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Abstract

We develop and analyze the HULC, an intuitive and general method for constructing confidence sets
using the convex hull of estimates constructed from subsets of the data. We present this method in
the context of independent data. Unlike classical methods which are based on estimating the (limiting)
distribution of an estimator, the HULC is often simpler to use and effectively bypasses this step. In com-
parison to the bootstrap, the HULC requires fewer regularity conditions and succeeds in many examples
where the bootstrap provably fails. Unlike subsampling, the HULC does not require knowledge of the
rate of convergence of the estimators on which it is based. The validity of the HULC requires knowledge
of the (asymptotic) median-bias of the estimators. We further analyze a variant of our basic method,
called the ADAPTIVE HULC, which is fully data-driven and estimates the median-bias using subsampling.
We show that the ADAPTIVE HULC retains the aforementioned strengths of the HULC. In certain cases
where the underlying estimators are pathologically asymmetric the HULC and ADAPTIVE HULC can fail
to provide useful confidence sets. We propose a final variant, the UNIMODAL HULC, which can salvage
the situation in cases where the distribution of the underlying estimator is (asymptotically) unimodal.
We discuss these methods in the context of several challenging inferential problems which arise in para-
metric, semi-parametric, and non-parametric inference. Although our focus is on validity under weak
regularity conditions, we also provide some general results on the width of the HULC confidence sets,

showing that in many cases the HULC confidence sets have near-optimal width.

1 Introduction

Estimation and uncertainty quantification are two of the most fundamental aspects of statistical analysis.
The theory of point estimation is very well-studied starting from the principle of maximum likelihood esti-
mation (Stigler, 2007; Pfanzagl, 1994; Lehmann and Casella, 1998). Relatively more recent frameworks of
parametric efficiency (van der Vaart, 1998, Chapters 4-8) and semiparametric influence functions (Bickel
et al., 1993) provide general methods of constructing good estimators. Uncertainty quantification, for in-
stance, when testing a statistical hypothesis or constructing a confidence set, most often follows from studying
the asymptotic distribution of the estimator. In many cases this approach requires estimating the asymp-
totic distribution of the estimator (properly normalized). Even in favorable cases, when this asymptotic

distribution is mean zero Gaussian, one needs to further estimate the asymptotic variance of the estimator



in order to construct a valid confidence set. As a consequence, in practice, methods which yield uncertainty
quantification while using only a method for point estimation are often favored.

Generic techniques to obtain uncertainty quantification that do not require any more than the estimation
method are the bootstrap and subsampling (Efron, 1979; Politis and Romano, 1994; Shao and Tu, 1995;
Hall, 1992). The bootstrap however requires that the estimator be Hadamard differentiable; see Diimbgen
(1993) and Shao and Tu (1995, Section 3.2). Subsampling is more general, but requires knowing the rate
of convergence of the estimator. Bertail et al. (1999) provides a scheme to estimate the unknown rate of
convergence, but this method cannot estimate the slowly varying components of the rate (such as logn
factors); see Sherman and Carlstein (2004, page 3) for details.

In this paper, we propose a new method, the HULC (Hull based Confidence) that does not require
variance estimation and is applicable in many examples where the bootstrap and subsampling are not. The
HuLC does not require knowing the rate of convergence of the estimator. In many cases, the HULC does
not involve any tuning parameters. Besides being asymptotically valid, the HULC is eventually finite sample
meaning that the coverage is exact for all samples of size n > ng for some finite ng. Throughout the paper,
we restrict ourselves to independent data. Although applicable for dependent data, HULC for dependent
data is beyond the scope of the current paper and will be dealt with elsewhere.

The basis for the HULC is an assumption that the estimators on which it is based are not pathologically
asymmetric: their distributions do not place all their mass to one side of the target parameter. We measure
the asymmetry in terms of the median bias of the estimator. This makes the method widely applicable and
easy to use. Our method has some similarity to the typical values approach of Hartigan (1969, 1970). See,
in particular, point 5 in Section 7 of Hartigan (1970). The work of Ibragimov and Miiller (2010) also uses
estimators computed on a fixed number of splits of the data as we do and combines them via a t-statistic
to obtain an asymptotically valid confidence interval; also, see Lam (2022). We note that, unlike ours, this
approach relies heavily on the asymptotic normality of a properly normalized estimate.

Mean unbiasedness is a popular criterion for good estimators and mean bias reduction is well-studied in
the statistics literature (Firth, 1993; Kosmidis and Firth, 2009; Kim, 2016). However, as noted in Pfanzagl
(2017) the fact that an estimator is mean unbiased does not naturally aid in uncertainty quantification. In
contrast, median unbiasedness implies that the estimator is equally likely to underestimate and overestimate
the target of interest. As will be shown in this article, this property can lead to a simple method for
constructing confidence intervals. Median unbiasedness and median bias reduction are not as widely known
as the mean unbiasedness and mean bias reduction, but we will develop their implications for inference. We
refer the reader to Pfanzagl (1994) for details regarding median unbiased estimation and to Kenne Pagui
et al. (2017); Kosmidis et al. (2020) for median bias reduction methods in parametric models.

Inspired by the practical success of resampling methods like the bootstrap and subsampling, the HULC di-
rectly exploits our relatively strong understanding of point estimation to address challenging inferential prob-
lems. As with these methods, the width of the intervals we construct is naturally related to the accuracy of
the underlying estimators, i.e. the HULC based on a very accurate estimator will lead to small confidence
sets. On the other hand, in contrast to these methods, the HULC uses sample-splitting to avoid strong
regularity conditions, and its validity relies instead on a relatively mild assumption. This follows a line of
recent work by the authors (for instance, Wasserman et al. (2020); Chakravarti et al. (2019); Rinaldo et al.
(2019)), and more classical work by Bickel (1982), where sample-splitting eases the challenges of statistical
inference, often at a surprisingly small price.

The remainder of this article is organized as follows. In Section 2, we describe our assumptions and the



HUuLC method for constructing confidence regions for univariate and multivariate parameters. We compare
the proposed confidence interval to Wald confidence intervals based on asymptotic Normality in terms of their
widths. We also compare to the bootstrap and subsampling in terms of applicability. In Section 3, we discuss
the applicability of the HULC to some standard examples where limiting distributions are well-understood
but constructing valid confidence sets can still be challenging; the examples we consider include mean and
median estimation, Binomial proportion estimation, and parameter estimation in exponential families. Our
method involves an assumption on the median bias of the estimators under consideration. In Section 4, we
describe the ADAPTIVE HULC which estimates the median bias using subsampling. Interestingly, in contrast
to directly using subsampling for constructing a confidence set, the ADAPTIVE HULC does not require
knowledge of the rate of convergence. In Section 5, we provide some applications of the ADAPTIVE HULC to
nonparametric models including shape constrained regression. In Section 6, we provide an extension, called
the UNIMODAL HULC, based on the assumption of unimodality. Between our median bias assumption and
unimodality assumption, we believe that many challenging confidence set construction problems based on
independent observations are solved. In Section 7, we briefly discuss the application of HULC for multivariate
parameters/functionals. Finally, in Section 8, we summarize the article and discuss some future directions.
Throughout the article, we focus on the pointwise validity (as in Politis and Romano (1994)) of our confidence
region, where we treat the distribution of the data as fixed, as the sample size increases. Some preliminary
results on uniform validity of HULC are presented in Kuchibhotla et al. (2023).

The proofs of all the main results are provided in the supplementary material. Section S.1 provides a
discussion on the application of Bonferroni inequality with Wald interval, supplementing HulC method for
multivariate parameters in Section 7. The sections and equations of the supplementary file are prefixed
with “S.” and “E.”, respectively, for convenience. We provide the code to reproduce the figures in the
paper, including an implementation of our methods in R together with Jupyter notebooks illustrating their
application at https://github.com/Arun-Kuchibhotla/HulC.

2 The HulC: Hull based Confidence Regions

In this section, we describe the HULC and compare it to classical asymptotic normality based confidence
intervals. We present several results for the HULC, and in order to aid readability we provide a brief roadmap
here:

1. Focusing first on univariate parameters, in Theorem 1, we show that when the median bias of the
estimators is known to be at most A the HULC (as described in Algorithm 1) has guaranteed coverage
of at least 1 —a. We also show that, under some mild additional conditions, if the underlying estimators

have median bias exactly A then the HULC has coverage exactly 1 — a.

2. In Proposition 1, we investigate properties of a (slightly) conservative variant of the HULC, showing
that the HULC when provided with the asymptotic median bias still ensures finite-sample 1—q« coverage,
for sufficiently large sample sizes. This setting is practically useful because in many cases we know the
limiting distribution of our estimates is normal (say) and in these cases the asymptotic median bias is

known to be 0.

3. In Theorem 2 and Remark 2.2, we show that the guarantees of the (non-conservative) HULC erode
gracefully, i.e. if we run the HULC with a parameter A but the true median bias is at most A then the

HuLC has coverage which degrades from the nominal level (multiplicatively) as a function of |A — ﬁ|



4. In (24) and (25), we provide two simple analyses of the width of the HULC intervals. In (24) we
show that in the classical setting where the estimates have an asymptotic normal distribution, the
width of the HULC interval is the same as that of the corresponding Wald interval up to a factor of
v/log,(log,(2/a)). In (25), we show that under much more generality the HULC based on B* splits
yields a variance-sensitive confidence interval whose expected width is upper bounded by 20 B*/\/n,

where o is the standard deviation of the estimators on which the HULC is based.

2.1 HulC for univariate parameters

Suppose 0y € R is a parameter or functional of interest. Let X4,..., X, be independent random variables
from some measurable space X. For B > 1, let 51, .. .7§B be independent estimators of #y. These can
be obtained by splitting the data Xi,..., X, into B batches and computing an estimate from each batch.
Formally, let Sy, ...,Sp be a (random) partition of {1,2,...,n} into B subsets. For 1 < j < B, let é\j be the
estimator computed on j-th batch of observations { X}, : k € S;}. Define the median bias of the estimator éj
for 6y as

Med-Biasg, (4;) := (; — min {B(G; — 0 > 0), B(F; — 0 < 0)}) , (1)

+

~

where (z); = max{xz,0} for any « € R. From the definition, it is clear that Med-Biasg,(6;) lies in [0,1/2].
Using the independence of the estimators éj, 1 < j < B, we obtain the following result (proved in Section S.2

of the supplementary material).

Lemma 1. If éj,l < j < B are independent random variables and

A := max Med-Biasg,(6;) € [0,1/2], (2)

1<j<B

~ ~ 1 B 1 B
P<90¢ Lg;ng@j, lg;asXBHjD < <2 —A> - (2 +A> :

Observe that A in general depends on 6y, the distribution of the data Xi,..., X, as well as the batch

sizes |S1|, ..., |Sp|. For simplicity, we do not index A with these quantities. Lemma 1 provides a two-

then

sided confidence interval with a bound on the miscoverage probability. It is easy to also obtain one-sided
confidence intervals with explicit bounds on miscoverage. For instance, if there exists a § € [—1/2,1/2] such
that ]P’(aj >0p) >1/2+ 0 for all 1 < j < B, then P(fy < maxi<j<p éj) >1-(1/2-6)B.

An estimator 0 is said to median unbiased for 0y if Med—Biaseo(g) = 0 (Pfanzagl, 1994). It is worth
noting that median unbiasedness does not imply that the estimator is symmetric. The non-strict inequality
in the definition (1) is important: it allows for }P’(éj — 6y = 0) and ]P’(éj — 6y < 0) to be equal to 1 or be
larger than 1/2. This is useful in cases where 6y is on the boundary or §j has a discrete distribution and puts
non-zero mass at 6p. An estimator §n based on n observations is asymptotically median unbiased if
lim,,_, o, Med-Biasg, (én) — 0. One of the prominent examples of asymptotically median unbiased estimators
is the class of asymptotically normal estimators; some of these are described in Section 3. A simple example
with non-zero asymptotic median bias is the estimation of 6y = u3, where yg is the mean of i.i.d. random
variables X1, ..., X,,. The estimator § = (5) - 2ix; XiX; has an asymptotic median bias of P(X? < 1)-1/2]
when pp = 0 as shown in Section 3.5. (Here X3 denotes the chi-square random variable with degrees of

freedom 1.)



For any B > 1 and A > 0, set the upper bound on the miscoverage probability from Lemma 1 as

P(B:A) = (;—A)B+<;+A>B. 3

If A > 0 is known, then choosing B := B, a = 1 such that P(B;A) < a, we conclude that

P(6 min 0;, max 0, < a.
0¢ 1<j<B P igj<B Y| ) T

In words, the smallest rectangle (interval) containing B, a independent estimators of 6y has a coverage of at

~

least 1 — a!. The smallest interval containing B, a estimators is their (convex) hull and hence we call this
interval HULC (Hull based Confidence) interval. Because B is an integer, P(B; A) decreases in steps as B
changes over positive integers and this can lead to conservative coverage i.e., miscoverage probability strictly
less than « as there may not exist an integer B such that P(B; A) = «. This issue can be resolved easily by
randomizing the choice of B. Formally, we generate a random variable U from the uniform distribution on
[0,1] and set

— P(Baa: A Baa—1, ifU<ran,
Ta,A 1= a (Ba,ai &) and B*:= 4 o

: (4)
P(Ba,a —1;4) = P(Ba,a; A) Ban, if U> 7oA.

If 7oA = 0, then B* = B, A. Most often A is unknown. This issue will be resolved in Section 4 where we
show how to estimate A.

Algorithm 1 gives the steps to find a randomized confidence interval with 1 —a coverage when the median
bias A is known.

Algorithm 1: Confidence Interval with Known A (HULC)

Input: data Xi,..., X, coverage probability 1 — «, a value A, and an estimation procedure A(-)

that takes as input observations and returns an estimator with a median bias of at most A.
Output: A confidence interval CI, o such that P(fy € CIoa) =1 — a.
1 Find the smallest integer B = B, a > 1 such that P(B; A) < . Recall P(B;A) from (3).

2 Fix B* as defined in (4).

3 Randomly split the data Xi,..., X, into B* disjoint sets {{X; : i€ S;}:1 < j < B*}. These need
not be equal sized sets, but having approximately equal sizes yields good width properties.

4 Compute estimators é\j =A({X;: i€ S;}), for 1 <j < B*

5 return the confidence interval

é\Ia’A = [ min éj, max éj]

1<j<B* ° 1<j<B¥*

There are no restrictions on the input A(-) in Algorithm 1 except that it produces an estimate with
median bias bounded by A. Its rate of convergence and variance play a role only in the width properties
of the resulting confidence interval, not in the validity guarantee. A better estimator will lead to a smaller

confidence interval. Here are two examples of the estimation procedure A(-):

I Throughout this paper we use the phrase “asymptotically valid” (or “valid”) to indicate that the coverage is asymptotically
(or finite-sample) at least 1 — a. When the coverage is exactly 1 — a we indicate this by the phrase “asymptotically exact” (or
simply “exact” in the finite-sample setting).



e If Xy,..., X, are identically distributed and 6, = E[X;], then one can take éj = A({X;: i€ S;}) =
Ei Die s, X;. In general, the median bias of the sample mean is unknown, but typically tends to zero
as |Sj| — oo. If the observations are symmetrically distributed around 6y, then Med-Biasy, (éj) = 0.

o If X1,..., X, are random variables generated from a parametric model pg, that belongs to the parametric
family {pp : 6 € ©}, then one can take éj = A({X; : i€ S;}) as the maximum likelihood estimator (MLE)
of 6y based on the observations X;, € S;. Under standard regularity conditions, MLE has an asymptotic

normal distribution and hence the median bias of é\j converges to zero.

The following result (proved in Section S.3 of the supplementary material) establishes that the confidence
interval from Algorithm 1 has a coverage of at least 1 — a.

