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Abstract: A reservoir computer is a machine learning model that can be used to predict the future state(s) of time-
dependent processes, e.g. dynamical systems. In practice, data, in the form of a an input-signal is fed into the reservoir.
The trained reservoir is then used to predict the future state of this signal. We develop a new method for not only
predicting the future dynamics of the input-signal but also the future dynamics starting at an arbitrary initial condition
of a system. The systems we consider are the Lorenz, Rossler, and Thomas systems restricted to their attractors. This
method, which creates a global forecast, still uses only a single input-signal to train the reservoir but breaks the signal
into many smaller windowed signals. We examine how well this windowed method is able to forecast the dynamics of a
system starting at an arbitrary point on a system’s attractor and compare this to the standard method without windows.
We find that the standard method has almost no ability to forecast anything but the original input-signal while the
windowed method can capture the dynamics starting at most points on an attractor with significant accuracy.

Historically, reservoir computers have been used to fore-
cast the future state of dynamical systems by training the
reservoir on a single finite trajectory of the system. While
some features of the system can be deduced from these
reservoirs, the ability to create a global forecast using such
reservoirs has been out of reach. Here we describe how
one can create a global forecast by simultaneously training
areservoir with an initial condition mapping. The result is
a reservoir that can be used to predict the future dynam-
ics starting at an arbitrary initial condition of the system.
The creating of the initial condition mapping is made pos-
sible by breaking the input-signal in many smaller input
signals, which we refer to as the windowed method.

I.  INTRODUCTION

A reservoir computer is a machine learning model that can
be used to predict the future state of time-dependent pro-
cesses, in particular those associated with a dynamical system.
Applications of reservoir computers include the modeling of
dynamical systems, pattern classification, modeling robotics
controllers, and event predictions. Recent applications in-
clude attractor reconstruction!, predicting critical transitions,
bifurcations, and phase in dynamical systems>>, separating
chaotic signals*>, reconstructing dynamical states from par-
tial observations®’, prediction and/or forecasting of chaotic
systems®?.

The particular reservoirs we study are descendants of echo
state networks!? and liquid state machines!!, and are of the
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ODE variety considered by Lu!? et al. To train this type of
reservoir, data, in the form of an input-signal, is fed into the
reservoir creating a response from each of the reservoir’s in-
ternal nodes. These nodes, which are linked together to form
the reservoir’s internal network, respond both according to the
input-signal and their interactions they have with other nodes.
These responses are projected onto the original input-signal
creating a trained version of the reservoir (see Section II).

The process of predicting the future state of a chaotic sys-
tem is known as attractor reconstruction, which has been
studied at least since the 1980s using a wide variety of ma-
chine learning models'3>~!7. This includes neural networks
and deep learning reservoir models. In these studies, reservoir
computers were found to be competitive with deep learning
methods, even outperforming RNNs and LSTMs on specific
tasks including the reconstruction of dynamical systems!3-20,
In such tasks, reservoirs have been shown to be able to
learn and reproduce characteristic features of chaotic sys-
tems including their first return maps, Lyapunov exponents,
etc.12:21-23

In practice, a reservoir computer is trained on some input-
signal and then used to predict the future state of this signal.
We refer to this prediction as a local forecast as it predicts the
dynamics of the input-signal only. The goal of this paper is
to describe a process that creates a global forecast from an
input-signal, one that can not only predict the future state of
the original input-signal but can be used to learn a system in its
entirety allowing one to predict the future state of that system
starting at an arbitrary initial condition.

The notion of a global forecast as well as applications of
this idea have been previously considered by a number of
authors?*2°, However, the difference between this method
and the method presented here is that, in the former, predic-
tions from an arbitrary initial point use a local section of the
associated trajectory to create a forecast. The method pro-
posed here uses no such local information and does not require
any further processing once training is complete.

The idea is to create an initial condition mapping ®: A — R
that relates the initial conditions in the state space A of the dy-



namical system to points in the reservoir space R in a way
that respects the dynamics of the original system (see Section
III). This initial condition mapping P is trained alongside the
reservoir so that it is able to invert the reservoir’s output map-
ping. To ensure that ® is able to match the system’s initial
conditions with the reservoir’s initial conditions we break the
input-signal into smaller, potentially overlapping training sig-
nals which we refer to as windows (see Section IV). When the
reservoir and initial condition mapping are trained over these
windows they effectively learn how to make a local prediction
near each of these windows. The result is a trained reservoir
and a mapping P that can be used to make a global forecast
of a system based on a single input-signal.

We refer to this process of training a reservoir and initial
condition mapping on a set of windowed input-signals as the
windowed method. To test the effectiveness of this method
we investigate how the windowed method performs on the
Lorenz, Rossler, and Thomas systems, specifically on recreat-
ing the global dynamics on each of their respective attractors.
On these systems we compare the windowed method to the
standard and partial methods. The standard method uses the
standard reservoir computer with no initial condition mapping
and no windows. The partial method uses an initial condition
mapping but no windows.

We find that the windowed method significantly out per-
forms both the standard and partial methods at creating a
global forecast on each of the Lorenz, Rossler, and Thomas
attractors (see Section VI). As the standard method has no
effective way to relate system states to reservoir states this
method fails at nearly every point to predict the dynamics of
each system. The partial method has slightly better prediction
accuracy, at least on subsets of the system’s attractor, but is far
less accurate overall when compared to the windowed method
(cf. Figures 8, 9, and 11).

As our goal is to understand the prediction accuracy of the
windowed method we also prove a few results related to error-
bounds describing the window method’s ability to accurately
create a global forecast. These results give bounds based on
Lipschitz and Lyapunov properties of the systems (see Theo-
rems 1 and 2, respectively). These bounds help us to under-
stand why we should expect the windowed method to work
and also give sufficient conditions for improving the accuracy
of a reservoir computer in terms of several simpler considera-
tions.

The paper is organized as follows. In Section II we de-
scribe the specific reservoir computing model we consider and
describe how this model is typically used to make local fore-
casts. In Section III we introduce the concept of a global fore-
cast, one that begins at an arbitrary point in the system. This
section describes how initial condition mappings are trained
alongside the reservoir. In Section IV we describe the win-
dowed method, which we use to create global forecasts. In
Section V we describe our numerical setup and in Section VI
we evaluate the window method’s accuracy compare with the
standard and partial methods. In Section VII we prove a num-
ber of error-bounds related to the accuracy of the windowed
method, which we prove in the Appendix. In Section VIII we
give some concluding remarks and describe a few open ques-

tions.

Il.  RESERVOIR COMPUTING

A reservoir computer is a machine learning model used to
predict the future state of time-dependent processes”’. For an
input-signal u(¢) € R where t € [0, T] the standard goal is to
use a reservoir to predict the future values of this time-series,
i.e. predict u(¢) for + > 7. This is done in a sequence of
three steps which we refer to as processing, aggregation, and
prediction.

In the processing step, the nodes of a network are driven by
the input-signal u(z) over the raining interval t € [0,T]. In
reservoir computing, this network, which we refer to the as
the reservoir’s processing network, can be any network. Here,
the network is given by a matrix A € R"*" where the entry
A;; € R represents the weighted connection from node j to
node i.

In the model, the processing network’s nodes evolve ac-
cording to the differential equation

() =Yx(0) + F(pAT() + oWiu()] (1)

fort € [0, T] where r(r) € R” represents the state of the nodes
within the reservoir at time 7 € [0, 7]. The matrix W;, € R**"
in Equation (1) is fixed and sends a linear combination of the
m-dimensional training data u(z) € R™ to each of the n reser-
voir nodes. Similar to other reservoirs studied in previous
work, we choose each entry of W, uniformly according to the
distribution [Wjy|;; ~ U(—1,1). The function f : R" — R" in
Equation (1) is applied element-wise and 7, p, and ¢ are non-
negative scalar parameters of the reservoir.

