

Investigating the biosynthesis and roles of the auxin phenylacetic acid during *Pseudomonas syringae*-*Arabidopsis thaliana* pathogenesis

1 Chia-Yun Lee^{1†}, Christopher P. Harper^{1†}, Soon Goo Lee², Yunci Qi^{1,3}, Taylor Clay², Yuki Aoi⁴,
2 Joseph M. Jez¹, Hiroyuki Kasahara^{4,5}, Joshua A. V. Blodgett¹, Barbara N. Kunkel^{1*}

3 ¹ Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, USA.

4 ² Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia
5 30144, USA.

6 ³ USDA-ARS, New Orleans, Louisiana 70124, USA.

7 ⁴ Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo,
8 183-8509, Japan.

9 ⁵ RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan.

10 [†]These authors contributed equally to this work.

11 ^{*}Correspondence: kunkel@wustl.edu

13 **Keywords:** Auxin, Indole-3-Acetaldehyde Dehydrogenase, Indole-3-acetic acid, Phenylacetic
14 acid, *Pseudomonas syringae*

16 **Abstract:**

17 Several plant-associated microbes synthesize the auxinic plant growth regulator phenylacetic acid
18 (PAA) in culture; however, the role of PAA in plant-pathogen interactions is not well understood. In
19 this study, we investigated the role of PAA during interactions between the phytopathogenic bacterium
20 *Pseudomonas syringae* strain *PtoDC3000* (*PtoDC3000*) and the model plant host, *Arabidopsis*
21 *thaliana*. Previous work demonstrated that indole-3-acetaldehyde dehydrogenase A (AldA) of
22 *PtoDC3000* converts indole-3-acetaldehyde (IAAld) to the auxin indole-3-acetic acid (IAA). Here, we
23 further demonstrated the biochemical versatility of AldA by conducting substrate screening and steady-
24 state kinetic analyses, and showed that AldA can use both IAAld and phenylacetaldehyde as substrates
25 to produce IAA and PAA, respectively. Quantification of auxin in infected plant tissue showed that
26 AldA-dependent synthesis of either IAA or PAA by *PtoDC3000* does not contribute significantly to
27 the increase in auxin levels in infected *A. thaliana* leaves. Using available *arogenate dehydratase* (*adt*)
28 mutant lines of *A. thaliana* compromised for PAA synthesis, we observed that a reduction in PAA-Asp
29 and PAA-Glu is correlated with elevated levels of IAA and increased susceptibility. These results
30 provide evidence that PAA/IAA homeostasis in *A. thaliana* influences the outcome of plant-microbial
31 interactions.

33 **1 Introduction**

34 Auxins are a class of phytohormones that regulate various aspects of plant growth and development;
35 auxins also participate in many plant-microbe interactions (Spaepen and Vanderleyden, 2011; Kunkel
36 and Harper, 2018). For example, indole-3-acetic acid (IAA), one of the best-known auxins, promotes
37 pathogen colonization and growth by suppressing host defense responses (Chen et al., 2007; Wang et
38 al., 2007; McClerkin et al., 2018; Djami-Tchatchou et al., 2020). Additionally, IAA serves as an
39 environmental signal that can modulate bacterial gene expression related to antimicrobial tolerance,
40 stress responses, and pathogenesis (Spaepen et al., 2007; Yuan et al., 2008; Van Puyvelde et al., 2011;
41 Djami-Tchatchou et al., 2020; Djami-Tchatchou et al., 2022).

42 Phenylacetic acid (PAA) is another form of natural auxin that can be synthesized by both plants (Dai
43 et al., 2013; Sugawara et al., 2015; Cook et al., 2016; Aoi et al., 2020b; Perez et al., 2023) and
44 microorganisms (Slininger et al., 2004; Spaepen et al., 2007; Bartz et al., 2013; Sopheareth et al., 2013;
45 Akram et al., 2016). PAA acts either as a carbon and energy source for microbes or as a signaling
46 molecule that induces chemotaxis, catabolism, and modulation of virulence gene expression (Wang et
47 al., 2013; Bhuiyan et al., 2016). A limited number of studies examining the role of PAA in plant-
48 microbe interactions have been published. These studies demonstrate that PAA and PAA-related
49 compounds often accumulate in infected tissue and that application of PAA can modulate host
50 physiology and/or defenses, thus altering the outcome of the interactions (Bartz et al., 2013; Sumayo
51 et al., 2018, Demina et al., 2019); however, the mechanisms underlying the biological role of PAA in
52 plant-associated microbes are not well understood.

53 Previously, we demonstrated that the plant pathogen *Pseudomonas syringae* strain *PtoDC3000*
54 produces IAA via indole-3-acetaldehyde dehydrogenase A (AldA), which catalyzes the NAD-
55 dependent formation of IAA from indole-3-acetaldehyde (IAAld) (McClerkin et al., 2018). Because
56 there are several known parallels in IAA and PAA metabolism (Somers et al., 2005; Tao et al., 2008;
57 Dai et al., 2013; Sugawara et al., 2015; Cook et al., 2016), we speculated that AldA might have a role
58 in PAA biosynthesis via a phenylacetaldehyde (PAAld) intermediate.

59 In this study, we explored the AldA-dependent auxin synthesis pathway in *PtoDC3000* and its role in
60 pathogenesis on *Arabidopsis thaliana*. We first demonstrated that *PtoDC3000* AldA can convert
61 PAAld to PAA. We also showed that AldA-dependent auxin synthesis does not significantly contribute
62 to the increase in auxin levels within infected plant tissues, suggesting pathogen infection stimulates
63 production of auxin by the host. To further investigate the role of PAA during *PtoDC3000*
64 pathogenesis, we inoculated mutant and transgenic lines previously reported to have altered PAA levels
65 and observed that a reduction in PAA-Asp and PAA-Glu in leaf tissue was correlated with elevated
66 IAA and increased susceptibility to *PtoDC3000*. Thus, while *PtoDC3000* auxin synthesis does not
67 apparently contribute to the increased auxin in infected plant tissue, *PtoDC3000* infection perturbs
68 PAA/IAA homeostasis, which influences the outcome of the interaction.

69 **2 Materials and methods**

70 **2.1 Bacterial strains and plasmids**

71 The bacterial strains and plasmids used in this study are summarized in Table S1. *P. syringae* strain
72 *PtoDC3000* (*PtoDC3000*) wild-type (Cuppels Diane, 1986) and mutant strains were grown on Nutrient
73 Yeast Glycerol (NYG) medium (Daniels et al., 1988) and Hoitkin-Sinden medium supplemented with
74 10 mM citrate (HSC) (Sreedharan et al., 2006) at 28-30°C. *Escherichia coli* was grown on Luria Broth
75 (LB) medium at 37°C. Antibiotics used for selection include: rifampicin (Rif, 80 µg/mL), kanamycin
76 (Km, 25 µg/mL), tetracycline (Tet, 16 µg/mL), spectinomycin (Spec, 100 µg/mL), and
77 chloramphenicol (Cm, 20 µg/mL).

78 **2.2 Construction of mutant *PtoDC3000* strains**

79 The primers used in this study are listed in Table S2. A plasmid for generating the *aldA*::omega (Ω)
80 deletion mutant was constructed from the suicide vector pJP5603 (Penfold and Pemberton, 1992). The
81 Ω fragment containing Spec resistance was amplified from purified pH45 plasmid DNA (Prentki and
82 Krisch, 1984) using the primers omega_frag_F and omega_frag_R. The vector pJP5603 sequence was
83 linearized by PCR using the primers pJP5603_F and pJP5603_R, followed by DpnI digestion of the
84 template plasmid. Fragments of approximately 1 kb corresponding to genomic regions upstream and
85 downstream of the *aldA* (*PSPTO_0092*) gene were amplified from *PtoDC3000* genomic DNA by PCR
86 using primers ald_up_F and ald_up_R, and ald_down_up and ald_down_R, respectively. The
87 fragments were assembled using NEB HiFi DNA Assembly Master Mix (Ipswich) to create plasmid
88 pJP5603-*aldA*::Ω, transformed into *E. coli* DH5α λpir cells (Miller and Mekalanos, 1988) and plated
89 onto LB medium containing Spec. The plasmid was sequenced to confirm that the assembly occurred
90 correctly and that no mutations were inadvertently introduced.

91 pJP5603-*aldA*::Ω was conjugated into *PtoDC3000* using the helper strain MM294A (pRK2013) (Finan
92 et al., 1986) to create a single crossover plasmid insertion, which was confirmed by PCR genotyping.
93 The single crossover strain was grown in NYG Spec and subcultured for 13 days to obtain a mutant in
94 which a double crossover event occurred. Approximately 8000 colonies were screened for loss of the
95 Km-resistance cassette by replica plating until a Spec-resistant, Km-sensitive mutant was obtained.
96 The resulting strain was genotyped by PCR using primers omega_out_up and omega_out_down, to
97 verify that the wild-type *aldA* gene had been replaced by the omega fragment. The *aldA*::Ω
98 *aldB*::pJP5603-Km double mutant was generated by introducing the pJP5603-2673int insertional
99 disruption plasmid (McClerkin et al., 2018) into the *aldA*::Ω mutant by triparental mating and selecting
100 for Km- and Spec-resistant colonies. Disruption of *aldB* (*PSPTO_2673*) by pJP5603 was confirmed by
101 PCR using primers M13F and 2673SeqF.

102 **2.3 Feeding *P. syringae* with PAald**

103 Wild-type *PtoDC3000* and mutant strains were grown in NYG medium without antibiotics until they
104 entered the exponential phase of growth. These cultures were used to inoculate HSC medium at a
105 density of ~1x10⁷ CFU mL⁻¹ and incubated with shaking for 48 hours (hrs) at 28°C. The culture
106 medium was supplemented with 25 µM PAald (Sigma Aldrich) in 0.24% ethanol (EtOH), 100 µM
107 phenylalanine (Sigma Aldrich) in 0.24% EtOH, IAAld-sodium bisulfite (Sigma Aldrich) in 0.24%
108 EtOH, or 0.24% EtOH (mock) as indicated. Samples (1 mL) were taken 46-48 hrs after addition,
109 pelleted by centrifugation, and the resulting supernatants filtered with a 0.2-micron filter and stored at
110 -80°C until quantification. Growth of cultures was monitored by reading the OD₆₀₀ at regular intervals
111 with a spectrophotometer. Conditioned HSC was made by growing *PtoDC3000* in HSC for 48 hrs

112 followed by removing the bacterial cells by centrifugation and filtering the supernatant through a 0.2-
113 micron filter. PAAld (final concentration: 25 μ M) was added to the conditioned HSC. After 48-hr
114 incubation at 28°C, medium was collected and PAA levels quantified.

115 **2.4 Quantification of PAA production in culture**

116 Metabolite analysis was performed using a Phenomenex Luna Omega polar C18 column (50 \times 2.1 mm,
117 3 μ m pore size) installed on an Agilent 1260 Infinity HPLC connected to an Agilent 6420 Triple-Quad
118 mass spectrometer. Metabolites were separated using the following chromatography conditions: T = 0,
119 0% B; T = 2, 0% B; T = 3, 20% B; T = 8, 40% B, T = 10, 100% B; T = 12, 100% B; T = 14, 0% B; T
120 = 16, 0% B; where buffer A was water + 0.1% formic acid and buffer B was acetonitrile + 0.1% formic
121 acid and the flow rate was 0.5 mL/min. The column was held at 20°C, and 8 μ L of the sample was
122 injected per run. For quantification, the mass spectrometer was set to multiple reaction monitoring in
123 positive ion mode. The mass transitions for each metabolite were chosen using Agilent Optimizer. The
124 mass transitions, fragmentation conditions, and retention times for each metabolite are listed in Table
125 S3. For d5-Trp (CDN Isotopes Inc.) labeling experiments, the mass spectrometer was set to scan for
126 m/z 100-400 in positive MS2 scan mode. The resulting data were analyzed offline with the Agilent
127 MassHunter Quantitative Analysis and Qualitative Analysis software.

