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Specificity and breadth of plant specialized N
metabolite—microbe interactions

Daniel J. Kliebenstein

Abstract

Plant specialized metabolites shape plant interactions with the
environment including plant—microbe interactions. While we
often group compounds into generic classes, it is the precise
structure of a compound that creates a specific role in
plant—microbe or—pathogen interactions. Critically, the struc-
ture guides definitive targets in individual interactions, yet
single compounds are not limited to singular mechanistic tar-
gets allowing them to influence interactions across broad
ranges of attackers, from bacteria to fungi to animals. Further,
the direction of the effect can be altered by counter evolution
within the interacting organism leading to single compounds
being both beneficial and detrimental. Thus, the benefit of a
single compound to a host needs to be assessed by
measuring the net benefit across all interactions while in each
specific interaction. Factoring this complexity for single com-
pounds in plant—microbe interactions with the massive
expansion in our identification of specialized metabolite
pathways means that we need systematic studies to classify
the full breadth of activities. Only with this full biological
knowledge we can develop mechanistic, ecological, and
evolutionary models to understand how plant specialized me-
tabolites fully influence plant—microbe and plant—biotic in-
teractions more broadly.
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Introduction

Plants rely on specialized metabolites to exist in the
complex ever-changing environment. These compounds
provide a myriad of functions including resistance to
biotic attackers, tolerance to abiotic stress, physical
strength, etc. [1,2]. One prominently ascribed function
to plant specialized metabolites is their role in modu-
lating plant interactions with insect herbivores (e.g. the
study by Li et al. [3]). These plant metabolite—insect
interactions are often been modeled as a co-
evolutionary arms race model similar to the plant-
microbial zigzag model that is marked by plant adapta-
tion and ensuing attacker counter-adaptation [4,5].
However, in contrast to plant—insect interactions, the
role of plant specialized metabolites in shaping the
evolution of plant—pathogen interactions specifically
and plant—microbial interactions more generally is
relatively less studied. In this review, I will work to
convey some new developments and concepts on how
plant specialized metabolites are shaped by and may
shape microbial interactions with an eye to how this may
influence our interpretation of plant—microbe evolu-
tion. Examples from plant—insect interactions will also
be used to support and illustrate how these
plant—microbial examples may be reflective of more
general properties of plant specialized metabolites.

Activity is specific compounds not generic
compound classes

Plant specialized metabolism is defined by a pathway
architecture where a common core structure is formed
and then elaborated through side-chain or structural
modification enzymes. This modularity allows the effi-
cient creation of diverse metabolites from a single core
structure. In biotic or abiotic roles of plant specialized
metabolites studies, we use the core structure as a guide
to simplify this complexity by ascribing functions to the
class of compounds rather than specific compounds, e.g.
“glucosinolates are anti-herbivory compounds.” Focusing
on metabolic groups creates circularity in the literature
where the group is solely discussed rather than specific
chemicals eventually leading to solely reporting the
accumulation of the compound group rather than the
individual structures creating the activity. While this may
be a useful simplification for our generic understanding
of plant defense metabolism, there is minimal support
for this being a useful biological framing of plant defense
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metabolism. In contrast, there is growing support that
the structural modifications upon the core create a di-
versity of biological activities that mirrors the chemi-
cal diversity.

An example of this specific compound/specific activity
link is in the convergent biological activities within
indolic plant specialized metabolites. Tryptophan
derived indolic moieties are at the core of a diverse array
of plant specialized metabolites including benzox-
azinoids and indolic glucosinolates. Within this family of
compounds, the specific structural modification to the
indole moiety dramatically shifts the compound’s
function. For instance, O-methylation of indole gluco-
sinolates shifts the compound from having a role in
aphid defense to being the key component in non-host
microbial resistance and an inducer of callose forma-
tion [6,7]. Similarly, in the monocot benzoxazinoids, O-
methylation from DIMBOA-Glc to HDMBOA-Glc
changes the functionality of the metabolite. The
DIMBOA-GIlc induces callose defenses that can func-
tion against microbial attackers, while O-methylation to
HDMBOA-Glc shifts the ability to resist aphids while
losing the callose inducing activity [3]. It remains
elusive if the defensive and signaling properties linked
to this convergent O-methylation switch have a shared
mechanistic basis.