As the input-signal u(¢) appears in Equation (1), the nodes
of the reservoir’s processing network depend on, or are driven
by, this time-series. The nodes’ response to this input signal
is given by the solution r(z) to this differential equation over
the training period ¢ € [0,T] (see Figure 1). In the training
process, the initial reservoir state r(0) = ry is typically initial-
ized randomly, with each coordinate drawn from a uniform
distribution. The range of this distribution depends on the ac-
tivation function f, since the latter influences the usual range
of the reservoir computer nodes’ states.

The second step in creating a trained reservoir is aggregat-
ing these network responses. The type of aggregation we con-
sider is done by first discretizing the time interval [0, 7] into
equal time-steps of length 7. The result is the set of discrete
time-steps {ti}fzo where t; = i-7 and £- 7 = T. Using this
time-discretization, we compute the matrix

4
Wou = argmin | 3" [[Wr(s) —u(n)[3 +e|[W3| @
WeRmXn | j—0

that minimizes the sum on the right. Here, the parameter o >
0 specifies the amount of regularization in this minimization
process which is used to prevent overfitting.

The result is the mapping Wy, € R™*", which is used
to aggregate the network responses into the vector u(z) =
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FIG. 1. Reservoir Processing: A reservoir computer is trained by
first driving the nodes of its processing network, given by A € R"*"
(center), by an input-signal u(z) € R™ over the time interval ¢ € [0, 7]
(left). The response r(r) € R" (right) of the nodes to the input-signal
over the same time interval is given by the solution to Equation (1).

Wour(t) € R™ (see Figure 2). In practice, a is typically small
so that the aggregated responses can, roughly speaking, be
considered to be a proxy for the input-signal, i.e. @(¢) ~ u(z)
over the training period ¢ € [0,T].
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r(t) € R” (t) = Wyyur(t) € R

FIG. 2. Response Aggregation: The response vector r(f) € R” (left)
is aggregated by determining the matrix Wy € R™*" that minimizes
the sum in Equation (2). The result is the aggregated response vector
0(r) = Woyuer(r) € R™ (right) that best approximates the input-signal
a(r) forz € 0,T].

The last step, the prediction step, is done by replacing the
input-signal u(z) by the aggregate response vector @(¢) in
Equation (1). This results in the autonomous differential equa-
tion

%f'(z) — A8+ F([PA + oW Wouli(1))] (3
which no longer depends on the training data. Because of
this we refer to Equation (3) as the trained reservoir. This
system has the new aggregate network given by the matrix
A= PA + Wiy Woye € R™*", as it combines the original ad-
jacency matrix A with a scaled version of the matrix Wi, Wy
that aggregates the responses £(¢).

Once a reservoir is trained, the goal is typically to make pre-
dictions regarding the future state of the input-signal beyond
its training period. This is done by initializing the trained sys-
tem at the value #(7') = r(T) at the end of the training period.
This produces the time series #(¢) for r € (T, o) from which
we create the predicted time-series 4(t) = Wout(t) € R™ for
all future times (see Figure 3).

One can think of the predicted time-series @(¢) as a forecast
of the future state of a given input-signal u(z). The forecast is

x(T) = #(T) Wour € R™
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FIG. 3. Reservoir Prediction: Replacing the input-signal u(¢) in
Equation (1) by the aggregate response vector @(z) results in the
trained reservoir given by Equation (3). Once the input-signal is re-
moved the trained reservoir drives itself giving the output £(z) € R™
(right) and the predicted time-series i(¢) = W, #(¢) that can be com-
pared to the true time-series.

local in the sense that it is a continuation of the input-signal
only. We call this type of forecast a local forecast, in contrast
with global forecasts which we define in Section III.

In this paper we consider local and global forecasts of
the following three chaotic dynamical systems: the Lorenz,
Rossler, and Thomas systems. These are given by the follow-
ing equations: The Lorenz system

dx/dt = 10(y — x)
dy/dt =x(28 —z) —y 4)
dz/dt = xy —82/3;

the Rossler system

dx/dt =—y—z
dy/dt =x+0.2y ®)
dz/dt =02+ z(x—5.7);

and the Thomas system

dx/dt = sin(y) —0.1998x
dy/dt = sin(z) —0.1998y (6)
dz/dt = sin(x) — 0.1998z.

In each system, parameters are chosen to yield chaotic
dynamics?$-30,

Forecasts on such systems are typically accurate for only
a short amount of time owning to the chaotic nature of the
system’s dynamics on its attractor. To determine how well our
predicted time-series approximates the true dynamics of these
systems, a useful measure of accuracy is a reservoir’s valid
prediction time.

Definition 1. (Valid Prediction Time) Let d(-,-) be a metric
and let € > 0 be a tolerance. The valid prediction time (VPT)
of a prediction time-series 0(t) beginning at time t = T asso-
ciated with the signal u(t) is the largest value t, =T, — T > 0
such that the error

d(u(r),a(r)) <e

forallt € [T, T.].
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FIG. 4. Top: The response vectors r(r) € R" for 7 € [0,T] and #(¢) € R" for r > T are shown for the reservoir in Example 1 trained on the

Lorenz attractor. Bottom: A comparison between the true trajectory u(s) and the predicted trajectory @(r) =

Wout(2) for ¢ > T is shown in

black and orange, respectively. The three curves indicate the x, y, and z-coordinates of each trajectory. The dashed line indicates the valid

prediction time (VPT) t, = T, —

using the NRMSE-Norm d(-,-) used in Section V (see Definition 3).

In other words, the VPT is a measure of how long the pre-
dicted time-series @(¢) stays close to the true time-series u(?)
within the tolerance €. This gives a measure of how well a
trained reservoir can predict the future dynamics of the input
signal beyond time 7 when its training period ends.

Example 1. (Lorenz Reservoir) Let u(t) € R? for t € [0,T)]
be a finite trajectory sampled from the Lorenz attractor where
T = 2. To train a computer reservoir on this input-signal we
choose our processing network to be an Erdds-Renyi graph
with n = 50 nodes with the probability p = 0.1 of an edge
forming between any two nodes (see Section V for more de-
tails). For y=8.780, p = 16.81, and ¢ = 0.187 the resulting
response vector r(t) € R fort € [0,T] is shown in Figure 4
(top). Computing W o, using o = 2.7 x 1078 yields the aggre-
gate network with adjacency matrix A. From this we compute
the aggregate response vector 0(t) shown together with the
true trajectory u(t) for t > T in Figure 4 (bottom).

The agreement between the actual and predicted trajecto-
ries in this example is reasonably good, at least initially. In
particular, with € = 0.5 the inequality d(0(t),u(t)) < € holds
only so long as t € [2,4.45] meaning that, for the NRMSE-
Norm d(-,-) given in Section V (see Definition 3) and the
tolerance € = 0.5, we have a valid prediction time of length
t, = 2.45.