128 **2.5 Protein expression and purification**

129 AldA was expressed and purified using the pET28a-AldA construct as described (McClerklin et al.,
130 2018). Hexahistidine-tagged AldA was further purified through a Superdex-200 26/60 size-exclusion
131 column (SEC) (GE healthcare) in 25 mM HEPES, 100 mM NaCl, pH 7.5. Purified AldA was stored in
132 SEC buffer containing 20% glycerol (25 mM HEPES, 100 mM NaCl, 20% (v/v) glycerol, pH 7.5) at
133 -80°C. To determine the concentration of AldA for enzymatic analysis, the molar extinction coefficient
134 ($\epsilon_{280\text{ nm}} = 68,410 \text{ M}^{-1} \text{ cm}^{-1}$) at A_{280nm} calculated using ProtParam (Gasteiger et al., 2005) was employed.

135 **2.6 Aromatic aldehyde substrate screening and steady-state kinetic analysis**

136 Enzymatic activity of AldA was measured by continuously monitoring the spectrophotometric
137 absorbance changes from NAD to NADH ($\epsilon_{340\text{ nm}} = 6220 \text{ M}^{-1} \text{ cm}^{-1}$) at A_{340nm} using an EPOCH2
138 microplate spectrophotometer (BioTek). Substrate screening experiments were conducted at 25°C with
139 1 mM of NAD⁺ and 5 mM of each aldehyde (*i.e.*, IAAld, PAAld, hydrocinnamaldehyde, and
140 cinnamaldehyde) in the assay conditions of 100 mM Tris·HCl (pH 8.0) and 100 mM KCl. Steady-
141 state kinetic parameters of AldA for PAAld were determined in the same condition with varied PAAld
142 (0.01–2.5 mM) and fixed cofactor (NAD⁺; 5 mM) or with fixed PAAld (1 mM) and varied cofactor
143 (NAD⁺; 0.05–2.5 mM). The resulting initial velocity data were fit to the Michaelis–Menten equation,
144 $v = (k_{\text{cat}}[S])/(K_m + [S])$, using Prism (GraphPad).

145 **2.7 Computational docking**

146 Molecular docking experiments for AldA were performed by AutoDock vina (Version 1.1.2)
147 (Gasteiger et al., 2005; Trott and Olson, 2010) with standard protocols as previously described
148 (McClerklin et al., 2018). Docking of IAAld and PAAld into the AldA active site used a 30 \times 30 \times 30
149 \AA grid box with the level of exhaustiveness = 20. The x-ray crystal structure of the AldA \cdot NAD⁺ \cdot IAA
150 complex (PDB: 5IUW) was used as a template with fixed position of NAD⁺ (McClerklin et al., 2018).
151 ~~Docking of IAAld and PAAld yielded a calculated affinity of -5.9 to -4.2 kcal mol⁻¹ and -5.3 to -3.3~~
152 ~~keal mol⁻¹, respectively.~~

153 **2.8 Plant material and growth conditions**

154 All *A. thaliana* mutants and transgenic lines used in this study were in the Col-0 background. The *adt1*
155 *adt3* *adt4* *adt5* *adt6* quintuple mutant (*adt1/3/4/5/6*) and *ADT4* and *ADT5* overexpression transgenic
156 lines (ADT4 OE and ADT5 OE) have been previously described (Chen et al., 2016; Aoi et al., 2020b).
157 Plants were grown on soil in a growth chamber with a short-day photoperiod (8 hrs light/16 hrs dark)
158 at 21°C and 75% relative humidity, with a light intensity of ~ 130 μ Einstens sec⁻¹ m⁻¹.

159 **2.9 *P. syringae* inoculation and quantification of bacterial growth**

160 *A. thaliana* plants were infected at approximately four weeks of age. For bacterial growth
161 quantification, 10⁵ cells mL⁻¹ were resuspended in 10 mM MgCl₂ and injected into leaves using a 1-
162 mL needleless syringe. Whole leaves were sampled at ~2 hrs after inoculation (day 0, n = 4) and 4
163 days-post-inoculation (dpi) (n = 8), weighed to determine leaf fresh mass, ground in 10 mM MgCl₂
164 and then plated in serial dilutions on NYG media with rifampicin. Following incubation at 28°C for 48
165 hrs, colonies were counted to determine the number of bacteria in the leaves. For disease symptom
166 observations, 10⁶ cells mL⁻¹ were resuspended in 10 mM MgCl₂ and infiltrated into leaves. Disease
167 symptoms were photographed at 4 dpi.

168 **2.10 Quantification of auxin and auxin-amino acid conjugates *in planta*.**

169 IAA, IAA-Asp, IAA-Glu, PAA, PAA-Asp, and PAA-Glu were extracted from freeze-dried plant
170 material, purified and analyzed by an Agilent 6420 Triple Quad system (Agilent Technologies, Inc.)
171 with a ZORBAX Eclipse XDB-C18 column (1.8 μ m, 2.1 x 50 mm) as previously reported (Aoi et al.,
172 2020c).

173 **2.11 Statistical analysis**

174 Datasets were statistically compared with the statistical analysis software GraphPad Prism 9.5.0
175 (GraphPad). Statistical tests included Student's *t*-test or one-way analysis of variation (ANOVA)
176 followed by the Tukey's HSD test when appropriate. The confidence level of all analyses was set at
177 95%, and values with *p* < 0.05 were considered significant.

178

179 **3 Results**180 **3.1 *P. syringae* strain *PtoDC3000* produces PAA in culture.**

181 Previous biochemical experiments carried out in *Azospirillum brasiliense* suggested that PAA
182 biosynthesis proceeds via the IAA biosynthetic enzyme indole pyruvate decarboxylase, by converting
183 phenylpyruvate to PAAld (Somers et al., 2005). This suggested PAA could potentially be produced
184 through the oxidation of PAAld. Consistent with this hypothesis, Zhang *et al.* found that *E. coli*
185 aldehyde dehydrogenase H (AldH) can convert PAAld to PAA (Zhang et al., 2017). Given our previous
186 biochemical studies showing that *PtoDC3000* AldA converts IAAld to IAA (McClerkin et al., 2018),
187 we wondered if *PtoDC3000* can synthesize PAA and, if so, whether *PtoDC3000* AldA (or related
188 aldehyde dehydrogenases) might be involved.

189 To investigate this, we conducted feeding studies with potential PAA precursors and quantified PAA
190 levels after 48 hrs of growth. Bacterial cultures were grown in HSC supplemented with either 100 μ M
191 phenylalanine or 25 μ M PAAld. Aldehydes can be inherently toxic; we determined 25 μ M PAAld to
192 be the highest concentration of compound that did not significantly inhibit the growth of wild-type
193 *PtoDC3000* (WT) (Figure S1). These tests revealed significantly higher PAA in cultures fed with
194 PAAld compared to controls (Figure 1A). In contrast, PAA levels in cultures fed with phenylalanine
195 were slightly, but not significantly higher than in controls. The low level of PAA produced by feeding
196 with phenylalanine suggests *PtoDC3000* is unable to efficiently convert the amino acid to PAAld.
197 Thus, we surmise PAA production in *PtoDC3000* via PAAld is the predominant pathway in culture.

198 **3.2 PAA synthesis is dependent upon *aldA*.**

199 Of the three identified *PtoDC3000* aldehyde dehydrogenases capable of oxidizing IAAld to IAA
200 (*AldA*, *AldB*, and *AldC*) (McClerkin et al., 2018), *AldA* (PSPTO_0092) shares the highest similarity
201 to *E. coli* AldH (73%). To determine if PAA biosynthesis in *PtoDC3000* is dependent on *AldA*, we
202 tested if an *aldA* mutant can produce PAA when fed with PAAld. The original *aldA* mutant
203 (*aldA*::pJP5603) characterized by McClerkin et al. (McClerkin et al., 2018) was generated by plasmid
204 insertion and is thus potentially unstable when grown in the absence of antibiotic selection. To carry
205 out feeding studies in the absence of antibiotics, we generated a new, more genetically stable, marker
206 replacement mutant *aldA*:: Ω (see materials and methods). We verified the *aldA*:: Ω mutant to be
207 essentially identical to the original *aldA*::pJP5603 mutant in phenotype; growth of the *aldA*:: Ω mutant
208 strain was indistinguishable from WT *PtoDC3000* in HSC media (Figure S1). The ability of this mutant
209 to produce IAA in culture supplemented with IAAld was monitored as described previously
210 (McClerkin et al., 2018). Consistent with the description of the original *aldA*::pJP5603 mutant
211 (McClerkin et al., 2018), IAA was significantly reduced in the *aldA*:: Ω mutant compared to wild-type
212 *PtoDC3000* (WT) (Figure S2). From here on, we refer to the *aldA*:: Ω mutant simply as *aldA*.

213 To determine if *AldA* contributes to *PtoDC3000* PAA synthesis in culture, we monitored the ability of
214 the *aldA* mutant to produce PAA when fed with PAAld. We observed a 70-80% reduction in PAA
215 levels in the mutant compared to WT (Figure 1B). The reduced PAA synthesis phenotype was
216 complemented by introducing the wild-type *aldA* gene on a plasmid (Figure 1B). To determine whether
217 the related *AldB* enzyme also contributes to PAA production, we used the *aldB* mutant (*aldB*) described
218 previously (McClerkin et al., 2018) and a newly generated *aldA* *aldB* double mutant (see materials
219 and methods). The levels of PAA produced by *aldB* were not significantly different from WT. Further,
220 PAA synthesis by the *aldA* *aldB* double mutant was not significantly lower than the *aldA* single mutant
221 (Figure 1B). These results suggest that *aldB* is not involved in producing PAA. Further, as Lee et al
222 demonstrated that PAAld is not a substrate for *AldC* *in vitro* (Lee et al., 2020), *AldC* is unlikely to be

223 involved synthesizing PAA. Thus, AldA is responsible for the majority of PAA produced by
224 *PtoDC3000* in culture when fed with PAAld. It is unclear where the small amount of PAA (~ 25% WT
225 levels) that accumulated in the supernatant of the *aldA* and *aldA aldB* mutants comes from.

226 **3.3 PAAld is a substrate for AldA.**

227 Aldehyde dehydrogenases from *PtoDC3000* have previously been biochemically and genetically
228 examined to determine their roles in both IAA biosynthesis and in virulence (McClerkin et al., 2018;
229 Lee et al., 2020; Zhang et al., 2020). To further investigate the biochemical basis for how AldA
230 contributes to PAA biosynthesis, the substrate preference of AldA was investigated using purified
231 AldA as previously described (McClerkin et al., 2018; Zhang et al., 2020). PAAld and a series of
232 aromatic aldehydes, such as IAAld, hydrocinnamaldehyde, and cinnamaldehyde, were tested as
233 substrates in enzymatic assays (Figure 2A). In substrate screening experiments with saturation
234 concentrations of substrate (1 mM) and cofactor NAD⁺ (5 mM); IAAld, the known substrate of AldA
235 (McClerkin et al., 2018), resulted in the highest activity (Figure 2B). PAAld showed the next highest
236 activity, reaching ~90% of the activity of IAAld. AldA had relatively low activity (50%) for
237 hydrocinnamaldehyde and no activity for cinnamaldehyde. Steady-state kinetic analysis of AldA
238 with PAAld and NAD⁺ confirmed that PAAld is another highly preferred substrate for AldA (Table 1).
239 In the presence of variable concentrations of PAAld, AldA followed Michaelis-Menten kinetics, with the
240 turnover rate (k_{cat}) of $1124 \pm 78 \text{ min}^{-1}$ for PAAld and $83.8 \pm 1.1 \text{ min}^{-1}$ for NAD⁺, respectively.
241 Compared to previously reported kinetic parameters for IAAld, the k_{cat} of PAAld was about five-fold
242 higher, and the catalytic efficiency (k_{cat}/K_m) of PAAld was comparable at 89% (McClerkin et al.,
243 2018). Overall, these *in vitro* substrate screening and steady-state kinetic analyses suggest that AldA
244 can accept a range of aromatic aldehyde substrates but shows a distinct preference for PAAld.

