
Towards a fully autonomous robotic system
for detection and removal of surface defects

in fiber glass panels

James Oubre ∗ William Ard ∗∗ Joshua Nguyen ∗∗

Corina Barbalata ∗∗

∗ Electrical Engineering and Computer Science Department, Louisiana
State University, Baton Rouge, LA 70803 USA (e-mail:

joubr13@lsu.edu).
∗∗ Mechanical and Industrial Engineering Department, Louisiana State
University, Baton Rouge, LA 70803 USA (e-mails: ward2@lsu.edu,

jngu114@lsu.edu, cbarbalata@lsu.edu).

Abstract: Wind blades for turbines are commonly manufactured from fiber glass. A last
step in the manufacturing process of such blades is sanding of the surface to remove defects
that occur during the process. This paper presents an autonomous robotic system performing
sanding operations for surface defect removal in fiber glass panels. The proposed approach uses
a collaborative robotic system equipped with a vision system. Surface defects are detected using
traditional computer vision algorithms and a path planning strategy is designed that solves
multi-goal and coverage path planning problems. The robotic system equipped with a specialized
end-effector will autonomously perform sanding of the defected areas using a constant velocity
control system. Experimental results are evaluated based on the accuracy of the defect detection
and roughness measurements before and after the sanding process has been completed.
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1. INTRODUCTION

For wind energy turbines, lightweight fiber glass blades
represent the appropriate choice as they allow the turbine
to spin efficiently and produce more energy compared to
other types of blades. After the fiber glass parts have
been manufactured, finishing operations, such as sanding,
are performed to remove surface defects, provide an ap-
propriate surface for painting processes, or improve the
aesthetics of the part. Such operations have been mainly
carried out manually by human operators, the outcome of
the process being dependent on the worker’s skills (Kalt
et al. [2016]).

In the past few years, collaborative robots (cobots) have
gained interest in the context of Industry 4.0, as they
are safe to operate in the presence of human workers.
Their primary uses in an industrial setting have been for
tasks such as assembly, inspection, pick & place appli-
cations, and, more recently, they have been introduced
for sanding and polishing applications. Nevertheless, for
cobots to be able to autonomously remove surface defects
using sanding, several challenges must be addressed. These
include but are not limited to autonomous detection of
the defected areas and planning strategies to remove such
defects.

This paper presents a fully autonomous collaborative
robotic system, Fig. 1, for sanding surface defects in
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Fig. 1: Robotic system

fiber glass panels. The
proposed architecture
starts with a percep-
tion system to de-
tect surface defects
in fiber glass mate-
rials using an afford-
able RGB-D camera.
The novelty of this
paper comes from the
integration of special-
ized sub-systems to
realize the capabil-
ity of autonomous de-
tection and removal
of surface defects in
flat fiber glass panels.
A path planning ar-
chitecture for robotic
manipulators is designed that combines multi-goal path
planning and coverage path planning. Experimental re-
sults with a UR5e robotic system sanding defected areas in
fiber glass panels are used to evaluate the proposed system.

2. BACKGROUND

This section presents a short background for defect detec-
tion, path planning approaches, and research previously
done in the area of sanding and polishing using robotic
systems.



Fig. 2. Proposed approach: (a) Intel D435i mounted on the end-effector of the UR5e takes an image of the fiber glass
panel; (b) a computer vision algorithm detects the surface defects in the panel; (c) a multi-goal path planning
algorithm is used to ensure the robot will reach all defected areas; (d) a coverage path planning strategy is used
to ensure complete damage removal (red lines represent end-effector travel in air, blue path represents end-effector
path when in contact with the environment); (e) the UR5e executes the sanding only on the defected areas.

2.1 Surface defect detection in fiber glass

Many non-destructive testing (NDT) techniques, such as
radiography, sheography, thermography and visual inspec-
tion, have been used in composite parts for defect detection
(Tiwari and Raisutis [2018]). Visual based approaches have
seen a significant rise in the past decade, focusing on both
traditional visual inspection and data-driven approaches.
However, one of the limitations of these techniques, is that
they are dependent on the material properties and on the
environmental medium.