In order to understand why (or why not) a reservoir com-
puter makes accurate predictions, it is helpful to have a knowl-
edge of some simpler, more concrete properties that lead to
accurate predictions. For brevity, suppose we can write the
dynamical system ODE as

du(r)/dt =

and the trained reservoir ODE as

di(t)/dt = h(E(r)). ®

g(u()) )

T =2.45, which is the first time at which the inequality d(@(7),u

(1)) < € is exceeded for the tolerance € = 0.5

In this setting, both the true trajectory u(¢) and prediction @(7)
can be thought of as solutions to differential equation initial
value problems. So, a natural heuristic for u(z) and i(r) to be
near each other is for (1) their initial conditions to be nearby,
and (2) their derivatives to be similar. In terms of the reser-
voir’s initial condition £7 = #(T), the first of these can be
written as

W(T) = Woutr = u(T). )

In terms of the ODE functions, the second condition can be
written as

(1) = Wouh(£(1)) ~ g(Wou(t)) (10)

for t > T'; in words, the derivative of the prediction is roughly
what it should be if it were an actual trajectory of the dynam-
ical system.

In Section VII, we demonstrate that conditions (9) and (10)
are in fact sufficient for accurate predictions, and we give sev-
eral bounds on the prediction error in terms of these. Con-
sequentially, these two conditions will be helpful for under-
standing why certain training methods lead to better or worse
accuracy as we proceed through this paper.

As reservoir computers are known to have the ability to cre-
ate accurate local forecasts, it is perhaps unsurprising that for
such reservoirs, both conditions (9) and (10) typically hold.
However, it may be surprising that using only a single training
signal, we can predict the future state of the system starting at
an arbitrary initial condition, even one that is not a part of the
input signal. This global forecasting method is described in
the following section.

Ill. GLOBAL FORECASTS

Suppose we have a reservoir trained on an input-signal u(z)
over the time interval ¢ € [0,T]. A local forecast @i(¢) starts at



the point (7)) ~ u(T) € R™ and thereafter is a prediction of
the input-signal (cf. Example 1). In this section, we discuss
whether is it possible to create a reservoir computer using the
same input-signal to predict the future dynamics of the system
starting at an arbitrary point v € R"”. We refer to this as the
global forecasting task.

In this and following sections, we will use u(z) for ¢t € [0,7]
to denote the input or training signal, with initial condition
u(0) =u. We let v(¢) for t+ > T denote the signal starting at
v(T) = v that we are attempting to predict; and ¥(z) to denote
our prediction for this initial condition.

To create a global forecast, we first need a way to relate
any initial condition v € R” to a point £(7') € R" in reservoir
space. It is very unlikely that selecting the initial condition
at random will work. Rather, we require a map ® : A — R
that will map initial conditions v € A C R” on the attractor
A of the dynamical system to initial conditions ¥7 € R C R”
of the reservoir space R. We call such a function ® an initial
condition mapping.

To create such a map, note that conditions (9) and (10) are
still applicable to the prediction accuracy for the global fore-
casting task, with u replaced by v as needed. We can write
these conditions in terms of & as follows.

First, we need the reservoir’s prediction to start at the the
correct initial condition. We have 7 = ®(v), so applying con-
dition (9) we require that

Wou®(v) =~ v. (11)

Equivalently, we require Wy, and & to be approximate pseu-
doinverses. Additionally, for (11) to hold for any v € A on the
attractor, we also need for @ to be injective. Since R C R”
has, in practice, a higher dimension than A C R™, then for the
functions we consider this is easy to guarantee.

Second, we need the reservoir’s dynamics to be accurate
at the very least along the trajectory of the reservoir states
starting from the chosen initial condition ®(v). This condition
can be written in terms of ® and Wy as

Wouth(£(1)) =~ g(Wouk(t)) (12)
fort > T and for #7 = ®(v).

An additional necessary condition for Equation (12) to hold
is the following. It is easily verified that if the range of each
coordinate of the activation function f : R” — R” is contained
in the interval [a,b], then each coordinate of the reservoir
state will be attracted towards this interval and cannot leave
it once entered (cf. Equation 1). We note this is the case
for most of the standard activation functions (e.g. sigmoid,
hyperbolic tangent, etc.). In other words, all states outside
[a,b]" C R" will initially have transient dynamics and all of
the non-transient reservoir dynamics will be inside this set.
These transient states are generally unhelpful for learning the
dynamics of the system’s attractor as their short-term behav-
ior away from the attractor is very different from the long-term
behavior on or near the attractor.

Thus, any initial condition mapping & with property (12)
will need to map the dynamical system attractor into [a,b]".
If this is not the case, then for points v € A such that ®(v) ¢

[a,b]", the short-term behavior of the reservoir will likely not
approximate the behavior of the dynamical system very well.
This restricts the class of functions that are likely to work well
as initial condition mappings.

In Section VII we show that these two conditions, Equa-
tions (9) and (10), are sufficient for accurate global predic-
tions. This suggests that conditions (11) and (12), as well as
requiring injectivity and that the image is contained in [a,b]",
are useful criteria for an initial condition mapping.

An effective way to make an initial condition mapping
® : A — R satisfying conditions (11) and (12) is to simply
fix the mapping beforehand and use that same mapping in the
training process. Then, when Wy, is created, we can make
it map the training reservoir initial condition ry = ®(u) back
to the input signal initial condition, as well as map reservoir
dynamics to system dynamics as before. The result of this
process is that conditions (11) and (12) are satisfied, at least
for points v € A near u.

Rather than thinking of & as finding points in the reservoir
space that have the correct dynamics, we can think about this
approach as forcing Wy, to learn the inverse of &, as well
as mapping the reservoir dynamics to the dynamical system’s
dynamics, which respectively fulfills conditions (11) and (12).
The desired inverse relationship between ® and W, is illus-
trated in Figure 5.

FIG. 5. An illustration of the relationship between the initial condi-
tion mapping @ : R3 — R” and the output mapping Woy : R — R3
for the Lorenz attractor. On the left is the training signal with its
initial condition u marked. The initial reservoir condition ry € R” is
shown on the right along with the reservoir’s response to this initial
condition. By fixing ® before the training process, Woyue Will ap-
proximate the inverse of ®, meaning that it maps an arbitrary reser-
voir initial conditions #7 = ®(v) back to the corresponding original
point v € R? on the dynamical system. This property enables the
finding of a reservoir state that satisfies (11) and (12) given any ini-
tial condition on the attractor and allowing the reservoir computer to
accurately predict the dynamics from any such point.

Motivated by the ideas discussed above, we have found sev-
eral maps & that work well in practice. We will, for the sake
of simplicity, restrict ourselves to considering the following
map:

O(v) = f(oWiny) (13)

where f is the activation function of the reservoir ODE. This
mapping can be seen as sending an arbitrary v € A to an ap-



proximation of a fixed point of the untrained reservoir ODE
with constant input-signal u(¢) = v (cf. Equation (1)). More
precisely, this is the fixed point if the term pAf(¢) in Equation
(1) is set to zero.

Itis very easy to verify that this map ® is injective. It will be
so as long as f is injective and Wj;, has full rank, which is the
case for almost all matrices of its dimensions. This map P also
has the property that it maps the attractor A into the reservoir’s
attracting region [a,b]". It is thus a reasonable choice based
on the discussion above.

With the addition of & to the usual reservoir computer algo-
rithm, we are closer to our goal of creating a global forecast
(see part (b) of Figure 9, where this approach is called the
partial training method; this is in contrast to the windowed
training method, discussed in the next section). As can be
seen, with this training method the reservoir computer usually
is able to make accurate predictions on a small region of the
attractor, usually near the initial condition u(0) of the origi-
nal training signal. We will return to this pattern in the next
section.

In contrast, it turns out to be very difficult to choose a map
® that satisfies both of these conditions after the reservoir has
been trained. Condition (11) regarding initial conditions is
not hard to satisfy by itself. For example, one can just choose
P = W(‘,ut, where Wim is any pseudoinverse of Wo,. Con-
dition (12), on the other hand, is where the difficulty lies. A
generic pseudoinverse will not map A into [a,b]"; even if care-
fully chosen to do so, and there is no reason to expect that
condition (12) will be satisfied. For this reason, given a reser-
voir computer that has already been trained, there does not
seem to be a good approach to choosing a map ¢ with this
property. By choosing the function @ beforehand, we instead
force our minimization process (2) to create Wo,,; with the re-
quired properties.