245 To provide insight into understanding how AldA accommodates PAAld in the active site, the two most
246 preferred substrates, PAAld and IAAld, were computationally docked into the active site of the crystal
247 structure of AldA (PDB: 5IUW) in the presence of NAD⁺ to form a ‘dead-end’ complex (Figure S3B
248 and S3C). Computational docking of PAAld and IAAld into the active site produced models that were
249 structurally similar to the experimentally determined structure, and the calculated receptor-ligand
250 binding affinities were in the same range: -5.3 kcal mol⁻¹ for PAAld and -5.8 kcal mol⁻¹ for IAAld
251 (Figure S3A-C). In the PAAld docking model with the highest affinity, PAAld occupies a position
252 similar to that of IAAld with the indole moiety of IAAld replaced by its phenyl moiety. Similar to the
253 way IAAld is positioned in the hydrophobic substrate-binding pocket, the phenyl moiety of PAAld
254 forms multiple aromatic (*i.e.*, Phe169, Trp176, Phe296, Trp454, and Phe467) and nonpolar interactions
255 (*i.e.*, Val119, Met172, Met173, and Val301) with the amino acid cluster of the AldA active site,
256 including a π -stacking interaction with Phe169 (Figure S3D) (McClerkin et al., 2018; Lee et al., 2020).
257 The reactive aldehyde group of each substrate is located near Cys302, the conserved catalytic cysteine
258 (Figure S3B-D). This suggests that the catalytic activity of AldA with PAAld is due to the nonpolar
259 surface-ligand interaction, as well as the proper accessibility of the catalytic cysteine to the reactive
260 aldehyde group of PAAld.

261 **3.4 AldA-dependent auxin synthesis in *PtoDC3000* does not contribute to elevated auxin
262 levels in infected plant tissue.**

263 Previous studies reported that IAA levels increase in *PtoDC3000*-infected *A. thaliana* leaves (Chen et
264 al., 2007). Given that *PtoDC3000* can synthesize IAA (McClerkin et al., 2018) and PAA (Figure 1)
265 via the AldA-dependent pathway in culture, we explored the possibility that the contribution of
266 *PtoDC3000* AldA activity to the observed increase in auxin levels in infected *A. thaliana* leaves by
267 quantifying IAA, PAA, and their amino acid conjugates in *PtoDC3000*-infected leaf tissues. The leaves

were infiltrated with wild-type *PtoDC3000* (WT) or the *aldA::Ω* mutant strain (*aldA*) and collected at 24 and 48 hrs post infection (hpi) for auxin quantification. Consistent with prior reports, we observed a 3.2-fold increase in IAA levels in WT-infected leaves compared to mock treatment at 48 hpi (Figure 3A) (Chen et al., 2007). Notably, *aldA*-infected leaves exhibited a comparable increase in IAA levels at 48 hpi (Figure 3A), indicating that the AldA activity of *PtoDC3000* does not significantly contribute to IAA accumulation after infection.

Plants maintain tight control over free auxin levels and auxin-conjugates form rapidly in response to increases in auxin (Korasick et al., 2013). Thus, in addition to free IAA, we also monitored the levels of the IAA-amino acid conjugates IAA-aspartate (IAA-Asp) and IAA-glutamate (IAA-Glu) in the infected leaf tissue. IAA-Asp and IAA-Glu were detectable in infected leaves but were present at substantially lower levels compared to free IAA (Figure 3B and 3C). Specifically, IAA-Asp exhibited a small but significant increase (~2.3-fold) at 48 hpi in WT- and *aldA*-infected leaves compared to mocked leaves (Figure 3B). No change in IAA-Glu was detected in infected tissue. As with free IAA, leaves inoculated with the *aldA* mutant did not accumulate significantly different levels of IAA-amino acid conjugates compared to leaves infected with WT. Thus, it appears that IAA synthesis by *PtoDC3000* does not significantly contribute to the increase in IAA levels in infected plant tissue. Alternatively, if *PtoDC3000* IAA synthesis plays a role in IAA accumulation, it is via a mechanism independent of AldA activity.

Consistent with the previous report (Sugawara et al., 2015), mock-inoculated *A. thaliana* leaves had remarkably higher PAA levels compared to IAA (Figure 3A and 3D). In two out of three independent experiments, we observed modest yet statistically significant increases of PAA in WT-infected leaves by 24 hpi (ranging from a 1.2- to 1.9-fold increase), and in all three experiments, we consistently observed significantly elevated PAA levels by 48 hpi (ranging from a 1.5- to 1.8-fold increase, Figure 3B). There was no difference in accumulation of PAA between leaves inoculated with WT and *aldA* strains at either time point. Further quantification of PAA-amino acid conjugates showed significant increases in the levels of both PAA-Asp and PAA-Glu at 48 hpi in inoculated leaves (4.7-fold and 1.2-fold increase, respectively, Figure 3E and 3F); however, as for free PAA, there was no difference between leaves inoculated with WT and *aldA* strains. We thus conclude that AldA-dependent synthesis of PAA by *PtoDC3000* does not significantly contribute to PAA accumulation in infected plant leaves.

3.5 Investigating the role of PAA in pathogenesis.

Plants with altered IAA levels or auxin sensitivity exhibit varying degrees of susceptibility to virulent *P. syringae*. For example, plants with elevated IAA and/or IAA-Asp or increased IAA sensitivity are more susceptible to *PtoDC3000* (Chen et al., 2007; González-Lamothe et al., 2012; Mutka et al., 2013; Djami-Tchatchou et al., 2020); whereas plants with decreased auxin sensitivity are less prone to *P. syringae* infection (Navarro et al., 2006; Wang et al., 2007; Djami-Tchatchou et al., 2020). Given our observation of increased PAA and PAA-Asp levels in infected leaves (Figure 3), we hypothesized that PAA, like IAA, could promote the pathogenesis of *PtoDC3000 in planta*.

To test this hypothesis, we took advantage of previously described mutant and transgenic *A. thaliana* lines with altered PAA levels. The *AROGENATE DEHYDRATASE (ADT)* gene family encodes enzymes that catalyze the conversion of arogenate to phenylalanine and have been shown to regulate the levels of PAA in *A. thaliana* (Aoi et al., 2020b) (Figure 4A). Aoi et al. (2020a) demonstrated that transgenic plants overexpressing *ADT4* or *ADT5* (*ADT4* OE or *ADT5* OE) accumulated elevated levels of phenylalanine, PAA, and PAA-amino acid conjugates in seedlings. In contrast, the *adt1 adt3 adt4 adt5 adt6* quintuple knockout mutant (*adt1/3/4/5/6*), which carries T-DNA insertions in five of the

309 known *ADT* genes, accumulated reduced amounts of phenylalanine, PAA and PAA-Asp (Aoi et al.,
310 2020b).

311 Based on our initial hypothesis, we anticipated that *adt1/3/4/5/6* mutant plants would exhibit reduced
312 susceptibility to *PtoDC3000*, while *ADT4* OE and *ADT5* OE lines would be more susceptible. We
313 infiltrated WT *PtoDC3000* into five-week-old wild-type *A. thaliana* (Col-0), *adt1/3/4/5/6*, *ADT4* OE,
314 and *ADT5* OE plants, and quantified bacterial growth at 0- and 4-day post inoculation (dpi). As
315 expected, WT grew three orders of magnitude in Col-0 (Figure 4B). Surprisingly, *adt1/3/4/5/6* plants
316 supported slightly higher levels of bacterial growth and exhibited more severe disease symptoms
317 compared to Col-0 (Figure 4B and 4C). On the other hand, *ADT4* OE and *ADT5* OE plants did not
318 exhibit any alteration in susceptibility compared to Col-0. Thus, contradictory to our initial predictions,
319 plants with reportedly reduced PAA levels are more susceptible to *PtoDC3000*, and plants previously
320 shown to have elevated PAA levels exhibited WT susceptibility.

321 One plausible explanation for these results could be that the PAA levels in mature plants grown under
322 our conditions were not altered as described in the literature. In our plant infections, we used five-
323 week-old plants grown on soil with a short-day photoperiod at 21°C. Conversely, plants used for
324 published auxin quantification were ten-day-old seedlings grown on sterile Murashige and Skoog (MS)
325 agar under a long-day photoperiod at 23°C (Aoi et al., 2020b). Given the potential influence of both
326 developmental stage and environment on phytohormone levels, we wondered if these mutant plants
327 accumulated altered levels of PAA and PAA-amino acid conjugates under our experimental conditions.

328 To investigate this, we quantified free PAA and PAA-amino acid conjugates in uninfected five-week-
329 old *adt1/3/4/5/6* mutant and *ADT* OE transgenic lines grown under our experimental conditions. The
330 *adt1/3/4/5/6* plants accumulated essentially wild-type levels of PAA (Figure 5A) but significantly
331 reduced levels of PAA-Asp and PAA-Glu (Figure 5B and 5C). In contrast, the *ADT4* OE and *ADT5*
332 OE plants accumulated wild-type levels of all PAA forms (Figure 5A-C), rather than the anticipated
333 elevated levels. These data suggest that PAA levels are dependent on developmental stage and/or
334 growth conditions. This could potentially explain why we did not see altered susceptibility to
335 *PtoDC3000* in *ADT* overexpression lines. Furthermore, these data introduce an alternative hypothesis
336 regarding the role of PAA in plant susceptibility. That is, as opposed to free PAA promoting
337 pathogenesis, PAA-Asp and PAA-Glu may negatively regulate plant susceptibility to *PtoDC3000*.

338 Previous studies on the interplay of the different forms of auxins in *A. thaliana* have revealed that PAA
339 and PAA-amino acid conjugates can impact IAA homeostasis (Perez et al., 2023). Thus, we
340 hypothesized that the increased susceptibility of *adt1/3/4/5/6* might be attributable to altered IAA levels
341 in the plants. We quantified IAA and its conjugates in these lines, and indeed, the levels of IAA and
342 its conjugates were altered in *adt1/3/4/5/6*. The *adt1/3/4/5/6* plants accumulated significantly higher
343 levels of IAA and IAA-Asp compared to Col-0 (Figure 5D and 5E), which are correlated with increased
344 susceptibility to *PtoDC3000* (Figure 4B). Notably, the *adt1/3/4/5/6* mutant plants were much smaller
345 than wild-type plants (Figure 4C), but did not show any other phenotypes typical for plants with
346 elevated IAA levels. Thus, the reduced growth phenotypes of the mutant could be due to reduced
347 phenylalanine levels (Aoi et al., 2020b). We did not observe any significant increase in PAA or PAA-
348 amino acid conjugates, nor changes in free or amino acid-conjugated IAA levels in the *ADT* OE lines
349 (Figure 5). This is consistent with our findings that the *ADT* OE plants did not exhibit altered
350 susceptibility to *PtoDC3000* (Figure 4). In summary, our results suggest that PAA-amino acid
351 conjugates and/or the regulatory crosstalk between these conjugates and IAA mediate *A. thaliana*
352 susceptibility to *PtoDC3000*.

353 **4 Discussion**

354 To further our understanding of the roles of auxins during pathogenesis of *P. syringae*, we investigated
355 whether *PtoDC3000* can synthesize PAA and if this synthesis influences the outcome of infection of
356 *A. thaliana*. We also took advantage of an *A. thaliana* mutant line compromised for PAA synthesis to
357 assess the impact of reduced endogenous levels of PAA-related molecules on disease susceptibility.