In addition to the shift of function from aphid to mi-
crobial defense, chemical modifications on specialized
metabolites can influence functions even more specif-
ically. Changing the chain length of an aliphatic gluco-
sinolate influences the effect on both aphids and fungi,
with four carbon glucosinolates providing relative resis-
tance to the Brevicoryne brassicae, three carbon glucosi-
nolate providing resistance to Lipaphis erysimi, and longer
chains shifting to antifungal activities [8,9]. It is
possible that the anti-aphid functions of these com-
pounds are due to its action against the aphid’s bacterial
symbiont or microbiome. Side-chain modifications can
differentially alter virulence even within individual
pathogens. Single carbon or oxygen modifications to a
core terpene differentially modulated Phytophthora
capsici virulence by altering effector regulation indicating
that the terpenes likely have different mechanistic tar-
gets [10]. These are but a sampling of the studies
showing that apparently subtle chemical changes create
dramatic shifts in biotic activity [11,12]. Further, it also
illustrates how we must assume that specialized me-
tabolites have the potential for diverse roles within an
individual plant when confronting the breadth of at-
tackers in the environment.

Diverse specialized metabolites function as two-
component defense systems where the intact special-
ized metabolite is activated by a specific enzyme, typi-
cally a glycosyl hydrolase. Classical two-component
defenses are glucosinolates and cyanogenic glycosides

with recent studies identifying benzoxazinoids, triter-
pene saponins, and other glycosylated plant specialized
metabolites as convergent members of this two-
component model [13—15]. The compound and
enzyme are typically stored in separate cellular com-
partments and come together upon tissue disruption
leading to a common assumption that they are anti-
herbivory compounds. However, they are also key com-
ponents of anti-microbial defense as both aliphatic and
indolic glucosinolates play major roles in Arabidopsis
resistance to non-host bacterial and fungal pathogens
[7,16,17]. In contrast to their anti-herbivory activity, the
two-component anti-microbial role does not appear to
require tissue disruption. The indole glucosinolates
utilize the PEN system that provides non-host resis-
tance to pathogens. In this system, the site of pathogen
attack is targeted by active transport of the indolic
glucosinolate and vesicle mediated secretion of the
activating myrosinase bringing the two-components
together in the apoplast [18,19]. The methionine
derived aliphatic glucosinolates also contribute to non-
host resistance as with non-adapted P syringae but it is
unclear how this occurs. Recent studies show there may
be a constant pool of apoplastic aliphatic glucosinolates
allowing a steady-state presence of the activated iso-
thiocyanate [20,21]. Thus, it is possible that there is a
constant level of activated glucosinolates in the apoplast
either due to a plant myrosinase or potentially a micro-
bial myrosinase [22].

Two-component systems can also create chemical di-
versity in addition to their storage capacity for toxic
compounds. For example, there are accessory proteins
that can shift the glucosinolate reactions towards ni-
triles, thiocyanates, and epithionitriles instead of
isothiocyanates, and cyanogenic glucoside reactions to
nitriles instead of cyanide [23—26]. In glucosinolates,
this structural shift is predominantly considered to
change the function from the isothiocyanate as a direct
herbivory deterrent to an indirect nitrile-based attrac-
tant for predatory and parasitic wasps [27,28]. However,
this catabolic shift likely influences plant—microbe in-
teractions where the isothiocyanate directly inhibits
bacterial type III secretion systems by covalently
modifying a cysteine [29]. While conversion to nitrile
abolishes the isothiocyanate modification of cysteines, a
nitrile moiety can create a different covalent modifica-
tion of both cysteine and serine residues but direct
targets have not been assayed [30]. Similarly, a shift in
the catabolic product could influence the general
composition of the microbiome by altering the effi-
ciency of different microbial nutrient acquisition path-
ways. A more detailed systematic survey of how
individual plant specialized metabolites influence
plant—microbe interactions at the species level to the
entire microbiome is needed to understand how the
evolution of new plant defense chemicals influences
their biotic interactions.
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Specific compounds: broad interactions
Plant co-evolution with microbial attackers is often
considered on a pairwise or limited species basis
where the host and pathogen evolve in response and
subsequent counter-response, frequently involving
specific protein—protein interactions [31]. This
constrained model, while being helpful at mechanistic
insights, does have significant limitations in a broader
environmental context [32]. One complication for co-
evolutionary models is that plants interact with an
unknown but massive diversity of biotic attackers. For
the majority of natural systems, it is not clear how
often a singular interaction is a dominant sustained
driver of both the plant and attacker’s fitness. If plant
specialized metabolites had highly specific in-
teractions, this would alleviate this complication as
the metabolite would be the focus of the specific
interaction. This would be similar to effector medi-
ated resistance where the pathogen produces a spe-
cific protein that is recognized by a specific host
protein creating a molecular focus for the interaction.
However, the full breadth of plant specialized
metabolite literature argues against this specificity
and suggests that individual plant specialized metab-
olites influence broad swaths of a plant’s
biotic interactions.