IV. WINDOWED TRAINING METHOD

We now consider how to increase the number of initial con-
ditions on the dynamical system attractor A at which the reser-
voir computer can make accurate predictions. When using
an initial condition mapping, the major issue we face is that
Wout®(v) & v only on a small region of the attractor A. This
happens because there is only a single reservoir initial con-
dition ry = ®(u) that Wy, needs to map back to u. The re-
gression used to find Wy results in W, ®(u) = u. However,
this is all that is guaranteed. The matrix W, will approxi-
mate ®~! only near ro, so condition (11) will only hold for
other initial conditions v € A near the original u.

The solution to this problem is to add more pairs of points
that Wy, needs to map correctly from the reservoir space to
the attractor. As it turns out, a useful way of doing this while
also allowing W, to learn the system’s dynamics correctly is
to break our training signal into windows.

Definition 2. (Training Windows) A set of windows for a
training signal u(t) defined for t € [0,T] is a finite collection

of intervals {W;}!_, that cover [0, T). That is,

O%:mﬂ

We denote each interval as ¥; = [a;, b;] and note that the win-
dows are not required to be disjoint.

We parameterize the windows by two variables: window
size L € (0,T] and overlap v € [0,1). Window size is the
length of each window, i.e. L=b; —aq; foralli=1,... ¢. The
overlap v is the proportion of how much each window overlaps
with the previous one. Thus, each window is given inductively

by [a1,b1] = [0,L] and [aj11,bi1] = [a;i + (1 = V)L, @11 + L]
fori=1,...,£—1, where there are { = 1+ {ﬁ windows
in total.

To create a global forecast, we proceed similarly to the
method described in Section II of sequentially processing, ag-
gregating, and predicting to produce the trained reservoir and
the initial condition mapping:

* Processing: The processing step is done separately on
each window. For each window ¥; = [a;, b;], we choose
the reservoir initial condition as ®(u(a;)), run the reser-
voir until time b;, and collect all of the responses.

* Aggregation: Aggregation is done on all windows to-
gether at once. Since we are using least squares for this
step, where it does not matter whether adjacent data
points are related to each other, this poses no difficul-
ties. We denote the time discretization of window ¥;
as {t, ]} " and the reservoir response on ¥; as r;. Then

the new least squares problem for determining W, can
be written as follows:

i
2
Wyt = argmin [Z HWI} tij) — (tl-j)HeraHWH%]
WeRm=n | =1 120
l
— argmin | 3 (IWe(u(ra)) - u()|
WeRm>n [ j—1

+ HWl’i(tij)—“(lij)H;)+0‘||W||§]~ (14)

On each window, the reservoir response is mapped back
onto the training signal of the same window.

* Prediction: The prediction step is done as before, with

7 = ®(v) (see Equation (3)).

We call this algorithm the windowed training method. An il-
lustration of this training process is given in Figure 6.

The benefit of using the windowed training algorithm is
that at the start of each window at time ¢ = a;, a reservoir ini-
tial condition is chosen as ®(u(a;)). For each of these initial
conditions, the minimization process for W, requires that it
maps each of these back to u(a;). Thus, Wou®(u(a;)) ~u(a;)
for each 1 <i < /¢. As a result, Wy, will approximate the
pseudoinverse of @ for points in A near any of the u(a;),
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FIG. 6. An illustration of the windowed training method using windows {‘Pi}f:] . The input-signal u(r) € R (top left) is first broken apart into
possibly overlapping windows (bottom left). For each of the windows ¥; = [a;, b;], a reservoir initial condition is chosen using @ : R™ — R”,
and the reservoir’s response to the input-signal u(z) is found (top right). Finally, the responses across all of the window are aggregated back
using Tikhanov regression to approximate the individual training signals (bottom right), obtaining the output mapping Wy, (see Equation
(14)). For each window, the reservoir response is aggregated back to the training signal on just that window, regardless of whether that window
overlaps with other windows. Because the reservoir computer is trained using many initial conditions spread across the attractor then Wy
should be an accurate approximation of ®~!. This allows the reservoir computer to make much more accurate predictions across the attractor
when compared to the standard method (cf. Figures 8 and 9).

which is the mechanism that allows us to create a global fore-
cast from a single training signal. This can be thought of as o
allowing the reservoir computer to learn how to make local
predictions in the vicinity of each of the windows.

In Figure 7 we give an example of the effect of using this
training algorithm. The top of the figure illustrates the train-
ing u(r) signal and the points used as the start of each win-
dow. In the bottom of the figure we see that in the regions
with more windows global predictions are more accurate than
those where there are less windows. This is due not only to
the dynamics being more accurately learned near the training
signal, but also to the initial conditions being mapped more
accurately.

<

Valid Prediction Time
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V. METHODOLOGY AND NUMERICAL SETUP 0

We now describe our numerical experiments to compare the

following three training algorithms: FIG. 7. Top: A training signal taken from the Lorenz attractor is

shown which is used to train a reservoir computer via the windowed

. L. method. The dots along the path indicate points at the start of each
1. Standard Method: The standard method is the origi- window. Bottom: A total of 8,000 initial conditions are sampled from

nal method described in Section II typically used to cre- the Lorenz attractor. The reservoir computer trained on the signal

ate local forecasts. It uses no initial condition mapping shown above is used to predict the trajectory starting from each point

or windows during training, and the pseudoinverse of  and each point is colored according to the resevoir’s VPT starting

Wout for choosing initial conditions for the global fore- at each point. Note that this training signal has comparatively few

casting task. windows on the right half of the attractor, which correlates with the
lower valid prediction times for most of the initial conditions on that

2. Partial Method: The partial method creates a global side.
forecast using a fixed initial condition map & but no
windows.



3. Windowed Method: The windowed method, creates a
global forecast using both and initial condition mapping
® and a set of windows {¥;}/_,.

We include the partial method to better isolate the effect of
the initial condition mappings from the full window method.
We compare these three methods on three chaotic systems: the
Lorenz attractor, the Rossler system, and the Thomas system
given in Section II (see Equations (4)—(6)).

Our primary goal is to compare the ability of these three al-
gorithms to predict a time series v(¢) where this is the solution
to the original system starting at v € A at time t = T, i.e. the
true trajectory starting at v. We let ¥(z) = W (¢) denote our
predicted trajectory starting at v, where #(¢) is the response of
the reservoir. As before, we denote the input-signal used to
train the reservoir as u(¢) forr € [0,7].

Our goal is to understand how the error ||¥(¢) — v(¢)]|| grows
for a wide range points v € A. Specifically, we want to un-
derstand how the VPTs for the global prediction task are dis-
tributed for the Lorenz, Rossler, and Thomas systems.

To examine these distributions we must first pick a met-
ric d(-,-) and a tolerance € > 0 (see Definition 1). For the
tolerance we choose € = 0.5. For the metric we choose the
normalized root mean square error (NRMSE).

Definition 3. (NRMSE-Norm) For a trajectory u(t) and an
approximation (t) fort > T, let ©; be the sample standard de-
viation of the ith coordinate of u(t). Let S = diag(oy,...,0n)
be the diagonal matrix of standard deviations. Then the
NRMSE at time t is

N(u(r),a()) = ﬁus—%u(r) —a()]),.