358 **4.1 *PtoDC3000* synthesizes PAA in culture, using PA Ald as a substrate.**

359 We demonstrated that *PtoDC3000* can synthesize PAA in culture when fed with PA Ald, and that PAA
360 production largely depends on the aldehyde dehydrogenase AldA (Figure 1). In these experiments,
361 PAA accumulation in the *aldA* mutant culture was reduced to about 25% of WT levels, and introduction
362 of the *aldB* mutation did not further reduce PAA production. This suggests that *PtoDC3000* may
363 encode one or more additional enzymes with PA Ald dehydrogenase activity. Alternatively, the residual
364 amount of PAA present in these cultures could be due to conversion of PA Ald to PAA via an activity
365 that accumulates in the medium during the growth of the bacterium. To investigate this, we incubated
366 PA Ald in conditioned HSC medium for 48 hrs and then quantified PAA levels. The molar
367 concentration of PAA measured in conditioned HSC made from either WT or the *aldA* mutant after
368 incubation with PA Ald (~21-32 µM) was similar to the starting concentration of PA Ald (25 µM),
369 whereas only very small amounts of PAA were detected in non-conditioned HSC that had been
370 incubated with PA Ald (Table S4). These observations support the hypothesis that an AldA-
371 independent activity that accumulates in the media after prolonged growth of *PtoDC3000*, can convert
372 PA Ald into PAA.

373 The observation that *PtoDC3000* did not synthesize PAA when fed with phenylalanine (Figure 1A)
374 suggests that *PtoDC3000* is unable to convert the amino acid to PA Ald (*i.e.*, via the intermediate
375 phenylpyruvate, PPA). This is consistent with the observation that the *PtoDC3000* genome does not
376 encode an obvious phenylpyruvate decarboxylase, an enzyme found in other bacteria that catalyzes the
377 decarboxylation of PPA to PA Ald (Spaepen et al., 2007; Patten et al., 2013). Although we cannot
378 formally rule out that the inability to use phenylalanine as a substrate for PAA is due to the inability to
379 take up the amino acid from growth media, we think this is unlikely, as the *PtoDC3000* genome is
380 predicted to encode at least one aromatic amino acid transporter homologous to the AroP1 transporter
381 of *P. aeruginosa* (www.pseudomonas.com).

382 **4.2 AldA is a versatile enzyme that can use structurally similar substrates.**

383 AldA was initially identified as an enzyme that catalyzes the conversion of IAA Ald to IAA in
384 *PtoDC3000* (McClerkin, 2018). Here, we show that this enzyme uses a broad spectrum of aromatic
385 substrates. Specifically, it accepts both IAA Ald and PA Ald to synthesize two distinct auxin species, IAA
386 and PAA, respectively (Figure 2B). The substrate promiscuity of enzymes in auxin biosynthesis has
387 been documented in studies on higher plants. For instance, to examine the conversion of IAA Ald to IAA
388 by aldehyde oxidase (AO; EC 1.2.3.1), three aldehyde oxidase homologs (*i.e.*, AO1, AO2, and AO3)
389 from *A. thaliana* were tested against a selection of 11 distinct aldehydes, including IAA Ald and PA Ald
390 (Seo et al., 1998). While AO1 exhibited a strong substrate preference for IAA Ald and indole-3-aldehyde
391 (IA Ald), all three AOs showed activity across a broad spectrum of aromatic aldehydes. Despite the lack
392 of amino acid sequence, structural, and/or mechanistic similarity between the plant AOs and
393 *PtoDC3000* AldA, both types of enzymes exhibit the capacity to accommodate a wide variety of
394 aromatic compounds.

395 Previous revelation of the three-dimensional structure of the AldA•NAD⁺•IAA complex indicates that
396 the IAAld/IAA binding site of AldA is predominantly formed by amino acid residues with high
397 hydrophobicity, suggesting apolar interactions are the primary binding mechanism (McClerklin, 2018).
398 Particularly, the sidechains of Phe169, Phe296, and Phe467 may be involved in potential π - π
399 interactions with the indole moiety of IAAld during binding. Given the substrate binding site
400 environment of AldA and the structural similarity of the aromatic substrates, the substitution of the
401 indole and phenyl moieties seem to minimally impact the substrate accessibility to the active site or its
402 binding affinity for PAAld. AldA can also use another structurally similar aromatic aldehyde,
403 hydrocinnamaldehyde, as a substrate, presumably to produce hydrocinnamic acid (a.k.a.,
404 phenylpropanoic acid). The fact that cinnamaldehyde, in which the aldehyde sidechain contains a
405 carbon-carbon double bond, is not a good substrate for AldA may provide some clues about the
406 substrate preference for this enzyme. As discussed below, the ability of *PtoDC3000* to synthesize the
407 auxins IAA and PAA is biologically relevant, and both IAAld and PAAld are readily found in plants
408 (Koshiba et al., 1996; Guttensohn et al., 2011). However, the biological relevance of
409 hydrocinnamaldehyde production by *PtoDC3000* is not clear.

410 **4.3 AldA-dependent auxin synthesis may participate in aspects of *PtoDC3000* biology other
411 than contributing to increasing auxin levels in infected plant tissues.**

412 Our finding that neither the *aldA*::Ω mutant featured in this study, nor the *aldA*::pJP5603 insertion
413 mutant originally characterized by McClerklin *et al.* (2018) exhibited reduced growth on *A. thaliana*
414 plants (Figure S4) suggests that AldA does not play a major role during pathogenesis on *A. thaliana*.
415 This is consistent with our observation that AldA-dependent auxin synthesis does not appear to
416 contribute significantly to the increase in either IAA or PAA levels in infected leaves (Figure 3). Thus,
417 the increase in auxin appears to be due to synthesis by the plant, in response to infection; however,
418 because endogenous auxin levels are elevated in infected leaves (3-fold and 1.5-fold increase in IAA
419 and PAA, respectively compared to uninoculated controls), any further increase contributed by
420 bacterial AldA-dependent synthesis may not be readily detectable. It is also possible that *PtoDC3000*
421 contributes to the increase in auxin via an AldA-independent process, involving a different
422 acetaldehyde dehydrogenase or via a different biosynthetic pathway.

423 Given that the *aldA* gene is highly conserved in *P. syringae* strains, AldA-dependent production of
424 PAA, IAA, or both aromatic acids may play important roles at different stages of the bacterial life
425 cycle, such as during epiphytic growth or during communication with other microorganisms.
426 Alternatively, AldA-dependent auxin synthesis may be involved in regulation of bacterial gene
427 expression. For example, IAA impacts the expression of virulence-related genes in *P. syringae* (Djami-
428 Tchatchou *et al.*, 2020; Djami-Tchatchou *et al.*, 2022), *Acinetobacter baumannii* (Hooppaw Anna *et*
429 *al.*, 2022), *Agrobacterium tumefaciens* (Liu and Nester, 2006), and *Erwinia chrysanthemi* (Yang *et al.*,
430 2007).

431 **4.4 PAA/IAA homeostasis impacts susceptibility to *PtoDC3000*.**

432 Auxin promotes disease susceptibility to many biotrophic pathogens (Kunkel and Harper, 2018). For
433 example, exogenous application of IAA or IAA-Asp promotes disease development in plants infected
434 with *PtoDC3000* (Chen *et al.*, 2007; González-Lamothe *et al.*, 2012), and plants with elevated levels
435 of IAA exhibit increased susceptibility (Navarro *et al.*, 2006; Chen *et al.*, 2007; Cui *et al.*, 2013; Djami-
436 Tchatchou *et al.*, 2020). Genetic and molecular studies further reveal that IAA can promote
437 pathogenesis via two separate mechanisms: (1) repressing salicylic acid (SA)-mediated host defense
438 responses (Wang *et al.*, 2007; McClerklin *et al.*, 2018) and (2) regulating bacterial virulence gene
439 expression (Djami-Tchatchou *et al.*, 2020).

440 PAA has been shown to play similar regulatory roles as IAA in plants, and responses to PAA are
441 mediated via the same phytohormone response system (Shimizu-Mitao and Kakimoto, 2014). We
442 hypothesized that PAA would also serve a similar role as IAA during *PtoDC3000* infection and
443 promote pathogenesis. Thus, we predicted that plants reported to have elevated PAA (or PAA-amino
444 acid conjugates) would show increased susceptibility, while plants with reduced PAA (or PAA-amino
445 acid conjugates) would exhibit decreased susceptibility. Surprisingly, we observed that the *adt1/3/4/5/6*
446 mutant, which accumulated reduced levels of PAA-AAs (Figure 5B and 5C), exhibited increased
447 susceptibility (Figure 4B and 4C).

448 In addition to reducing PAA-Asp and PAA-Glu levels, the disruption of *ADT1/3/4/5/6* resulted in
449 increased levels of IAA and IAA-Asp (Figure 5D and 5E). We hypothesize that the genetic modulation
450 of the PAA pool in plants impacts IAA homeostasis, which is then responsible for the increased
451 susceptibility. Aligning with this idea, several mechanisms have been proposed for modulating the
452 metabolic crosstalk between IAA and PAA. These mechanisms include: (i) modulation of GH3
453 (GRETCHEN HAGEN 3) acyl acid amido synthetases, which can catalyze formation of aspartate and
454 glutamate conjugated forms of IAA and PAA (Westfall et al., 2016) and/or UDP-dependent
455 glycosyltransferase (UGT)-dependent modification of auxins (Aoi et al., 2020a; Aoi et al., 2020c) and
456 (ii) repression of IAA biosynthesis genes by PAA (Perez et al., 2021). The first homeostasis crosstalk
457 mechanism suggests that free PAA and/or IAA induces the activity of auxin modification enzymes,
458 leading to the accumulation of conjugated PAA and/or IAA. This mechanism does not adequately
459 explain our findings, given that we observe the opposite outcome in the *adt1/3/4/5/6* mutant. On the
460 other hand, the relationship between PAA and IAA levels we observed in the *adt1/3/4/5/6* mutant could
461 be achieved through the negative crosstalk between PAA and IAA biosynthesis. In this scenario, plants
462 with a reduced PAA pool could result in increased synthesis of IAA. This balancing between
463 phenylalanine- and tryptophan-derived auxins could result from the same mechanisms that regulate
464 distribution of chorismate into either aromatic amino acid pool (Kroll et al., 2017), which may impact
465 subsequent synthesis of PAA and IAA. We cannot rule out the possibility of direct inhibition of
466 pathogen virulence by PAA-amino acid conjugates. For example, reduced levels of PAA-Asp and
467 PAA-Glu could potentially promote *PtoDC3000* virulence through IAA-independent mechanisms,
468 such as impacting bacterial virulence gene expression or plant defense responses. Future studies
469 investigating the roles of PAA and PAA-amino acid conjugants in modulating host defenses and/or
470 bacterial gene expression should provide new insights into the roles of auxin in plant-microbe
471 interactions.

472 **5 Data availability statement**

473 Not applicable.

474 **6 Author contributions**

475 CYL: Conceptualization, Experimentation, Data Analysis, Writing – original draft, review and editing;
476 CPH: Conceptualization, Experimentation, Data Analysis, Writing – original draft, review and editing;
477 SGL: Conceptualization, Experimentation, Data Analysis, Writing – review and editing; YQ:
478 Experimentation, Writing – review and editing; TC: Experimentation; YA: Experimentation; JMJ:
479 Conceptualization, Writing - review and editing; HK: Conceptualization, Experimentation, Writing –
480 review and editing; JAVB: Conceptualization, Writing – review and editing; BNK: Project
481 administration, Conceptualization, Writing – original draft, review and editing.

482 **7 Funding**

483 This work was funded by NSF grants IOS-1030250 and IOS-1645908 awarded to BNK, NSF CAREER
484 1846005 to JAVB, a grant from the Japan Society for the Promotion of Science (JSPS) KAKENHI
485 21H02501 and JST grant number JPMJPF2104 to HK, NSF grant MCB-1614539 to JMJ, and start-up
486 funds from Kennesaw State University to SGL. CYL was supported by a Taiwan Ministry of Education
487 Fellowship.

488 **8 Acknowledgements**

489 We thank Sarah A. Pardi for help characterizing the *aldA::Ω* mutant.

490 **9 Conflict of interest**

491 The authors declare that the research was conducted in the absence of any commercial or financial
492 relationships that could be construed as a potential conflict of interest.

496

497 **10 Supplementary material**

498 **Figure S1:** Growth of wild-type *PtoDC3000* and the indicated *ald* mutants in Hoitkin-Sinden medium
499 containing 10 mM citrate (HSC) and HSC supplemented with 25 μ M phenylacetylaldehyde (PAAld).

