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[This paper is part of the Focused Collection on Instructional labs: Improving traditions and new
directions.] Uncertainty is an important concept in physics laboratory instruction. However, little work has
examined how students reason about uncertainty beyond the introductory (intro) level. In this work we aimed
to compare intro and beyond-intro students’ ideas about uncertainty. We administered a survey to students at
10 different universities with questions probing procedural reasoning about measurement, student-identified
sources of uncertainty, and predictive reasoning about data distributions. We found that intro and beyond-intro
students answered similarly on questions where intro students already exhibited expert-level reasoning, such
as in comparing two data sets with the same mean but different spreads, identifying limitations in an
experimental setup, and predicting how a data distribution would change if more data were collected. For other
questions, beyond-intro students generally exhibited more expertlike reasoning than intro students, such as
when determining whether two sets of data agree, identifying principles of measurement that contribute to
spread, and predicting how a data distribution would change if better data were collected. Neither differences
in institutions, student majors, lab courses taken, nor research experience were able to fully explain the
variability between intro and beyond-intro student responses. These results call for further research to better

understand how students’ ideas about uncertainty develop beyond the intro level.
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I. INTRODUCTION

Laboratory instruction is a key part of the undergraduate
physics curriculum, providing students with the opportunity
to develop experimental skills and knowledge not covered in
theory-focused courses [1]. One of these experimental skills
is the ability to make decisions about interpreting data and
drawing conclusions from an experiment [2-5]. Integral to
developing this decision-making skill is understanding
measurement uncertainty [6—8]. While many studies have
probed introductory students’ ideas about uncertainty, very
little work has probed students’ understanding of uncertainty
beyond the intro level. This paper aims to bridge this gap by
probing both intro and beyond-intro students’ reasoning
about different aspects of uncertainty.

A. Student understanding of uncertainty
at the intro level

Most of the research on student understanding of
uncertainty has focused on procedural reasoning: given
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some data, what (if any) additional data should they collect
and/or how should they analyze the data they have. In a
study of first-year undergraduate students, Séré et al. [9]
found that most students struggled to use multiple mea-
surements in interpreting their data. Most students would
take only a single measurement in a lab experiment and
would take more measurements only if explicitly prompted
to do so. If required to take more measurements, students
trusted the first measurement more than the subsequent
ones and classified each measurement as “good” or “bad,”
rather than seeing the entire set of measurements as
valuable. In a similar study, Coelho and Séré [10] found
that high school students also emphasized individual
measurements, believing that an experiment has a “true
value” associated with it that they should be able to
determine with a single perfect measurement. Because of
this emphasis on an idealized single measurement, students
tended not to consider uncertainty when evaluating whether
two measurements were similar [9,10]. Other studies of
intro undergraduate students found similar reasoning across
science disciplines [11,12]. A significant portion of stu-
dents believed that it is possible to make a perfect
measurement of a true value with sufficient time and
money. Many students also focused on the average value
in comparing two datasets and did not consider the spread
in the data.

Published by the American Physical Society
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These findings were replicated and extended by Allie,
Buffler, Campbell, Lubben, and colleagues studying intro-
level students at the University of Cape Town in South Africa
[13—15]. These researchers developed a survey instrument to
probe students’ procedural reasoning related to measurement
and uncertainty: the Physics Measurement Questionnaire
(PMQ). Based on the student responses, they identified two
main paradigms of student procedural reasoning: point and
set reasoning. Point reasoners tend to emphasize individual
measurements in interpreting data. They believe that any
single measurement could yield the true value of a parameter
and that deviation from the true value results from mistakes in
the experiment. These students see taking multiple measure-
ments as beneficial solely as a way to practice so that they can
ultimately make a single perfect measurement. In contrast,
set reasoners view each individual measurement as an
estimate of the quantity of interest. They regard uncertainty
as a natural part of experimentation and consequently rely on
a set of measurements when interpreting their data. They use
statistics such as the mean and standard deviation when
reporting their data, as opposed to reporting an individual
measured value. The set paradigm is seen as the expertlike
approach to measurement and uncertainty, and, accordingly,
the goal of instruction is argued to be to shift students’
reasoning away from the point paradigm and toward the set
paradigm [14,15].

These researchers used the PMQ and the point and set
paradigms to probe intro-level students’ reasoning, both before
[15] and after [14] taking a lab course. Lubben ez al. [15] found
that prior to instruction, the students’ responses were split
approximately equally between point and set reasoning for
questions about making more than one measurement, with
point reasoners arguing a single data point was sufficient and
set reasoners arguing in favor of collecting more data. In
comparing two datasets, however, nearly all students relied on
comparing the average values (point) rather than taking into
account the spread in the data (set). After instruction, the
majority of students exhibited set reasoning in the questions
about taking more data, but most still struggled to consistently
apply set reasoning in comparing datasets [14]. Like the
students in Séré ef al.’s [9] study, these students struggled to
understand how uncertainty and spread in data should be used
when interpreting experimental results.

Since then, additional researchers have measured the
efficacy of various traditional lab courses at teaching set
reasoning or have developed intro lab courses with the goal
of shifting students away from point reasoning toward set
reasoning, with mixed success. Although students have
exhibited increases in set reasoning on the PMQ and similar
questions from preinstruction to postinstruction, many (or, in
some cases, most) students still apply “mixed” reasoning,
using set reasoning in some contexts but point reasoning in
others, particularly in comparing two sets of data [7,16-20].
These results indicate that a single intro-level lab course is
likely insufficient for undergraduate students to master
procedural reasoning about uncertainty.

Several studies have also probed students’ ideas about
sources of uncertainty and how these relate to students’
procedural reasoning. For example, previous studies have
found that while students are able to identify various
sources of uncertainty in an experiment, they may struggle
to appropriately quantify those sources [9,21]. Moreover,
researchers have expressed concern about students’ ten-
dency to attribute uncertainty exclusively to something
going wrong in the experiment or “human error” [5,6,22—
24]. The concern centers on observations that this con-
ception of uncertainty can lead students to believe that all
uncertainty can be eliminated in an experiment, which is
aligned with point reasoning. To address this issue,
researchers have advocated for teaching uncertainty not
as a list of mistakes to be fixed but rather as a fundamental
aspect of experimentation that must be quantified and used
to interpret data [6,8,12,20,24].