This particular version of NRMSE normalizes each coor-
dinate of the true trajectory separately across time, and then
computes the RMSE across the coordinate axes.

Before we can conduct any experiments we also need to
choose hyperparameter values. The three types of hyper-
paramters we need are network hyperparameters py,;, reser-
voir parameters p,s, and the windowed parameters p,i,.
Here network hyperparameters describe the processing net-
works we will use in our numerical experiments. The
type of processing network we use are random digraphs
or directed Erdis-Renyi graphs commonly used in reservoir
computing'2. The random digraph model is a model in which
n € N is the number of network nodes and p € [0,1] is the
probability that a directed edge is placed from node i to node
Jj in the network for any pair of possibly non-distinct nodes
i and j. The network parameters we consider are the pair
Puer = (n,¢) where ¢ = p-n is the mean in/out-degree of the
network.

For our experiments we selected nine combinations that pa-
rameterize the network adjacency matrix A given by

n €{500,1000,2000}
¢€{0.1,1.0,2.0}.

As mentioned in Section II the observation matrix W;, for
each reservoir computer is selected randomly with each entry

uniformly drawn from [—1,1]. The activation function f of
the network we choose to be f(x) = sigm(x) = (1 +e*)"!,
the sigmoid function, applied component-wise. For the partial
and windowed training methods, we choose P as described in
Equation (13).

The remaining hyperparameters of the model are found us-
ing Bayesian hyperparameter optimization (BHO). We use
this method as it been demonstrated to be much more ef-
ficient in higher dimensional optimization than more brute
force approaches such as grid search methods®'. The param-
eters we find using this method are the reservoir parameters
Dres = (@, 7, P, 0) and the windowed parameters py,;, = (L, V).
Here the windowed parameters are only found when using the
windowed method.

This optimization is run twice for each parameter combina-
tion of pye: once to find parameters that maximize the VPT
for making local predictions, and once to find parameters that
maximize the average VPT for making a global forecasts. For
the Bayesian hyperparameter optimization, we sampled 100
hyperparameter configurations using this method. For each
configuration, we trained 2% reservoir computers using these
parameters and had each one make a prediction of the chosen
type, using either the standard, partial, or windowed training
method. Unless noted otherwise, each of the experiments be-
low used the optimized hyperparameters found in this way.

Local |Standard Partial Windowed
Lorenz | 3.27 14.82 0.63
Rossler | 25.00 9.29 18.48
Thomas| 22.45 5.19 20.29

Global |Standard Partial Windowed
Lorenz | 22.16 0.10 2.18
Rossler | 12.13 22.70 184
Thomas| 6.50 0.10 14.17

TABLE 1. Optimized p (spectral radius) values found by BHO for
each method and attractor.

The optimized p values found by Bayesian hyperparame-
ter optimization are reported in Table I. For the windowed
training method, the optimal window size and overlaps were
L =0.45 and v = 0.80 for the Lorenz system, L = 22.29 and
v = 0.95 for the Rossler system, and L = 4.07 and v = 0.10
for the Thomas system.

All experiments were run in Python and are available on
a Github repository.>? The reservoir computer implementa-
tion we use is found in the rescomp Python package.’* We
used the LSODA algorithm from ODEPACK, wrapped by the
Python package scipy, for numerical integration for the dy-
namical systems and for the reservoir ODE. Bayesian hyper-
parameter optimization was performed using the implementa-
tion in the parameter-sherpa Python package.’*

VI. RESULTS

In this section we provide the results of our numerical
experiments, which compare the standard, partial, and win-
dowed methods’ ability to accurately forecast the dynamics on
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FIG. 8. The distributions of the global prediction accuracy (VPT) for different training methods for the Lorenz (left), Rossler (center), and
Thomas (right) systems are shown. The dashed vertical lines indicate the mean VPT for each method. In each case the windowed method
substantially outperforms the other two methods while the partial method moderately outperforms the standard method. The standard method
effectively achieves a VPT of zero on this task. Here, the training signals from the Lorenz system had length 7' = 6.6, those from the Rossler
system had length T = 165, and those from the Thomas system had length 7' = 660.
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FIG. 9. For each of the Lorenz, Rossler, and Thomas systems, a reservoir is trained using each of the standard, partial, and windowed training
methods, respectively. Then, we sampled 8 - 10> points from each attractor and had each point colored by its associated VPT as in Figure
7. On each attractor yellow indicates longer accuracy times, and purple shorter, with the color scales as given at the bottom of the figure for
each system. The standard method appears to be unable to create accurate global predictions. The partial method performs somewhat better,
obtaining moderate VPTs on parts of the attractor. The windowed method can be seen to predict very accurately and uniformly across the
whole attractor for the Lorenz and Rossler systems, and half of the attractor for the Thomas system. For the latter, the difference is likely due
to the fact that trajectories on the Thomas attractor rarely pass from one half of the attractor to the other. Hence, the reservoir computer is
typically only trained on one half of the attractor and generally cannot accurately predict characteristics of the other half.

the Lorenz, Rossler, and Thomas attractors. Our experiments a prediction from a randomly-selected point on the attractor.
are broken into three parts; global predictions, the uniformity For each of these, we computed the valid prediction time of
or nonuniformity of global predictions across an attractor, and  the prediction.

local forecasts for comparison. The distribution of valid prediction times resulting from this

process for n = 1000, ¢ = 1.0 are shown in Figure 8. The
results for the other network parameter choices were similar.

A.  Global Prediction Accuracy The experimental results indicate that the windowed train-

ing method is much more able to perform the global predic-

Here we compare the standard, partial, and windowed al-  tion task when compared to the standard and partial methods
gorithms on the global prediction task. The trained reser-  for each system we consider. As can be expected for the vast
voir’s initial condition #7 for prediction is set equal to W:utv majority of initial conditions, the standard training method’s
for the standard method, and to ®(v) for the partial and win- VPT is equal to zero. The partial method falls into a mid-
dowed training algorithms. For each training method, system, dle ground between the two, which is also as expected, where
and choice of network parameters p,,;, we train 8 - 103 reser- many of the predictions for this method still have very low
voir computers using the optimized hyperparameters obtained  VPT, although some are substantially higher. The reasons for
through BHO. We then have each reservoir computer make this are explored further in the following section (cf. Figure
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FIG. 10. The distribution of the local prediction accuracy (VPT) for different training methods for the Lorenz (left), Rossler (center), and
Thomas (right) systems. The dashed vertical lines indicate the mean VPT for each method. Since this task does not require converting states
on the attractor into reservoir states via some initial condition mapping P, there is no reason the expect that either the partial or windowed
method should outperform the standard method. On the Rossler and Thomas systems, all three methods perform similarly, as expected.
However, in the Lorenz system the windowed method performs noticeably better than the standard and partial methods. This phenomena is
further explored in Figure 11. Here, the training signals from the Lorenz system had length 7' = 6.6, those from the Rossler system had length

T = 165, and those from the Thomas system had length 7" = 660.

9).

By comparing with Figure 10, where the analogous exper-
iment is carried out for the local prediction task (described
below), we see that the typical VPTs obtained using the win-
dowed training method on the global prediciton task on the
Lorenz and Rossler systems are comparable to or better than
the typical VPTs obtained by the standard training method on
the local prediction task. For the Thomas system, the typ-
ical VPTs of the windowed method for global forecasts are
lower than those of the standard method for local forecasts.
Nevertheless, the windowed method is still a substantial im-
provement on the standard method for the global prediction
task.

