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Abstract

A novel protocol utilizing a phase-field model was used to process the reconstruction of a
polycrystalline microstructure from synchrotron-based high-energy X-ray diffraction
microscopy. This approach is an intuitive and standardized alternative to typical image
processing routines. It preserves high-confidence regions by deploying a completeness-based
mobility parameter in the phase-field model. Phase-field governing equations result in a space-
filling grain map that adheres to the physics of the microstructure, i.e., it penalizes high-energy
grain shapes and configurations and promotes grain boundary (GB) smoothing. We quantify GB
smoothing by measuring, in 2D, the circularity of interior grains and the tortuosity of individual
GBs. Results are also presented in 3D. This post-processing protocol can be applied to any X-ray
diffraction microscopy reconstruction that consists of a spatial map of grains and corresponding
confidence values. Furthermore, it can be adapted to accommodate other types of
microstructures, including those that are polyphase.
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Various defects arise from the arrangement of grains in a microstructure [1]. Two grains
converge at a grain boundary (GB), three grains at a triple junction (TJ), and four grains at a
quadruple node (QN). In 3D space, the GBs, TJs, and QNs are represented by surfaces, lines, and
points, respectively. In 2D, the GBs are represented by lines and the TJs by points. Due to
capillary forces and assuming a constant GB energy, a higher-order connectivity, e.g., a
quintuple node, is unstable in 3D (a QN is similarly unstable in 2D). The distributions of these
defects can either bolster or hinder material performance depending on the specific application
context. They provide pathways for crack propagation [2-4], corrosion [5, 6], and intergranular
diffusion [7, 8] as a result of the weaker atomic bonding and the excess volume. Therefore,
control of polycrystalline microstructure is of great importance to the manufacture of
technological materials, and such control demands an understanding of the polycrystalline
microstructure in all its complexity.

Peering into the 3D structure of polycrystals has proved challenging for decades [9-11] but
recently the advent of laboratory- and synchrotron-based X-ray diffraction imaging has enabled
researchers to uncover microstructural details nondestructively and at high spatial and temporal
resolutions [12-18]. Diffraction is required because the material density is the same on either side
of a GB, while the crystallographic orientation is different. Each time a grain in the bulk satisfies
the Bragg condition, a diffracted beam is generated; this signal is then transmitted through the
sample and collected by 2D detectors. Since different grains satisfy Braggs’ law at different
angles, the sample is rotated to capture all unique reflections. The microstructure of the
illuminated sample volume is then reconstructed from the set of 2D diffraction images. To fully
realize the utility of these modern characterization tools, we must first maximize the fidelity of
the reconstructions, which are susceptible to various types and sources of errors and uncertainties
inherent to the experiment. Reconstructions of polycrystalline microstructures are influenced, in
practice, by heterogeneous grain size distributions, differences in scattering cross sections
between phases, limited dynamic range of detectors, fluctuations in incident intensity,
overlapping Bragg peaks, and other measurement errors [16]. This noise gives rise to an
unphysical roughness of the GBs at the mesoscale, making it difficult to quantify GB properties,
e.g., tortuosities [19-21], characters [22-24], curvatures [25], and contact affinities [26].
Uncertainties in these quantities propagate into estimations of effective diffusivity [21],
corrosion resistance [6, 27], electrical resistance [28], and fracture strength [29].

In this work, we present a new post-processing protocol that utilizes a phase-field model to
enhance the reconstructed microstructures by replacing the untrustworthy regions. As a proof-of-
concept of our approach, we examined the shape memory alloy Cu71 6Ali17Mni1.4 and
thermomechanically processed it following Refs. [30] and [31]. A cylindrical 1-mm diameter
sample was cut from the bulk ingot using electric discharge machining. To characterize its 3D
microstructure, we conducted near-field (nf) high-energy diffraction microscopy (nf-HEDM) at
the 1-ID-E beamline of Argonne National Laboratory’s Advanced Photon Source (Lemont, IL,
USA) [16, 32-36]. In nf-HEDM, a line-focused monochromatic X-ray beam illuminated a quasi-



2D cross-section of the sample, and diffraction images were collected at two sample-to-detector
distances, 10 mm and 12 mm. For each cross-section, the sample was rotated about the vertical
axis (parallel to gravity, i.e., normal to the plane defined by the beam) at 0.25° intervals from 0
to 180°. Images were collected at each detector distance (yielding 1440 images for each cross-
section). The first set of images was collected 3.000 mm from the tip of the cylindrical specimen,
the next set at 3.007 mm, and so on until reaching 4.316 mm (188 cross-sections at 7 um

spacing).