Theorem 1. If Xy,..., X, are independent random variables and the estimation procedure A(-) in Algo-
rithm 1 returns estimates that have a median bias of at most A, then the confidence interval (/]\IQA returned
by Algorithm 1 satisfies

P (90 e CALLA) >1-a. (5)

Further, if P(gj < bp) = P(f; < 6o), P(gj = 0y) = 0 for all j, and the estimation procedure A(-) in
Algorithm 1 returns estimates that have a median bias of exactly A, then

P (90 € CALLA) —1-a (6)

In Algorithm 1, it is implicitly assumed that B* defined in step 2 is smaller than the sample size n so that
the estimation procedure can be applied on B* splits of the data. Recall P(B;A) from (3) and that B, a
is the smallest integer such that P(B;A) < «. It is easy to prove that P(B;A) is an increasing function of
A € [0,1/2] and hence we obtain that max{(1/2 + A)B,278+1} < P(B; A) < 2(1/2+ A)B. Therefore, B,

satisfies
oo am | ey |} < Pes < [ 2| "

Here [z], for any real x, denotes the smallest integer larger than x. It is easy to verify that, B, A — o0 as
A — 0.5. Figure 1 shows the plot of B, A as A varies from 0 to 0.4 and « varies between 0.05,0.1,0.15.
The right panel of Figure 1 shows the values of B, Ao for some choices of a and A. In the favourable case

of A =0, and for the usual choices of o = 0.05,0.1, the number of independent splits required is about 5, a

feasible choice for any reasonable sample size.

2.2 HulC when asymptotic median bias is known

Algorithm 1 requires knowledge of the median bias of the estimators. In some settings, estimation procedures
can be constructed so as to ensure median unbiasedness (i.e., A = 0). When A = 0, B, = [logy(2/a)].
These examples are discussed in Section 3.

Because B, a is a piecewise constant function in A, we do not need to know A exactly. This observation
implies that for estimators that are asymptotically symmetric around 6y, one can take A to be zero in
Algorithm 1 and still retain (asymptotic) validity. Formally, if Med-Biase, (éj) — 0 as |Sj| — oo, then the
convex hull of B, o = [log,(2/a)| estimators has an asymptotic coverage of at least 1 — . Furthermore, the
convex hull is eventually finite sample valid, meaning that there is a sample size ngy such that the coverage

is at least 1 — « for all n = ng. Now, we provide more details.
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Figure 1: Some example values of B, a for different values of a € {0.05,0.1,0.15} and A € [0,0.4]. Left
panel: the plot as A changes continuously. Right panel: values of B, Ao as A changes from 0.0 to 0.4 in
increments of 0.05.

Proposition 1 proved in Section S.4 of the supplementary material formally establishes that B, A is a

piecewise constant function of A (as illustrated in Figure 1).

Proposition 1. For A,A €[0,1/2) and a € (0,1), if

I/BO, A 1/Bu A
~ . o ’ P(BOL,A - ]-7 A) '
2B(¥7A|A — A| < Ba,A lmln { <P(BQ,A,A)) 5 <a) } 11 y (8)

then Ba,ﬁ = Ba.a. Moreover, if

9By o(Bao — DAZ(1 4 2A)Bao=2s o %44 9
o(Boo —~ VA1 123 e Q

then Ba,ﬁ =B,po.

Remark 2.1 Note that the right hand side of (8) is non-zero if and only if 7, A # 0 in (4). In a typical
application, one would take A as the hypothesized (or asymptotic) value of the median bias and A is the
true median bias. Hence, the right hand side of (8) can be computed exactly for any user choice of a € (0, 1).
As a practical matter, the user can change « by a tiny amount to increase the right hand side of (8).
In the most common setting of asymptotic normality, A = 0, and consequently the requirement becomes
more relaxed as in (9); this relaxation stems from the fact that A — P(B;A) has zero first derivative at
A = 0. Using the definition of Lambert function, the fact that (1 + 2A)(B=2+ < e2B=2)+A and that
Bao —2 < By — 1 < By, the requirement (9) can be shown to be implied by

1 a

Baok < wo (L T 1
,0 Wo <\/§ P(Boo:0) )7 (10)

where Wy () represents the principal branch of the Lambert function. Figures S.1 and S.2 show the behavior
of the right hand sides of (8) and (10) for various values of & and A. o



Recall from the calculation surrounding (3) that the smallest interval containing B, x estimators has a
coverage of at least 1 — ¢, if the estimators have a median bias of at most A. Proposition 1 implies that one
need not know the median bias A of the estimators exactly in order to find Ba’ A- Suppose the estimators
92- j = 1 have a known asymptotic median bias of A. Recall 7, A defined in (4). Proposition 1 implies that
for every a € (0, 1) satisfying 7o, A # 0 there exists N, > 1 such that for all n > N,,

P (90 € [ min §j, max éj]) =>1—a. (11)
1<j<Ba,a 1<j<Ba,a

Inequality (11) is obvious from Lemma 1 with B% x estimators. Proposition 1 along with asymptotic median
bias of A implies that Ba,ﬁ = Bg, A for n = N,. The threshold sample size N, depends on how fast |5 —A]
converges to zero and how big the right hand side of (8), (9) are. The coverage guarantee (11) can be
compared to the coverage guarantee for Wald, bootstrap, and subsampling intervals. None of these intervals
have a guarantee of at least 1 — « coverage even for large sample sizes; the coverage only converges to 1 — «
with sample size.

To understand how N, depends on «, we consider bounds on |5 — A| which use traditional Berry—Esseen
bounds. In most cases including parametric and semiparametric models, Berry—Esseen type bounds are
available that provide bounds of the form,

11209, —
IED<|SJ| (6; 90)<t>¢(t) Cx

55112

sup < (12)

teR o

where |S;| is the number of observations in the j-th split of the sample based on which é\j is computed. Here
Cx is a constant that depends on the true distribution of the data. (If éj is the sample mean, then €x can
be bounded in terms of the skewness of the random variables X;,7 > 1.) For results of this type, see Pfanzagl
(1971, 1973a), Bentkus et al. (1997); Bentkus (2005), and Pinelis (2017). (In semi/non-parametric models as
in Zhang and Liang (2011) and Han and Kato (2022), the rate of convergence may be slower than |S;|~1/2.)
In this case, assuming |S;| = \/m (i.e., data is split approximately equally into B* many samples), we
get that,

A< max p(aj_90<o>_1' < exy /Bt (13)

1<j<Ba,o 2 n

Note that this conclusion requires a weaker bound than the one in (12) because we only care about ¢ = 0
in (12). For example, in case of the sample mean, if the observations are symmetric around the population
mean, then A=0 irrespective of any moment assumptions, but a general Berry—Esseen bound (12) need
not hold true without additional moment assumptions. If we take M to be the set of all strictly increasing
functions and S is the class of all continuous distributions F' with F'(0) = 1/2, then A can also be bounded
as

A< i inf ot )E» (n(@;) — n(60) < 0) - F(O)( . (14)
This follows from the fact that {éj < by} = {h(éj) < h(fp)} for all strictly increasing functions h. Allowing
for arbitrary increasing transformations may result in better normal approximations in many cases. Classical
examples include the Fisher’s z-transformation for the correlation coefficient and Anscombe’s arcsine trans-
formation for Binomial random variable; see Borges (6970); Gebhardt (1969); Borges (1971); Efron (1982) for
some examples. Because symmetric distributions belong to S and the standard normal distribution belongs
to it, the right hand side of (14) is always better (i.e., smaller) than the bound attained by (12). Moreover,



if §j has zero median, then the right hand side of (14) is zero but (12) can result in a constant order upper
bound.
If inequality (13) holds true, then the requirement (10) holds if
5/2 1 a
Cx—22 < Wyl —=,/— —1), 15
e 0 (ﬁ P(Ba,0;0) ) (15)

This equivalence (15) follows from inequality (7) for Ba. The right hand side of (15) can be as large as

0.4 even for small values of a as shown in Figure S.2.

By making use of an Edgeworth expansion, estimators with smaller median bias can be constructed via
median bias reduction (Pfanzagl, 1973b; Kenne Pagui et al., 2017). Pfanzagl (1973b, Section 6) provides a
general recipe for constructing estimators with a median bias of o(n~(*=2)/2) for any s > 3. Kenne Pagui
et al. (2017, Eq. (3)) yields estimates éj that satisfy |P(§j < 0g) — 1/2] = O((Ba,o/n)*?). In this case,
A< @XBz{g/n3/2 for some constant ® x and hence, requirement (15) can be relaxed to

5/2 1 a
a,0 L %
Qﬂﬁ2<‘%<v5 Hawm>1)'

The reduction in median bias, hence, leads to a smaller threshold sample size N, after which our intervals

are finite-sample valid.

The above argument for asymptotically median unbiased estimators implies that the smallest interval
containing B, ¢ many independent estimators of 6y has a finite sample coverage of at least 1 — « after a
sample size of N,. This, however, does not imply coverage validity for the confidence interval returned by
Algorithm 1. This happens because with non-zero probability Algorithm 1 uses Byg—1 < B, ¢ estimators.
The following result proves upper and lower bounds on the miscoverage of the confidence interval returned
by Algorithm 1 with A whenever the estimation procedure A(-) has a median bias of A converging to A as
sample size diverges to infinity. For simplicity, the result is stated only for asymptotically median unbiased
estimators, i.e., A = 0. See Remark 2.2 and the proof of Theorem 2 for upper and lower bounds on true
coverage when Algorithm 1 is applied with A when the estimators has a median bias of at most A.

Recall that (/J\Ia, A is the confidence interval returned by Algorithm 1 when it is applied with A as the
median bias parameter. Theorem 2 below is proved in Section S.5.

Theorem 2. Suppose X1, ..., X,, are independent random variables. If the estimation procedure A(-) returns
estimators that have a median bias of at most A> 0, then

P(6, ¢ é\Ia,o) < « (1 + 2B, ,0(Ba,o — 1)52(1 + 2&)(304’_2)*) for every « e (0,1). (16)
Furthermore, ifIE”(é‘\j < 6y) = ]P’(@l < bp) forallj =1 and gj,j > 1 all have the same median bias of ﬁ, then
P(6, ¢ é\Ia,o) > «, forevery ac€(0,1). (17)

Note that the conditions of same median bias A and same probability of undercoverage are trivally
satisfied if all of the batches contain the same number of observations and all the observations are independent
and identically distributed.

Remark 2.2 In Section S.5, we also consider the case when A is not necessarily 0. If the finite-sample

median bias A of the estimation procedure A(-) is close to A (rather than zero), then

—~ ~ Ba,a
P(60 ¢ Clo,a) < a (1423 a]) "



Further, if P(éj = 0y) = 0 and the estimators éj,j > 1 all have the same median bias 5, then

Ba,a

P(6y ¢ Clan) > (1 +2lA - A|)

These two inequalities imply that if By a|A — A| = o(1), then P(6, ¢ CAIM) converges to a. o

Remark 2.3 The main conclusion of Theorem 2 is that Algorithm 1 can be used with A = 0 and it
retains asymptotic validity for large sample sizes if the estimation procedure A(-) produces asymptotically
median unbiased estimators. o

Theorem 2 is a finite sample result characterizing explicitly the effect of misspecifying A in Algorithm 1.
The misspecification of A is measured by how far the median bias A of the estimators 6], > 1 is from
A, the asymptotic median bias. To illustrate Theorem 2, consider the setting under which (13) holds true.
Theorem 2 along with (13) implies that,

~ B3
P(6p ¢ Clay) < (1 + ¢ —0 ¢XBS/2/"1/2> , for every a€(0,1). (18)

In case an estimation procedure A(-) with reduced median bias is employed in Algorithm 1, then we get
A < Dx(Ba,o/n)?? for some constant D x and hence, Theorem 2 yields

o~ B3
P(6p ¢ Clay) < (1 + Dy —= 0 QXBS/Q/”3/2> , forevery ace€(0,1). (19)

Theorem 2 (and the conclusions (18), (19)) can be compared to the guarantees offered by classical
confidence intervals constructed based on the assumption of asymptotic normality. Under a bound like (12),
such confidence intervals only satisfy

‘]P’ <90 ¢ (/]\I‘iald for every a € (0,1). (20)

) <%
Jn

_~Wald
In other words, the coverage of CIaa differs from (1 — ) by a quantity of order 1/4/n and can significantly
miscover if @ « 1/4/n. The same comment also applies to the bootstrap and subsampling confidence
intervals. Confidence intervals obtained by various methods are often compared in terms of the rate of

convergence in (20). In parametric models or, more generally, cases where 6 is estimable at an n=1/2

rate,
confidence intervals which attain a rate of n~2 in (20) are called first-order accurate, those that attain
a rate of n~! are called second-order accurate and so on. Asymptotic normality based Wald confidence
intervals é\IZald are usually first-order accurate. Bootstrap confidence intervals can be constructed to be
second-order accurate (Hall, 1986, 1988; Mammen, 1992). Subsampling intervals can also be constructed to
satisfy second-order accuracy (Bertail and Politis, 2001). In contrast, the HULC readily obtains second-order
accuracy and is valid even if o converges to zero. Further, if we use an estimator with reduced median bias,
the HULC is sixth-order accurate; see (19). Another important difference is that the HULC attains relative
accuracy (ie., |[P(6y ¢ Clao)/a — 1| is small) instead of absolute accuracy as in (20). In the problem of
mean estimation, some results for relative accuracy of Wald confidence intervals are available using self-
normalized large deviation techniques (Shao, 1997; Jing et al., 2003). To our knowledge, such refined results

are unavailable for a large class of M-estimators.
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2.3 Comparison with Wald confidence intervals

In this section we show that our intervals have lengths close to those of the Wald intervals. In order
to facilitate this comparison, we assume in this section that « — 0 slowly as a function of n. Let 6 =
A({X1,...,Xn}) and 0; = A({X, : i€ S;). Suppose that

V(@ —00) 5 N(0,0%) and 4/|S;1(8; — bo) > N(0,0?), (21)

as n — o0 and |S;| — oo for all 1 < j < B*. Under this assumption, if 5 is a consistent estimator o2,

then the Wald confidence interval is given by (/)\I‘iald = [5 — GZa2/ /M, 0+ 0Z2a/2/v/1], where z,/5 is the
(1 — a/2)-th quantile o/f\ ggled standard Gaussian distribution. The scaled width of this confidence interval
is given by /nWidth(CI, ) = 2z,20. This converges in probability to 2z,/,0. From the properties of
the normal distribution, it follows that z,/ = 1/2log(2/a) —log(log(2/a)) — log(2m) + o(1) as a — 0. See,
for example, Proposition 4.1 of Boucheron and Thomas (2012). Hence, the width of the Wald confidence

interval is asymptotically equal to 204/21log(2/a)/+4/n, as @ — 0 and n — .
To compare this width to the width of the HULC, for simplicity, we treat B* as a fixed (i.e., non-

stochastic) value and assume that n is a multiple of B* so that each split has n/B* many observations.
Assumption (21) implies that /n/B*(6; — 6) < N(0,0?%) for 1 < j < B*. Because the estimators are
independent and B* < B, A < 00, we get that the convergence is joint for all the estimators §;,1 < j < B*.

Recall that our confidence interval is the smallest rectangle (interval) containing these estimators and hence

n . —~ n A~ S n o~ A~
e Wil = [ | g B min 0] = w76 -d0 e

Joint asymptotic convergence of the estimators implies that

I —~ d .

—Width(CI ma G; —Gg)= max G;— min G;, 23

B (Cla,a) = 1<j<k}<(B*( J k) 1<j<}1§* 17 g (23)
where (G1,...,Gpx*) is a Gaussian random vector with mean zero and a diagonal covariance matrix with all

diagonal entries equal to o2. This shows the first difference in widths. Unlike the classical Wald confidence
intervals, the width of our confidence interval does not degenerate after scaling by 4/n; the width after proper
scaling converges weakly to a non-degenerate distribution. Using (23), we can control of the width of our
confidence region in terms of the width of the convex hull of B* many independent mean zero Gaussian

random variables. Because G;’s are symmetric around zero,

*
]E[ max G; — min Gj]—QIE[ max Gj]—%/ﬂog(B*)[l—l(fllOgB—&-O( ! )]

1<j<B* 1<j<B* 1<j<B* og B* log B*

The last equality here holds as @ — 0 and follows from Theorem 1.2 of Kabluchko and Zaporozhets (2019)
(and the discussion before that theorem). Therefore, the width of our confidence interval is asymptotically
204/2B* log(B*) /n. From inequalities (7), we know that B, a and B* are of order log,(2/a); note that under
asymptotic normality, we can take A = 0. Hence, the width of our confidence interval is asymptotically

20|28 o (o, 2/). (24)

This implies that the ratio of the expected width of our confidence interval to that of the Wald interval is

approximately equal to 4/logs(log,(2/cr)). This is always larger than 1, and grows very slowly as a« — 0. For
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a € [0.01,0.2], this ratio ranges between 1.71 and 1.32. In a way, this is the price to pay for the generality of
the confidence interval. While the Wald confidence interval makes complete use of asymptotic normality, our
confidence interval only makes use of the fact that its median is zero; we do not even make use of symmetry.