The most common approaches for damage detection using
visual inspection have focused on detecting edges, features,
and regions. Filter-based approaches detect the intensity
change in an image (Tiwari and Raisutis [2018]). A few ex-
amples worth mentioning are: Sobel filters, Canny edge de-
tector, and Laplacian filters. Frequency based approaches,
such as Gabor transform or the Optical Fourier transform
have been used in fabrics for defect detection. Over the
past few years, machine learning approaches, like convo-
lutional neural networks (CNNs), have been extensively
used in the area of defect detection (Chen et al. [2022]).

For fiber glass panels, visual inspection has been signifi-
cantly less studied. Several papers have used active ther-
mography for inspection of fiber glass. In (Souza et al.
[2008]) the authors used an infrared camera with a heat
source and perform Fast Fourier Transform (FFT) analysis
on the obtained images to detect defects in adhesive joints.
In (Muravsky et al. [2019]) the authors propose dynamic
speckle patterns to detect subsurface defects with an RGB
camera and a laser system.

2.2 Path planning for defect removal

Path planning for robotic systems performing sanding or
polishing operations have been studied using an optimiza-
tion framework based on the geometry of the part in (Chen
et al. [2016]). The paper introduces the Hertz contact
model for analyzing the contact between the tool and the
surface to be polished. In (Kharidege et al. [2017]) a tool
path planner is presented where the applied force and the
polishing parameters are optimized. The planner is de-
signed for complex shapes using a distribution of the area
and scanning path method. A scanning path method is
used in (Tam et al. [1999]), where paths are constructed on

a two-dimensional parametric plane and later are mapped
on the 3D surface using the surface model. These papers
have focused on the assumption that the entirety of the
part must be sanded but this is not valid for defect removal
in sanding applications.

Path planning for defect removal can be represented with
two approaches: multi-goal path planning and coverage
path planning. Multi-goal path planning is used to de-
termine the best approach to navigate between defected
areas, while coverage path planning (CPP) is used to
determine a path that passes over all points in an area
where a defect has been detected. The multi-goal path
planning problem has been represented in the literature
as the Traveling Salesman Problem (TSP) (Vicencio et al.
[2014]). A heuristic approach based on genetic algorithms
that results in a near-optimal solution is presented in
(Sánchez and De la Rosa [2017]). Ant colony optimization
is presented in (Tuani et al. [2017]) as a solution to the
TSP. A sampling based solution based on multiple sam-
pling trees is shown in (Janoš et al. [2021]). The Coverage
Path Planning problem is related to the covering salesman
problem (CSP), that represents a variation of the TSP.
For the CSP, the agent must visit a neighborhood of the
target area while for the CPP problem the agent must
pass over all points in the target area. This is a computa-
tionally difficult problem whose complexity increases with
the increase of dimensionality. In (Oksanen and Visala
[2009]) an off-line trapezoid decomposition algorithm is
presented for agricultural machines covering fields. An off-
line grid based decomposition is presented in (Zelinsky
et al. [1993]), while in (Gabriely and Rimon [2002]) an
on-line approach, named Spiral-Spanning Tree Coverage
algorithm for mobile robots is presented.

3. METHODOLOGY

The proposed pipeline for autonomous sanding of surface
defects using cobots is shown in Fig. 2. The following
paragraphs describe the details of each of these steps.

3.1 Surface defect detection in fiber glass

This project is focused on surface defects in fiber glass
panels that are either visible (e.g. scratches, shape error,
etc.) or palpable (e.g., crack, bump, etc.). The approach
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Fig. 3. Defect detection stages: (a) original image, (b) Canny edge detection, (c) morphological closing, (d) overlaid
defect detection over original image

taken in this paper is part of the low-level processing
methods where no prior knowledge about the content of
the image is used.