B. Student understanding of uncertainty beyond
the intro level

To our knowledge, only a handful of studies have
investigated students’ ideas about uncertainty beyond the
intro level. Hu and Zwickl [22] probed intro-level, upper-
level, and Ph.D. students’ views about uncertainty. They
observed that upper-level students were more likely than
intro-level students to identify uncertainty evaluation as
important for evaluating whether an experimental result is
trustworthy. They also found that Ph.D. students and upper-
level students were more likely than intro-level students to
view the purpose of uncertainty analysis as quantifying
reliability, although only Ph.D. students flagged uncer-
tainty as an inherent aspect of experimentation. Overall,
these results suggest that students’ views of measurement
can change greatly throughout the physics curriculum.

Our previous work [25-29] has focused on upper-level
students’ ideas about sources of uncertainty and predictive
reasoning about uncertainty in different experimental con-
texts. We found that students were more likely to identify
physics principles as sources of uncertainty in quantum-
mechanics experiments (e.g., the single-slit experiment)
than in classical experiments (e.g., projectile motion) and in
experiments with a theoretical expected distribution of
outcomes (e.g., Brownian motion) than in experiments
with a theoretical single outcome (e.g., projectile motion)
[25,26,28]. We also asked students about how a data
distribution would change if an experiment were performed
by a larger group of students (more data) or if an experi-
ment were performed by experts (better data) [25,27,29].
Most students indicated that more data would result in the
same distribution (the correct answer), although a sizable
minority indicated that more data would result in a
narrower distribution. For better data, students indicated
that experts would either measure the same distribution or
measure a narrower distribution, with students more likely
to answer “same” for quantum-mechanics experiments
(e.g., the single-slit experiment) and in experiments with
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a theoretical expected distribution of outcomes (e.g.,
Brownian motion).

C. Research aims

Given that many students leave intro-level lab courses
with at least some pointlike ideas about uncertainty
[7,16-20] and the dearth of research on student ideas
about uncertainty beyond the intro level, our goal was to
broadly characterize the reasoning of a diverse sample of
intro and beyond-intro students using previously developed
measures of student thinking. In particular, we probed three
aspects of student reasoning: procedural reasoning [13—15],
ideas about sources of uncertainty [28], and predictive
reasoning about measuring more or better data [29]. We
found that intro students were already expertlike in their
reasoning on two of the five questions, but that beyond-intro
students were more expertlike than intro students on the other
three probes. We tested (and ruled out) several plausible
explanations for the observed differences (selection based on
major, lab course experience, research experience, and
institutional variability). We use prior work to further situate
these results and propose future research directions.

II. METHODS

In this section we describe the survey questions we
analyzed and the data collection process. We also describe
the coding schemes used to interpret open-ended questions
and our approach to making quantitative claims.

A. Survey questions

The survey used in this work is adapted from surveys
used in previous work probing student reasoning about
uncertainty [13,28,29]. The survey questions analyzed here
center around a single experimental scenario of a ball
rolling down a ramp that was adapted from the PMQ [13].
Although student reasoning about measurement can vary
significantly across different experimental contexts or in
generalized questions [28-30], this scenario provides a
snapshot of intro and beyond-intro students’ reasoning in
the context of a familiar experiment and allows us to
compare our results to previous findings from the PMQ.

Students are first asked two questions from the PMQ: the
Same Mean, Different Spread probe (SMDS) and the
Different Mean, Same Spread probe (DMSS) (see
Figs. 6, 7, and 8 in the Appendix). In the SMDS probe,
two groups of students have each measured five data points
such that the two groups have the same mean value but
different spread in their data. The probe presents three
possible viewpoints about which group has achieved better
results and survey respondents are asked to identify with
which viewpoint they agree and explain why. The DMSS
probe is set up similarly: two groups have each measured
five data points, but this time the groups have different
mean values and similar spreads. The probe presents two

possible viewpoints on whether the two groups’ results
agree and survey respondents are again asked to identify
with which viewpoint they agree and why.

The survey then presents a fictitious histogram of mea-
surements collected by 50 students in a lab class (see
Ref. [28]). Students are asked to list sources of uncertainty
that contribute to the spread in the data (Sources):

What is causing the shape of the distribution? List
as many causes as you can think of.

Finally, students are asked two closed-response questions
about how the fictitious histogram would change if either
100 more students (More Data) or experts using the best
possible equipment (Better Data) performed the experiment
[29] (see Fig. 1).!

The questions were always asked in the same order:
SMDS, DMSS, Sources, More Data, Better Data. Students
could return to previous questions to change their answers
as they progressed through the survey.

At the end of the survey, students were also asked a series
of questions related to demographics (race and ethnicity,
gender, major, etc.) and educational experiences. We asked
students to report which types of lab courses they had taken:

Are you currently taking or have you previously

taken any of the following types of college

physics lab class? Choose all that apply.

(a) Introductory mechanics and/or E&M and/or
waves/thermo

(b) Upper division: electronics

(c) Upper division: optics

(d) Advanced lab

(e) Other:

We also asked students to report whether they had research
experience:

Are you currently conducting or have you pre-
viously conducted research in any of the follow-
ing areas? Choose all that apply.

(a) Experimental physics or astrophysics

(b) Theoretical physics or astrophysics

(c) Computational physics or astrophysics

(d) Experimental research in another science
(e) Theoretical research in another science

(f) Computational research in another science
(g) Other:

(h) No research experience

We use these questions to report on how many students
had taken at least one lab course beyond the intro level
(marking at least one of upper division: electronics, upper

lSources, More Data, and Better Data are capitalized through-
out the paper to denote the different questions in the survey.
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More data question: If 100 more students were to perform the experiment using the same equipment,
how would the shape of the distribution change (original distribution in grey; new distribution in blue)?