Unlike the Wald confidence interval, the HULC does not explicitly or implicitly estimate the variance of
the estimator but its width as given in (24) adapts to the unknown standard deviation o. The calculation
shown above uses asymptotic arguments, but some simple bounds can be obtained using no more than two

moments for éj. Observe from (22) that

E[Width((/]\ImA)]:E[ max_0; — min éj]

1<j<B* 1<j<B*

R . 1/2
gQE[ max |9j9*|] <2<IE[ max 0j9*|2])

1<j<B* 1<j<B* (25)
L 1/2
~ - 1/2
<2[E[ D19, —6* < 2vVB* max (E[|9j79*|2]) .
=1 1<j<B*

Assuming convergence in mean square of 1/n/B*(6; — 0*) to a distribution with mean zero and variance o2,

we get that the expected width is asymptotically bounded by 20 B*/4/n. This calculation does not require
convergence to Gaussianity and shows that the width of our confidence interval, in general, adapts to the
standard deviation of the estimators. The calculation (25) can be significantly improved if the estimators
are known to have higher moments. In the first inequality of (25) we only use second moment Jensen’s
inequality. Replacing the second moments by g-th moment here will yield (B*)l/ 7 instead of v/B* in the
last line of (25).

Transformed Parameters. In contrast to Wald intervals, the HULC interval is equivariant to mono-
tone transformations, assuming that the estimators are equivariant under monotone transformations. It is
worth noting that the validity of our confidence interval does not require any smoothness conditions on the

transformation g(-). In comparison, the delta method requires continuous differentiability of g(-).

2.4 Numerical Comparisons
2.4.1 Simple Linear Regression

Figure 2 shows the coverage and width of the 95% HULC interval (obtained from Algorithm 1 with A = 0)
and the Wald interval from ordinary least squares linear regression. The simulation setting is as follows: for
n € {20, 50,100, 1000}, independent observations (X;,Y;),1 < i < n are generated from

X, ~ Uniform[0,10], & ~ N(0,1), and Y; =1+ 2X; + X7 + exp(7X;)&;. (26)

For v = 0, observations (X;,Y;) follow the standard linear model and for v > 0, observations do not follow
a linear model with non-linear mean function and a heteroscedastic error variable. With -, misspecification
from linear conditional expectation and homoscedasticity increase. We define the estimator and target as
and 3%, where

n

(@, B) := argminl Z(YZ —a—BX;)?* and (aF,B5) == argminE, [(Y —a — BX)2].

o, n i=1 a,f3
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Here E, [-] represents the expectation when (X,Y’) are generated from (26). Note that 5% need not be equal
to 2 for v > 0. By Monte-Carlo approximation of E,[-] with 10% samples, we have SF,. = 3.2791, 8%, =
4.5567, 5 -5 = 5.8239, and SF = 6.8093. The Wald interval in this case is obtained using the sandwich

variance estimator as in Buja et al. (2019).
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Figure 2: Comparison of width and coverage between our confidence interval with Wald’s, subsampling, and
two bootstraps with a simple linear regression slope estimator as the sample size changes from 20 to 1000
and misspecification parameter v changes from 0 to 1. Our method is shown as “HulC,” Wald’s is shown
as “Wald,” subsampling with different subsample sizes are shown as “subsample (1/3)” (with subsample
size n'/3), “subsample (1/2)” (with subsample size n'/?), “subsample (2/3)” (with subsample size n?/?), and
two bootstraps are shown as “Bootstrap (basic)” and “Bootstrap (studentized).” The empirical coverage in
the left plot is computed based on 200 replications. The width ratios are truncated at 6. The subsampling
methods can have much larger confidence interval for smaller sample sizes. The four column plots correspond
to four different sample sizes n = 20, 50, 100, 1000. The bottom panel shows the ratio of the widths of our
confidence interval as well as bootstrap/subsampling confidence intervals to that of the Wald confidence

interval; the HULC yields a 50% larger interval than Wald’s.

2.4.2 Multiple Linear Regression

Figure 3 provides an illustration when the estimator is obtained from multiple linear regression. The
setting for Figure 3 is as follows: for 20 < n < 500, independent observations (X;,Y;) € RS x R,1 <
i < n are generated from Y; = |0J X;| + &, where & ~ N(0,1) and X; € RS is generated according
to the following law: (X;1,X;2) ~ Uniform[—1,1]%, X;3 1= 0.2X;1 + 0.2(X;2 + 2)? + 0.2Z; 1, X;4 :=
0.1 + 0.1(X;1 + Xio) + 0.3(X;1 + 1.5)% + 0.2Z;9, X;5 ~ Ber(exp(X;1)/{1 + exp(X;1)}), and X;¢ ~
Ber(exp(X;2)/{1 + exp(X;2)}). Here (Z;1,Z;2) ~ Uniform[—1,1]? are independent of (X;1,X;2) and
0o = (1.3,—1.3,1,-0.5,—0.5,-0.5)/4/5.13. This is also a misspecified linear regression model and is taken
from Kuchibhotla et al. (2021). Our estimator and target are defined as
n

~ 5 A~ 1 .
(@, 8,7) := arg min - Z(}Q—a—ﬁXi,l—'yTXi7_1)2, and (o™, pB* ~*) = arg mlnE[(Y—a—,BXl—’yTX_l)Z],
a,B,y i=1 a,B,y
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where X; 1 and X_; represent the last 5 coordinates of X; and X respectively. With Monte Carlo ap-
proximation of E[-], we found that 5* = —0.137323. For level a = 0.05, the HULC (with A = 0) requires
splitting the data into approximately 5 parts. This implies that for a sample of size 20, each part only has
4 observations and one cannot fit uniquely a linear regression estimator because the model has 6 covariates.
Interestingly, when we just use the output from R function 1m(), the HULC still covers the true * with
required confidence because in this case Ilm() simply ignores the last 2 covariates.

Coverage Width Ratio
1.00- 8"
0.95— 6-
0.90-
4-
0.85-
2 -
0.80-
' ' ' ' ' ' 0= ' ' ' ' '
0 100 200 300 400 500 0 100 200 300 400 500

Method ~&- subsample (1/3) - subsample (2/3) -®- Bootstrap (studentized) -~ Wald
etho

~&- subsample (1/2) -#- Bootstrap (basic) - HulC
Figure 3: Comparison of width and coverage between our confidence interval with Wald’s, subsampling,
and two bootstraps with a multiple linear regression estimator as the sample size changes from 20 to 500.
Our method is shown as “HulC,” Wald’s is shown as “Wald,” subsampling with different subsample sizes

1/3

are shown as “subsample (1/3)” (with subsample size n'/?), “subsample (1/2)” (with subsample size n'/?),

7 and

“subsample (2/3)” (with subsample size n??), and two bootstraps are shown as “Bootstrap (basic)
“Bootstrap (studentized).” The empirical coverage in the left plot is computed based on 200 replications for
each sample size between 20 and 500. The width ratios are truncated at y = 8. The subsampling methods

can have much larger confidence interval for smaller sample sizes.

2.4.3 Quantile Regression

In the previous examples of simple and multiple regression both bootstrap and subsampling are well-known to
be consistent and their width matches that of Wald interval as the sample size diverges. In this subsection, we
consider the example of quantile regression where the theory can be a lot more subtle. We restrict ourselves
to the case of quantile regression with one covariate and no intercept, i.e., with data (X;,Y;) e R 1 <i < n,
the estimator 6,, is given by
n
0, = argminz |Y; — 0X;].
S ——]
This is a univariate M-estimation problem with a convex objective function and the results of Kuchibhotla
(2021) imply that 6,, is asymptotically median unbiased for the population parameter 8y = arg mingy.p E[|Y —
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6X || without requiring any assumptions on the conditional distribution of Y given X. On the other hand,
asymptotic normality of é\n requires existence of the conditional density of Y given X; see Knight (1998, 1999,
2008) for details. Further, if the conditional density of Y given X does not exist, then the rate of convergence
depends on the smoothness properties of the conditional distribution function. For our discussion, we focus
on a particular example discussed in Example 1 of Knight (1999).

Suppose (X;,Y;),1 < i < n are independent and identically distributed random vectors obtained via

Y =X, +¢; where P(g; <t)=0.5(1+|t|“sgn(t), te[-1,1].

Theorem 1 (and Example 1) of Knight (1999) imply that n'/ (20‘)(3 — 1) converges in distribution to a non-
normal distribution defined by a minimization problem. Section 3 of Knight (1999) shows that bootstrap is
consistent for this problem if and only if « = 1 (or equivalently, when the limiting distribution is normal).
Subsampling is also not readily applicable because the rate of convergence of the estimator is unknown
apriori. But subsampling with estimated rate of convergence as in Bertail et al. (1999) is applicable. We
compare the performance of HULC , and subsampling with estimated rate of convergence with three different
choices of subsample sizes (n'/3, n'/2, and n*?) across different o € (0,1] and different sample sizes n. (It
is worth mentioning here that HULC does not involve any tuning parameters where as subsampling with
estimated rate of convergence includes more than 10 tuning parameters other than the subsample size.)
Figure 4 shows the performance of these procedures based on 200 Monte Carlo replications for each sample

size and each «.

50 100 250 1000
100w c—" — SRR~ :,.T;T.‘E.___..-....._-__.___.-_.--.F...,?f..’..-:-‘” ............. .
N . 1 ] -
~ A B\
e 1 = N
0.75- * N T b T .
° > § ’ N ‘ N . N
= - - - "
g = ~
@ 050 - -
> 1 -
2
o
0.25-
0.00-
2.0- ——
15- -
- — .
. .
£ — B
s 10- = o —— L T =]
o o o == il Il .
— - o o — 2
0.5- g i T e e
0.0- v = — —
05 10 15 200 05 10 15 20 05 10 15 20 05 10 15 20

a

method + HulC ~ Subsample (1/3) + Subsample (1/2) - Subsample (2/3)

Figure 4: Comparison of HULC and subsampling with estimated rate of convergence in quantile regression
under non-standard conditions. The sample size is mentioned at the top of each plot and the smoothness
parameter of the distribution « is on the z-axis. HULC maintains the coverage at the nomial level of 0.95
for all sample sizes, while subsampling with any subsample size fails for larger values of «. The width of all

the confidence intervals are increasing with « as expected.
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3 Applications to standard problems

In this section, we present some simple applications including mean estimation, median estimation, and
parametric exponential models. In parametric and semi-parametric models, regularity conditions and effi-
ciency theory implies the existence of estimators which when centered at the target have an asymptotic mean
zero Gaussian distribution. In these cases, often one can modify the estimators to ensure reduced median
bias. For some examples of (approximately) median-unbiased estimators, see Birnbaum (1964); John (1974);
Pfanzagl (1970a,b, 7172, 1979); Hirji et al. (1989); Andrews and Phillips (1987); Kenne Pagui et al. (2017).

In all the examples in this section, we assume that the batch sizes are all the same, i.e., |S1| = |Ss| =

... =|Sm|- This can be trivially achieved by ignoring less than B, a observations, if necessary.

3.1 Mean estimation

Suppose X1, ..., X, are independent real-valued random variables with a common mean p € R. Consider the
problem of constructing a confidence interval for u. Note that the random variables need not be identically
distributed. If the random variables have a finite second moment and satisfy the Lindeberg condition, then
the sample mean X; = |9;|™! Ziesj X; satisfies 1/]S;](X; — p) 4 N(0,0%), where 0% = Ziesj Var(X;)/|S;|.
This implies that the estimator X; is asymptotically median unbiased and Algorithm 1 with A = 0 yields
an asymptotically valid confidence interval for p. In this case, Wald intervals are also asymptotically valid.

The setting becomes more interesting when we consider random variables with less than two finite mo-
ments. In this case, the limiting distribution of X'j is known to be a stable law and its rate of convergence
also changes depending on the tail decay of the random variables. If the random variables satisfy

lim 2°P(X; > ) = lim 2°P(X; < —z) for some « € [1,2), (27)

r—00 r—00

then the limiting stable law of X ; is symmetric around zero (see, for instance, Theorem 9.34 in Breiman
(1992)). In this special case, Algorithm 1 continues to provide asymptotically valid confidence intervals, while
Wald intervals and the bootstrap are known to fail for a < 2; see, for example, Athreya (1987) and Knight
(1989). In particular, if the underlying distributions are all symmetric around the mean p, then without
any moment assumptions the confidence interval returned by Algorithm 1 is finite sample valid. It is worth
noting that subsampling (Romano and Wolf, 1999) is still applicable in the case of infinite variance.

If the assumption (27) does not hold true, then the limiting stable law is not symmetric and the asymmetry
depends on the gap between the left and right hand side quantities in (27). In this case, the median bias
of the limiting distribution is not readily available and the methods presented in previous sections are not
applicable. This can be resolved using the ADAPTIVE HULC which we describe in Section 4.

3.2 Median estimation

Suppose X1i,...,X, are independent real-valued random variables with common median m € R. Con-
sider the problem of constructing a confidence interval for m. The usual estimator for the population
median is the sample median. Set é\j = median(X; : ¢ € S;). If the average distribution function
F(t) = \Sj|’12iesj P(X; < t) has a derivative bounded away from zero at m, then it is known (Sen,
1968) that M(éj —m) % N(0,0%), where 03 = (4f7(m))~'. Here f;(m) is the derivative of Fj(t) at
t = m. There are several classical methods for constructing confidence intervals for m including Wald’s,

quantile or rank based intervals. Wald confidence intervals in this case require estimating of the density
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fj() at m and the quantile based intervals require choosing the appropriate quantiles for end points. Unlike
the Wald interval, the quantile based intervals are finite sample valid (Lanke, 1974). Because the limiting
distribution is mean zero Gaussian, the HULC applies and yields an asymptotically valid confidence interval.

Once again the setting becomes interesting when the underlying distributions do not satisfy the conditions
for normality. For example, if the density fj() is not bounded away from zero at the common median m,
then the limiting distribution of §j is not Gaussian and hence Wald as well as bootstrap intervals break down.
The limiting distribution in this case is explicitly described in Knight (1998, Section 2). In this case, the
rate of convergence of the median depends on how fast the density decays to zero as ¢t approaches m. When
the population median m is unique, the sample median computed based on odd number of observations is
known to be median unbiased (Desu and Rodine, 1969). This observation implies that Algorithm 1 with
A = 0 yields a finite sample valid confidence interval for m if each S; has an odd number of observations
(which can be trivially ensured). In fact, with any given number of observations (even or odd), an estimator
that randomly (equally likely) chooses between the r-th order statistic and (|S;| —  + 1)-th order statistic

is median unbiased for m as shown in Section 4 of Desu and Rodine (1969).

3.3 Binomial distribution

Consider X1,..., X, ~ Bernoulli(p) for some p € (0,1). The problem of constructing confidence intervals for
p is a well-studied problem with focus on coverage as p changes with the sample size n (Brown et al., 2002).
It is well-known that, when properly normalized, the limiting distribution of Binom(n, p) as n — o changes
from a Gaussian to a Poisson distribution depending on whether np — o or np — X € (0, ). Because of this
change, the Wald confidence intervals can undercover p when p is small relative to the sample size n (Brown
et al., 2001). We will now consider the coverage properties of the HULC when using the sample proportion
as an estimator for p. For any set S < {1,2,...,n}, >,,.¢ X; ~ Binom(|S|,p). Theorem 10 of Doerr (2018)
shows that whenever p € [log(4/3)/|S|,1 — log(4/3)/|S|], the estimator ], ¢ X;/|S| has a median bias of
at most 1/4. Theorem 1 of Greenberg and Mohri (2014) yields this result for p € [1/|S],1 — 1/|S|]. For a
more precise result, see Lemma 8 of Doerr (2018). Hence, Algorithm 1 with A = 1/4 yields finite sample
coverage of at least 1 — « for all p € [log(4/3)/m, 1 —1log(4/3)/m]; here m represents the minimum number of
observations in each split of the data. Because m = n/log(2/a), we get finite sample coverage validity even
for p = ©(1/n). Note that the binomial distribution is not approximately normal in this case.