The proposed algorithm utilizes traditional computer vi-
sion techniques such as canny edge detection, morphologi-
cal closing, contour detection, and binary mapping. A flow
diagram of the process can be seen in Fig. 3. First, an Intel
D435i camera captures the RGB and depth images of the
fiber glass sample. A canny edge detector is applied to the
RGB image. This edge detector is chosen because of its
high performance of detecting edges in a noisy image. This
is vital for fiber glass panels as it successfully separates
the inherit pattern visible underneath the surface of the
fiber glass itself from the defects present on the surface.
Through this method, scratches and surface roughness be-
come apparent. To create a general region of the defective
area, a morphological closing operation is applied. This
merges nearby edges and fills openings within a certain
area to create a blob like structure that correlates to the
defective region on the sample. At this point, a binary
image is generated with white pixels representing defective
areas. Next, using topological analysis approaches, the
individual blobs’ contours are found and used to represent
the different defective regions as arrays of pixels values.
To remove false positive detected areas, a thresholding
operation is performed to the regions previously extracted.
The discrete arrays of pixels each represent a different
region of defective surface and can then be input into
the path planning algorithm. Although deep-learning has
been widely used in computer-vision applications for defect
detection and has been proven very successful, it still
requires large amounts of data. As such, traditional com-
puter vision methods have a clear advantages when limited
data is available, and should be used when they provide a
solution more efficiently (O’Mahony et al. [2019]).

3.2 Path planning for defect removal

Once the defects have been identified, the robot has to
sand the indicated areas. This section presents the pro-
posed approaches for the manipulator to navigate between
various defected areas (multi-goal path planning) and the
path taken in each of these areas to ensure its complete
coverage (coverage path planning).

Multi-goal path planning The problem of navigating
between various defected areas is represented as a TSP.
The goal of the TSP is to find the shortest path that
visits each node exactly once. The centroid of each of
the defected areas represents the node that the robotic
arm has to visit. A nearest neighbor algorithm is used to

create an initial path between nodes. A solution to the
TSP is defined as a sequential set P that contains all
nodes that must be visited, where P = [v1, v2, ..., vn], v
represents a node, and n is the number of nodes that must
be visited along a path. The length of the path is described
as the sum of the 2-norm distance of one node to the next.
The TSP is modeled as an optimization problem and the
cost function chosen is defined as J =

∑m
i=1 Ei, where Ei

represents the 2-norm distance from one node to the next.
The 2-Opt heuristic approach (Ma et al. [2016]) has been
chosen as the strategy for solving the TSP. This represents
the most used local operator (Brodowsky et al. [2021]).

Coverage path planning Once a path between defected
areas is generated, the next step is to create a coverage
path planning strategy that ensures the entire defected
area is covered. A grid-based sweeping algorithm for con-
vex regions is proposed. The first step is to ensure that the
defected areas have a convex representation. This is done
using the Quickhull algorithm as presented in (Greenfield
[1990]). For areas that overlap, a merging algorithm based
on the union of the two defected regions is used. The
next step is to design the grid-based decomposition. Cellu-
lar decomposition divides the space into non-overlapping
polygons using boustrophedon decomposition. As these
regions do not present any obstacles a lawnmower sweeping
approach is used to cover the area with simple motions.
The resolution of the sweeping algorithm is determined
based on the sanding tool used to minimize overlapping
between paths. At this stage, the multi-goal path and
coverage planning are integrated, by replacing the centroid
of each defected areas with the start of the lawnmower
path for that corresponding defected zone. The robot is
then commanded to travel in air to reach from one defected
region to another. Once a defected area is reached the
robot is required to make contact with the environment,
applying a constant force while performing the sanding
operation based on the coverage path.

4. RESULTS

Experimental set-up: To evaluate the results of the
proposed pipeline, the UR5e robot is equipped with a
custom tooling system consisting of the Intel D435i camera
and the 9100 Fortiflex Dremel. The fiber glass panels
used for testing are manufactured using vacuum-assisted
resin infusion, each sample having a dimension of roughly
230×230 mm, and presenting several surface defects such
as scratches, roughness, and dry areas. The robot starts
at a home position, ensuring that the camera is centered
on the fiber glass. The camera then takes an image, the
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Fig. 4. Perception system results: (a) input image, (b) manually labeled image, and (c) automatic detection

defects are detected, and the paths are computed. The
robot starts to move along these paths at a constant
velocity of 0.1 m/sec and using a constant sander speed.
The following paragraphs present the outcomes of the
perception system and the sanding validation.