Please explain your reasoning.

Better data question: If experts were to perform the experiment using the best possible equipment, how
would the shape of the distribution change? Please explain your reasoning.

Multiple choice options for each question:
Distribution stays Distribution
roughly the same becomes wider

i
| y \

" Position

Percent of counts
Percent of counts

Position
FIG. 1.

division: optics, advanced lab, or other (if applicable)) and
how many students had experimental research experience
(marking at least one of experimental physics or astro-
physics or experimental research in another science).

B. Data collection

The survey was administered online via Qualtrics during
the second half of the Fall 2021 and Spring 2022 semesters.
We targeted students who were either enrolled in introduc-
tory mechanics or electricity and magnetism courses (“intro”
students) or who were enrolled in or had taken at least one
quantum mechanics course (“beyond-intro” students). In
total we received survey responses from students at 10
universities, with 427 completed responses from intro
students and 158 completed responses from beyond-intro
students. The universities include private universities, public
universities, primarily white institutions, Hispanic-serving
institutions, and a historically Black university. Students
were recruited by their course instructors and were offered
either course credit or a drawing for a $25 gift card for
completing the survey. The numbers of participants from
each university at each level are shown in Table I and the
students’ self-reported demographic information is shown in
Table IV in the Appendix.

We also asked students questions related to their majors,
lab courses taken, and research experience. The intro
students were primarily non-physics majors, with 59%
engineering majors and 14% other STEM majors; only
15% were physics majors. These students were either
enrolled in an intro lab course (49%) or had not yet taken
aphysics lab course in college. Only 9% of intro students had
experimental research experience. The beyond-intro stu-
dents, in contrast, were primarily physics majors (92%).

5,,,,,\. — ‘= ——

Percent of counts

Distribution becomes
narrower

A single value is
measured

|

IS

" Position

Percent of counts

" Position

Text and multiple-choice options for the More Data and Better Data questions [29].

These students had more experience with lab courses and
experimental physics compared to the intro students, with
56% having taken at least one lab course beyond the intro
level and 41% having experimental research experience.

C. Coding schemes

The SMDS, DMSS, and sources questions were all open-
ended. Thus, we used established coding schemes to char-
acterize student responses to these questions.

The coding schemes for the SMDS and DMSS questions
were developed based on the coding schemes in the original
papers about the PMQ [13-15] and modified slightly to
reflect the student responses in our sample. Responses were
coded based on their alignment with the point and set
paradigms. The point code was given to responses that
focused on comparing only the average values for the
datasets or that compared the individual data points in the

TABLE I. Number of responses from intro (N = 427) and
beyond-intro (N = 158) students by university.

Institution Intro  Beyond-intro
Auburn University 99 0
California State Polytechnic University

Pomona 3 0
California State University Fullerton 3 0
California State University San Marcos 26 19
Cornell University 119 43
North Carolina A&T State University 89 0
San José State University 0 10
Texas A&M University 88 7
University of Colorado Boulder 0 78
University of Wisconsin Stout 0 1
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TABLE II. Examples of responses receiving the point and set codes from the SMDS and DMSS probes.
Code SMDS responses DMSS responses
Point “As long as the average is the same, then the right “Even though they are close, the averages are not the

procedures were followed” (intro student)

“I agree most with B because the point of an experiment is
not to get the result that is better, but the one that is closely
related to the values that the students are predicting. Even
though the distribution of their data are different, they still
have the same average so I would say that both are
similar.” (intro student)

“By only looking at the data, I don’t believe group B has
better results than group A or vice versa. I say this
because they both have the same average of 435 mm.”
(beyond-intro student)

“I don’t really understand what any of these groups mean by
‘better.” These are just data from an experiment and just
because the data has a greater standard deviation (or
spread) it does not mean that it is any better or worse than
another set of data.” (beyond-intro student)

Set “The data for A is less spread because when looking a the

table, the highest and lowest values have a smaller
difference compared to B’s. A’s difference is only 20 mm
and B’s is 50.” (intro student)

“Although the average is the same, the lower range of the
first group is superior.” (intro student)

“I agree with A, because the numbers when measured are
closer together, which means their measurements are
more precise.” (beyond-intro student)

“Group A had more consistent data points with a lower
deviation. This indicates that the experiment was done
more consistently and carefully, resulting in a lower error
than group B. Because group A has a lower estimated
error than group B, group A can be more confident in

same.” (intro student)

“They are extremely similar values, just a few different
points were varied. The only difference in the ending
values came from slight differences in measurements
throughout the experiment, which is normal due to human
error.” (intro student)

“The two averages have a percentage difference of 0.46%,
so they agree.” (beyond-intro student)

“Although the average is not the same, they are very close,
averages improve over time and do not have to be equal
for agreement” (beyond-intro student)

“The distribution of each group’s data is similar enough to
confidently assume that the data is reflecting the same
phenomena.” (intro student)

“Both groups should construct confidence intervals. They
appear as though they will overlap and therefore agree
with each other.” (intro student)

“The difference in their means is within the range allowable
by the variance of their data” (beyond-intro student)

“The standard error of the mean of each group is about the
same, about 6 mm. The averages are within one standard
deviation of one another, so the results agree.” (beyond-
intro student)

their end average than group B, if each group uses only

their own data.” (beyond-intro student)

two datasets rather than considering the spread in the data.
For example, point responses may argue that the spread is
irrelevant to the quality of data or use the percent error
between the means to decide whether two datasets agree. The
set code was given to responses that mentioned the spread in
the data as the justification for the selected viewpoint. For
example, set responses may argue that the group with the
smaller spread in their data had a better result in the SMDS
probe or that the two means in the DMSS probe agreed
because there was significant overlap in the spreads of the
two datasets. Responses that could not be coded as either
point or set or that contained elements of both point and set
reasoning were coded as unclear as in Refs. [13-15].
Example point and set responses are shown in Table II.
Two of the authors independently coded a random
sample of 50 responses from the SMDS probe and 50
responses from the DMSS probe. We quantified interrater
reliability using Cohen’s kappa, achieving values of 0.92
and 0.8 for the SMDS and DMSS probes, respectively,

which indicates almost perfect agreement [31]. The two
researchers then split the remaining responses and inde-
pendently coded them.