Allowing for some modifications of either the estimator or the final confidence set, we can obtain finite
sample coverage for all p € [0,1]. Firstly, note that the HULC interval from Algorithm 1 with A = 0
will always cover the true median of the estimators. With the proportion estimator Ziesj X,/|S;|, the
HuLC interval from Algorithm 1 with A = 0 with a probability of at least 1 — o will contain the median of
Binom(m, p)/m where m = |S;| for all 1 < j < B*. Hamza (1995) proves that

’E [Bmom(m’p)] _ median (Bmom(m’p)) ‘ - ’p _ median <Bin0m(m’p)> ’ < oe@) g

m m m m

Therefore, if (/3\1(%0 = [i, ﬁ] represents the confidence interval from Algorithm 1 with A = 0, we get that for
all p € [0,1],

P<p¢ [Z—loigz),ﬁrbgf)} m[0,1]> <a.

This is a modification of confidence interval returned by Algorithm 1 but uses the classical binomial pro-

portion estimator. If we modify the estimator, then no changes are required in Algorithm 1 with A =0 to
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obtain a finite sample coverage. Because the binomial distribution has a monotone likelihood ratio, the re-
sults of Pfanzagl (1970a, 7172) can be applied to obtain a median unbiased estimator of p. It might be worth
noting here that binomial distribution being discrete, any median unbiased estimator has to be randomized;
see page 74 of Pfanzagl (1994) for a discussion. The exact median unbiased estimator of Pfanzagl (1970a,
7172) is computationally intensive. A simpler estimator for p with reduced median bias can be obtained
from Hirji et al. (1989), and Kenne Pagui et al. (2017). These works discuss binary regression and estimating
a binomial proportion is the special case when there are no regressors except for an intercept. Hamza (1995)
also proves that (28) holds true for Binom(m, p) replaced by Poisson(mA). This implies that the confidence
interval (/E\Ia,o from Algorithm 1 inflated by log(2)/m also has a finite sample coverage of at least 1 — « for

every A =0

3.4 Exponential families

Lehmann (1959, Sections 3.5 and 5.4) provide median unbiased estimators in monotone likelihood ratio and
exponential families with a Lebesgue density. Extending this work, Pfanzagl (1979) provides an algorithm to
construct an exactly median unbiased estimator for every sample size in a full rank exponential family, even
in the presence of nuisance parameters. Pfanzagl (1979) considers a more general parametric model than
exponential families; see Read (2004). A related result for exponential families is also obtained in Brown et al.
(1976). For brevity, we will not describe this algorithm here and refer to the papers mentioned above; also,
see Cabrera and Watson (1997) for some computational methods. With such an estimator, the HULC can

be applied with A = 0 to obtain a finite sample valid confidence interval.

3.5 Squared mean estimation

Suppose X1, ..., X, are independent random variables with common mean ; and common variance o2 < o0.
Consider the estimation of g = pu?. A natural estimator of 6y is § = X2, the square of the sample mean.

The asymptotic distribution of 0 depends on the true mean and the population variance:

nl/z(g— 0o) 4 N(0,4p%0?), ify=p®#0, and n(a— o) 4 o?X3, if Oy = p® = 0.

1/2 to n=! as p changes

There are two aspects to consider here. First, the rate of convergence changes from n~
from non-zero to zero. Second, the limiting distribution of 6 becomes one-sided for © = 0 and this implies
that the estimator has an asymptotic median bias of 1/2 for 4 = 0. The first aspect is not an issue for
Algorithm 1, but the second aspect renders Algorithm 1 useless for p close to zero because it would require
nearly infinite many splits of the data. Alternatively, for each subset S; of the data, consider the U-statistic

estimator

>

0, = XXk (29)
R

It readily follows that E[éj] = u? for all € R, unlike X2 which is biased for y close to zero. Once again éj
has different limiting distributions depending the magnitude of u. Specifically,

\/@@'—90) L N0, 4p%0?), i g = p? £ 0,
19,10 — 00) % 0?(E —1), if Oy = p? = 0.
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The rate of convergence changes between p # 0 and g = 0, but now the limiting distribution has median
bias bounded away from zero. It may be worth pointing out that the limiting distribution in general would
be a mixture of normal and Chi-square as p becomes close to zero. We can prove the following result on
the median bias of éj that is uniform over all 4 € R. The proof in Section S.7 can be easily extended to

accommodate non-identically distributed observations expect for common mean and variance.

Proposition 2. Suppose §; = (X; — pu)/o,1 < i < n are independent and identically distributed. Then for

any b and o, the median bias of éj 18 bounded by
1 {@ (—9+ VIS8 = 1>2> e (—e—wﬂ +1S31/08;1 = 1>2>}
VIS8 = 1) VIS51/(1851 = 1)

2
4E[¢1]1og(1S;]) | Ell& ] + E[I&°)/(B[&1D*? | 2

+ =
|S;|m V1551 |54

Note that the first term on the right hand side of (30) can be computed given |S;| without the knowledge

sup
6eR

(30)

of u and o. Further, the last three terms of (30) all disappear as |Sj| — o0 whenever certain moments of &;
are bounded away from 0 and co. Exact computation for some sample sizes (|.S;]) shows that the supremum
in the first term in (30) is attained at § = 0 and equals |P(X? < 1) —1/2| ~ 0.183. Hence, Algorithm 1 can be
applied with A = [P(X? < 1) — 1/2| and the estimator §j to attain an uniformly valid asymptotic confidence
interval for 8y = u2. It is worth pointing out that the resulting confidence interval is adaptive in its width
as | approaches zero, i.e. the expected width of the HULC interval scales as n~! when p is close to 0, and

1/2 when p is large. This follows from the fact that é\j has an adaptive rate of convergence.

asn—

With 100 observations from N (u, 1) and varying u, Figure 5 shows the performance of several confidence
intervals for §p = pu? as u changes from 0 to 1.0. Note that in this problem, subsampling is not readily
applicable because the rate of convergence is unknown (as it depends on p). We use subsampling with

estimated rate of convergence from Bertail et al. (1999).

3.6 Uniform model

Suppose X7, ..., X, are independent real-valued random variables from UJ[0, 8], the uniform distribution
on [0,6p]. The maximum likelihood estimator of 8y from the j-th batch is given by 9~j = max{X; : i € S;}
which is both mean and median biased. The median bias is 1/2 and hence Algorithm 1 would be inapplicable
because it requires infinitely many splits of the data. Note that in this model, 9~j converges to 6 at an n~!
rate.

Interestingly, there are estimators of fy that are median unbiased in this case. For instance, with gsj
and ag; representing the largest and the second largest values in {X; : i € S;}, it can be shown that the
estimator éj = QESJ — asj is finite sample median unbiased for 6p; see Section 3 of Robson and Whitlock
(1964) for a proof. Hence, Algorithm 1 can be applied with éj and A = 0 to obtain a finite-sample valid
confidence set for 6. Note that éj also has an n~! rate of convergence. In this case, it is known that the
classical bootstrap is invalid, but subsampling works; see e.g., Politis and Romano (1994) and Loh (1984).

The estimator é\j described above is approximately median unbiased for a large class of distributions of
the form F'(x)/F(6p) for x € [0,0]; see Robson and Whitlock (1964, Section 3). Here F(-) is an arbitrary
distribution function on [0,00). Also, see Hall (1982) for other estimators of 6y, in a large class of non-

parametric distributions, that have a limiting distribution that is symmetric around 6.
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Figure 5: The plots show the comparison of HulC (with A = 0.183), adaptive HulC (discussed in Section 4),
and subsampling with different subsample sizes “subsample (1/3)” (subsample size of n'/3), “subsample
(1/2)” (subsample size of n'/?), “subsample (2/3)” (subsample size of n?/?). Although the performance of
subsampling is better when pu = 0 and when u is away from zero, it is not as satisfactory as that of HulC
and adaptive HulC.

3.7 Constrained Estimation

Suppose X, ..., X, are independent real-valued random variables with mean p. Consider the estimation of
6o = pl{u = 0}. We have seen in Section 3.1 how to apply the HULC for p. Although p — pl{p = 0} is
a simple transformation, it changes the behavior of many commonly used estimators of 6y. This is because
0 is a non-regular functional and hence, there does not exist any regular estimator for 6y; this follows
from Hirano and Porter (2012, Theorem 2). The implication is that classical Wald confidence intervals
based on the estimator X, 1{X,, > 0} can fail to cover 6 for u close to zero (Robins, 2004, Appendix
1.1). Further, bootstrap and subsampling are also similarly inconsistent; see Fang and Santos (2019, Section
3.2) and Andrews (2000, Section 3) for bootstrap, and Andrews and Guggenberger (2010, Eq. (1)—(2))
for subsampling. It is, however, easy to show that the estimator X,1{X, > 0} is asymptotically median
unbiased for § = p1{u = 0} because X,, is asymptotically median unbiased for y. This follows simply from
the fact that x(¢) = ¢1{t = 0} is monotonic in x and hence,

H{r(Xn) = k(p)} = 1{X, > p} and  Ha(X,) < w(p)} = 1{X, < p}. (31)
Note that x(-) is not strictly increasing. This implies that
Med-bias,(,) (k(Xn)) < Med-bias,(X,). (32)

Hence, the HULC with the estimator x(X,) and A = 0 yields a second-order accurate confidence interval
for r(p) = pl{p = 0}.
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Inequalities (31) and (32) do not require the specific form of the function x(-). They hold for any
monotone function x(-) and, in particular, for any piecewise constant function. Theorem 3.2 of Fang and
Santos (2019) implies that bootstrap is inconsistent unless x(-) is differentiable. This shows the wide range
of applicability of our confidence interval. Finally, we note that projection to any set on the real line is a
monotone function and hence our confidence interval from the HULC is asymptotically valid with the natural
estimator that projects the MLE (or any other estimator) to the constraint set. A simple example where
this is useful is in the squared mean estimation example of Section 3.5. The estimator é\j in (29) is not
necessarily non-negative, but its target u? is always non-negative. Using the facts discussed here, we can

safely use éj]l{éj > 0} instead of éj in the squared mean estimation example.

3.8 Matching Estimators

In causal inference, matching estimators for the average treatment effect (ATE) are popular, partly because
they are intuitive. Under certain regularity conditions, matching estimators are known to be asymptotically
normal centered at the true ATE. Hence, the HULC with A = 0 yields a second order accurate confidence in-
terval for ATE. Abadie and Imbens (2008) proved that the bootstrap is inconsistent for matching estimators.
They also commented that subsampling can still be used, but given the computational cost of matching,

subsampling becomes computationally intensive with larger samples.

3.9 Semiparametric Estimation

In all the examples above, we have cases where the bootstrap and subsampling are either not easily applicable
or fail to provide an asymptotically valid confidence interval. There are many cases where all the usual
methods apply but the HULC is much simpler and computationally cheaper.

In non- and semi-parametric problems, when a functional of interest can be estimated by an estimator
that is asymptotically normal, two possibilities arise. In the simpler case, the estimator is regular and asymp-
totically linear with a known (or easily estimable) influence function, while in general the estimator may not
have a simple asymptotic expansion. In the first case, we may estimate the asymptotic variance consistently
via the sample variance of the (estimated) influence function but obtaining finite-sample guarantees (say via
a Berry-Esseen bound) typically requires a case-by-case analysis. More generally however, the variance often
involves more nuisance (non-parametric) components than the functional and hence, variance estimation
often requires more assumptions or regularity conditions than estimation of the functional. On the other
hand, the HULC requires no more nuisance estimation than required for the estimation of the functional.

We give three simple examples to illustrate this.

1. Integral functionals of density. Consider the estimation of 6y = {¢(f(z), f'(x), ..., f® (), 2)de,
when Xi,...,X,, are independent and identically distributed observations with a common marginal
density f supported on a compact set. Theorem 2 of Laurent (1997) provides an asymptotically efficient
estimator @L for 6y that is asymptotically normal under certain smoothness assumptions on f. The
asymptotic variance of @1, however, involves higher order (> k) derivatives of f when k > 1. For a more
concrete example, consider the Fisher information functional defined as 6y = {"_(f'(x))?/f(z)dx. The
asymptotic variance of the efficient estimator is given by §* (23 (z)/f(z) — (f'(2))?/f(2))*f(z)dz —
(§"_(f'(2))?/f(z))dz, which involves the second derivative of f.

2. Single Index Model. Suppose (X;,Y;),1 < i < n are independent observations satisfying E[Y;|X;] =
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mo(63 X;) when mg(+) is an unknown convex function. Consider the least squares estimator (7, §)
which is obtained as a minimizer of Y, | (¥; — m(0"X;))? over m that is convex, Lipschitz, and 0 in
{n : |nll2 = 1}. Kuchibhotla et al. (2021) prove that f is asymptotically normal with an asymptotic
variance depending on nuisance components such as the conditional mean of X on 6] X, the derivative

of mg, and the conditional variance of Y given X.

3. Functionals of Normal Models. Suppose Xi,..., X, are independent observations from N(u,X)
in the space F (either a Hilbert or a Banach space). Consider the estimation of 6y = f(u), if E is
Banach or 6y = f(u,Y), if E is Hilbert. Koltchinskii and Zhilova (2021b,a) provide asymptotically
efficient estimators of 6y which have a normal limiting distribution. Also, see Koltchinskii (2020).
The asymptotic variance is (X f'(u), f/(n)) if g = f(u) and is ||El/2fl’t(/¢, )2+ 282 L (u, E)El/2|\§p
if 80 = f(u,X). Estimating the asymptotic variance hence requires estimating more complicated

functionals of y,¥. Such variance estimation is not discussed in these works.

In all of these cases our approach using the HULC yields a conceptually simpler confidence interval without

any additional nuisance estimation.

4 Adaptive HulC

In this section, we provide a method, the ADAPTIVE HULC, to estimate A based on subsampling (Politis and
Romano, 1994) and consequently, provide a simple method for constructing a valid confidence interval. One
might wonder at this point “why not just use subsampling to construct the confidence interval directly?”
The answer is that the ADAPTIVE HULC does not require the knowledge of the rate of convergence of the
estimator. As an example, in the mean estimation case with fewer than two finite moments, we do not know
the rate of convergence a priori. Further, we do not need to estimate the rate of convergence as suggested
in Bertail et al. (1999) for subsampling.

We return now to the univariate parameter setting. Suppose 7| 5j|(§j — 6y) converges in distribution to
W a continuous random variables as |S;| — oo, for some sequence {ry}r>1 diverging to co. Then it follows

that

~ 1
Med-biasg, (0;) — A := ‘]P’(W <0)-— 3l 8 |S;| — o0.
Hence, A is the asymptotic median bias and can be estimated using subsampling. Let S§b)7 ey Sé(bi denote

K random subsamples of size b = b(n) and let §§b), 1 < j < K,, be the estimates based on the subsamples.
Let 6 be the estimate based on the full data (of size n). Then A can be estimated by

K
A= [Ln(0) = 1/2], where Ly(0):= Ki S 14 -9 <o,
n i
Given this estimator ﬁn, we can estimate the upper bound on the miscoverage probability P(B;A) in (3)
of the convex hull of B estimators by P(B; An) The results of Politis and Romano (1994) imply that A, is
(asymptotically) consistent for A (see also, our Lemma 2, which develops finite-sample bounds) and hence,
Baa = BO“ A, for large enough n; see Proposition 1. Therefore, the convex hull based on Ba’ A, estimators
has an asymptotic miscoverage probability of at most «. To avoid conservativeness, one can randomize the

number of estimators between B A, and B R —1 to attain asymptotically exact coverage as shown in
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Algorithm 2: Adaptive Confidence Interval with Unknown Median Bias (ADAPTIVE HULC)
Input: data X3, ..., X, coverage probability 1 — «, and an estimation procedure A(-) that takes as

input observations and r/citggons an estimator, sgkiséi{)nple size b, number of subsamples K.
Output: A confidence interval CI, such that P(6p € CI, ) = 1 — « (asymptotically).
1 Draw K,, many subsamples of size b from X,..., X,,. Apply A(:) for each subsample and obtain
estimators 5{()3‘)’ 1<j<K,.
Compute the estimator of the (asymptotic) median bias of A(-) as A,, := |L,(0) — 1/2.
Use Algorithm 1 with input data X1, ..., X, coverage probability 1 — «, the value An and the

N

w

estimation procedure A(-)

4 return the confidence interval obtained as output from Algorithm 1 as é\llu

Algorithm 2. II}3 other words, the output of Algorithm 1 with A = An is the ADAPTIVE HULC interval
denoted by CL,

We now prove bounds on the miscoverage probabilities of the confidence intervals of the ADAPTIVE
HuLC. The first result provides a bound without using the fact that An is obtained from subsampbhng and
then using distributional convergence assumptions, we obtain the final miscoverage bound for CI, . Define
A, o as the median bias of A({X; : ¢ € S}) with n/(2Ba.aA) < |S| < 2n/Bg,a, e,

Apo = Med-bi A{X; : 1€ 5})).
: g, Me iasg, (A({X; : i € S}))
Note that A, o in general depends also on ¢y and the true distribution of the data.