500 **Figure S2.** Quantification of indole-3-acetic acid (IAA) produced in culture by wild-type *PtoDC3000*
501 (WT), the *aldA::Ω* mutant (*aldA*), and the complemented *aldA::Ω* mutant (*aldA (pAldA⁺)*).

502 **Figure S3.** Comparison of AldA-ligand binding in the active site tunnel.

503 **Figure S4.** Bacterial growth of wild-type *PtoDC3000* strains in *A. thaliana* leaves sampled for auxin
504 quantification.

505 **Table S1.** Bacterial strains and plasmids used in this study.

506 **Table S2.** Primers used in this study.

507 **Table S3.** Metabolites detected by LC-MS/MS.

508 **Table S4.** Accumulation of phenylacetic acid (PAA) in conditioned medium in three independent
509 experiments.

510

511 **11 Scope statement**

512 Previous studies have shown that Indole-3-acetic acid (IAA), the best-studied member of the class of
513 plant growth regulators known as “auxins”, plays multiple roles in plant-pathogen interactions.
514 However, little is known about the roles of other forms of auxin, including phenylacetic acid (PAA),
515 in these interactions. In this study we explore the role of PAA in the interactions between the plant
516 pathogenic bacterium *Pseudomonas syringae* strain *PtoDC3000* and one of its hosts, *Arabidopsis*
517 *thaliana*. We think this manuscript will be of interest to your readers and is well suited for inclusion in
518 the Research Topic “The Role of Auxin in Plant-Microbe Interactions”.

519

520 **12 Figure Legends**

521 **Figure 1.** *PtoDC3000* synthesizes phenylacetic acid (PAA) in culture. **(A)** Quantification of PAA in
522 wild-type *PtoDC3000* cultures, 46-48 hours(hrs) after transferring cells to HSC, HSC supplemented
523 with 100 μ M phenylalanine or 25 μ M phenylacetylaldehyde (PAAld). PAA levels were measured
524 using LC-MS/MS. Values are combined from 3 independent experiments with 3 biological replicates
525 each (n=9) and shown as mean \pm SEM. Lowercase letters indicate significant differences between
526 treatments as determined by ANOVA followed by Tukey's HSD test ($p < 0.05$). **(B)** Quantification of
527 PAA in wild-type *PtoDC3000* (WT), *aldA::Ω*, *aldB*, *aldA::Ω aldB* mutant strains or the *aldA::Ω* mutant
528 carrying the wt *aldA* gene on a plasmid (*paldA⁺*). PAA levels were measured using LC-MS/MS at 46-
529 48 hrs after transferring cells to HSC supplemented with 25 μ M PAAld. Values are combined from
530 two independent experiments with three biological replicates each (n=6) and shown as mean \pm SEM.
531 Lowercase letters indicate significant differences between treatments as determined by ANOVA
532 followed by Tukey's HSD test ($p < 0.05$).

533 **Figure 2.** AldA can use several phenolic aldehyde substrates in vitro. **(A)** Chemical structures of
534 aromatic aldehydes indole-3-acetaldehyde (IAAld), hydrocinnamaldehyde (HCinnAld),
535 cinnamaldehyde (CinnAld), and phenylacetylaldehyde (PAAld) used in substrate screening. **(B)** AldA
536 activity with the indicated aromatic aldehyde substrates. Assays were performed as described in
537 Methods. Enzymatic activity was measured spectrophotometrically ($A_{340\text{nm}}$) with 1 mM of NAD⁺ and
538 5 mM of the indicated aldehyde. Spectrophotometric absorbance changes versus time ($\Delta A_{340\text{nm}/\text{min}}$)
539 are plotted as bar graphs for AldA-catalyzed conversion of IAAld, HCinnAld, CinnAld, and PAAld.

540 **Figure 3.** Auxin levels increase in *A. thaliana* plants inoculated with *PtoDC3000*. **(A)** Indole-3-acetic
541 acid (IAA), **(B)** IAA-aspartate conjugate (IAA-Asp), **(C)** IAA-glutamate conjugate (IAA-Glu), **(D)**
542 phenylacetic acid (PAA), **(E)** PAA-aspartate conjugate (PAA-Asp), **(F)** PAA-glutamate conjugate
543 (PAA-Glu). Five-week-old wild-type *A. thaliana* plants (Col-0) were infiltrated with 10 mM MgCl₂
544 (mock), wild-type *PtoDC3000* (WT), or the *aldA::Ω* (*aldA*) mutant. The inoculum used for infiltration
545 was $\sim 1 \times 10^6$ CFU/mL. Infiltrated leaves were collected for LC-MS/MS analysis of auxin metabolites
546 at 24 and 48 hrs post inoculation (hpi). Data are from one representative experiment (n=4) and shown
547 as mean \pm SD. Similar results were obtained in two additional independent experiments. Lowercase
548 letters indicate significant differences between samples as determined by ANOVA followed by
549 Tukey's HSD test ($p < 0.05$). FW: fresh weight of leaf tissues.

550 **Figure 4.** The *A. thaliana* *adt1/3/4/5/6* quintuple mutant exhibits increased susceptibility to
551 *PtoDC3000*. **(A)** PAA biosynthetic and metabolic pathways in *A. thaliana*. PAA is produced from
552 phenylalanine (Phe) via phenylpyruvate (PPA) by transamination and decarboxylation. Two
553 dehydratases, arogenate dehydratase (ADT) and prephenate dehydratase (PDT), mediate the
554 production of PPA, a precursor of PAA biosynthesis. The figure was modified from Aoi et al. (2020a).
555 **(B)** Bacterial growth of wild-type *PtoDC3000* in *A. thaliana* *adt* mutants and transgenic plants
556 overexpressing *ADT4* or *ADT5*. Five-week-old wild-type *A. thaliana* (Col-0), the *adt1 adt3 adt4 adt5*
557 *adt6* quintuple mutant (*adt1/3/4/5/6*), *ADT4* overexpressing (*ADT4 OE*) and *ADT5* overexpressing
558 (*ADT5 OE*) plants were infiltrated with $\sim 1 \times 10^5$ CFU/mL of wild-type *PtoDC3000*. Bacterial growth
559 in infiltrated leaves was quantified 0- and 4-day post-inoculation (dpi). Data are combined from three
560 independent experiments and shown as mean \pm SD (n=12 for 0 dpi, n=24 for 4 dpi). Letters indicate
561 significant differences between genotypes on day 4 as determined by ANOVA followed by Tukey's
562 HSD test ($p < 0.05$). **(C)** Disease symptoms of *A. thaliana* leaves 4 dpi. Plants of the indicated
563 genotypes were infiltrated with $\sim 1 \times 10^6$ CFU/mL of wild-type *PtoDC3000*. Leaves infiltrated with 10

564 mM MgCl₂ (mock) are shown on the right. The photograph is from one representative experiment.
565 Scale bar indicates 1 cm. CFU: Colony forming units; FW: fresh weight of leaf tissue.

566 **Figure 5.** Mature *adt1/3/4/5/6* mutant plants accumulate reduced levels of PAA-amino acid conjugates
567 but increased levels of IAA and IAA-Asp. Quantification of **(A)** phenylacetic acid (PAA), **(B)** PAA-
568 aspartate conjugate (PAA-Asp), **(C)** PAA-glutamate conjugate (PAA-Glu), **(D)** indole-3-acetic acid
569 (IAA), **(E)** IAA-aspartate conjugate (IAA-Asp), and **(F)** IAA-glutamate conjugate (IAA-Glu) in
570 uninoculated *A. thaliana* plants. Leaves from five-week-old wild-type *A. thaliana* (Col-0), *adt1/3/4/5/6*
571 quintuple mutant, *ADT4* overexpressing (*ADT4* OE) and *ADT5* overexpressing (*ADT5* OE) plants were
572 collected for LC-MS/MS analysis of PAA metabolites. Data are combined from two independent
573 experiments with four biological replicates each (n=8) and shown as mean \pm SD. Asterisks indicate
574 significant differences between mutant or transgenic lines and Col-0 as determined by Student's *t*-test
575 (*: $p < 0.05$; **: $p < 0.01$; ***: $p < 0.001$). FW: fresh weight of leaf tissues.

576 **13 Tables**577 **Table 1.** Steady-state kinetic analysis of AldA with PA Ald.

Protein	Substrate	k_{cat} (min ⁻¹)	K_m (μM)	k_{cat}/K_m (M ⁻¹ s ⁻¹)
AldA	PA Ald	1124 ± 78	645 ± 113	29,040
AldA	NAD ⁺	83.8 ± 1.1	11.2 ± 1.2	125,020
AldA [#]	IA Ald	234 ± 21	119 ± 37	32,770
AldA [#]	NAD ⁺	194 ± 9	42 ± 8	77,400

578 Assays were performed as described in the Methods.

579 Average values are expressed as a mean ± SEM (n=3).

580 #These values, which are from assays using IA Ald as a substrate and were previously published in
 581 McClerklin *et al.*, 2013, are included for comparison. All of the results presented in this table are
 582 from enzyme assays performed using the same batch of AldA protein, under identical experimental
 583 conditions.

584

585 14 Reference

586 Akram, W., Anjum, T., and Ali, B. (2016). Phenylacetic Acid Is ISR Determinant Produced by *Bacillus*
587 *fortis* IAGS162, Which Involves Extensive Re-modulation in Metabolomics of Tomato to
588 Protect against *Fusarium* Wilt. *Frontiers in Plant Science* 7, 498. doi:
589 10.3389/fpls.2016.00498.

590 Aoi, Y., Hira, H., Hayakawa, Y., Liu, H., Fukui, K., Dai, X., et al. (2020a). UDP-glucosyltransferase
591 UGT84B1 regulates the levels of indole-3-acetic acid and phenylacetic acid in Arabidopsis.
592 *Biochemical and Biophysical Research Communications* 532(2), 244-250. doi:
593 10.1016/j.bbrc.2020.08.026.

594 Aoi, Y., Oikawa, A., Sasaki, R., Huang, J., Hayashi, K.-i., and Kasahara, H. (2020b). Arogenate
595 dehydratases can modulate the levels of phenylacetic acid in Arabidopsis. *Biochemical and*
596 *Biophysical Research Communications* 524(1), 83-88. doi: 10.1016/j.bbrc.2020.01.041.

597 Aoi, Y., Tanaka, K., Cook, S.D., Hayashi, K.-I., and Kasahara, H. (2020c). GH3 Auxin-Amido
598 Synthetases Alter the Ratio of Indole-3-Acetic Acid and Phenylacetic Acid in Arabidopsis.
599 *Plant and Cell Physiology* 61(3), 596-605. doi: 10.1093/pcp/pcz223.

600 Bartz, F.E., Glassbrook, N.J., Danehower, D.A., and Cubeta, M.A. (2013). Modulation of the
601 phenylacetic acid metabolic complex by quinic acid alters the disease-causing activity of
602 *Rhizoctonia solani* on tomato. *Phytochemistry* 89, 47-52. doi:
603 10.1016/j.phytochem.2012.09.018.

604 Bhuiyan, M.S., Ellett, F., Murray, G.L., Kostoulias, X., Cerqueira, G.M., Schulze, K.E., et al. (2016).
605 *Acinetobacter baumannii* phenylacetic acid metabolism influences infection outcome through
606 a direct effect on neutrophil chemotaxis. *Proceedings of the National Academy of Sciences*
607 113(34), 9599-9604. doi: 10.1073/pnas.1523116113.

608 Chen, Q., Man, C., Li, D., Tan, H., Xie, Y., and Huang, J. (2016). Arogenate Dehydratase Isoforms
609 Differentially Regulate Anthocyanin Biosynthesis in *Arabidopsis thaliana*. *Molecular Plant*
610 9(12), 1609-1619. doi: 10.1016/j.molp.2016.09.010.