B. Uniformity across the Attractor

The second question we investigate is how accurate the
windowed method is on different parts of the attractors we
consider. That is, given a reservoir trained on a single input-
signal, we explore how well the windowed method performs
over the whole attractor compared to the other methods. To
test this, for each of the three systems considered, we trained
reservoir computers using each of the three training meth-
ods, with the hyperparameters equal to the optimal choice de-
scribed above. We then randomly sample 8 - 103 points from
the attractor of each dynamical system and computed the VPT
associated with each.

In Figure 9, we visualize the results of a single realization
of this process. In this figure, the initial starting point of each
trajectory considered is plotted. Each point is colored accord-
ing to the VPT of the reservoir computer’s prediction. Yellow
indicates more accurate predictions, while purple indicates in-
accurate predictions.

Our numerics indicate that the windowed method is gen-
erally able to learn how to do global predictions across the
whole attractor and that this accuracy is quite uniform for the
typical input-signal of lengths T = 6.6, T = 165, and T = 660

we use for the Lorenz, Rossler, and Thomas attractors, respec-
tively. These results are consistent over repeated experiments
where new reservoirs are trained each time. We note that the
Thomas system is somewhat of an exception to this, which is
likely due to the nature of the system where trajectories rarely
switch from one half of the attractor to the other. As a conse-
quence, the training trajectories typically stay exclusively on
one half of the attractor, so the reservoir is unable to accu-
rately learn the other side of the attractor even with the win-
dowed training method. This does point out the phenomena
that reservoir computers (trained with or without the window
method) do not learn regions of the dynamical system not vis-
ited by the training signal, which is not surprising.

Based on these experiments, the standard training method
fails completely at the global task. The partial method, how-
ever, does show an interesting middle ground here. It has only
certain regions that the reservoir computer can predict accu-
rately, corresponding to the areas near the state of the sys-
tem that was mapped to the original reservoir initial condition.
In the remainder of the attractor, the partial method performs
quite poorly.

Here, the difference between the plots for the partial
method and the windowed method demonstrates the impor-
tance of mapping many initial conditions in order for the reser-
voir computer to be able to accurately learn the inverse map-

ping.

C. Local Prediction Accuracy

In addition to testing for global prediction accuracy, we also
are interested in how well reservoir computers trained with
our proposed algorithm perform at the original reservoir task
of making local predictions. The setup of these experiment is
analogous to that of the global experiments described in Sec-
tion VI, Subsection A. For each training method, system, and
choice of network parameters, we train § - 103 reservoir com-
puters using the optimized hyperparameters found via BHO.
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FIG. 11. Top: Comparison of the global prediction accuracy with optimized hyperparameters of the different training methods across varying
training signal lengths. Note that the train time is plotted logarithmically. The windowed method is consistently better than the other methods
for all training signal lengths other than very short times. Bottom: Comparison of the local prediction accuracy with optimized hyperparameters
of the different training methods across varying training signal lengths. On the Lorenz system, the windowed method outperforms the other

methods for the majority of training lengths, before decreasing to
methods perform similarly for short training signal lengths, but the

be similar for longer signal lengths. On the Rossler system, the three
windowed method outperforms the other two for longer signal lengths.

On the Thomas system, all three methods perform similarly, with the partial method slightly outperforming the others. The reason for these

variations is an open question.

For each we predict the continuation of the training signal us-
ing the final reservoir state from training as the initial condi-
tion, and computed the VPT of each prediction.

The results of this process for n = 1000 and ¢ = 1.0 are
summarized in Figure 10. The results for the other network
parameter choices are qualitatively similar.

Our initial hypothesis was that the windowed method would
perform potentially worse than both the standard and partial
methods due to trade-offs in over fitting. On the Rossler and
Thomas systems all three methods perform with nearly the
same average accuracy. For the Lorenz system the windowed
method outperforms the others (see Figure 10). The reason
for this is currently an open question but is possibly related
to some type of underfitting or overfitting due to the specific
training time, which we investigate in the following section
(cf. Figure 11).

D. Dependence on Training Signal Length

To understand how VPTs are effected by training times us-
ing our three different methods, we investigate how varying
the time 7 > O changes the average VPT for both the local
and global predictions over each attractor. The setup for this
experiment is similar to those described in Sections VI A and
VIC. For each method and for each system we choose the
hyperparameters using BHO with n = 1000 and ¢ = 1.0. We
then select a range of training signal lengths for each system,
evenly spaced logarithmically as shown in Figure 11. Then

for each training signal length on each system and for each
training algorithm we trained 2!% reservoir computers. Each
reservoir is then used to make a prediction and a VPT is cal-
culated. This process is repeated for both local and global
predictions on each attractor.

The results of these experiments are shown in Figure 11 for
each attractor (right to left) and for global and local predic-
tions (top to bottom). For each system, training method, and
prediction type, the mean VPT is plotted (solid line) and £1
standard deviation (shaded region) across the training lengths
we consider.

For the global prediction task, the windowed method out-
performs both the standard and partial method with increas-
ing accuracy as the training time is increased for the Lorenz
and Rossler attractor over the range we consider. For each
system, the partial method is only marginally better than the
standard method for most training times with the exception of
the Thomas attractor, where the partial method lies directly
between the other two methods in terms of accuracy. For the
Lorenz attractor, the average VPTs seem to flatten out as train-
ing times increase suggesting an asymptotic maximum accu-
racy for this system, where further training does not signif-
icantly increase precision. This trend may also hold for the
Thomas attractor. Still, both may have an optimal training
time like the Rossler attractor which maxes out near 7' = 500,
but much larger simulations may be needed to determine if
this is the case.

For the local prediction task there is less agreement. For the
Lorenz attractor, the windowed method outperforms the other
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FIG. 12. (Top) Comparison of the VPT of the windowed method on the global prediction task as the window size L and overlap v are varied.
The distribution of VPTs is roughly unimodal with respect to L, with peaks at approximately L = 1 for the Lorenz system, L = 3 for the
Rossler, and L = 10 for the Thomas. The choice of overlap v has less influence on the VPT for smaller window sizes, but for larger window
sizes a higher value of v results in higher VPTs. (Bottom) For each system we show eight signals of length L = 1 on the Lorenz system, L =3
for the Rossler, and L = 10 for the Thomas to illustrate the optimal window sizes on the respective attractors.

methods for the large majority of the training times we con-
sider having a near unimodal shape with a maximum around
T = 10. For the Rossler attractor, a similar pattern occurs,
with the maximum around 7' = 500. The same pattern may
occur for the Thomas attractor if a larger range of training
times are considered. On the Rossler system the three meth-
ods perform similarly for short training times, but the win-
dowed method outperforms the other two for longer signal
lengths. On the Thomas system, all three methods perform
similarly, with the partial method slightly outperforming the
others.

E. Dependence on Window Size and Overlap

Finally, we seek to investigate how the choice of window
length L > 0 and overlap v > 0 affect the accuracy of reservoir
computers trained with the windowed method on the global
prediction task. For each attractor, we select a grid of 30
L-values for window size and 25 v-values for overlap, with
overlap spaced linearly and window size spaced logarithmi-
cally. These experiments use the following parameters, with a

different set of window sizes for each attractor:

Lioren: €[0.02,6.6],
[0.1,165],
Lt homas 6[1,660],
v €[0,0.95],
n =1000,
c=1.0.

LRossl er €

The range of window lengths is selected so that each window
is at least twice the time step size used, and at most the training
signal length for each system. BHO is used to select the other
hyperparameters, with 50 hyperparameter choices tested with
28 trials each. The displayed VPTs for each experiment are
the average of 2° trials with the best found hyperparameters.

In Figure 12, we summarize the results of these experi-
ments. In each pixel, the average VPT of the experiment is
indicated by its color. Yellow indicates higher VPTs, while
purple indicates lower values.