Consider the following assumption:

(A1) There exists a random variable W, a non-decreasing sequence {r,, },n>1, and a non-increasing sequence
{0m }m>1 converging to zero such that the estimator 6(™) obtained by applying A(-) on m observations

satisfies

sup [P(rm (0™ — 0g) < t) — P(W < t)| < 6.
teR

Further, 0 < P(W < 0) < 1.

Define the asymptotic median bias of the estimation procedure A(-) as A := (1/2 — max{P(W < 0),P(W > 0)}), .

For any a € (0,1) and A € (0,1/2), define

o= g Wo (}\/ FBani0) 1)'

These quantities are taken from Proposition 1 and (10) which implies that for any v € (0,1/2), if |y — A] <

and for A =0,

Ca.n, then By, = Bo . Finally, recall that é\ImA represents the confidence interval returned by the
HULC when the median bias parameter is chosen to be A (irrespective of what the true finite sample median

bias is).
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To succinctly state our next result we define some additional quantities. Given an estimate ﬁn we compute
the number of splits, B, A,- We then hypothesize splitting the data twice into B, A, and B, A, — 1 parts
with approximately equal number of observations in each split. We then define,

—=(0) . ~ ~ —~(1) . ~ ~
Cl, = ~ min f;,  max 6;1, and CI, := min  6;, max 0;
1<J<Bav3n71 1<]<Ba»3n71 léjéBa,Zn 1<]<Ba,3n

Here éj are estimators computed based on A(-). We have the following result:

Theorem 3. Suppose the random variables X1, ..., X, are independent and assumption (A1) holds true.
Then for any « € (0,1), the ADAPTIVE HULC confidence intervals satisfy

/\(0)
P(6 I ~
max %, P(0 ¢ CIS)) <P(B,x, # Baa)
(14 2Ba,0(Bao —1DAZ (1 + 20 0)B0), if A =0,
(142[Apq — Al)Boa, ifA#0

(33)

+ o X

and for any 0 < n < Cy a,
—~sub —~ ~
P(fo ¢ CI, ) —P(fy ¢ Cloa)| < 2P(|A, —A| =17)

27}2B(21,062”Ba’0(1 + QB(E’OA?W(l + 2An7a)Bﬂ’“), if A =0,
2enBaa(l+ 2|80 — A)Pos [(1/2=A),  if A £0.
(34)

+ 3a X

Theorem 3 (proved in Section S.8) provides a bound on miscoverage of the confidence interval (/J\Iiub from
Algorithm 2 but does not assume that An is obtained from subsampling. The miscoverage probabilities
of confidence intervals obtained from non-random choices of number of splits 6\1((10) and (/?\IS) only requires
controlling the probability of B A, # Ba,a. From Proposition 1, it follows that we do not need ﬁn to be
consistent for A. Note that the second term in (33) only depends on how close A, ,, to A is.

For the miscoverage probability of (/J\IZUb that randomizes the number of splits to avoid overcoverage, we
require consistency of An to A. If An is obtained from an independent sample, then we would not require
such consistency and can apply Theorem 2 to prove miscoverage. Regarding inequality (34), we recall from

Theorem 2 (and Remark 2.2) that P(, ¢ C/]\IQ’A) can be upper and lower bounded by quantities close to «.
—~ (0 —~(1 —~sub

Such lower bounds do not hold true for CI((X and CIL ). Finally, because CI, is a random selection of one

—~ (0 —~(1
of CIE!) and CIEX ), we get

—~sub —~(0) —~ (1)
P(6o ¢ CL, ) <P(bo ¢ CIL, ) +P(6o ¢ CL, ),
—~sub

and inequality (33) can be used to imply that CI, has an approximate miscoverage probability of 3a. when
Ba,&n = B, A holds with high probability.

In the multivariate case, one can apply union bound directly on (33) with « replaced by «/d to obtain a
bound on miscoverage. But using the proof, one can refine this by replacing P(B A, * B, a) by IP’(Ba AR F
B, At for any 1 < k < d). Here A®) is the limiting median bias of the estimator of k-th coordinate of
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0o and A%k) is its estimator. Because the second term on the right hand side of (33) is multiplicative in «,
a union bound can be safely applied to obtain a non-trivial guarantee, as in Section 7. Similarly, one can
replace the first term on the right hand side of (34) with ]P’(|A£Lk) —A®)| >y for any 1 < k < d). The second
term being multiplicative in « does not affect the applicability of a union bound to obtain a non-trivial
bound.

Inequality (34) holds true for all n € [0,Cy a]. With A, a consistent estimator for A, one can take 7
converging to zero with sample size. In the following, we will prove a bound on P( |£n — A| = n) when A,
is obtained using subsampling (as in Algorithm 2). It is worth emphasizing that any method of estimating

A can be used in Theorem 3.

(A2) There exists r* > 0 and € < o such that the distribution function of W satisfies

P(W <t) —P(W < —
0< EW <) t(W t)ga forall 0<t<r*

(A3) The subsample size b satisfies b/n — 0 and rp/r, — 0 as n — co. Further, the number of subsamples

diverges: K, — 0.

These assumptions are similar to those used in the analysis of subsampling. In contrast to the classical

analysis of subsampling by Politis and Romano (1994) we provide a finite sample analysis.

Lemma 2. Fiz any t > 0 such that ryt/r, < r*, then under assumptions (A1), (A2), and (A3) with
probability at least 1 — 25, — (b + 1)/n — P(|W| > ¢),

~ log(2n) log(2n/b) rpt
— < —_—
A, — A \/ 5K, +\/ 2] +25b+2¢rn

The proof follows a similar structure to that of Politis and Romano (1994) and appears in Section S.9.

Choosing ¢ — o in Lemma 2 such that ryt/r, — 0 as n — o0, we conclude that |A, — A| = op(1); for
example, one can take t = m. This combined with Theorem 3 implies that ADAPTIVE HULC yields an
asymptotically valid confidence interval for 6y under assumptions (A1), (A2), and (A3).

5 Applications to non-standard problems

Many commonly used estimators are derived from classical parametric and semi-parametric efficiency theory
and after proper normalization have an asymptotic normal distribution with zero mean. This implies that
these estimators have an asymptotic median bias of zero, making them standard problems and allowing
for the application of the HULC with A = 0. There do exist estimators that have a non-standard rate of
convergence and a non-standard limiting distribution. In this section, we discuss four non-standard examples
where either the rate of convergence or the limiting distribution or both are unknown in practice. With the
rate of convergence unknown, subsampling does not readily apply to yield a confidence interval; one needs

to estimate the rate of convergence as in Bertail et al. (1999).

5.1 Squared mean estimation (revisited)

In Section 3.5, we discussed the application of HULC in the context of squared mean estimation. In this

application, the rate of convergence of the estimator can be n or y/n depending on p and as p — 0 as n — ©
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at different rates, other rates of convergence are possible. Figure 5 shows the performance of HULC (with a
conservative median bias bound) and ADAPTIVE HULC and compares them to subsampling. As expected,
HUuLC yields a conservative confidence interval with coverage at least 1 — a. Subsampling with estimated
rate of convergence as in Bertail et al. (1999) fails to attain correct coverage. This can be due to two reasons.
First, we fixed the sample size at 100, which might not be large enough for asymptotics of subsampling.
Second, subsampling is not uniformly valid in this example. This means that for each p (fixed as n changes),
the coverage asymptotically is at least 1 — « but if y is also allowed to change with the sample size, then
subsampling asymptotics break down as shown in Andrews and Guggenberger (2010). In Figure 5, this can
be seen via the dip in the coverage for p close enough to 0 (i € [0,0.25] in our setting). It is very interesting
and rather surprising to observe that ADAPTIVE HULC maintains coverage for all u and is further close
to the nominal 1 — « for p close to and farther away from zero. Although subsampling is not valid for
construction of confidence intervals, the estimate of median bias from subsampling, from our experiments,

seems to be at least as high as the true median bias.

5.2 Heavy-tailed mean estimation

In Section 3.1, we discussed the application of the HULC in the context of mean estimation when the limiting
distribution is symmetric around zero. When the random variables X7, ..., X, do not have a finite second
moment, then the limiting distribution of the sample mean X,, can fail to be symmetric around the population
mean g with the amount of asymmetry depending on the tail decay on either side of u. In this case, the rate
of convergence also depends on tail decay and is unknown a priori, which makes subsampling inapplicable.
See Romano and Wolf (1999) for an application of subsampling using the studentized statistic, which does
not require estimating the rate of convergence. Without knowing the rate of convergence, we can apply
Algorithm 2 to obtain an estimate of the median bias and create a confidence interval for the population
mean. In this case, provided that the median bias is not too close to 1/2 the ADAPTIVE HULC will yield

non-trivial confidence intervals.

5.3 Shape constrained regression

Constructing confidence intervals in the context of general non-parametric regression is a difficult task. In
order to obtain optimal estimation rates we aim to explicitly balance (squared) bias and variance. On the
other hand, the exact bias is often intractable and difficult to account for in confidence interval construction.
As a consequence, often under-smoothing is used to ensure that the squared bias is negligible compared to
the variance asymptotically. In practice, however, under-smoothing can be sensitive to the precise choice of
tuning parameters.

If the conditional mean function is assumed to satisfy a shape constraint such as monotonicity or convexity,
then the least squares estimator of the conditional mean has negligible bias uncomplicating the inference
problem. However, the rate of convergence and the limiting distribution depends on the local smoothness
of the conditional mean. To be concrete, consider the setting of univariate monotone regression with equi-
spaced design, i.e., Y; = fo(i/n) + &; where ¢;s are independent and identically distributed with mean zero

2

and finite variance o° > 0, and fy is our shape constrained target. Consider the least squares estimator

(LSE) of fo as

n

fn = arg min lZ}(Ylff(z/n))2

f:increasing ™ ;21
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Note that fn() is defined uniquely only at i/n,1 < i < n, and is, conventionally, defined to as a piecewise
constant increasing function on [0,1]. In this setting, for any ¢t € (0,1) such that fo(-) has a positive
continuous derivative on some neighborhood of ¢, the LSE satisfies n'/3(f,(t) — fo(t)) <> [402f(t)]V/3C,
where C = arg min;, g {W(h) + h?} has Chernoff’s distribution (here W(-) is a two-sided Brownian motion
starting from 0). It is important here that fj(t) # 0. If féj)(t) =0for1<j<p—1and fép) (t) # 0 (for
p = 1), where féj ) denotes the j-th derivative, then n?/ @p+1)(F () — fo(t)) converges to a non-degenerate
distribution depending on fép ) (t) and o2. Finally, if fo(-) is flat at ¢, then the rate of convergence becomes
n'/2. These results are known in both the fixed and random design settings (see for instance, Wright
(1981); Durot (2008); Guntuboyina and Sen (2018)). These rates of convergences imply that the LSE
admits an adaptive behavior and for arbitrary monotone functions and consequently it is unclear how to
perform inference. The situation becomes more complicated in the multi-dimensional case where the limiting
distribution depends on the anisotropic smoothness of f;. Recently Deng et al. (2021) proved that the rates
of convergence along with the nuisance parameters in the limiting distributions can be estimated consistently
using fn This theory requires substantial new techniques and still requires estimation of o2. Alternatively,
we can use the ADAPTIVE HULC in all of these cases to obtain asymptotically valid confidence intervals.
It is worth mentioning that in most of these settings, the median bias of the limiting distribution is also
unknown because it depends on the unknown local smoothness. The same discussion also holds true for
other shape constrained models such as convex regression and current status regression; see Guntuboyina
and Sen (2018, Section 4) and Deng et al. (2022) for details.

250 500 1000

0.00 025 050 075 1.000.00 025 0.50 0.75 1.000.00 025 050 0.75 1.00
X

Figure 6: Confidence bands for a monotone conditional mean function as sample size changes from 250 to
1000. The black line shows the true function which is a constant on [0,0.5] and is a (strictly increasing)
quadratic on [0.5,1]. The LSE attains an n'/? rate on [0,0.5] and an n'/? rate on [0.5,1]. The ADAPTIVE
HuLC simultaneous confidence intervals at 25 equi-spaced points on [n_l/ 21—nY 2] are shown as dark
black points. The confidence band obtained via (35) is shown as red and blue lines. The obtained sample
for each sample size is plotted in gray.

We note that for shape constrained regression, it is possible to obtain confidence bands from confidence
intervals at several points on the domain. For example if we know ¢(t1) < fo(t1) < w(ty) and £(t2) < fo(te) <

u(ts) for two points t1,t9 € [0,1] in the domain, then using the information that fo(-) is non-decreasing we
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can conclude that £(t) < fo(t) < @(t) for all ¢ € [0, 1], where

—o0, fort < tq, u(ty), fort <ty
Z(t) = f(tl), for L <t< tQ, and 'l_l(t) = u(tg), for th <t< ta, (35)
E(tg), for to <t < 1, 0, for to <t < 1.

Of course, the more points at which confidence intervals are available, the better the confidence band is.
Figure 6 shows the simultaneous confidence intervals obtained from the ADAPTIVE HULC (with subsample
size b =n'? and K,, = 1000) for a monotone conditional mean from observations Y; = fo(X;) + €; where
X; ~ Unif[0, 1],&; ~ N(0,0.12) and fo(x) = 1—1{z < 0.5} + ((z —0.5)/0.5)21{z > 0.5}. The choice b = n'/2
can be obtained by minimizing the bound in Lemma 2 with 7, = 1/§, = b~7, which with v = 1/3 or 1/2
represents the rate of convergence of the monotone LSE; see Han and Kato (2022). This figure only shows one
replication of the experiment and suggests that the width of the band seems to adapt to the local smoothness
of fy. In the following subsection, we present one simulation setting for monotone regression comparing the
coverage and width of HULC with subsampling. For more simulations comparing the coverage and width of
HurLC and ApApTIVE HULC in shape constrained problems, see https://github.com/Arun-Kuchibhotla/
HulC/blob/main/R/HulC%20for’20Shape’20Constrained’20Regression. ipynb.

5.3.1 Pointwise Confidence Interval for Monotone Regression

Suppose (X;,Y;),1 < i < n are independent and identically distributed observations satisfying
Y; = fo(Xi) + &, fo(z) = |a| sgn(x), X; ~ Unif[—1,1], &[X; ~ N(0,1).

Clearly, fo is a monotonically increasing function on [—1,1] and |fo(z) — fo(0)] = |z|® which implies
that fo is locally S-smooth at 0. From the results of Wright (1981), it follows that the LSE fn satisfies
nB/2B+1)(F.(0) — fo(0)) converges in distribution to Cp/(B + 1)/(28+1) where Cp is the slope at zero of the
greatest convex minorant of W (¢) + [¢t|?*1 with W (-) being the two-sided Weiner-Levy process with variance
one per unit time. Hence, the rate of convergence and the limiting distribution depends curcially on the local
smoothness parameter 3. Experimentally, we verified that Cgz is equally likely to be positive or negative
and hence, suggests that fn(O) is asymptotically median unbiased for fo(0) no matter the value of 5. With
this experimental backing, we applied HULC for this setting and also compared with the performance of
subsampling procedure of Bertail et al. (1999) that estimates the rate of convergence with different choices
of subsample sizes. Figure 7 shows the comparison of the coverage and width as the sample size changes

from 50 to 1000, based on 200 Monte Carlo replications for each sample size and each .