Perception system evaluation: The automatic defect
detection results are compared with manually labeled sam-
ples, as can be seen in Fig. 4. The first column presents the
input image taken by the Intel D435i, the manually labeled
samples are shown in the second column, and the last
column represents the automated detection. The proposed
approach successfully detects the defected areas, this be-
ing confirmed by a quantitative evaluation presented in
the following lines. Fifteen fiber glass panels have been
used and the sensitivity, specificity, and accuracy of the
detection is computed based on measurements of the num-
ber of pixels accurately and inaccurately detected. The
averaged sensitivity obtained is 66.24% and the average
specificity is 78.20% resulting in an accuracy of 81.02%.
The sensitivity of the image yields the rate at which

true positives occur and the specificity the rate of true
negatives. In this application, true positives and negatives
are defined as pixels correctly characterized as defective or
not. Furthermore, false positives and negatives represent
pixels that are incorrectly characterized. These values in-
dicate that the proposed approach has value for detection
of surface defects in fiber glass samples and RGB data
could be leveraged for detecting such defects. It should be
noted that this process is sensitive to illumination changes.
However, these sanding operations typically take place in

(a) (b)

Fig. 5. Defect detection after sanding: (a) image after
sanding took place, (b) defects detected in sample (a)

a controlled environment where lighting is consistent. Fur-
thermore, the system was tested with fiber glass samples
of different colors without affecting the performance of the
system. In the last row of Fig. 4, the original color of
the panel is significantly lighter compared to the previous
samples. When overlaying the automatic detection over
the original image, the defects are represented as white.
This is just a visualization effect. Nevertheless, further
research will be done to combat these conditions and make
the system more robust. Fig. 5 shows the results of the
perception system after the area has been sanded. These
images indicate that if the damaged area has not been
removed completely, the same perception system can be
leveraged to detect the remaining defects and continue
the sanding operation. This allows for a closed loop system
where sanding of the area continues until the surface defect
has been completely removed. These are promising results
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Fig. 6. Path planning when no overlapping of defected areas is present: (a) defects detected in fiber glass panel; (b)
convex hulls established for each of the damaged areas; (c) multi-point path and coverage path merged together

for defect detection in fiber glass, but it also highlights
that improvements to the current approach could be made
by integrating higher end computer vision sensors and/or
other image processing algorithms.

Path planning results: An example of the paths gen-
erated for the defected areas for both navigating between
defected areas and ensuring full coverage of the defected
areas is seen in Fig. 6. Once the defects have been detected,
Fig. 6a, the convex hull is computed around these areas,
Fig. 6b, and the multi-point path and coverage path are
computed, Fig. 6c. In this case, a resolution consistent with
the diameter of the sander, of 2.5 cm, was used for the
coverage path planning. It can be seen that all defected
areas have proper coverage and the navigation between
different damaged areas is according to the minimum dis-
tance between damaged areas.

The end-effector path in Fig. 7 illustrates how the robot is
moving to perform sanding over the damaged areas. To
move among the defected regions, the end-effector lifts
from the surface and travels in-air, hence the movement
in the z-axis. Once the end-effector reaches an area that
presents defects, it makes contact with the environment,
applying a constant force of 4 Newtons in the z-direction,
and follows the coverage path.

Fig. 7. End-effector trajectory for defects removal in Fig. 6

In Fig. 8 an example of coverage path planning is shown
for the case when multiple defected areas marked with
convex hulls overlap. Several convex hulls for areas that
are connected are seen in Fig. 8b, and overlapping areas

are grouped together in Fig. 8c. For each of these areas
a coverage path is determined, Fig. 8d. In this case, a
resolution of 1.5 cm is used for coverage path planning.
Fig. 8e shows the path to reach each of these areas. Because
the navigation among different areas doesn’t take into
account where the coverage path planner starts and ends,
the movement of the manipulator might not be optimal.
This can be addressed by developing a more integrated
cost function for the multi-goal path planning problem and
it will be investigated in the future.

Sanding evaluation: To analyze the performance of the
automated sanding procedure proposed in this paper, a
comparison analysis of the surface roughness is performed
before and after the robotic sanding procedure. To achieve
this, a Mitutoyo Surface Roughness Tester has been used
and 20 defected areas across 5 samples have been mea-
sured. All these areas have been detected and sanded by
the robot. The metrics used to evaluate the roughness are
Ra that is the average roughness in micrometers, Rq that
is the root-mean-square roughness, and Rz representing
the deepest ridge in micrometers. From Table 1 it can
be seen that after employing the proposed approach with
the cobot performing the sanding operation, the areas are
significantly smoother, indicating that the surface defects
have been reduced.