Several trends are visible in the data, which are very simi-
lar between the three attractors. First, the VPT is much more
variable with respect to the window size L; for most L-values.
Changing the overlap v has very little influence on the VPT.
The exception is that for larger window sizes, higher overlap
values result in higher VPTs. On each of the attractors, the
VPT is approximately unimodal with respect to the window
size. As L — 0 and L — T, the valid prediction time decreases
on the Lorenz and Rossler systems. In both of these systems,



the VPT typically decreases to zero. On the Thomas system,
the VPT decreases as L increases, although less dramatically
compared to the other systems, and reducing L does not de-
crease the VPT by much for the parameter ranges we con-
sider. The peak VPT occurs for window size approximately
Lioren; = 1 on the Lorenz attractor, around Lg,gs.r = 3 on the
Rossler attractor, and around L7445 = 10 on the Thomas at-
tractor. These are potentially related to properties of these
attractors, such as Lyapunov exponents and time-around-the-
attractor, but the precise correspondence is unclear.

To visualize the latter, in Figure 12(bottom) we show the
distance across the attractor for these approximately optimal
window sizes. For the Lorenz attractor, trajectories of length
L = 1 can move across roughly two-thirds of the attactor. For
the Rossler attractor, trajectories of length L = 3 move at most
through one-half of the attractor. On the Thomas attractor tra-
jectories move through at most half of the right or left side of
the attractor depending on which side they start on although
some trajectories are much shorter. This gives us at least a
sense for the scale at which an attractor is best learned by a
reservoir using the windowed method.

VIl. PREDICTION ERROR BOUNDS

In this section, we prove several error bounds in terms of (9)
and (10), discussed in Section II. These bounds demonstrate
that these two conditions are sufficient for a reservoir com-
puter to create accurate predictions. This in particular helps
us to understand why the windowed method can effectively
create global predictions, while the standard method cannot.

We begin by formulating these conditions more precisely.
We will use our notation for the global forecasting task; how-
ever, everything in this section is also applicable to local pre-
dictions. Suppose we are trying to predict the signal v(¢) for
t > T with v(T) = v. Our reservoir computer is trained on
u(z) for ¢ € [0,T] and creates the prediction ¥(¢) = Wyt (¢)
of v(t), where #(T) = t7. Define the constants E; and Ep as
follows:

E = Hwoutf'T _V” (15)
Ep = sup ||[Wouh(£(t)) — g(Wouk (1))l (16)
t>T

The constant E; represents the error associated with condition
(9) regarding the initial condition of the reservoir computer.
The constant Ep represents a bound on the error relative to
condition (10) for the reservoir’s approximation of the dynam-
ics of the dynamical system. The bounds we discuss can be
made more precise by replacing Ep with the exact value of
([Wouth(£(r)) — g(Wouk(2))|| as appropriate, but for simplic-
ity the analysis here will not do so.

In terms of these constants, we can give several bounds on
the growth of the prediction error given by

119(t) = v(1)|| for £ > T.

These can in turn be used to give lower bounds on the valid
prediction time.
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First, supposing only that g is Lipschitz continuous, we
have the following simple bound.

Theorem 1. (Lipschitz Error-Bound) Let g and h be defined
as in Equations (7) and (8), respectively. Also, let E; and Ep
be defined as in Equations (15) and (16), respectively. Sup-
pose that g is Lipschitz continuous on A with Lipschitz con-
stant L. Then, the prediction error satisfies

19(r) =v(0)|| < (Ept + Ep)e™.

If E; and Ep are small then we have a relatively good bound
on our approximation error, although it grows exponentially
in time relative to the Lipschitz constant L. With the bound of
this theorem, it is clear that as both E; — 0 and Ep — 0, the
error ||v(t) —¥(1)|, — O pointwise. This demonstrates that in
order to reduce the prediction error, it suffices to reduce the
initial error E; and dynamics error Ep of the reservoir com-
puter. However, this bound is very pessimistic and does not
give us a good idea of how the prediction error typically grows
(cf Figure 13).

For a sharper bound we can use a function related to the
dynamical system’s Lyapunov exponent on its attractor to
achieve the following. Define the function A: A X A — R by

(Vi—v2, 8(v1)—g(v2))
A(V17V2) = { [vi—v2l3 ViZ V2 (17)
0 Vi =V,
where (-,-) is the standard inner product on R” and v; and
v, are arbitrary points in A. The function A measures how
quickly trajectories beginning at two points on A diverge from
each other. Specifically, if v;(z),v,(¢) are trajectories on A
then A satisfies

%IIVl(t) —vo ()]l = Avi(#),v2 () [[vi (1) = va(t)[l,  (18)
and
A(vi(2),v2(1)) = %IHIIWU) =v2(1)l[- (19)

This is proven in Proposition X1 in the Appendix. In terms of
the function A we have the following tighter bound:

Theorem 2. (Lyapunov Error-Bound) For the input-signal
v(t) where t > T and prediction ¥(t) let

V() = /T "A(V(s), 9(s)) ds.

Suppose g and h are Lipschitz continuous on A and R, re-
spectively. With E; and Ep given by Equations (15) and (16),
respectively we have the error bound

[9(t) = v(1)||, < exp (V(2)) (E, +Ep /Tt exp (—V(s)) ds)

forallt > T.



The proofs of Theorems 1 and 2 are given in the Appendix.
To make the bound of Theorem 2 more concrete, we give an
approximate form using the principle (largest) Lyapunov ex-
ponent A of the dynamical system. Let v;(¢),v2(¢) be trajec-
tories of the dynamical system with v(0) = v;(0) + 0v where
0 > 0. Using equation (19), we can then write the formula for
a Lyapunov exponent® as

1 Vi) =va (@]

A = lim
[[&v]

10 || 8v]|—0

—lim lim 1+ /OIA(VI(S),VZ(S))ds.

t—=o||§v||—0 T

Generally, this will converge to the largest Lyapunov expo-
nent. For sufficiently large ¢ and sufficiently small §v, we can
approximate the limit by truncating it, giving the approxima-
tion

/0 " AL(5),va(s)) ds ~ At. (20)

Applying this to the bound from Theorem 2 we have, for suf-
ficiently large ¢ and sufficiently small E;, the bound
o -volge (a+52) -2 en

If A > 0 this bound has the same order as measuring the
distance between different trajectories of the underlying dy-
namical system as they diverge from each other. Since some
amount of error is inevitable this is thus the best order of er-
ror we can expect. So, by designing the reservoir computer
to satisfy conditions (9) and (10) as precisely as possible, we
not only will reduce the prediction error, but can expect the
prediction error to grow with ¢ as slowly as can be reasonably
expected.

In Figure 13, we give an example of these error bounds for
the reservoir computer from Example 1.

VIIl. CONCLUSION

The goal of this paper is to understand to what extent it
is possible to create a global forecast of a dynamical system
based on a single-input signal. While we show this to be pos-
sible for a number of chaotic dynamical systems, this goes
beyond the standard use of training computer reservoirs to
create a local forecast of an input-signal. As local forecasts
can be used to reproduce features of a chaotic system such as
first-return maps, Lyapunov exponents, predict bifurcations,
phase, and so forth, it is an open question as to whether using
the windowed method can more reliably recreate these quan-
tities by sampling over the system’s full attractor. Currently,
it is unknown to what extent the use of windows may be use-
ful in this endeavor. Moreover, it is not clear at this time how
other methods compare in accuracy to the windowed method
including the method proposed in (Griffith et al., 2019)** with
regard to these tasks.