5.4 Nonparametric Regression and Forests

The HuLC also yields confidence intervals for nonparametric regression even in the presence of unknown
asymptotic mean bias. We briefly sketch the main ideas, deferring most of the details to future work.
We focus on constructing a confidence interval for the non-parametric regression function fy at a fixed
point xg € R. For example, let fn(aco) be a kernel regression estimator with bandwidth h. If A = h,, is
chosen to balance bias and variance then \/nh,, (fn(xo) — fo(zg)) converges to a Gaussian law with mean
Q = limy,o0 VR E[fn(z0) — fo(zo)] (which is the asymptotic mean bias), and finite, non-zero variance.
As we discussed earlier, classical methods often rely on undersmoothing to ensure that @ = 0. However,
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Figure 7: Comparison of HULC and subsamplng with estimated rate of convergence in isotonic regression
under varying local smoothness. The sample size is mentioned at the top of each plot and the smoothness
parameter 3 is on the z-axis. HULC maintains the coverage at the nominal level of 0.95 for almost all 8 for

all sample sizes, while subsampling with any subsample size fails.

the ADAPTIVE HULC works as long as @ is finite, since in this case the asymptotic median bias is bounded
away from 1/2. We also emphasize that, in contrast to undersmoothing for which there are relatively few
guidelines on practical implementation, it is more conventional in non-parametric regression to balance
(squared) bias and variance, and in many cases cross-validation methods yield tuning parameters which
achieve this balancing under various conditions (see for instance, Theorem 2.2 in Li and Racine (2004)).
The argument above is not specific to kernel regression estimators. More generally, let fn(a:o) be a
complicated nonparametric estimator such as a random forest. The ADAPTIVE HULC yields a valid interval
for fo(xo) provided that we are able to balance (squared) bias and variance, i.e. so long as we can ensure
that for some possibly unknown r,,, we have that rn(fn(xo) — fo(zo)) converges to a Gaussian law with

possibly non-zero (but finite) mean, and non-zero, finite variance.

6 Confidence Regions under Unimodality

In previous sections, we have considered the construction of confidence intervals based on the median bias
of the estimation procedure. In some cases, the estimation procedure has a large median bias close to 1/2.
For example in the mean square estimation problem, X2 has a median bias of 1/2 when y = 0 and in the
uniform model, the MLE has a median bias of 1/2. In these cases, the HULC and ADAPTIVE HULC are not
useful because they would require infinite splits of the data. Interestingly, in these examples, the limiting

distribution of the estimation procedure is unimodal at the true parameter. In the univariate setting,
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unimodality of an estimator at 6 means that the distribution function of the estimator is convex on (o, 6]
and concave on [fy, ). It is important to note that unimodality of a random variable is a global property
of the distribution function unlike median bias, which is a local property.

Using the results of Lanke (1974), we can construct a confidence interval based on unimodality of the
estimation procedure. The resulting confidence interval is very similar to the one from the HULC. The
UNIMODAL HULC method is presented in Algorithm 3.

Algorithm 3: Confidence Interval based on Unimodality and Median Bias (UNIMODAL HuLC)

Input: data Xi,..., X, coverage probability 1 — «, a parameter ¢ > 0 and an estimation procedure
A(-) that yields estimators asymptotically unimodal at 6y and have an asymptotic median
bias of A € [0,1/2].
Output: A confidence interval (/J\I:Ode such that P(0, € (/J\I:Ode) > 1 — o asymptotically.
1 Set Q(B;t,A) := P(B; A)(1 +¢)~P* and find the smallest integer B = B, A = 1 such that
Q(B;t,A) < a. Recall P(B;A) from (3).
2 Generate a random variable U from Uniform distribution on [0, 1] and set
Nat = QBata —1it,4) —a and B* .= Ba.t.a U < Mot
’ Q(Bat.a — 13, A) = Q(Bayt,ait, A) Baia—1, ifU> ey

3 Randomly split the data X7, ..., X, into B* many disjoint sets {{X; : i€ S;}:1<j < B*} of
approximately equal sizes.

4 Compute estimators §j = A({X; : i€ 8;}), for 1 < j < B* and set

~ ~ ~ ~

Omax = max 60;, and Opyn = min 6,
1<j<B* 1<j<B*
. —~mode ~ ~ ~ ~ ~ ~
5 return the confidence interval CI, = [Omin — t(Omax — Omin)> Omax + t(@max — Omin)]-

The UNIMODAL HULC can be seen as a generalization of the HULC where we also use the unimodality
of estimators, if available. UNIMODAL HULC involves a tuning parameter ¢ indicates how much to inflate
the convex hull confidence interval. Taking ¢ = 0 in the UNIMODAL HULC gives exactly the HULC. The
confidence interval with ¢ = 0 need not have coverage validity if the asymptotic median bias is 1/2 and by
taking ¢ > 0, we get asymptotic coverage when the limiting distribution is unimodal even if the asymptotic
median bias is 1/2. Even if A < 1/2, using ¢ > 0 yields a reduction in the number of estimators used for
convex hull. Formally, set Q(B;t,A) := P(B;A)(1 + )5+, which is upper bounded by P(B;A). Then
UNiMODAL HULC only requires B, ; A many independent estimators, where B, ; A is the smallest integer
such that Q(Ba.a;t,A) < a.

In the UNiMODAL HULC, we assume that the limiting median bias A is known, but one can always
substitute A = 1/2 if median bias is unknown; recall that P(B;1/2) = 1 for all B. Instead of assuming a
known A, one can use the subsampling approach from Section 4 to replace A with the subsampling estimator.
We leave it to future work to derive a final miscoverage bound for this subsampling-based procedure.

The following theorem (proved in Section S.10) shows that the confidence interval returned by the UNI-
MODAL HULC has a miscoverage probability bounded asymptotically by «.
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Theorem 4. Suppose the estimators §j in the UNIMODAL HULC are independent and are constructed based

on approximately equal sized samples. Further, suppose the estimators are continuously distributed and satisfy

sup \]P’(rn’a(éj —0) <u) —P(W <u)| < 0na,

ueR
for some sequence {ry o}tn=1 and a continuous random variable W that is unimodal at 0 and has a median
bias of A (i.e., A =|1/2—P(W <0)|). Then for allt =0, A€ [0,1/2], and a € [0,1],

P (60 ¢ CAIZOde) < a(1=10Baya(l+1)d,0)7 (36)

Similar to Theorem 2, Theorem 4 shows that the confidence interval from the UNIMODAL HULC has its
miscoverage probability bounded by « up to a multiplicative error. Once again, this is unlike the coverage
guarantee for Wald’s interval. Because of the multiplicative error, the guarantee from Theorem 4 is also
suitable for an application of the union bound to obtain a valid multivariate confidence region, as discussed
previously in Section 7.

Note that the right hand side of (36) is finite if and only if 10B, ¢ A (1 + t)d,,o < 1. It is easy to prove
that By A = O(log(1/a)) when either ¢ > 0 or A < 1/2 and in many cases, J,, o = O(+/log(1/a)/n). Hence,
the condition for finiteness would hold true as long as n » 10g3(1 /a); this is similar to the requirement in
the HULC. The importance of the UNIMODAL HULC stems from its ability to tackle problems where the
median bias of the estimator is large (near 1/2).

The width of the confidence interval (/j\IZIOdC is given by (1 + 2t)(§max - §min). This is 1 + 2t times
larger than the width of confidence interval from the HULC. The confidence interval has asymptotically
valid coverage of at least 1 — « for any parameter ¢ > 0 and as ¢ increases, the number of splits B in the

UNIMODAL HULC decreases leading to a smaller value of émax — Omin. Similar to the map A — B, a, the

map (t,A) — By, is a piecewise constant function.

6.1 Standard problems (revisited)

The UniMODAL HULC can make use of both asymptotic unimodality and asymptotic median unbiasedness
which holds true for most of the standard problems where the limiting distribution is Gaussian (a symmetric
unimodal distribution). In many of the examples discussed in Section 3, one can use the UNIMODAL HULC to
(potentially) obtain a tighter confidence interval. Note that B, ¢ a in the UNIMODAL HULC is always smaller
than By A = By, in the HULC. Once again the advantage is that we do not need to estimate the limiting

variance of the estimators being used and need not know the rate of convergence.

6.2 Application 2: shape constrained regression (revisited)

In Section 5.3, we used subsampling to estimate the median bias of the LSE in shape constrained regression.
Experimentally, we found that the distribution of the LSE is unimodal at the true value. Consider the
regression problem Y; = fy(i/n) + €; where ¢; ~ N(0,1) and fo(x) = 0. The histograms of the LSE error
fn (x0) — fo(zo) for zy ranging from 0.1 to 0.9 are shown in Figure 8 when the estimator is computed based
on 10% samples and 1000 replications. Figure 8 indicates that the distribution of fn (x0) — fo(xo) has a unique
mode and that mode is close to zero, and this property is unaffected by the location of zg € [0, 1]. We are
not aware of a result proving unimodality of the limiting distribution of the LSE in general (when higher

31



0.1 0.2 0.3 0.4
300-
200-
- I| | I I |
ol ,_ll I _ II i i ,II I.
€
3 0.7 0.8 0.9
o
300-
200-
- ‘ I | I I | ‘ |I
0- I_ I I- I I._ II Il-_
~0.005 0.000 0.005 0.010 ~0.005 0.000 0.005 0.010 ~0.005 0.000 0.005 0.010 ~0.005 0.000 0.005 0.010
value

Figure 8: Histogram of (centered) monotone LSE fn(xo) — fo(zo) at zg € {0.1,0.2,...,0.9} when the true
function is identically zero. Clearly, the distributions are asymmetric but the mode is at the right place (0).
The distribution at 0.1 is left skewed and the one at 0.9 is right skewed. The farther we move from the

center of the support [0, 1], the more asymmetric the distribution becomes.

derivatives of fo may vanish at xg). But, motivated by our experimental results, we apply the UNIMODAL
HULC to construct a confidence band, and leave a more rigorous investigation of its validity to future work.

The performance of the UNIMODAL HULC for monotone regression is shown in Figure 9; for illustration,
we use t = 1/2. Tt shows adaptation and shows higher uncertainty around the change point. The confidence
band here is noticeably larger than the one from the ApapTivE HULC.

7 HulC for multivariate parameters

Suppose now that 6y € R4 A slight modification of the HULC still works if we replace the interval with
either the convex hull or the rectangular hull of the estimators.

As before, let 0 ,1 < j < B be independent estimators of §y € R%. The convex hull of a set of points
in R? is the smallest convex set containing these points. The smallest rectangle containing the estimators
9], 1< B, which we call the rectangular hull, is

RectHull({aj 1<y < ® [ min ek i, max e—kré\]

1<j<B 1<j<B

where ey, 1 < k < d represent the canonical basis vectors in R%; and (X) denotes the Cartesian product.

To compactly state our next result, we define the following coordinate-wise maximum median bias,

A = max max Med-bias.rg, (egé) (37)

1<k<d 1<j<B

Similar to Lemma 1, we have the following result (proved in Section S.6) on the coverage of the convex
hull and the smallest rectangle.
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Figure 9: Performance of the UNIMODAL HULC (with ¢ = 1/2 and A = 1/2) as sample size increases.
The black line is the true monotone function which is a constant 0 on [0,0.5] and is smooth on [0.5,1].
The confidence intervals using the UNIMODAL HULC along with union bound at 25 equi-spaced points on
[n=1/2,1 — n=1/2] are shown in black points. The confidence bands from these simultaneous confidence
intervals using (35) are shown in red and blue.

Lemma 3. Suppose éj, 1 < j < B are independent estimators of 8 € R?.

1. If P(cT(6; — 6p) < 0) = 1/2 for all ¢ € R\{0}, then for B> d +1,

IP’(H ¢ ConvHull({0, : 1 < '<B})) - LBiA B (38)
0 V. it s = 9B-1 P i :

2. Recall the definition of A in (37). For all B> 1,
~ 1 B B
P (90 ¢ RectHull({0, : 1 < j < B})) <d { <§ + A> + <§ - A) } . (39)

The proof of (38) follows from the works of Wendel (1962) and Wagner and Welzl (2001). The requirement
of more than d + 1 estimators can be restrictive in practice. This is especially so in near high dimensional
problems where the dimension d can grow with the sample size n. The proof of (39) follows by using the
union bound on the univariate confidence region in Lemma 1. Furthermore, to obtain (39) we only assume
that the coordinate-wise median bias of the estimators is bounded and this condition is much weaker than
the corresponding condition used to obtain (38).

Inequality (39) is written with a single parameter A as a bound on the median bias for all coordinates. It
is, however, easy to obtain similar bounds when the median bias is different for different coordinates; see the
proof of Lemma 3 for details. Similarly, we also note that, one need not compute B random vector estimators.

One might construct a different number of estimators for e] g and construct univariate confidence intervals

~(k
along each coordinate to obtain a multivariate confidence rectangle for 6. Formally, if CI((J /)d’ A is a confidence
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interval of level 1 — a/d for €] 6y constructed using Algorithm 1 with (a known) A, then
4 )
P& e ®CIa/d’A =z1-o.
k=1

~(k
Note that construction of CIS& /)d’ A requires By /g A estimators of ] . Following inequalities (7), we conclude
that

e { [log(lgf((ld—/i—aZ)A)J ’ Foi)(;(dz/)a )H < Bajaa < Loggigf%} = Bajaa = log(2d/a).

This implies that one only needs to split the original data X7, ..., X, into (about) log(2d/«) many batches.

In Lemma 3, (39) requires B > C'log(2d/a) for a constant C' for a coverage of 1 — . This can be compared
with the requirement B > d + 1 for the validity of (38). Hence, for moderate to high dimensional problems,
the smallest rectangle is an economical choice.

Similar to the univariate case, one need not know median bias of e;créj exactly. It suffices to know it
approximately as dictated by Proposition 1. The conclusions from Proposition 1 continue to hold true even

with a growing dimension. For instance, for asymptotically median unbiased estimators, if

log®(2d/c) - @

¢ < 1, 40
X AP(Boyoi0) (40)

for some constant @', then irrespective of the dimension d > 1, we obtain
P (90 € RectHull({f; : 1 < j < Ba/d,o})) >1-a.
It follows from Figures S.1 & S.2 that the right hand side of (40) can be as large as 0.4 for certain choices
of a, even for d » n. Similarly, Theorem 2 (in particular its implication (18)) yields
d

d d B3 B3
(k) — (k) « a/d,0 a/d,0
P(&ﬁ@l(ﬂa/d@)sE P(QogéCIa/d’o)éE d<1+¢’x - ):a(HQ:’X . )

k=1 k=1

Here the union bound is valid irrespective of what the dimension d is relative to the sample size n. If the

estimators are median bias reduced, then the same argument as above yields
d__(r B
P 90¢®012/)do < aflyey 0,
k=1 7 n
Note, once again, that B,/q,0 = log(2d/a) and hence the miscoverage probabilities are bounded by (1 +

¢’ log3(d/a)/n) (under (13)) and a(1 + € log®(d/a)/n?) (under median bias reduction).
We see that we only require log(d/a) = o(n'/?) (or log(d/a) = o(n®/°) in the bias reduced case) and we

do not require joint/multivariate distributional convergence whatsoever. This can be contrasted with the
results from the literature on high-dimensional central limit theorems (Belloni et al., 2018; Koike, 2021; Fang
and Koike, 2021; Deng, 2020; Chernozhukov et al., 2020). These results concern Gaussian approximation for
high-dimensional averages. Under certain moment assumptions on the joint distribution, these results imply
a joint Gaussian approximation with a minimum requirement of log(d) = o(n'/?) (Fang and Koike, 2021,
Proposition 1.1). Belloni et al. (2018, Theorem 2.3) uses the union bound based on moderate deviations

but still requires joint moment conditions and the condition that log(d) = o(n'/?). With usual estimators,
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the HULC also has the same dimensionality requirement while only making use of marginal median bias.
With median bias reduced estimators, the HULC only requires log(d) = o(n®/®) and this is even weaker than
log(d) = o(n'/?), which is the best possible dimension restriction for a Gaussian approximation (Das and
Lahiri, 2021, Theorem 3). It is worth mentioning that by slightly enlarging the bootstrap confidence regions,
the dimensionality requirement can be reduced to log(d) = o(n) in the case of mean estimation (Deng, 2020).

Although we have used the union bound above to obtain a coverage of 1 —« for a multivariate parameter,
we only required asymptotic median unbiasedness of e;cré\j marginally. There is no requirement whatsoever
on the asymptotic joint convergence or symmetry of 5j € R, Interestingly, such a result is not possible with

the usual confidence intervals. This point is discussed further in Section S.1 of the supplementary material.