611 Chen, Z., Agnew, J.L., Cohen, J.D., He, P., Shan, L., Sheen, J., et al. (2007). *Pseudomonas syringae*
612 type III effector AvrRpt2 alters *Arabidopsis thaliana* auxin physiology. *Proceedings of the*
613 *National Academy of Sciences* 104(50), 20131-20136. doi: 10.1073/pnas.0704901104.

614 Cook, S.D., Nichols, D.S., Smith, J., Chourey, P.S., McAdam, E.L., Quittenden, L., et al. (2016). Auxin
615 Biosynthesis: Are the Indole-3-Acetic Acid and Phenylacetic Acid Biosynthesis Pathways
616 Mirror Images? *Plant Physiology* 171(2), 1230-1241. doi: 10.1104/pp.16.00454.

617 Cui, F., Wu, S., Sun, W., Coaker, G., Kunkel, B., He, P., et al. (2013). The *Pseudomonas syringae*
618 Type III Effector AvrRpt2 Promotes Pathogen Virulence via Stimulating Arabidopsis
619 Auxin/Indole Acetic Acid Protein Turnover. *Plant Physiology* 162(2), 1018-1029. doi:
620 10.1104/pp.113.219659.

621 Cuppels Diane, A. (1986). Generation and Characterization of Tn5 Insertion Mutations in
622 *Pseudomonas syringae* pv. *tomato*. *Applied and Environmental Microbiology* 51(2), 323-327.
623 doi: 10.1128/aem.51.2.323-327.1986.

624 Dai, X., Mashiguchi, K., Chen, Q., Kasahara, H., Kamiya, Y., Ojha, S., et al. (2013). The Biochemical
625 Mechanism of Auxin Biosynthesis by an *Arabidopsis* YUCCA Flavin-containing
626 Monooxygenase. *Journal of Biological Chemistry* 288(3), 1448-1457. doi:
627 10.1074/jbc.M112.424077.

628 Daniels, M.J., Dow, J.M., and Osbourn, A.E. (1988). Molecular genetics of pathogenicity in
629 phytopathogenic bacteria. *Phytopathol.* 26, 285-312.

630 Demina, I.V., Maity, P.J., Nagchowdhury, A., Ng, J.L.P., van der Graaff, E., Demchenko, K.N., et al.
631 (2019). Accumulation of and Response to Auxins in Roots and Nodules of the Actinorhizal

632 Plant *Datisca glomerata* Compared to the Model Legume *Medicago truncatula*. *Frontiers in*
633 *Plant Science* 10. doi: 10.3389/fpls.2019.01085.

634 Djami-Tchatchou, A.-T., Li Zipeng, A., Stodghill, P., Filiatrault Melanie, J., Kunkel Barbara, N., and
635 Shank Elizabeth, A. (2022). Identification of Indole-3-Acetic Acid-Regulated Genes in
636 *Pseudomonas syringae* pv. tomato Strain DC3000. *Journal of Bacteriology* 204(1), e00380-
637 00321. doi: 10.1128/JB.00380-21.

638 Djami-Tchatchou, A.T., Harrison, G.A., Harper, C.P., Wang, R., Prigge, M.J., Estelle, M., et al. (2020).
639 Dual Role of Auxin in Regulating Plant Defense and Bacterial Virulence Gene Expression
640 During *Pseudomonas syringae* PtoDC3000 Pathogenesis. *Molecular Plant-Microbe*
641 *Interactions*® 33(8), 1059-1071. doi: 10.1094/mpmi-02-20-0047-r.

642 Finan, T.M., Kunkel, B., De Vos, G.F., and Signer, E.R. (1986). Second symbiotic megaplasmid in
643 *Rhizobium meliloti* carrying exopolysaccharide and thiamine synthesis genes. *Journal of*
644 *Bacteriology* 167(1), 66-72. doi: 10.1128/jb.167.1.66-72.1986.

645 Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S.e., Wilkins, M.R., Appel, R.D., et al. (2005).
646 "Protein Identification and Analysis Tools on the ExPASy Server," in *The Proteomics*
647 *Protocols Handbook*, ed. J.M. Walker. (Totowa, NJ: Humana Press), 571-607.

648 González-Lamothe, R., El Oirdi, M., Brisson, N., and Bouarab, K. (2012). The Conjugated Auxin
649 Indole-3-Acetic Acid-Aspartic Acid Promotes Plant Disease Development *The Plant Cell*
650 24(2), 762-777. doi: 10.1105/tpc.111.095190.

651 Guttensohn, M., Klempien, A., Kaminaga, Y., Nagegowda, D.A., Negre-Zakharov, F., Huh, J.-H., et
652 al. (2011). Role of aromatic aldehyde synthase in wounding/herbivory response and flower
653 scent production in different *Arabidopsis* ecotypes. *The Plant Journal* 66(4), 591-602. doi:
654 10.1111/j.1365-313X.2011.04515.x.

655 Hooppaw Anna, J., McGuffey Jenna, C., Di Venanzio, G., Ortiz-Marquez Juan, C., Weber Brent, S.,
656 Lightly Tasia, J., et al. (2022). The Phenylacetic Acid Catabolic Pathway Regulates Antibiotic
657 and Oxidative Stress Responses in *Acinetobacter*. *mbio* 13(3), e01863-01821. doi:
658 10.1128/mbio.01863-21.

659 Korasick, D.A., Enders, T.A., and Strader, L.C. (2013). Auxin biosynthesis and storage forms. *Journal*
660 *of Experimental Botany* 64(9), 2541-2555. doi: 10.1093/jxb/ert080.

661 Koshiba, T., Saito, E., Ono, N., Yamamoto, N., and Sato, M. (1996). Purification and Properties of
662 Flavin- and Molybdenum-Containing Aldehyde Oxidase from Coleoptiles of Maize. *Plant*
663 *Physiology* 110(3), 781-789. doi: 10.1104/pp.110.3.781.

664 Kroll, K., Holland, C.K., Starks, C.M., and Jez, J.M. (2017). Evolution of allosteric regulation in
665 chorismate mutases from early plants. *Biochemical Journal* 474(22), 3705-3717. doi:
666 10.1042/BCJ20170549.

667 Kunkel, B.N., and Harper, C.P. (2018). The roles of auxin during interactions between bacterial plant
668 pathogens and their hosts. *Journal of Experimental Botany* 69(2), 245-254. doi:
669 10.1093/jxb/erx447.

670 Lee, S.G., Harline, K., Abar, O., Akadri, S.O., Bastian, A.G., Chen, H.S., et al. (2020). The plant
671 pathogen enzyme AldC is a long-chain aliphatic aldehyde dehydrogenase. *J Biol Chem*
672 295(40), 13914-13926. doi: 10.1074/jbc.RA120.014747.

673 Liu, P., and Nester, E.W. (2006). Indoleacetic acid, a product of transferred DNA, inhibits *vir* gene
674 expression and growth of *Agrobacterium tumefaciens* C58. *Proceedings of the National*
675 *Academy of Sciences* 103(12), 4658-4662. doi: 10.1073/pnas.0600366103.

676 McClerkin, S.A., Lee, S.G., Harper, C.P., Nwumeh, R., Jez, J.M., and Kunkel, B.N. (2018). Indole-3-
677 acetaldehyde dehydrogenase-dependent auxin synthesis contributes to virulence of
678 *Pseudomonas syringae* strain DC3000. *PLOS Pathogens* 14(1), e1006811. doi:
679 10.1371/journal.ppat.1006811.

680 Miller, V.L., and Mekalanos, J.J. (1988). A novel suicide vector and its use in construction of insertion
681 mutations: osmoregulation of outer membrane proteins and virulence determinants in *Vibrio*
682 *cholerae* requires *toxR*. *Journal of Bacteriology* 170(6), 2575-2583. doi:
683 10.1128/jb.170.6.2575-2583.1988.

684 Mutka, A.M., Fawley, S., Tsao, T., and Kunkel, B.N. (2013). Auxin promotes susceptibility to
685 *Pseudomonas syringae* via a mechanism independent of suppression of salicylic acid-mediated
686 defenses. *The Plant Journal* 74(5), 746-754. doi: 10.1111/tpj.12157.

687 Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., et al. (2006). A Plant miRNA
688 Contributes to Antibacterial Resistance by Repressing Auxin Signaling. *Science* 312(5772),
689 436-439. doi: 10.1126/science.1126088.

690 Patten, C.L., Blakney, A.J., and Coulson, T.J. (2013). Activity, distribution and function of indole-3-
691 acetic acid biosynthetic pathways in bacteria. *Crit Rev Microbiol* 39(4), 395-415. doi:
692 10.3109/1040841X.2012.716819.

693 Penfold, R.J., and Pemberton, J.M. (1992). An improved suicide vector for construction of
694 chromosomal insertion mutations in bacteria. *Gene* 118(1), 145-146. doi: 10.1016/0378-
695 1119(92)90263-o.

696 Perez, V.C., Dai, R., Bai, B., Tomiczek, B., Askey, B.C., Zhang, Y., et al. (2021). Aldoximes are
697 precursors of auxins in *Arabidopsis* and maize. *New Phytologist* 231(4), 1449-1461. doi:
698 10.1111/nph.17447.

699 Perez, V.C., Zhao, H., Lin, M., and Kim, J. (2023). Occurrence, Function, and Biosynthesis of the
700 Natural Auxin Phenylacetic Acid (PAA) in Plants. *Plants* 12(2), 266. doi:
701 10.3390/plants12020266.

702 Prentki, P., and Krisch, H.M. (1984). In vitro insertional mutagenesis with a selectable DNA fragment.
703 *Gene* 29(3), 303-313. doi: 10.1016/0378-1119(84)90059-3.

704 Seo, M., Akaba, S., Oritani, T., Delarue, M., Bellini, C., Caboche, M., et al. (1998). Higher Activity of
705 an Aldehyde Oxidase in the Auxin-Overproducing *superroot1* Mutant of *Arabidopsis thaliana*.
706 *Plant Physiology* 116(2), 687-693. doi: 10.1104/pp.116.2.687.

707 Shimizu-Mitao, Y., and Kakimoto, T. (2014). Auxin Sensitivities of All *Arabidopsis* Aux/IAAs for
708 Degradation in the Presence of Every TIR1/AFB. *Plant and Cell Physiology* 55(8), 1450-1459.
709 doi: 10.1093/pcp/pcu077.

710 Slininger, P.J., Burkhead, K.D., and Schisler, D.A. (2004). Antifungal and sprout regulatory
711 bioactivities of phenylacetic acid, indole-3-acetic acid, and tyrosol isolated from the potato dry
712 rot suppressive bacterium *Enterobacter cloacae* S11:T:07. *Journal of Industrial Microbiology*
713 and Biotechnology

714 31(11), 517-524. doi: 10.1007/s10295-004-0180-3.

715 Somers, E., Ptacek, D., Gysegom, P., Srinivasan, M., and Vanderleyden, J. (2005). *Azospirillum*
716 *brasilense* Produces the Auxin-Like Phenylacetic Acid by Using the Key Enzyme for Indole-
717 3-Acetic Acid Biosynthesis. *Applied and Environmental Microbiology* 71(4), 1803-1810. doi:
718 10.1128/AEM.71.4.1803-1810.2005.

719 Sopheareth, M., Chan, S., Naing, K.W., Lee, Y.S., Hyun, H.N., Kim, Y.C., et al. (2013). Biocontrol of
720 Late Blight (*Phytophthora capsici*) Disease and Growth Promotion of Pepper by *Burkholderia*
721 *cepacia* MPC-7. *Plant Pathol J* 29(1), 67-76. doi: 10.5423/PPJ.OA.07.2012.0114.

722 Spaepen, S., and Vanderleyden, J. (2011). Auxin and Plant-Microbe Interactions. *Cold Spring Harbor*
723 *Perspectives in Biology* 3(4).

724 Spaepen, S., Versées, W., Gocke, D., Pohl, M., Steyaert, J., and Vanderleyden, J. (2007).
725 Characterization of Phenylpyruvate Decarboxylase, Involved in Auxin Production of
726 *Azospirillum brasilense*. *Journal of Bacteriology* 189(21), 7626-7633. doi: 10.1128/jb.00830-07.