Responses to the Sources question were coded using a
previously developed coding scheme [28]. This coding
scheme classifies student-listed sources of uncertainty as
limitations or principles and is based on the Modeling
Framework for Experimental Physics [32,33]. The limi-
tations code was applied to sources of uncertainty related to
imperfections in the experimental procedure or setup, such
as human error in conducting an experiment, environmental
factors such as air resistance, or the precision limit of a
measurement device.

The principles code encapsulates both statistical princi-
ples and theoretical physics principles. The first includes
the idea that experimental measurement is fundamentally
probabilistic and, therefore, uncertainty must be modeled
using statistical principles. The second includes sources of
uncertainty that are due to principles of theoretical physics,
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TABLE III. Examples of responses receiving the limitations and principles codes.
Code Examples
Limitations “Equipment accuracy/precision (depending on what is used to take measurements)” (intro student)
“Different masses of balls” (intro student)
“Slight shifting of the measuring paper before or after marking” (beyond-intro student)
“Air currents in the room.” (beyond-intro student)
Principles “The distribution is roughly symmetric, and the sample size of 50 is relatively large, greater than 30. Central Limit

Theorem explains that this distribution for d is approximately normal, explaining the symmetry.” (intro student)
“Error is typically normally distributed” (intro student)
“in any real system, there are bound to be differences in measurements creating a normal distribution” (beyond-intro

student)

“the results are random which result in a gaussian distribution (what we observe)” (beyond-intro student)

such as the Heisenberg uncertainty principle, which places
limits on the precision of measurement due to the nature of
quantum-mechanical systems. In the context of this study,
virtually all responses that received the principles code were
related to modeling uncertainty using statistical principles.
Examples of student-listed sources of uncertainty that were
coded as limitations and principles are shown in Table IIL.

Any sources that were too vague to classify as limitations
or principles were coded as unclear. Most students listed at
least one source of uncertainty that we were able to code as
either limitations or principles (85% of intro students and
92% of beyond-intro students).

The Sources coding scheme was validated in previous
work [28] in which two researchers achieved a Cohen’s kappa
value of 0.85, indicating almost perfect agreement [31]. One
of these researchers coded all of the responses in this study.

As with any analysis of open-response surveys, both of our
coding schemes are limited in scope. The codes we used are
fairly broad and may fail to capture some interesting nuance
in students’ responses. For example, the point or set coding
scheme treats each student’s response as aligned either with
novicelike (point) or expertlike (set) reasoning. However,
there may be arange of sophistication and expertlike thinking
within responses classified as point, set, or unclear that our
coding scheme fails to capture. Similarly, our limitations
code includes a wide variety of sources, from actionable or
quantifiable sources, such as varying force applied while
dropping a ball or the instrumental precision of a ruler, to the
more vague and unproductive human error [5,6,22-24].
Within this work, we were comparing student responses
across five survey questions, leading to a large number of
comparisons that increases the chances of seeing an effect
due to random chance. As a result, we chose not to subdivide
these codes further within this paper. We leave it to future
work to address these nuances within our codes to further
categorize student reasoning about uncertainty.

D. Data analysis

Our goal in this work was to compare the reasoning
exhibited by intro and beyond-intro students and to provide
possible explanations for any differences observed. For the

SMDS and DMSS probes, we evaluated the fraction of intro
and beyond-intro students whose response was given a code of
point, set, or unclear. For the Sources question, students could
list multiple sources of uncertainty, each of which received a
code of limitations, principles, or unclear. We therefore
compared the fractions of intro and beyond-intro students
who listed at least one source that we coded as limitations and,
separately, the fraction of students wholisted atleastone source
that we coded as principles. For the More Data and Better Data
probes, we evaluated the fraction of intro and beyond-intro
students who chose each of the possible predicted distributions
(the same, wider, narrower, or single value).

To make quantitative comparisons between groups of
students, we relied on graphical representation of the
95% confidence interval for each proportion (estimated using
the Wilson score interval [34]). We evaluated the distinguish-
ability of pairs of proportions based on the relative overlap of
the 95% confidence intervals. We did not quantify p values
due to the large number of comparisons being made and the
various concerns about p values in the literature [35-37].

Although there are various ways in which students may
productively answer some of our survey questions, others
have a clear alignment with expertlike reasoning. For the
SMDS and DMSS questions, responses that are given the
point code are considered to be novicelike, while responses
coded as set are considered to align with expertlike reasoning
[13-15]. For the Sources question, we expect that identifying
principles sources of uncertainty related to the probabilistic
nature of measurement is aligned with an expertlike view of
measurement [6,8, 12,20,24].2 Similarly, we consider the
answer that a single value is measured for either the More
Data or Better Data question to be novicelike, as it aligns with
point reasoning and is in opposition to a probabilistic
understanding of measurement [13—15]. Finally, the most
correct answer to the More Data question is that the
distribution remains the same, as additional students employ-
ing similar methods should measure the same distribution of

*Given that very few students mentioned sources related
to theoretical physics principles, we do not interpret these
responses.
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results as the original students. A common incorrect answer is
that the distribution becomes narrower, as students may
use a “more data is better” heuristic, assuming that because
collecting a large amount of data is important for reducing
uncertainty in the estimate of a parameter that the distribution
of measurements will also become narrower [29].

III. RESULTS

In this section we first present comparisons between
intro and beyond-intro students’ responses to our three
types of measurement uncertainty probes. We then explore
possible explanations for the differences we observed
between the two populations.