8 Conclusions and Future Directions

In this paper, we developed and analyzed a simple and broadly applicable method, the HULC , for construct-
ing confidence sets, using the convex hull of estimates constructed on independent subsamples of the data.
All the HULC intervals presented have an asymptotic coverage either equal to or greater than 1 — . The
HuLC bypasses the difficult problem of estimating nuisance components in the limiting distribution, requires
fewer regularity conditions than the bootstrap and unlike subsampling does not require knowledge of the
rate of convergence of the underlying estimates on which it is based. These advantages, in many cases, come
at a surprisingly small price in the width of the interval. The width of the intervals are determined in general
by the accuracy of the underlying estimators, as well as their median bias. We also present two variants,
the ADAPTIVE HULC which estimates the median bias using subsampling, and the UNIMODAL HULC which
can be useful even in cases when the median bias is large so long as the limiting distribution is unimodal.
Beyond these methodological contributions, we also studied several challenging confidence set construction
problems and showed how our methods can often provide simple solutions to these problems.

From a computational standpoint, the HULC only requires computing the estimator B times where B
is typically around 5 or 10, and so is less computationally intensive than the bootstrap. In cases where
the underlying estimator has computational complexity which is super-linear in the number of samples,
computing B estimates on n/B samples can in fact be cheaper than computing a single estimate on the
whole dataset. These considerations are relevant no matter the dimension of the estimator.

Intuitively, the HULC is also quite robust in the sense that we only use qualitative properties, such as an
upper bound on the median bias, of the limiting distribution rather than its exact form. In finite samples, the
distribution of a statistic might be close to symmetric even if it does not resemble a Gaussian distribution.

Our analysis has not discussed the important problem of obtaining confidence intervals with uniform
coverage. This is especially important in irregular problems where the rate of convergence and limiting
distribution can vary across the parameter space. Developing this understanding is an important open

problem that we plan to address in future work.
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Supplement to
“The HulC: Confidence Regions from Convex Hulls”

Abstract

This supplement contains the proofs of all the main results in the paper.

S.1 Union bound with Wald intervals

If, for each 1 < k < d, the estimators egéj are asymptotically normal, then asymptotic normality implies
that for all v € (0,1),

‘]P’ ( By CIWald k)

- (1 - '7)’ < 5717
for some §,, converging to zero as n — o0; an example is (12). First order accurate confidence intervals (such
as Wald’s) satisfy 8,, = O(n~'/?), second order accurate ones satisfy 6, = O(n~") and so on. Taking v = o/d

and applying the union bound, we only obtain

d d
P (U {eito¢ Tl k}) SNICLY Loy ) <a+ds,
k=1 k=1

In order for the right hand side to be a asymptotically, one needs dd, = o(1). This is a very stringent
requirement, especially when the dimension d grows faster than the sample size n.

There is a simple way to resolve this issue following our proposed methodology The idea is to construct
1/2 Wald confidence regions for each coordinate e; 6y from each of ek 0 , 1< j<Band then take the union
of these regions. Formally, set By, = [log(d/a)/log( )]. For 1 < Bda, suppose CI 2% s the Wald
confidence region of coverage 1/2 based on e, 6 This means that

~VWald,k 1 . =
‘ ( GOGCI )—5 <6pg, forall 1<j<Bgq,1<k<d

The right hand side d,, 4 here depends on the dimension d because éj is computed based on n/Bd/a many
observations. Under these conditions, the following result provides a valid 1 — « confidence regions using
Wald’s confidence intervals and a union bound. The interesting aspect (similar to (11)) is that the coverage

implied by Proposition 3 is eventually finite sample (i.e., holds after some sample size) even though the
~Vald,k .
coverage of CIja is asymptotic.

Proposition 3. If

_ — Q 1/Bd,a 1
< = - = )
Bd,oc(sn,d < Bd,a [(d) 2:| ) (E 1)
then B
"~ Waldk
Plovg @ JCL | <a
k=1 j=1

Proof. Following the proof of Lemma 1, we obtain

D __yald,k 1 Baa
P 90¢UCI < (2+5n,d> <

e

The last inequality here follows from (E.1). Hence the union bound applies and proves the result. O
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Similar to the right hand side of (8), the right hand side of (E.1) is be bounded away from zero unless
d/a is a power of 2. Tt is worth noting that, unlike (11), the construction of the confidence region ®(,§:1 ufzd’f
~Vald,k

J
convergence of the estimators e] ;.

requires estimation of variance of the estimators and its validity requires (marginal) distributional

~

S.2 Proof of Lemma 1

It is clear that

(00 | i, 05, w03 ) =7 (60 < i, 55000 ) + 7 (s < 0 )
B R B
=[P, > 60) + [ [ P(6; < 60)
Jj=1 j=1
B R B R
-1 {1 —P@; < 90)} +1] {1 —P@; > 90)}
Jj=1 Jj=1

The result now follows from the definition (2) of A. Note that the inequality in result stems from the fact
that A in (2) is the maximum value over all estimators. Furthermore, we use the fact that P(6; < 6y)+P(0; >

6o) < 1. If this inequality is strict, then the inequality in the coverage is strict.

S.3 Proof of Theorem 1

The confidence interval from the HULC is either based on B, a estimators or based on B, a — 1 estimators.
The number of estimators used depends on the realization of the uniform random variable U in step 2 of
the HuLC. With probability 7, A, the confidence interval will be based on B, a — 1 estimators and with
probability 1 — 74 A, the confidence interval will be based on B, a estimators. Hence from Lemma 1, we
obtain

P (90 ¢ (/]\IQA) = T AP (90 ¢ [ min éj, max @])

1<j<Ba,a—1 ° 1<j<Ba,a—1

+ (1 — TmA)IP <90 ¢ [ min (/9}, max aj]) (E2)

1<j<Ba,a 1<j<Ba,a

< T%AP(B%A — I,A) + (1 — T%A)P(B%A; A) = Q.

This proves (5). Under the additional assumptions for (6), the only inequality in (E.2) becomes equality.
Firstly, P(éj =0p) = 0 for all j > 1 implies that

<j<B " 1<j<B

B B
P <90 ¢ [1111111 gj, max é}]) = H]P}(é\j > 90) + 1_[(1 7]?(5] > 90))
j=1 j=1

Secondly, the assumption that all the estimators have a median bias of A exactly, implies that this probability
is exactly (1/2 — A)B + (1/2 + A)B. This proves (6).
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S.4 Proof of Proposition 1

If A = A, then the conclusion is obvious. Consider the case, A # A. Note that P(B;A) is an increasing
function of A. Hence, for any 0 < A < A< 1/2, we have
P(B;A)  (1+2A)B 4+ (1—2A)B

LS PBA) = (1+28) P+ (1-2A)P

<maX{(1+2A)B (1_2A)B} ) <1+2£>B _ <1+ 2(£—A)>B (E.3)
h (14+2A)B" (1 -2A)8 1+2A (14 24)

- B
<(1+23-2) .
Reversing the roles of A and A, we conclude that if 0 < A <A <1 /2, then

(1+2(A—&))_B<§ngi;<1.

Hence, for all A, A € [0,1/2), and all B > 1, we have
~\—B ~ ~\B
P(B; A) (1 +2|A— A|> < P(B;A) < P(B;A) (1 +2lA— A|> . (E.4)
Because P(Bg.a;A) < a, using (E.4) with B = By A, we get P(Bya;A) < aif

(67

A X)) D
1+ 2|A— S 55 - .
(1+2 ) P(Ban:A) (E-5)
Similarly, P(Ba,a — 1;A) > «, using (E.4) with B = B, A — 1, we get P(Ba,a — 1; A) > aif
~\Baa=l  P(Boa—1A
(1+2|A—A\) S < % (E.6)

Note that both the ratios on the right hand side of (E.5) and (E.6) are at least 1. Furthermore, inequal-
ity (E.6) will be satisfied if (1 + 2|A — A|)Ba < P(Bg.a — 1; A)/a. Combining inequalities (E.5) and (E.6),
we get that if (8) holds true, then P(Bg a; A)<a< P(Ba.a — 1 A) and hence Boa =B, -
Note that in inequality (E.3), we used an inequality for the ratio P(B;A)/P(B;A). Observe that if
A =0, then P(B;A)/P(B;A) has zero derivative at A = 0. Observe that, with A = 0,
P(B;A)  (1+2A)8 +(1—-2A)B

1<
P(B;A) 2

1+2A%)B-2 4 (1 — 2A%)B-2

=1+ 0A+2B(B—1)A? ( 5 ,

for some A* € [0, A]. For B = 1, the right most term is zero and for B > 2, we have that

A x\B—2 _ 9A*\B—2 -
(1 +2A%) + (1 —2A%) < (1+2R%)8-2,

2
Because A* < A, we obtain for all B > 1,
P(B;A) <o (B
1 < =522 < 142B(B-1)A%1 +2A)B-2+, E.7
P(B;0) +2B( JAT(1+24) (E.7)
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By definition P(B, 0 — 1;0) > . Taking B = B, — 1 in (E.7), we obtain
P(Bao—1;A) = P(Bag—1;0)>a = P(Bso—1LA)>a. (E.8)

Again by definition P(By,0;0) < . Taking B = B, o in (E.7), we obtain

P(Boo:A) <, if 2Byo(Bag— DA2(1428)Bao-2s < ¢ o}
(Ba,o;A) <, i 0(Ba,o JAZ(1 +2A) P(Ba.o: 0) (E.9)

Combining (E.8) and (E.9), we obtain (9).
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Figure S.1: The plots show the right hand side of (8) on the y-axis as « changes from 0 to 0.15 and
A €{0,0.1,0.2,0.3,0.4}. In the left panel, we show the plot for a € (0,0.15) and in the right panel, we show
the plot for a € (0,0.005). The y-axis limits remain the same for both plots.

S.5 Proof of Theorem 2

Because the median bias of estimators from A(-) is ﬁ, we set

~ 1 ~ ~
A > max <2 - maX{IP’(aj > 0o), P(0; < 90)}>

1<j<B*

. 1 _ B¥ 1 _ B¥*
P(6y ¢ Cl,0) <El<2+A> + (2—A) ]

The right hand side involves an expectation because B* is a random variable satisfying

+

Lemma 1 implies that

HD(B* = Ba,g) =1- Ta,O» and P(B* = Ba,O — 1) = Ta,O-
This follows from (4). Therefore,

P(6 ¢ Clao) < Ta.0P(Bao — L A) + (1 = Ta.0)P(Bao; A). (E.10)
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Figure S.2: The plots show the right hand side of (10) on the y-axis as « changes from 0 to 0.15. In the left
panel, we show the plot for a € (0,0.15) and in the right panel, we show the plot for a € (0,0.004). The

y-axis limits remain the same for both plots.

From the proof of Proposition 1 (in particular (E.7)), it follows that

P(Ba,0§ A) P(Boz,O -1 5)
max
P(Ba’(); 0) ’ P(Ba70 — 1, 0)

} <1+ 2Bao(Bao — 1)A%(1 + 2A)Fa0=2)+ (E.11)
Substituting this inequality in (E.10) yields
P(0o ¢ (/ﬁa,O) < Ta,0P(Ba,o — 1;0) (1 +2Ba0(Bao — 1)A%(1 + 25)(3“’0_2)+>
+ (1= 7a0) P(Ba0; 0) (1 + 2Bag(Bao = DA%(1 + 28) P02+ )
— [7a.0P(Bao = 150) + (1 = 70,0)P(Ba; 0)] (1 + 2Ba,0(Bao — DAY (1 + 28)Fao=2+)
—a (1 +2Boo(Bao — 1)A2(1 + 2&)<Bmo—2>+) .

The last equality follows from the definition (4) of 7,,0. This completes the proof of upper bound in (16).

From the proof of Lemma 1, it follows, under the assumption of P(gj = ) = 0 and the exact median

bias of A, that
. 1 N B¥ 1 N B¥ 2

the last equality follows again from the definition of 7, in (4). This completes the proof of (17).
For the case where the estimators have an asymptotic median bias of A (# 0), we use the HULC to
obtain Cl, A, while the true finite sample median bias is bounded by A. In this case, to prove the upper

bound, we use the inequality

P(Baa;A) P(Baa —1;A) N Ba.a
: : <(1+2A-A ,
- { B 8) oo =18 | = (128-41)
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in place of (E.11). Using this inequality in (E.10) (with 7,0 replaced by 7a.a), we obtain

Ba,a

P(0y ¢ Cla.a) < [TaaP(Baa — 1;A) + (1 — Tan)P(Baa; A)] (1 +2|A - A|)

Ba,a

—a(1+2A-24))

From the proof of Lemma 1, it follows, under the assumption of ]P’(éj = 0p) = 0 and the exact median bias
of ﬁ, that

P(6 ¢ Cla.n) = P(Baa; A)(1 —7a.a) + P(Baa — 1;A)7an
~ _Boc.
> [P(Ba,as A)(1 = Ta,a) + P(Ba,a = i A)aal (1428 = A)) 77, using (E.4),
_BQ,A

:a(1+2|£—A|>

This proves the upper and lower bounds for a non-zero asymptotic median bias of A.

S.6 Proof of Lemmma 3

Equality (38) follows from Theorem 3 of Hayakawa et al. (2021). This result was originally proved in Wendel
(1962) under symmetry of éj —6y. Wagner and Welzl (2001) proved that the miscoverage probability is lower
bounded by the quantity on the right hand side whenever éj — 0 has an absolutely continuous distribution;
this does not require the assumption of P(c” (éj —0p) < 0) = 1/2 for all c e RA\{0}.

Equality (39) follows readily from Lemma 1 and union bound. Formally,

d
P (00 ¢ RectHull({0; : 1 < j < B})) = (U { By ¢ [ min_ 05, max e;gj] })

k

1
P(efo min eTg max eTé,»
Z k0¢ 1<;<B k‘”lgngkJ

s (s

where Ay is an upper bound on the median bias of egéj for 1 < j < B. Hence inequality (39) follows.

S.7 Proof of Proposition 2

For notational convenience and without loss of generality, we will prove the result when §j is computed based

ZXX

’L<]

on n observations. Set

This can be rewritten as
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In terms of & and Z = n='/2 > &, this becomes

5 2 2ucZ o2 2 o? ln
T ”_ﬁ+n—1[z 1]+n n;

It is clear that

T 2 o2 22—1 1 1
ﬁ_ﬁz o\/n n1+\/ﬁ(n1)lf( 25_1)]

i=1

Set W = y/n(n=t 3" | & — 1) = Opy(1). By the univariate Berry-Esseen bound, we get

E[£°]

IP(W <t)—P(N(0,E[¢*]) <t)| < E NG

Similarly, ,
E[I¢]°]
[P(Z <t) —P(N(0,1) <1t)| < GEIEENG
Inequality (E.12) implies that
1 E[¢°]
P (W] > BE[e logn)?) < -+
Clearly,
P<f<u2> —IP(ZZZ+ n*/_ﬁ1(22—1)+ nm—/1 <0)
=P (2 Z + fl (Z2 —1) + nm—/1 <0, [W| < (3E[¢4] logn)1/2>
+P (2 7+ n*/_ﬁl (Z2 —1) + nvifl <0, |[W| > (3E[¢*]log n)1/2>
<P (2“2 b V(g gy < ZEIENogn)' 1ogn)1/2)
n—1 n—1

+ P(|W| > (3E[¢*]1logn)"/?).

Similarly,
p(f < ,UQ) >P <2MZ+ ﬂ(ZQ -1)< _W)
o n—1 n—1
—P(|W| > (3E[¢"] logn)"/?).
Note that
(07482 1) < ) = {_a_ a22z4b(b+c) g0t a22z4b(b+c)}

a? + 4b(b + ¢)
{‘Z+2b S 2 }
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Using inequality (E.13), we obtain

214
P(aZ+b(Z*-1) <) =P(|Z+ <“+b(b+c>>

( 21 2b
a a? +4b(b + ¢) E[¢3]
_p (‘N(o,l) + 5| < o ) e RN
—a++/a? +4b(b + ¢) —a—+/a? +4b(b + ¢)
() e ()
L E[e]

Finally, note that

_ 2 _ 2 2
q)( at/a +4b(bic)>_q)< at+a -I—4b>‘< 1

\/a2+4b2i4bc \/a2+4b2I
4bh2? 4bh2

2b 2b V2T
1 ||
< x
V2w b

Combining the two inequalities above, we get

P(aZ +5(Z°~1) <¢) —‘D(W) —@(W)
+ 2 H-}— E[|§|3]
T V2r b T (E[€2])¥2n

=P(aZ +b(Z* - 1) <0)

] E[|¢]°]

2
N T e

Substituting these inequalities in (E.14) and (E.15), we conclude

i - fo (T o ()

2b 2b
(E.16)
2, _E[P) 2, E[E)
SV b (B[E)P2Yn n (B[EY)2yn
Here .
a=2ﬁ, b= \/ﬁ, and c=i7‘3E[§]logn.
o n—1 n—1
This implies
| _ [3E[§']logn
b N

Note that the right hand side of (E.16) is of order n~1/2 and does not depend on ; it only depends on

E[|¢],j = 3,4,6. Inequality (E.16) implies that the median bias of 7' can be obtained by taking the
maximum over all § € R of

L —20 + /4% + 4n/(n —1)%\ o —20 — /4602 + 4n/(n — 1)2
2 2y/n/(n—1) 2y/n/(n—1)

1 <I> —0+ /0% +n/(n—1)? o —0 — /02 +n/(n—1)?
2 Al —1) Al 1) ‘

It seems the maximum is attained at § = 0 for any n.
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S.8 Proof of Theorem 3

Throughout the proof, we write A instead of A for convenience. Define the event
&= {Ba,An = By a}.
and set

~(0) . ~ . A~ ~(1) . ~ . ~
Cl, := min 0;, min 0;1, and CI, := min 6;, min 6;].