Ra[µm] Rq Rz[µm]

Before sanding 4.55 6.29 26.19

After sanding 2.14 2.75 12.89

Table 1: Surface roughness measurements

5. CONCLUSIONS AND FUTURE WORK

This paper presents an autonomous robotic system per-
forming sanding operations for surface defect removal in
fiber glass panels. The proposed approach uses a collab-
orative robotic system equipped with a vision system.
After the regions that contain the defects are detected
and localized, a multi-goal path is designed to navigate
among the detected regions, and a coverage path plan-
ning is leveraged to execute sanding. Classical approaches
have been used, and have demonstrated the feasibility of
having fully autonomous systems for defect detection and
removal. Nevertheless, significant work can be done further
to improve this initial study, such as using higher-end
computer vision sensors, using more novel computer vision
techniques, considering more integrated motion planning
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Fig. 8. Path planning when defected areas overlap: (a) defects detected in fiber glass panel; (b) convex hulls established
for each of the damaged areas; (c) merged convex hulls of areas; (d) coverage path planning for each of the convex
areas; (e) multi-point path and coverage path merged together

objectives, or investigating the importance of force and
velocity regulation for obtaining for roughness decreasing.
The team will continue to expand their findings and apply
the proposed technology on curve surfaces.
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goal path planning using multiple random trees. IEEE
Robotics and Automation Letters, 6(2), 4201–4208.

Kalt, E., Monfared, R., and Jackson, M. (2016). Develop-
ment of an intelligent automated polishing system.

Kharidege, A., Ting, D.T., and Yajun, Z. (2017). A
practical approach for automated polishing system of
free-form surface path generation based on industrial
arm robot. The International Journal of Advanced
Manufacturing Technology, 93(9), 3921–3934.

Ma, Z., Liu, L., and Sukhatme, G.S. (2016). An adaptive
k-opt method for solving traveling salesman problem. In
IEEE 55th Conference on Decision and Control (CDC),
6537–6543. IEEE.

Muravsky, L., Kuts, O., Gaskevych, G., and Suriadova,
O. (2019). Detection of subsurface defects in composite
panels using dynamic speckle patterns. In XI-th Interna-
tional Scientific and Practical Conference on Electronics
and Information Technologies (ELIT), 7–10. IEEE.

Oksanen, T. and Visala, A. (2009). Coverage path plan-
ning algorithms for agricultural field machines. Journal
of field robotics, 26(8), 651–668.

O’Mahony, N., Campbell, S., Carvalho, A., Harapanahalli,
S., Hernandez, G.V., Krpalkova, L., Riordan, D., and
Walsh, J. (2019). Deep learning vs. traditional computer
vision. In Science and Information Conference, 128–144.
Springer.

Sánchez, O.N.A. and De la Rosa, R.F. (2017). Path
planning and following using genetic algorithms to solve
the multi-travel salesman problem in dynamic scenarios.
In 18th International Conference on Advanced Robotics



(ICAR), 204–209. IEEE.
Souza, M., Rebello, J.M., Soares, S.D., and A., F.G.

(2008). Defect detection in fiberglass reinforced epoxi
composite pipes reproducing field inspection conditions.
9th International Conference on Quantitative InfraRed
Thermography.

Tam, H.y., Lui, O.C.h., and Mok, A.C. (1999). Robotic
polishing of free-form surfaces using scanning paths.
Journal of Materials Processing Technology, 95(1-3),
191–200.

Tiwari, K.A. and Raisutis, R. (2018). Identification and
characterization of defects in glass fiber reinforced plas-
tic by refining the guided lamb waves. Materials, 11(7),
1173.

Tuani, A.F., Keedwell, E., and Collett, M. (2017). H-aco:
A heterogeneous ant colony optimisation approach with
application to the travelling salesman problem. In Inter-
national Conference on Artificial Evolution (Evolution
Artificielle), 144–161. Springer.

Vicencio, K., Davis, B., and Gentilini, I. (2014). Multi-
goal path planning based on the generalized traveling
salesman problem with neighborhoods. In IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems, 2985–2990. IEEE.

Zelinsky, A., Jarvis, R.A., Byrne, J., Yuta, S., et al. (1993).
Planning paths of complete coverage of an unstructured
environment by a mobile robot. In Proceedings of in-
ternational conference on advanced robotics, volume 13,
533–538. Citeseer.