A. Comparing intro and beyond-intro
students’ reasoning

We probed students’ procedural reasoning about meas-
urement, ideas about sources of uncertainty, and predictive
reasoning about data distributions. In this section, we report
on similarities and differences in reasoning between these
two groups of students.

1. Procedural reasoning

We first asked students two questions from the PMQ [13]:
the SMDS probe and the DMSS probe. The SMDS probe
asks respondents to evaluate which of two data distributions
with the same mean but different spreads is the better result,
while the DMSS probe asks respondents to decide whether
two data distributions with different means but the same
spread agree. Student responses to these probes were coded
as exhibiting either point or set reasoning; here we report on
the fraction of intro and beyond-intro students’ responses that
received each code (see Fig. 2).

For the SMDS probe, intro and beyond-intro students were
indistinguishable in the rates at which each group applied
point and set reasoning. Both intro and beyond-intro students

SMDS DMSS
@ 0.75
c
(0]
kel
2
® 0.50
—
o
c
Ke]
§ 025
L
Point Set Unclear Point Set Unclear

Code

|Leve| B intro [l Beyond intro|

FIG. 2. Point and set codes applied to intro and beyond-intro
students’ responses to the SMDS and DMSS probes from the PMQ
[13]. Uncertainty bars represent the 95% confidence interval.

primarily displayed set reasoning in their explanations (67%
and 77%, respectively). These explanations tended to argue
that the data distribution with a narrower spread was the better
result. For example, a beyond-intro student wrote, “The
standard deviation and error bars will be smaller for group
A.” Similarly, an intro student argued, “Although the average
is the same, the lower range of the first group is superior.”

Fewer students applied point reasoning in their responses
(24% of intro students and 17% of beyond-intro students).
Some of these students concluded that both sets of data were
equally good because their means were identical, for example
“Averages are how we determine the accuracy of things in
physics. The standard deviation/ uncertainty of group B may
be larger than for group A, but that doesnt make their result
any ‘worse’ than group A” (beyond-intro student). Another
line of point reasoning argued that because uncertainty is
always a part of measurement, reducing uncertainty is not
important: “Variety is common in physics experiments. It is
not always exact. Therefore, if the experiment is done
correctly, there should not be any discussion about which
is better because variety is common” (intro student).

For the DMSS probe, however, we observed distinguish-
able differences in the rates of point and set reasoning for
intro and beyond-intro students. Intro students were more
likely to use point reasoning in their explanations (61%)
compared to beyond-intro students (37%). The students
who gave point responses applied varying approaches to
comparing the mean values of the two distributions but did
not discuss the spread in the data. For example, some of
these students argued a difference in means was large or
small with no clear justification for the judgement: “I think
that they agree because of how close their averages are”
(beyond-intro student). Other students used the percent
difference to make a comparison, for example “Although
their averages are not the same, they are fairly close, and
the difference is only a very small percent” (intro student).

Correspondingly, beyond-intro students were more
likely to apply set reasoning (58%) than intro students
(25%). Set reasoning responses tended to use measures of
the variability in the data, such as the standard deviation or
the spread, to determine whether the two datasets agreed.
For example one beyond-intro student wrote, “Both groups
do not have precise data, and it would reason that the
confidence interval of both groups would have an overlap
of the other group’s data values.” Similarly, an intro
student used the standard deviation to conclude that the
two data distributions agreed: “The average values are
within a standard deviation of each other.”

2. Sources of uncertainty

After the PMQ probes, we then asked students the open-
ended Sources question: “What is causing the shape of the
distribution? List as many causes as you can think of.” We
coded student-listed sources of uncertainty as either lim-
itations in the experimental apparatus or procedures or as
principles of the measurement process and here report on
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FIG. 3. The fraction of intro and beyond-intro students who listed

at least one source of uncertainty coded as limitations and
principles. Uncertainty bars represent the 95% confidence interval.

the fraction of intro and beyond-intro students who listed at
least one source that received each code (see Fig. 3).

The majority of both intro and beyond-intro students
listed a source coded as limitations (81% and 82%,
respectively). These limitations sources included a variety
of experimental factors. Some sources were attributed to
errors made by the students, such as “Due fo mistakes,
there will be some outliers” (intro student) and “Error in
reading (i.e., the measuring stick was off center, the ball
bounced and they are reading the second impact, etc.)”
(beyond-intro student). Other sources highlighted aspects
of the setup that would be more difficult for the students to
control, such as “Air currents in the room” (beyond-intro
student), “Difference of friction between the ball and the
ramp caused by blemishes on the ball” (intro student), and
“Instrumental error” (beyond-intro student). The rates at
which intro and beyond-intro students identified limitations
sources of uncertainty were indistinguishable.

Both intro and beyond-intro students mentioned sources
that received the principles code much less frequently than
the limitations sources. Furthermore, more beyond-intro
students (22%) than intro students (10%) listed at least one
principles source of uncertainty. These students tended to
mention principles sources related to the inherent statistical
nature of measurement, for example “Principle of normal
distributions (data shaped like a bell curve)” (intro student)
and “Overall general Gaussian distribution is due to
expected random error” (beyond-intro student).

3. Predictive reasoning

The final set of questions in the survey asked respondents to
identify what would happen to the data distribution if 100
more students (More Data) or experts (Better Data) were to
conduct the experiment. Respondents were given four
choices: a single value is measured, distribution becomes
narrower, distribution stays roughly the same, and distribution

Better data

More data
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3 >

o
N
o

.
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FIG. 4. Distribution of intro and beyond-intro students’ re-
sponses to the More Data and Better Data questions. Uncertainty
bars represent the 95% confidence interval.

becomes wider. Here we report on the fraction of intro and
beyond-intro students who chose each of these four answer
options for the two predictive reasoning questions (see Fig. 4).
For the More Data question, the fractions of intro and
beyond-intro students choosing each option were indistin-
guishable. A majority of students indicated that the distribu-
tion would remain the same if 100 additional students were to
collect data (61% of intro students and 60% of beyond-intro
students), which we consider to be the correct answer. The
second most common response for both intro and beyond-
intro students was that the distribution would become
narrower (26% of intro students and 33% of beyond-intro
students), which we consider to be an incorrect response.
For the Better Data question, the ordering of answer
popularity was the same for intro and beyond-intro students,
but the fraction of students who gave each of these responses
varied between the two groups. For both groups of students,
the distribution becoming narrower was the most common
response (64% of intro students and 83% of beyond-intro
students), followed by the distribution remaining the same
(18% of intro students and 11% of beyond-intro students)
and a single value being measured (12% of intro students and
4% of beyond-intro students). However, more beyond-intro
students indicated that the distribution would become nar-
rower (83%) compared to intro students (64%), while more
intro students indicated that a single value would be
measured (12%) compared to beyond-intro students (4%),
with the differences beyond the 95% confidence intervals.