1<j<Ba,a—1 7’ 1<j<Ba,a-1 1<j<Baa ' 1<j<Ba,a
Recall 74 A from (4). On the event £, we get that

— P(Bya: A —~(0 ~(0 —~(1 ~(1
i a=PBasid) g G o, a® -al,
" P(BO“A — 1,A> — P(BO(,A;A)

a

—~ (0 —~(1
We first bound the miscoverage probabilities of Cli) and CI(a) when event £ occurs. From the definition of
Ay, o and Lemma 1,

P({0y ¢ CI. '} 1 €) < P(6y ¢ OL. )

< P(Ban —1;A0.0)
P(B —1 An a)
(1+2(Bao — 1)(Bao — 2)A2 (1 + 24, 4)50), if A =0,
S 0= D(Bap — DAL, (1+28,,2)P0), 3
(142|An0 — Af)Baa—1, ifA %0
(1+2(B —2)A2 (14 2A,,)P20), if A =0,
< 2a X ' .
(1+ 2\AW - A|)BavA—1, ifA %0

(E.17)

The first inequality follows from proof of Proposition 1 (in particular (E.4)) while the second inequality
follows from the fact that P(Baya;A) < « and P(Baa — 1;A)/P(Ba,a;A) < 2 for any A € [0,1/2].
Similarly,

P({0 ¢ CL.}  €)

< P(BQ,A; An,a)
(E.18)
P(B(LA; An,a) < (1 + 2Ba’0(Ba7() — 1)A31,a(1 + 2An,a)B°‘*0), if A =0,

= P(Ba.a;A) < a X :
P(Ba,a;A) (14 2|Ap.0 — A])Bes, if A#0

—~sub
This completes the proof of (33). We will now prove a bound on the miscoverage probability of CI;u . Writing
Ey[-] to represent the expectation with respect to U which is a uniform random variable independent of the
data, we get

Eu[1{00 ¢ Cly NI} = 7, 31{00 ¢ Cly JI{E} + (1 — 7, 3)1{60 ¢ CL, J1{E}. (E.19)
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—~sub —~sub
Note that the miscoverage probability of CI;u is E[Ey[1{6, ¢ CIQu }]. Using inequalities (E.17) and (E.18),
we can readily obtain

(14 2Ba,0(Bao — 1)AZ (1 + 20,,.0) 0, if A =0,

P(dy ¢ OL. ) < P(E°) + 3a x .
(1+2|Ap0 — A])Bos, IEA %0

If A = 0, this only implies approximately 3« miscoverage probability. If A—A converges to zero in
probability, then 7 3 — 74,a converges to zero and we obtain asymptotically a miscoverage probability for
_—sub
CIZLu . This is the aim in proving (34). For this, we cannot readily use inequality (33) because T..A depend
—~ (0 —~(1
on the same data as CIEI ), and CIL ). In order to overcome this, we show 7 3 is close to 74 A in a relative
error sense. For this, it is not sufficient to know Bz = Ba,a. We need |A — A to be small. Consider the
event

& = {|A-Al <},

for some 7 € [0, Cy,a]. Recall from Proposition 1 implies that if |£ —A| < Cqa, then B 3 = By a. Hence,
if n < Cq,a, then & < € and P(£°) < P(£F). To control the difference between 7 3 and 7, A, we write 7, 3
as R

~l-a

S b-a
where @ = P(Bqg,a; A)/a and b= P(Boa — 1 A)/a. Similarly, we can write Ta.a = (1 —a)/(b—a) for a,b
defined similar to @, b with A replacing A. From inequalities (E.4) and (E.7), we get that

To,A

~ B @  P(Baa:A) ~ ,
14+2(A A Beas <%= A2 (14 9A — ABea, ifA
(1+2] ) 0" P(Banin) S1F2 )P, A0,
a P(BaA§A) 2 ~\B .
1< = : < (14 2Bao(Bao — 1)A%(1 + 2A)B0) if A = 0.
0~ P(Bun:d) 1+ 0(Bao — 1DA*(1 4 2A)7>0), i 0

The same inequalities also hold true for 8/1) For notational convenience, let us write £ < a/a < u and the
same for b/b. It is easy to verify that 7 3 is a decreasing function of @ and b and hence
1/u—a< <1/£—a 1—1/u< 1/ -1

x A x A Ta < .
(b—a) T (b—a) - b—a Tord T Tenls b—a

Recall that b = P(Bo,a —1;A)/a and a = P(Ba,a; A)/a. It follows that

(umﬁmgp&hA_Lm<;_4><b_a<-”&m#V<L
@ @

This yields

(1-1/w) < To A ~ Ta,A S ((11//;:2)

Hence, on event &,

r al < Dy 2B.0(Ba,o — 1)n?(1 + 2n)Bav if A =0, (E20)
a.A T Ta, Al X T = .
A (1/2 = A)~Y(1 + 2)Bes — 1|, if A 0.

Note that D, is non-random and only depends on 7 in the event &. Inequality (E.20) can be alternatively
written as |7, A — Ta,a|1{&} < D;.
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From (E.19) and the fact that CI°) = C1° for j = 0,1 on the event & (when 7 < Ca a), We get
Eu[1{0y ¢ CL. 11} = 7, 3 1{00 ¢ CLy J1{0} + (1 — 7, 3) 1100 ¢ Ol }1{Eo}
— raal{fo ¢ CLy J1{E) + <1 — raa)1{00 ¢ c“I(”}n{so}
+ (7,2 = Ta,a)1{b0 ¢ CI }1{50} (To.A = Ta,a)1{b ¢ CI }1{50}

© (E.21)
=TQ)AH{90¢CIQ }+(1—Ta,A)ﬂ{90¢CIa }
~=(0) ~(1) ¢
— Ta,al{fy ¢ CI, }1{E} — (1 — To,a)1{6p ¢ CI, }1{ES}
~=(0) ~(1)
+ (TQ’A — Ta,a)1{6y ¢ CI, " }1{&} — (T%A — Ta,a)1{6 ¢ CI, }1{&}.
Because )
P(eo ¢ CIQ’A) = E[T%A]l{eo ¢ CI } + (1 — Ta A)]l{eo ¢ CI }]
it follows from (E.21) and (E.20) that
—~sub ~ (1)
P(6o ¢ CL,") = P(0o ¢ Cla,a)| < 2P(€5) + D, E[1{f ¢ CLy '} + 1{do ¢ Cl,. }]. (E.22)

The second reminder term in (E.22) is controlled using the definition of D, in (E.20) and the bounds (E.17), (E.18)

~(0 ~(1
for P(0, ¢ CI(a )) and P(0, ¢ CIEX )). Finally, we use the fact that 2nB, A < 2Co,aABa.a < 1/2 (fromn < C,,
and Figure S.1) to bound D, for A # 0 as

(1+2n)Ber —1 g e?MPor 1 < 2B, pe?P>2 < 2y/enB, .

This completes the proof of (34).

S.9 Proof of Lemma 2

Set J(z) = P(W < z) and Jp(x) = P(rb(éb — 6y) < z). Note that by the triangle inequality, |A, — A| <
|L,,(0) — J(0)], so we obtain that,

K,
A, — A < Ki Z 1{ry (6 — ,) < 0} — J(0)
n j=1
<|2 Kn]l 09 _ 5.y <0p— - (’2)1 09 —0,) <0
\EJ=1 {Tb(b *n)\ }*@; {Tb(b )\ }
. © _
i 1{ry (0 — 8,) < 0} - J(0)
b/ j=1
| Kn 1 (3)
<=3 1re (0 — 0,) < 0} - o S 1y (0 — 0,) < 0}
=1 b/ j=1
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Fix ¢t > 0 such that ryt/r, < r*. Define the event

{rb(ﬁ — o) < rpt/rn}.

On the event £, we have

() | A
(nl) S 1 (87 — 0) < (8 — 60)} — J(0)
b) j=1
O
< ( ] Z 11{7"17(9(]) —0o) < rpt/rp} — J(0)
b/ j=1
L) -
+ @l 1{ry (6 — 60) < —ryt/rn} — J(0)
b) j=1
L @) »
< 6] S 1B — 00) < rut/ra} — Jy(rnt/ra)| + |y (rot/rn) — J(rot/ra)| + | T (3t /ra) — J(0)]
b/ j=1
7) _
42 | L{ry (6 — 00) < —rot/rn} — Jo(=rot /)| + | (=1t /1) — J(=rt /)| + [T (=rot/ry) — J(0)].

Because rpt/r, < r*, assumption (A2) implies that
max{|J (rpt/ry) — J(0)|,|J (=rpt/rn) — J(0)|} < Cryt/ry,.
From assumption (A1), we conclude
max{|Jy(rpt/rn) — J(rot/rn)|, | Jo(=rot/rn) — J(=1rpt/rn)|} < Op.

Therefore, on the event &,

K (%)

~ 1 on ~ A ~a A

An =A< |7 S 1@ — 0,) <0} - @ 3 1{n (65 — 8,) < 0)
" j=1 b/ j=1

~

+ |- Zu{m)(éﬁ — 00) < rot/rn} — Jo(rot/ra)

()Fl

-3

+ 2 1{ry(0) — 60) < —ryt/rn} — Jp(—=rt/rn)

+ 205 + 2Crpt/ry,.

Observe that é(j ) ,1 < j < K, are independent and identically distributed random variables conditional on
the data drawn from the finite population 9(3 ) ,1<j< (Z) Corollary 1 of Massart (1990) implies that

K, (+)
1 & ~5) 2 1 O log(2n) 1
P (‘I(nj; Lry(6;) = 0,) <0} = = > U (6 — 8) < 0}| = <o

(b) j=1 2Kn "
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Furthermore, note that (7) Z](b:)l ]l{rb(ééj) —6p) < —rpt/ry} is a non-degenerate U-statistics of order b and
with a kernel bounded between 0 and 1. Hence, Hoeffding’s inequality for U-statistics (Hoeffding, 1963,
inequality (5.7)) implies that
O
Pl N 1@ — 00) < rot/ra} — Jyl(rot/ra)| =

log(2n/b) <é
b) j=1 "

2[n/b]

Hence, with probability at least 1 —P(E¢) — (b+ 1)/n,

~ log(2 log(2
A, — Al < \/ 0g(2n) + \/ 0g(2n/b) + 20y + 2Crpt/ry,.

Now, note that
P(ES) = P(ry|By — Bo| > ot /rm) < 26, + P(IW| > 1).

Therefore, with probability at least 1 — 24, — (b + 1)/n — P(|W| > t),

- log(2 log(2
An—Ag\/Og( n) +\/°g( /) | og, + 2ett,

2K, 2[n/b] Tn

S.10 Proof of Theorem 4

Define

0B .= max 0;, and 02 .= min 0,
max 1<;<B 70 mln 1<j<B J-

Similarly, define 55,?&)( and 08 Set

F,(u) = P(rn,a(éj —0) <wu), and Fy(u)=PW <u).

The assumed hypothesis implies that |F), j(u) — Fw(u)| < 6n, for all uw and all 1 < j < B. Finally, define
the miscoverage probability

P(eo ¢ [é;z; —t(0B), — 9By §B) 1 y(§B) L8 ))]).

We will prove that for all B> 1, ¢ > 0, and A € [0,1/2],

Mp - 1
Q(B;t,A) = (1 -10B(1+ t)0n.a)+

(E.23)

The same bound holds true for Mp_1/Q(B — 1;¢,A). The definition of 7, ; implies that
NatQ@(Ba,,ait, A) + (1 = 00, )Q(Baa — 138, A) =
Combining this with the inequalities for Mp and Mp_1, the result is proved. Note that
Mi = P(f < 6,0 — t0L2 — 0,5)) + B0 > 010 + (B2 — B,1))

=P (Tn oz(gl(nu)l - 00) rn,a(ar(nix - 90)) +P (’I"n Oé(gr(nax - 90) <
=1Ip+1Ip.

1+t

n(B) _
1 +trn7a(0min 90))
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This implies that Mp can be written in terms of the smallest and largest order statistic of rn,a(éj — 6o),
1 < j < B. Bounding Iz will also provide a bound for ITg by taking negative random variables r,, o (6o —6;).

Under the assumption of continuous distribution for r,, o (8; —0o), we get following the proof of Lanke (1974,
Theorem 1) that

B oo
=X [T(Fle) ~ Fustin/ 1 00)E ) (B.24)

Recall that F, ;(x) and Fyy () are close and satisfy
Foi(z) — Fpi(tz/(1+1)) < Fw(x) — Fw (tz/(1 + 1)) + 205,05

and because the distribution of W is unimodal at 0, we get

Fri(z) — Fyi(ta/(14+ 1)) < 157

+ 200

This follows from the fact that unimodality implies Fyy(+) is convex below 0 and concave above 0 implying

F(Az) = F(0) + AM(F(z) — F(0)) for A € [0,1] and = > 0. Finally, using the closeness of F;, ;(-) and Fy ()

once again, we conclude

Fj(x) — Fn y(0)
1+t

0

N

Fn’l(.’b) — Fn)l(tl'/(l + t)) <

+ 40, 0.

Substituting this inequality in (E.24), we obtain

B o0 B—-1
I < 5J 5] 4no¢ Fn
B jzlfo ( o + 46, dF, ()

t

1 : * B-1
= W Z L (Fn,J<$) — FnJ(O) + 4(1 + t)(;n,a) an’J({L‘)

1 BJ1 B-1
- w— Fp ;(0) +4(1 + )0, 0 du
05T 2 )y, g (7 Fra @+ 404 D)

n,j

B
< prr e [0 P 40+ 05,
j=1

~

Applying the same calculations with r,, (6o — 6;) which has the distribution function G, (t) = 1 — F,,(—t)
would yield

B
: B-1 Z [(Fn,j(o) +4(1 + t)énya)B] .

< 5+—F57
Bl +1)F~1 o

Therefore,

Mp < ————
BB+t

1
Sl

B
! 51 2 [0 = Foj(0) + 4(1 + £)0n.0)" + (Fu i (0) + 4(1 + £)3n.0) "]
j=1

1— Fw(0) +5(1 4 t)8n,0) " + (Fw (0) + 5(1 + t)0n,0) "] .

The second inequality here follows again from the closeness of F), ;(0) and Fy (0). From the continuous

distribution assumption, the asymptotic median bias is given by A = [1/2 — P(W < 0)|. Hence, it follows
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that
B

B
1 1
Mp < (1+1t)~BF1 [(2 +5(1 +¢)0p,q — A) + <2 +5(1 +¢)0p,q + A)

Now consider Mp/Q(B;t, A).

Mg _ (1-2A+1001 + )0n.0)B + (14 2A +10(1 + t)6p.0) 8
Q(B;t,A) (1-2A)F + (1+2A)F ’

To bound the right hand side, consider the function g(x) = (x + 1 — 2A)8 + (z + 1 + 2A)8 for x > 0. It is
clear that

0 < g(x)—g(0) < JT gt)dt < Bx[(z+1-2A)°"1 4+ (z+1+2A)771].
0

Furthermore,
(x+1-2A)P"1 4 (2 + 1 +2A)B1 _ 1
(x+1-20)B + (z+1+2A)B  ~ x+1°

Hence, we conclude that g(z) < g(0)/(1 — Bz/(z + 1))+ and

Mg _ 1
Q(B;t,A) ~ (1—10B(1+1)dna)+

This completes the proof of (E.23) and implies (36).
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