The windowed method can also be used to make predictions
on systems that have no known set of underlying equations.
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FIG. 13. The true error (in the 2-norm) of the prediction of the reser-
voir computer in Example 1 (yellow), alongside the bounds from
Theorems 1 (purple) and 2 (red), as well as the approximate form to
Theorem 2 (dashed black). For this example, we have E; = 0.82256
and Ep = 8.48682.

Although our focus in this paper is on chaotic systems given
by specific sets of equations, the windowed method can be
equally well used on input-signals derived from experimen-
tal data, etc. As an example, in a following paper we plan to
explore how controlled systems can be learned at the global
level using the windowed method directly on time-series data.
At the present it is not well-understood how accurate a global
forecast of such systems can be, but our method can forecast
from many different initial conditions potentially giving us in-
sight into understanding such systems.

In terms of the specific results of this paper, one of the
less intuitive findings is that the accuracy of the windowed
method is system dependent. In our experiments, the win-
dowed method gives improved accuracy for local predictions
on the Lorenz attractor but not on the Rossler or Thomas at-
tractors. The optimal training times for global to local predic-
tions differ for the Lorenz attractor but are nearly the same for
the Rossler attractor. Also, optimal window sizes differ from
attractor to attractor and it is unknown to what extent these
window sizes, training times, and differences in local/global
accuracy is related to specific features of these attractors.

There are also unknowns about other reservoir features such
as consistency>® and robustness to noise. Specifically, it is un-
known whether the windowed method interacts favorably with
these features creating a reservoir that is globally consistent
and/or robust to noise over the system’s attractor or whether
these properties vary wildly from initial condition to initial
condition.

IX. APPENDIX

Here we prove the error bounds found in Section VII, as
well as several properties of the function A.



Proof of Theorem 1. We can write the prediction error as

[9(0) =v()] =

t

[0 as+30)-v(0)|

—V/(s)||ds + E

t

Applying Gronwall’s inequality’” (Theorem 1.3.1) gives the
desired bound. (]
Proposition X1. Suppose that g is Lipschitz continuous with
Lipschitz constant L and w,(t),uy(t) are trajectories of a dy-
namical system. Then, the function A (see Equation (17)) has
the following properties:

1. |A(w,v)| < Lforallu,veA;
2. grllwi (1) —wa(0) ]l = Au (1), ua(0)) |wi (1)

3. A(wy(1),m2(1)) = S 1njuy (1) =y (1) .-

Proof. Property (1) is clear if u =v. For u # v, it follows
immediately from the Cauchy-Schwartz inequality:

—wp(7) |l

|A(U,V)| — <ll _‘hvg(u) ”_zg(v)>
u—yv 2
< Ju=vlllgw) — gl
lu—vi3
<L.

To prove Property (3), we compute that

d
—In||u;(r) —

y us (1)

dillw (@) —uz(t)ll2

2||111(f) w ()’

2|lwy (1) —wa (1) |7
ua (1), g(wi (1) — (w2 (1))
[ (1) — o (1) ||

Finally, property (2) follows immediately from property (3)
with the observation that

iln||u1(t) U'W'

(g (r) =

dt

15

To prove Theorem 2, we will use the following lemma.

Lemma X2. Let f(1,x) : [0,00) x R — R be a continuous

function that is Lipschitz continuous with respect to x uni-
formly int. If u,v € C'([0,%),R) satisfy

w(t) < f(tu(e), V()= ftv(),

Sforallt >0, then u(t) <v(t) forallt > 0.

u(0) < v(0)

Proof. First suppose that u'(r) < f(¢,u(t)) forallz. Let w(t) =
v(t) — u(t). Our claim is equivalent to showing that w(z) > 0
for all + > 0. Suppose to the contrary that there exists #y such
that w(zp) < 0. Let

t* =inf{r > 0:w(zr) < 0},

which exists because the set is nonempty and bounded below.
Since w(0) > 0, we have by continuity that w(¢*) = 0 as well,
or u(t*) = v(t*). Since w( ) <0 fort e (t*,t* + &) for some
& > 0, it must be that w'(*) < 0. However, by assumption,

w(t") = V() —u (1) > (7 v(t7)) = f (£ u(r) =0,

a contradiction. This shows the lemma in the case that u'(r) <

ft,u(1)).
We now proceed to the general case where we assume
u'(t) < f(t,u(t)). For any € > 0 we have

W (1) < f(tu(t)) < f(tu(t) + € = ge(t,u(t)).
Define v¢(t) by

ve(0) =v(0), er(t) = ge(t,ve(t)).

Since f is Lipschitz, so is g¢. Thus each v, is well-defined,
and we can apply the special case proved above to obtain
u(t) <ve(t) forallt >0, € > 0.

We finish by showing that v — v pointwise as € — 0, which
shows the desired bound. Suppose that f has Lipschitz con-
stant L with respect to its second argument; that is,

|f(t,x) = f(t,y)] < Llx—y]|

for all # € [0,0) and x,y € R. Then,

=/ |ge(t,ve(s)) — f(z,v(s)) ds]|

t,v(s))|ds+re

Applying Gronwall’s inequality®’ (Theorem 1.3.1) implies

that

v(r)| <tee =0

|ve(t) —



pointwise as € — 0. Thus

u(t) < limvg(t) = v(r)
e—0
completing the proof. ]

It should be noted that this lemma also holds if « is taken
to denote the right-hand-side derivative of u.

Proof of Theorem 2. Let ||-|| denote the 2-norm. We proceed
by showing that

%I\V(t) =Vl < A@),¥(O))9()) —v(1) |+ Ep

and then applying the lemma. Although ||¥(¢) — v(z)|| may not
be differentiable when it is zero, the right-hand-side derivative
will always exist, which is all we need for the lemma to apply.
Let the flow function of the dynamical system be denoted
U(t,v).
We have

d, .
7 IV@) =@l

= tim = ([960-+80) ~ (e 40) | = 566) — v(0) )

< tim (o .vie) - Ulans)

¥ +ar) —U (A, v(0)) || = [19() *V(I)H) (AD)

First, observe that since

S5, v(0)), U, 50)|
= AU, ), U s OV ¥(0), U (5,5 0))

we have
|U (At v(2)) — U (A2, %(1)) |
- (1 +A(U(o,v(z)),U(o,o(r)))At+0(Az2>)
JIU(0,v(2)) = U(0,%(2))]|
= (1+ AA V(). 9(0)) + O(AR)) V(1) — S (0)]|. (A2)

Denote the Lipschitz constants of g and & as Ly and L, re-
spectively. Then

|9(t +Ar) —U(At,%(2))||

t+At
= /
t

1+At
_ /, [Wouh((s)) — (U (s, %(1))) || ds

¥ (s)— U,(s,ff(t))” ds

= [ IWou60) + 080) — (5() + O(0)
. t+At
< [ (IWouch(0)) — (3001
+ [[Woul L1 O(At) + Lo O(Ar) ) ds

— /tt+At [[Wouth(£(2))) *g(Womf'(t))HdsqLO(Atz)

< EpAt + O(Ar?). (A3)
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Combining (A2) and (A3) with (A1) gives that

LA
dt

() —v(0)|
. 1 .

< lim - (|U(ar, V() - U(ar5(0)]

1190+ Ar) = U (A, v ()| = [$(6) = v (D))

= i (1 A, 90)) +0(82) v —3()])

+ (Epar+0(a)) — [¥(6) ~v(1)]])
= AWV(0),¥(@)[v(1) =¥ ()] + Ep.
Finally, applying the lemma to ||¥(¢) — v(¢)|| with f given by

f(t,y) = A(v(),%(t))y+ Ep

gives the result. (]
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