727 Sreedharan, A., Penalosa-Vazquez, A., Kunkel, B.N., and Bender, C.L. (2006). CorR regulates
728 multiple components of virulence in *Pseudomonas syringae* pv. *tomato* DC3000. *Mol. Plant-*
729 *Microbe Interact.* 19, 768-779. doi: 10.1094/MPMI-19-0768.

730 Sugawara, S., Mashiguchi, K., Tanaka, K., Hishiyama, S., Sakai, T., Hanada, K., et al. (2015). Distinct
731 Characteristics of Indole-3-Acetic Acid and Phenylacetic Acid, Two Common Auxins in
732 Plants. *Plant and Cell Physiology* 56(8), 1641-1654. doi: 10.1093/pcp/pcv088.

733 Sumayo, M.S., Son, J.-S., and Ghim, S.-Y. (2018). Exogenous application of phenylacetic acid
734 promotes root hair growth and induces the systemic resistance of tobacco against bacterial soft-
735 rot pathogen *Pectobacterium carotovorum* subsp. *carotovorum*. *Functional Plant Biology*
736 45(11), 1119-1127. doi: 10.1071/FP17332.

737 Tao, Y., Ferrer, J.-L., Ljung, K., Pojer, F., Hong, F., Long, J.A., et al. (2008). Rapid Synthesis of Auxin
738 via a New Tryptophan-Dependent Pathway Is Required for Shade Avoidance in Plants. *Cell*
739 133(1), 164-176. doi: 10.1016/j.cell.2008.01.049.

740 Trott, O., and Olson, A.J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with
741 a new scoring function, efficient optimization, and multithreading. *Journal of Computational*
742 *Chemistry* 31(2), 455-461. doi: 10.1002/jcc.21334.

743 Van Puyvelde, S., Cloots, L., Engelen, K., Das, F., Marchal, K., Vanderleyden, J., et al. (2011).
744 Transcriptome Analysis of the Rhizosphere Bacterium *Azospirillum brasiliense* Reveals an
745 Extensive Auxin Response. *Microbial Ecology* 61(4), 723-728. doi: 10.1007/s00248-011-
746 9819-6.

747 Wang, D., Pajerowska-Mukhtar, K., Culler, A.H., and Dong, X. (2007). Salicylic Acid Inhibits
748 Pathogen Growth in Plants through Repression of the Auxin Signaling Pathway. *Current*
749 *Biology* 17(20), 1784-1790. doi: 10.1016/j.cub.2007.09.025.

750 Wang, J., Dong, Y., Zhou, T., Liu, X., Deng, Y., Wang, C., et al. (2013). *Pseudomonas aeruginosa*
751 Cytotoxicity Is Attenuated at High Cell Density and Associated with the Accumulation of
752 Phenylacetic Acid. *PLOS ONE* 8(3), e60187. doi: 10.1371/journal.pone.0060187.

753 Westfall, C.S., Sherp, A.M., Zubieta, C., Alvarez, S., Schraft, E., Marcellin, R., et al. (2016).
754 *Arabidopsis thaliana* GH3.5 acyl acid amido synthetase mediates metabolic crosstalk in auxin
755 and salicylic acid homeostasis. *Proceedings of the National Academy of Sciences* 113(48),
756 13917-13922. doi: 10.1073/pnas.1612635113.

757 Yang, S., Zhang, Q., Guo, J., Charkowski Amy, O., Glick Bernard, R., Ibekwe, A.M., et al. (2007).
758 Global Effect of Indole-3-Acetic Acid Biosynthesis on Multiple Virulence Factors of *Erwinia*
759 *chrysanthemi* 3937. *Applied and Environmental Microbiology* 73(4), 1079-1088. doi:
760 10.1128/AEM.01770-06.

761 Yuan, Z.-C., Haudecoeur, E., Faure, D., Kerr, K.F., and Nester, E.W. (2008). Comparative
762 transcriptome analysis of *Agrobacterium tumefaciens* in response to plant signal salicylic acid,
763 indole-3-acetic acid and γ -amino butyric acid reveals signalling cross-talk and *Agrobacterium*–
764 plant co-evolution. *Cellular Microbiology* 10(11), 2339-2354. doi: 10.1111/j.1462-
765 5822.2008.01215.x.

766 Zhang, K., Lee, J.S., Liu, R., Chan, Z.T., Dawson, T.J., De Togni, E.S., et al. (2020). Investigating the
767 reaction and substrate preference of indole-3-acetaldehyde dehydrogenase from the plant
768 pathogen *Pseudomonas syringae* PtoDC3000. *Bioscience Reports* 40(12), 1-10. doi:
769 10.1042/bsr20202959.

770 Zhang, L., Liu, Q., Pan, H., Li, X., and Guo, D. (2017). Metabolic engineering of *Escherichia coli* to
771 high efficient synthesis phenylacetic acid from phenylalanine. *AMB Express* 7(1), 105. doi:
772 10.1186/s13568-017-0407-0.