4. Summary

Across the five survey questions we analyzed, we
observed some instances of similarity between intro and
beyond-intro students’ answers, while for other questions
these two groups answered quite differently. Intro and
beyond-intro students primarily applied set reasoning on
the SMDS probe, tended to identify limitations sources of
uncertainty, and tended to indicate that taking more data

020147-8



COMPARING INTRODUCTORY AND BEYOND- ...

PHYS. REV. PHYS. EDUC. RES. 19, 020147 (2023)

would not change the data distribution width. On the other
hand, beyond-intro students were more likely to apply set
reasoning on the DMSS probe, more likely to list principles
sources of uncertainty, and more likely to answer that better
data would result in a narrower distribution (and less likely to
answer that a single value measurement would result)
compared to intro students.

B. Possible explanations for differences in responses

We consider two types of hypotheses for the differences in
survey responses between the intro and beyond-intro stu-
dents and perform appropriate analyses of our data to test
them. One possible hypothesis is that the two groups come
from different overall populations, characterized by, for
example, their majors or differences in the institutions
represented at each level. Another possible hypothesis is
that the two groups differ only in their educational experience
within the physics curriculum. In our analysis, we test each
possible hypothesis individually, although we acknowledge
that some of the differences we observed may be explained
by combinations of variables rather than individual variables.

1. Population differences

We first consider the possibility that variability in
responses could be attributable to differences in the
populations of the two groups, as distinct from the addi-
tional educational physics experiences that the beyond-
intro students have had compared to the intro students.

One population difference relates to the different insti-
tutions represented in the samples of intro and beyond-intro
students. That is, the data include some institutions that are
represented in one group but not the other or that make up
different proportions of the sample in each group. Thus, we
wanted to confirm that the differences between intro and
beyond-intro students were not exclusively explained by
institution differences. To do so, we made the same
comparisons discussed in Sec. III A within a single uni-
versity (i.e., holding institution constant), Cornell
University, as Cornell was the only individual institution
where we had large enough sample sizes at both the intro
and beyond-intro levels to draw meaningful conclusions.
With this subset of the data, we observed the same trends
between the intro and beyond-intro students’ responses
identified in Sec. III A (see Fig. 9 in the Appendix). These
results are discussed further in Appendix C. This finding
suggests that the differences we observed in the full dataset
between intro and beyond-intro students were not exclu-
sively explained by the differences in the universities
represented in each group. We note also that the Cornell
University data do not make up the majority of the full
dataset at either level, so this analysis is not due to Cornell
University driving the trends in the full dataset.

The second possibility is that the responses vary due to the
different student majors represented in the samples of intro
and beyond-intro students. Physics majors comprise 92% of
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FIG. 5. Codes applied to intro physics majors’ and intro

nonphysics majors’ responses to the SMDS and DMSS probes.
Uncertainty bars represent the 95% confidence interval.

our beyond-intro sample but only 15% of our intro sample. We
compared the responses of intro-level physics majors to intro-
level nonphysics majors. For four of the five survey questions
(namely, SMDS, Sources, More Data, and Better Data) we
observed that intro physics majors and intro nonphysics majors
responded similarly (see Fig. 10 in the Appendix and Fig. 5).
For the DMSS probe, we observed a small difference in
reasoning based on major. More intro nonphysics majors
than intro physics majors exhibited point reasoning in their
responses (65% and 50%, respectively; see Fig. 5). However,
the fractions of nonphysics majors and physics majors who
used set reasoning were indistinguishable (23% and 32%,
respectively). These results indicate that the differences in
majors between the intro and beyond-intro students may partly
explain the lower rate of point reasoning in beyond-intro
students’ responses but cannot explain the higher rate of set
reasoning in beyond-intro students’ responses.

2. Educational experiences

The above results indicate that population differences
based on institution or major cannot fully explain the
observed differences in intro and beyond-intro student
reasoning. The differences in reasoning, therefore, are likely
also due to differences in physics educational experiences
between the intro and beyond-intro students. Here we
consider two types of educational experiences that may
impact student reasoning about uncertainty: lab courses
and research experience.

One of the places we would expect beyond-intro students
to learn more about uncertainty is in lab courses taken
beyond the intro level. To test this explanation, we compared
beyond-intro students’ responses to the five survey questions
based on whether they had taken only intro lab courses or had
taken (or were currently taking) at least one lab course
beyond the intro level. We found no differences in student
responses to any of the survey questions based on whether
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students had taken a beyond-intro lab course (see Fig. 11 in
the Appendix).

Another environment in which we might expect beyond-
intro students to learn more about uncertainty is conducting
research in an experimental laboratory. To test this explan-
ation, we compared beyond-intro students’ responses to the
five survey questions based on whether they had research
experience in an experimental context. We found no
differences in student responses to any of the survey
questions based on research experience (see Fig. 12 in
the Appendix). Overall, we found no evidence that either
lab courses taken or research experience could explain the
differences in intro and beyond-intro students’ responses.