An example of this potential for a compound to influ-
ence diverse interactions is found in the reliance of
Brassicas on glucosinolates, both individual compounds
and the class, to modulate the interaction with nearly
every potential biotic interaction. Glucosinolates have
long been known to be critical determinants of anti-
insect defenses ranging from lepidopteran, aphid,
mites, and nearly everything in between [33]. This
breadth of activity includes individual glucosinolates
like 2-hydroxy-but-3-enyl glucosinolate that directly
impacts mammalian, avian, and insect interactions
[11,34]. In this example, the mammalian and avian in-
teractions are altered by inhibiting thyroid function but
the mechanistic effect on insects is unknown. 3-
hydroxypropyl glucosinolate has the ability to alter
growth in at least plants and fungi by inhibiting the
TOR pathway, although a in planta role in direct biotic
interactions has yet to be tested [35]. Similarly,
numerous glucosinolates have been linked to resistance
against multiple eukaryotic and prokaryotic pathogens
with a diversity of potential mechanisms [16,29,36—42].
Finally, allyl glucosinolate mediates both within and
between species plant competition by an unknown
mechanism(s) [43]. These activities are due to a blend
of direct activity against the pathogen and signaling ef-
fects altering the plant’s own defense response that are
dependent on the side chain structure and not
explained by the common isothiocyanate formation po-
tential [7,35,39,44]. This suggests that some individual
metabolites may influence different biotic attackers
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sometimes via disparate mechanisms that are lineage
specific in the attacker and at other times the mecha-
nism may be conserved across attackers.

Broad arrays of targets occur beyond the glucosinolates
and may be a ubiquitous property of key plant special-
ized metabolites. For example, the benzoxazinoids in
monocots influence aphid resistance, mite resistance,
callose deposition by the plant, iron chelation, and
insect attractancy [3,45,46]. Benzoxazinoid content and
structure also leads to specific shifts in microbiome
membership indicating potential antimicrobial roles
[47,48]. Camalexin is an Arabidopsidae (Arabidopsis
thaliana containing tribe) specific defense metabolite
that illustrates the complexity in assigning biological
activities. Classically, camalexin was thought to pre-
dominately control resistance to generalist fungal
pathogens [49,50]. This has extended to camalexin
influencing plant bacterial interactions involving both
pathogens and growth promoting members of the
rhizosphere [51]. The rhizosphere studies illustrate a
key difficulty in conducting cause and effect studies in
plant specialized metabolites, as the rhizosphere effects
are caused by shoot produced camalexin that is trans-
ported to the root [52]. This tissue malleability of syn-
thesis and effect was solved using genetic mutants,
illustrating the critical need for biosynthetic mutants to
identify the array of biotic or abiotic effects caused by
even a single specialized metabolite.

If broad activities are a general hallmark of specialized
metabolites, this could change co-evolutionary models.
Instead of modeling effects on one host and one
attacker, we should shift to model the fitness derived
from a specialized metabolite as a vector of effects across
all possible interactors multiplied by the matrix
containing all possible environments in which that or-
ganism would exist. Further, this suggests that plant
specialized metabolites can create evolutionary/ecolog-
ical/mechanistic linkages between plant—insect and
plant—pathogen interactions (Figure 1). If the plant
uses a specialized metabolite for both interactions, then
the plant cannot evolve the different interactions
independently. While this shift to modeling matrices
appears intractable, the identification of metabolic
pathways in combination with plant genome engineer-
ing creates the ability to develop defined plant geno-
types that differ in only the production of specific
defense compounds. This would create a defined
genotypic matrix that could be used in a community
phenotyping effort blending lab bioassays against all
feasible biotic and abiotic stresses in combination with
field trials that would begin to develop the matrix of
estimated effects. Comparing the lab biotic/abiotic
measures of these compounds’ effects with the esti-
mated field fitness of the same genotypic matrix would
enable us to test if this comparison is feasible and if so,

www.sciencedirect.com

Current Opinion in Plant Biology 2024, 77:102459


www.sciencedirect.com/science/journal/13695266

4 Biotic interactions 2024

Figure 1
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Diversity of interactions mediated by plant specialized metabolites that influence plant—pathogen interactions.