Figure 1.TIF

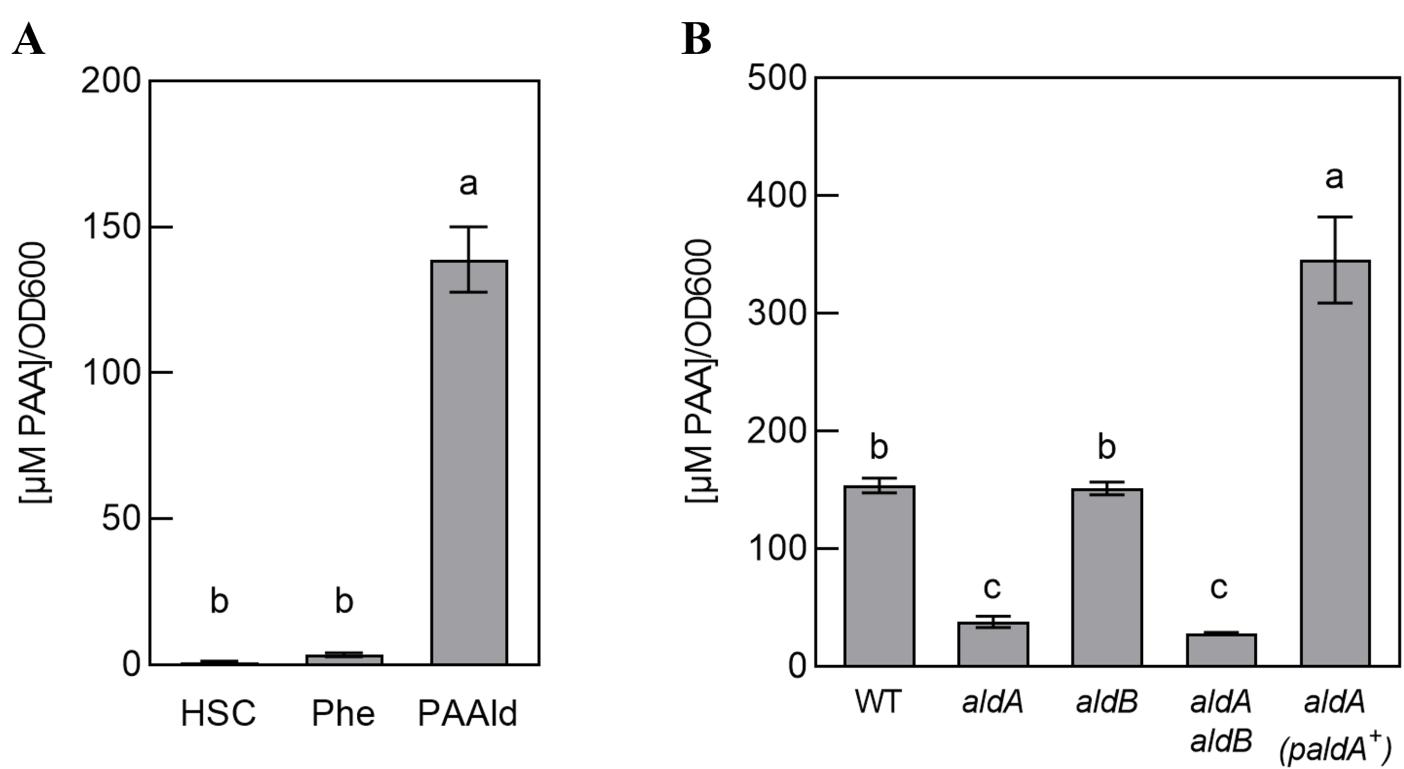


Figure 2.TIF

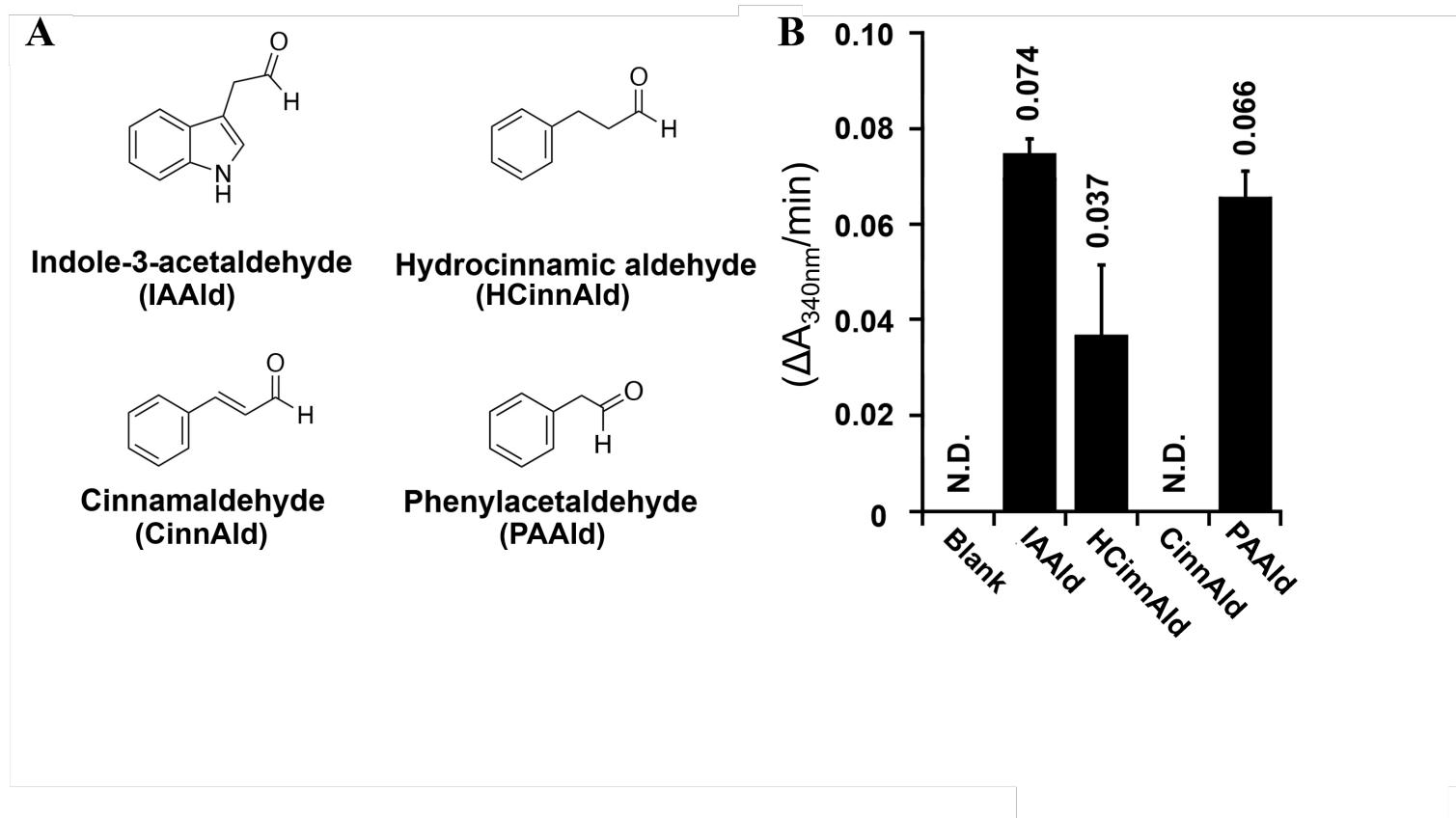


Figure 3.TIF

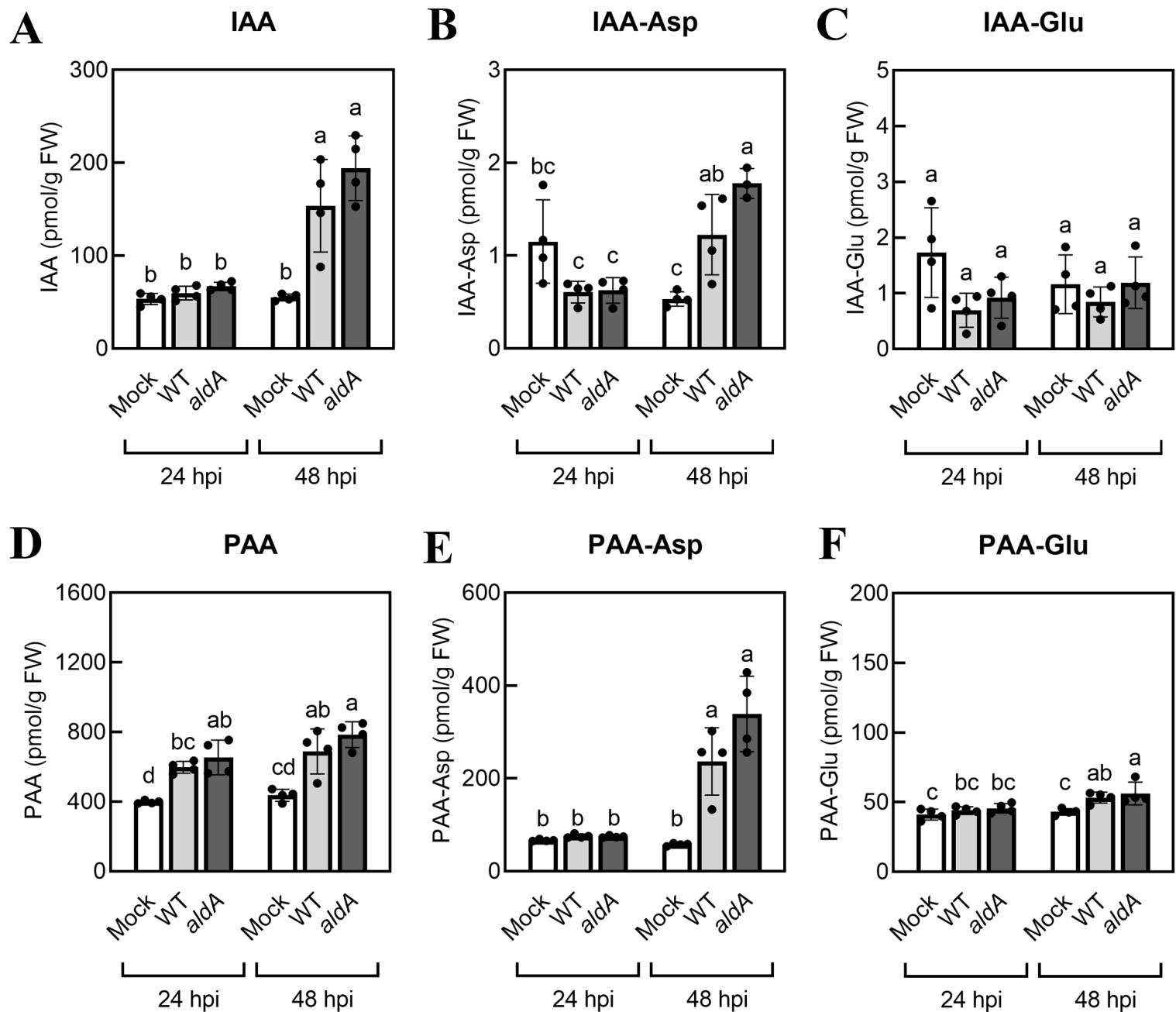


Figure 4.TIF

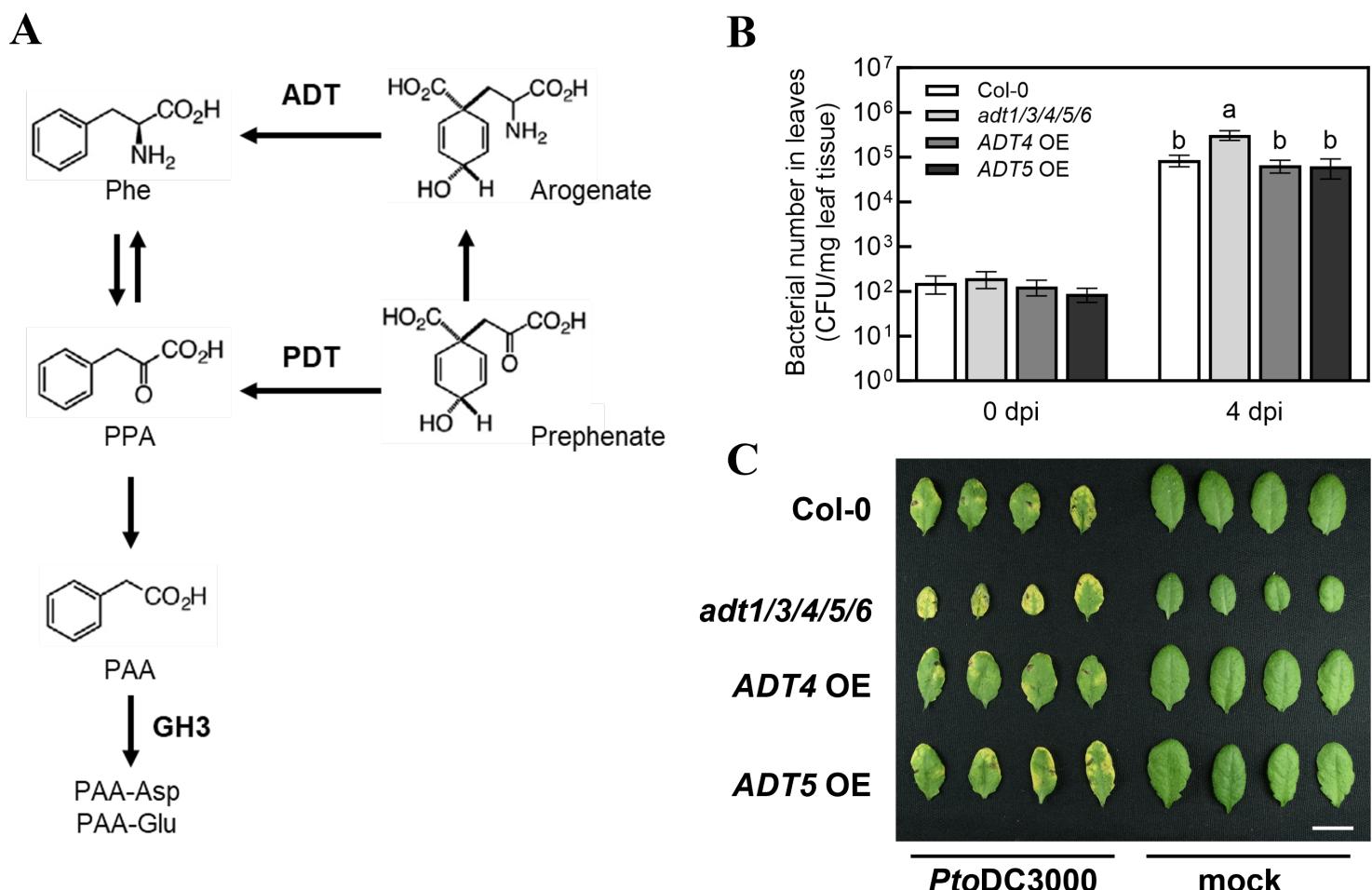
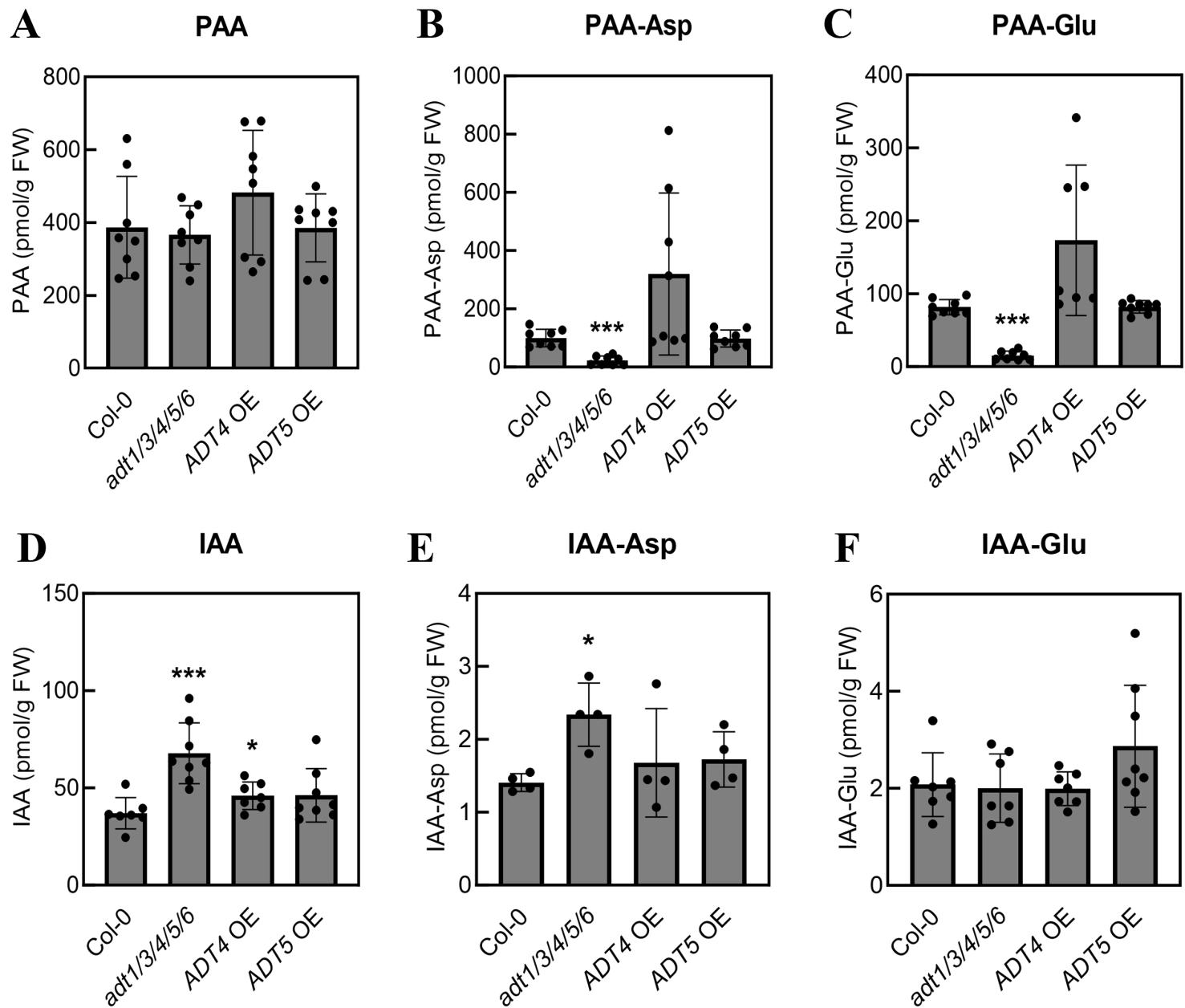



Figure 5.TIF