IV. DISCUSSION

In this study, we probed intro and beyond-intro students’
ideas about uncertainty using five survey questions related to
procedural reasoning, sources of uncertainty, and predictive
reasoning. We found that intro and beyond-intro students
gave similar answers for the SMDS and More Data questions
and in identifying limitations sources of uncertainty but
different answers for the DMSS and Better Data questions
and in identifying principles sources of uncertainty.

We found that intro and beyond-intro students answered
similarly on questions where both groups were mostly using
expertlike thinking. Both intro (67%) and beyond-intro
(77%) students primarily used set reasoning in their
responses to the SMDS probe. This result aligns with
previously reported rates of set thinking on the SMDS probe
after intro lab instruction.’ For example, Pillay et al. [20]
found that 64% of intro students at the University of Cape
Town used set reasoning on this probe after taking a lab course
designed to help students develop set thinking. Simi-
larly, Wilson et al. [38] reported that approximately 70%
of responses in a sample of mixed pre and post surveys from
the University of Colorado Boulder included set reasoning.
For the More Data question, intro and beyond-intro students
also answered similarly, with most students giving the correct
answer that the distribution would remain the same (61% and
60%, respectively). The high rates of expertlike reasoning
among intro-level students may explain why we observed no
difference between intro and beyond-intro students’ responses:
most intro students have mastered the relevant ideas about
uncertainty in the context of these questions, so there is limited
room for improvement from intro to beyond-intro levels.

Another similarity in intro and beyond-intro students’
responses was in identifying limitations sources of uncer-
tainty. The majority of both intro (81%) and beyond-intro

*Other work has also looked at student responses to both the
SMDS and DMSS probes but either collapsed results for the SMDS
and DMSS probes into a single category of data comparison
[14,15] or did not report the frequency of point or set codes at the
student level [18]. As a result, we cannot compare our results for
individual probes directly to these previous findings.

(82%) students listed at least one limitation in the procedures
or physical setup of the experiment when asked the Sources
question. This is unsurprising, as prior work has found that
intro students are able to identify a wide variety of sources of
uncertainty in a lab setting [5,9,21]. Unlike the more data and
SMDS items discussed above, we cannot characterize stu-
dents listing limitations sources as expertlike or novicelike.
Students can list a wide variety of limitations in an experi-
ment, ranging from actionable or quantifiable sources of
uncertainty, such as varying force applied while dropping a
ball or the instrumental precision of a ruler, to the more vague
and unproductive human error [5,6,22-24]. Furthermore,
students often struggle to quantify uncertainty associated with
limitations in their experiment [9,21], which means listing
limitations alone does not demonstrate expertise. Future work
should disentangle different productive and unproductive
modes of reasoning about limitations in experiments.

For the DMSS probe and Better Data question, in contrast,
we observed that beyond-intro students exhibited more
expertlike reasoning than intro students. For the DMSS
probe, our results indicate low levels of set reasoning among
intro students (25%), which aligns with the preinstruction
rates of set reasoning reported in prior work [13,20]. Notably,
rates of set reasoning were much higher in Pillay et al.’s [20]
postinstruction survey (75%) and in Wilson et al.’s [38]
mixed pre and post dataset (approximately 60%) than in our
data. This contradiction suggests that the intro lab courses in
our dataset may be less effective in teaching set reasoning
compared to the lab courses in Pillay et al.’s and Wilson
et al’s studies. In spite of this apparent shortcoming in intro
lab courses, however, the majority of beyond-intro students
in our study exhibited set reasoning on the DMSS probe
(58%), though still less frequent than in Pillay ef al.’s study.

For the Better Data question, we observed that beyond-
intro students (83%) were more likely than intro students
(64%) to indicate that experts would measure a narrower
distribution, corresponding to a lower fraction of beyond-
intro students (4%) than intro students (12%) who indicated
that experts would measure a single value. Believing that
experts would measure a single value is aligned with point
reasoning, implying that all uncertainty in an experiment can
be eliminated and that a single measurement can produce the
true value [11-15]. Although this response was fairly
uncommon for both intro and beyond-intro students, the
lower fraction of beyond-intro students responding “single
value” suggests that beyond-intro educational experiences
may be effective for eliminating this view of uncertainty from
students’ understanding of measurement.

One aspect of student reasoning that may help explain
the differences in the DMSS probe and Better Data
question is students’ ideas about sources of uncertainty.
Although rare, more beyond-intro students (22%) than intro
students (10%) described uncertainty as a principle inherent
to the measurement process. Given that previous work has
argued that holding this conception of uncertainty can help
students apply set reasoning [6,8,12,20,24], this may help

020147-10



COMPARING INTRODUCTORY AND BEYOND- ...

PHYS. REV. PHYS. EDUC. RES. 19, 020147 (2023)

explain why more beyond-intro than intro students exhib-
ited set reasoning on the DMSS probe and why fewer
beyond-intro than intro students indicated that experts
would measure a single value on the Better Data question.
Additional research is necessary to understand how rea-
soning about sources of uncertainty is connected to point
and set reasoning on specific PMQ probes and predictive
reasoning questions.

We attempted to determine what educational experiences
might explain the differences between intro and beyond-
intro students’ responses on the survey. We tested whether
taking at least one lab course beyond the introductory level
or having experimental research experience could explain
the differences in student reasoning. We found no evidence,
however, that either of these educational experiences alone
could explain the differences in intro and beyond-intro
students’ reasoning. Overall, our results suggest that
students’ educational experiences beyond the intro level
may be enhancing students’ reasoning about some aspects
of measurement, such as considering uncertainty when
comparing two datasets and recognizing that uncertainty is
a fundamental aspect of experimental measurement and
cannot be eliminated. However, current beyond-intro edu-
cational experiences may be less effective for changing
other aspects of students’ reasoning about uncertainty, such
as teaching students that smaller spread in data is desirable

or that collecting more data will not change the shape of a
data distribution. More research is necessary to identify
what specific aspects of beyond-intro students’ educational
experiences are effective for shifting students’ reasoning
about uncertainty and evaluate how interventions and
course transformations can be used to improve lab instruc-
tion related to uncertainty beyond the intro level. In the
future, we intend to administer this survey pre and post to
students in a variety of physics courses to better understand
how specific pedagogical practices impact student reason-
ing about uncertainty.
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APPENDIX A: SURVEY QUESTIONS

A visual representation of the SMDS and DMSS survey
questions is shown in Figs. 6, 7, and 8.