The figure is a cartoon representation of the diversity of positive and negative interactions linked to an individual compound from a single plant species to
illustrate the complexity of estimating the fitness or role of a single plant specialized metabolite. Any resemblance to exact species is purely coincidental

and not an intended specific example.
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what parts of the matrix are more or less important.
While not easy, it is feasible with combined effort.

Specific plant compound attack: general
microbial countermove?

By shaping the plant’s microbial interactions, plant
specialized metabolites also alter the microbes’ evolu-
tionary trajectory. This counter-evolutionary impact is
well known in plant-insect interactions where insects
adapt to plant specialized metabolites. This occurs by
changing the protein/gene targeted by the metabolite or
by evolving new mechanisms to detoxify the metabolite.
For example, insects specialized to cardenolide
containing plants typically evolved tolerance mutations
in the NA+/K + -ATPase that is the target of the
cardenolide toxin [53]. Alternatively, insects that
specialize on glucosinolate containing plants evolved
detoxifying enzymes [54,55].

Recent efforts are showing that pathogen/microbial
resistance to plant specialized metabolites is also a broad
feature of plant—microbe interactions in both bacteria
and fungi. Further, pathogen resistance to compounds
may play a central role in determining host/non-host re-
lationships [16,56,57]. These resistance mechanisms are
frequently polymorphic within a pathogen species and
can alter host range [16]. Critically, resistance mecha-
nisms are not constrained to specialist pathogens, as
generalist pathogens have resistance mechanisms that
target phylogenetically limited plant specialized metab-
olites. For example, the generalist pathogens, Sclerotinia
sclerotiorum and Botrytis cinerea have distinct processes to
detoxify  glucosinolate  produced isothiocyanates.
8S. sclerotiorum hydrolyzes the compound while B. cinerea
transports the compound out of the cell. Generalist
pathogens may rely on multiple resistance mechanisms
for individual compounds, as B. cinerea has multiple in-
dependent enzymes and transporters to detoxify the
phylogenetically limited camalexin [40,58—61].

While these detoxification genes are critical for the
microbe’s ability to invade the host, it is unlikely that
limited microbial genomes would contain narrow and
specific detoxification mechanisms against all possible
compounds. This suggests that these detoxification
mechanisms may work against a broader array of com-
pounds that share structural similarity, e.g. camalexin
enzymes may work more broadly against any indole
containing compound. An alternative model is that there
is an existing body of genes within the microbiome
metagenome that can provide resistance to nearly any
plant metabolite. This creates a standing pool of genes
allowing microbes that undergo a host shift to adapt to
the new host’s metabolites via horizontal gene transfer
[62]. Understanding how plant pathogens adapt to plant
specialized metabolites will be a key question going
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forward for both synthetic biology efforts to move
compounds from one plant species to another and ef-
forts to understand the processes involved in pathogen
movement to new hosts.

Conclusion

Plant specialized metabolites play a wide array of highly
intertwined roles, even within a single metabolite. The
cited and numerous studies not cited due to space
limitations are just beginning to reveal how these me-
tabolites evolve within the plant and shape microbial
interactions. The numbers of these citations are vastly
outweighed by the studies on plant-microbe evolution
that focus on effector—receptor interactions even
though it is likely the metabolites provide the critical
resistance output controlled by upstream signals. As
such, we honestly don’t know the relative level of
plant—microbial interactions/evolution in the wild that
are shaped predominantly by effector—receptor in-
teractions versus plant specialized metabolism. This is
begging to be addressed by the vast explosion in the rate
of pathway identification for plant specialized metabo-
lites, although there is a relative lack of studies on bio-
logical roles or mechanistic targets for these
metabolites. To address how plant specialized metabo-
lites shape plant—microbial interactions, we need to
begin systematic surveys of all the biological effects of at
least some model specialized metabolites in the lab and
field to understand their true influence on
plant—microbial interactions and plant—biotic in-
teractions more broadly with an ultimate goal of
describing their full contribution to plant fitness in
the wild.
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