which is why
the C,, in Eq. (A1) must be nested commutators of A and B. In
fact, the C,, are all homogeneous Lie polynomials of degree n.
Notice, though, that for the infinite product to converge, we
must require the Lie algebra elements to be sufficiently small—
or here, we need 7 to be small enough. This will be the limit we
care about, so this poses no further restrictions.

Several procedures have been proposed to systematically
construct the correction terms C,.'>*° Since we will only
need C, and Cz, though, let us show how to calculate them
in an elementary way by Taylor-expanding a truncated
version of the formula and appending one more correction
factor in each step.

To quadratic order, we have

1
AMB=1+4(A+B) +§(A2 +AB+BA+B?) +0(3), (A2a)

1
el =1+ (A+B)+ E(A2 +2AB +B*) +0(3).  (A2b)
Subtracting these two expressions yields
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1
eAtB _ el = -5 [A,B] + O(3). (A3)

Observe now that, at the quadratic level, we can fix this dis-
crepancy by multiplying e*e? by the factor e A#1/2. This
leads to the lowest order correction in the Zassenhaus
formula,

eATB = eAeBelABI2 4 ((3), (A4)

or the identification C, = [A, B].

We get the next order by expanding e**? and etefe—[451/2
up to cubic order and comparing again. Since all terms up to
quadratic order by construction cancel, we only need to con-
sider the cubic terms

1
e = ~~+6(A3 + A’B + ABA + AB?
+ BA? + BAB + B’A + B?) + ((4), (A5)
1
efefe B2 = [1 +(A+B)+3 (A% 4+ 2AB + B?)

+-(A*+3A°B 4+ 3AB + B’) + a(4)]

N =

« {1 - %(AB _BA) + @(4)]

= ---+é(A3 +3AB* 4+ B® + 3B*A
— 3BAB + 3ABA) + (0(4). (A6)

Taking the difference between these two terms, we get
e B — efefe 4812 — é(/ﬁB — 2ABA + 4BAB — 2AB?

+ BA? — 2B’A) 4 (0(4)

1
= _6<HA’B]7A]

+ 2[[A,B], B]) + 0(4). (A7)

The last step is easy to see by working backwards and identifies
Cs = [[A, B],A] + 2][[A, B], B]. Just as with the quadratic cor-
rection term from Eq. (A3), we can fix this cubic term by multi-
plying with an exponential factor that has this correction term
in the exponent. Up to cubic order, we, therefore, get

NP = etefeC2/2%e7CG/0 1 0(4). (A8)

This process can be continued to get the higher order correc-
tions, but it obviously will get tedious quite quickly.
Moreover, this derivation does not automatically yield the
C, in terms of nested commutators, even though we know
they have to be, for they must be part of the Lie algebra in
order to represent a group element.
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