An experiment is being performed by students in the physics laboratory.
A wooden slope is clamped near the edge of a table. A ball is released from a height

h above the table as shown in the diagram. The ball leaves the slope horizontally and lands
on the floor a distance d from the edge of the table. Special paper is placed on the floor on
which the ball makes a small mark when it lands.

The students have been asked to investigate how the distance d on the floor changes when
the height h is varied. A meter stick is used to measure d.

4
v

FIG. 6. The overall experimental scenario, modified from [13].
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Two groups of students compare their results for d obtained by releasing the ball at h = 400
mm. Their results for five releases are below.

Group A Group B
Release
d (mm) d(mm)
1 444 441
2 432 460
3 424 410
4 440 424
5 435 440
Average: 435 435
Our results are better. -
They are all between Our results are just I think the
424 and 444 mm. as good as yours. results of
Yours are spread Our average is the group B are
between 410 same as yours. better than
and 460 mm. We both got the results
435 mm for d. of group A.

A B C
FIG. 7. The SMDS probe, modified from [13].

Two other groups of students compare their results for d obtained by releasing the ball at h
=400 mm. Their results for five releases are shown below.

Release Group D Group E
- d (mm) d (mm)
1 440 432
2 438 444
3 433 426
4 422 433
5 432 440
Average: 433 435
No, your result
does not agree
Our result agrees with ours.
with yours.

oo A

FIG. 8. The DMSS probe, modified from [13].
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TABLE IV. Demographic information self-reported by the
students included in this study (427 intro students and 158
beyond-intro students). Students who marked two or more races
are counted in each race category they chose.

Intro Beyond-intro

Year of college

First year (freshman) 191 1
Second year (sophomore) 156 28
Third year (junior) 42 63
Fourth year + (senior) 23 56
Graduate student 0 2
Unspecified 15 8
Gender

Female 163 37
Male 241 110
Non-binary 2 4
Unspecified 21 7
Race/ethnicity

American Indian or Alaska Native 6 3
Asian or Asian American 78 34
Black or African American 83 4
Hispanic or Latinx 58 21
Native Hawaiian or other Pacific Islander 4 2
Prefer to self-describe 3 4
White 214 105
Unspecified 18 9
First-generation status

First-generation college student 77 26
Not first-generation college student 327 125
Unspecified 23 7

APPENDIX B: DEMOGRAPHIC INFORMATION

The self-reported demographic information for the sur-
vey participants is shown in Table IV.

APPENDIX C: ADDITIONAL COMPARISONS
ACROSS STUDENT SURVEY RESPONSES

First, we wanted to confirm that the differences between
intro and beyond-intro students were not exclusively
explained by institution differences. To do so, we compared
intro and beyond-intro students’ responses within a single
university, Cornell. These comparisons are shown in Fig. 9.
We observed that most of the trends present in the full
dataset were reflected in the Cornell results. Within the
Cornell population, we saw no differences in intro and
beyond-intro students’ responses to the SMDS probe,
listing of limitations sources of uncertainty, and responses
to the More Data question, as in the full dataset. We saw
differences in student’s responses to the DMSS probe and
listing of principles sources of uncertainty similar to the full
dataset. The only discrepancy in conclusions we would
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FIG.9. Comparison of intro and beyond-intro Cornell students’
responses to the PMQ probes (a), Sources question (b), and More
Data and Better Data questions (c). Uncertainty bars represent the
95% confidence interval.
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FIG. 10. Comparison of intro physics majors’ and intro non-
physics majors’ responses to the Sources question (a) and More
Data and Better Data questions (b). Uncertainty bars represent the
95% confidence interval.

draw in the Cornell-only dataset compared to the full dataset
is for the Better Data question. In the full data, we observed a
difference between intro and beyond-intro students’
responses, but within the Cornell data these two groups’
responses are indistinguishable. However, the trends in the
observed fractions for each answer response align with the
full-data results, even if the fractions are indistinguishable
within uncertainty: a larger fraction of intro students than
beyond-intro students indicated that experts would measure a
single value (13% and 7%, respectively), while a smaller
fraction of intro students than beyond-intro students indi-
cated that experts would measure a narrower distribution
(73% and 79%, respectively). Overall, therefore, the Cornell-
specific results agree with the full-data results.

To test whether differences between intro and beyond-
intro students’ responses were due to differences in student
major, we compared intro physics majors’ and intro non-
physics majors’ responses. These comparisons for the
Sources, More Data, and Better Data questions are shown
in Fig. 10. For these three questions, we observed no
differences in intro students’ responses based on major.

To test whether differences between intro and beyond-
intro students’ responses were due to differences in what lab
courses students had taken, we compared beyond-intro
students’ responses based on whether they had taken only
intro-level lab courses or had taken (or were currently taking)
at least one beyond-intro lab course. These comparisons are
shown in Fig. 11. We observed no differences in beyond-
intro students’ responses based on lab courses taken.

To test whether differences between intro and beyond-
intro students’ responses were due to differences in students’
experience conducting research in an experimental lab
setting, we compared beyond-intro students’ responses based
on whether they had experimental research experience.
These comparisons are shown in Fig. 12. We observed no
differences in beyond-intro students’ responses based on
research experience.
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FIG. 11. Comparison of beyond-intro students’ responses to the
PMQ probes (a), Sources question (b), and More Data and Better
Data questions (c) based on what lab courses students had taken.
Uncertainty bars represent the 95% confidence interval.

FIG. 12. Comparison of beyond-intro students’ responses to the
PMQ probes (a), Sources question (b), and More Data and Better
Data questions (c) based on research experience. Uncertainty bars
represent the 95% confidence interval.
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