The nf data was used to reconstruct a map of crystallographic orientations on an array of square
pixels. The forward-simulation-based HEXOMAP reconstruction package [17, 37] was
employed for this purpose, achieving high spatial resolution (3 pum pixel size) and orientation
resolution (0.1°). Pixel orientations were optimized based on comparison between
forward-simulated and experimental diffraction peaks. The 2D ‘slice’ reconstructions of each
cross-section were then concatenated into a 3D map of crystallographic orientations. The
resulting anisotropic voxels (3 um X 3 pm X 7 um) were made isotropic (3 pum X 3 pum X 3 um)
via supersampling without interpolation of the orientations (the supersampling procedure is
described in the Supplementary Information). Next, the orientation map was segmented into
grains with the PolyProc function package [38], using a misorientation threshold of 0.7° for
neighboring voxels. Finally, the mask of the sample boundary was defined with the aid of a
conventional, absorption contrast tomography scan [39] collected with the Zeiss Xradia 520
Versa X-ray microscope at the University of Michigan.

In addition to the orientation map, the HEXOMAP algorithm outputs a corresponding map of
completeness values [17, 37]; see Figs. 1(a,b). Completeness, C, is defined as the overlap
between the experimental and simulated diffraction peaks [35]. By definition, C € [0,1]. It
indicates the trustworthiness of the corresponding pixel orientation, where 1 indicates a perfect
match between simulated and observed peaks. A review of the HEDM literature shows a lack of
consideration for the completeness values of GBs. Instead, attention was given to classifying a
region as either recrystallized or deformed [34, 37]. In our case, we do not externally deform the
material, and the sample is taken to be fully recrystallized (supported by relatively high
grain-averaged completeness values of ~0.7). The bulk of large grains exhibit the highest values
of C, while the edges of grains show the lowest values of C (where the grain contacts either
another grain or the sample surface, i.e., there is a sudden change in orientation or material).

Following reconstruction and grain segmentation, typical post-processing procedures remove
low-completeness voxels and small grains that might be attributed to noise [38]. This operation
results in a microstructure with false voids in the sample. Frequently, such artifacts are then
‘filled in’ via morphological filters, e.g., image dilation (which can be performed in the software
DREAM.3D [24, 40]; see the Supplementary Information for further discussion). While the
end-result is a space-filling microstructure, such image processing is nevertheless susceptible to
arbitrary selections of numerous parameters (e.g., the shape and size of the morphological



structuring elements). This variability in parameter choices may lead to differences in
approaches across similar studies. Another deficiency of the typical post-processing procedure is
that image processing does not respect the underlying physics of the microstructure. For
example, in Fig. S1, we demonstrate an image processing routine performed on a square pixel
array that creates and fills a gap between four grains but fails to penalize a quadruple point
(unstable in 2D).

To circumvent the above two issues, we introduce a new procedure for post-processing that
utilizes a phase-field (PF) model for polycrystalline grain growth. Grains are represented by
order parameters 7; that indicate different crystallographic domains (; = 1 within the i*" grain
and n; = 0 elsewhere, with a smooth hyperbolic tangent profile across the interface). The
evolution is driven by the reduction of the system free energy,

F= j(fbulk + fgradient) av,
(1

where fhyix and fyrqaiene are expressed in terms of the order parameters. The bulk free energy
density is given by the form used in [41],
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where W is the bulk free energy density coefficient that affects the grain boundary thickness,
which is a model parameter. The gradient energy term penalizes gradients in the order
parameters according to

gradzent = Z | Vn; |2
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where k is the gradient energy coefficient. The values for W and k are related to the grain
boundary width [y, according to
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Each unique grain in the 2D reconstruction is assigned its own order parameter 1);, which evolves
according to the Allen-Cahn equation,

L= —M—,
at 6T]l
(5)

where M is the PF mobility, which will be further described below, and F is given by Eq. 1. The
resulting Eq. 5 was solved numerically using the finite difference method with a uniform spatial
mesh and forward Euler time integration with time step size sufficiently small to yield numerical
stability (At* = 0.01). The grid spacing was chosen to be equal to the pixel width in the
experiment, Ax = 3 um. When scaling by the average grain radius r,, the dimensionless grid
spacing is Ax* = 0.075, where the superscript * indicates a dimensionless quantity. Since Eq. 5
involves second-order spatial derivatives of the order parameters, it is necessary to adequately
resolve the diffuse interfaces to reduce numerical errors of the solution [42, 43]. We chose to use
four grid spacings for the grain boundary width, i.e., lg, = 44x = 12 um. All parameters used
in the PF computations are summarized in Table 1. After evolving according to Eq. 5, each pixel
(voxel in 3D) was then labeled according to the order parameter with the highest value at that
location, and subsequently segmented into specific grain indices to yield the post-processed grain
map. The number of the time iterations was determined such that it was sufficient to modify the
order parameters in regions with low completeness values. This was accomplished in a separate
calculation for which pixels that were below a desired completeness threshold (0.5 in this case)
were not assigned to any order parameter; then, Eq. 5 was evolved until the unassigned pixels
were filled by neighboring grains (which occurred at approximately ¢; = 4.5). Note that since
we are not simulating the physical evolution of the system, time has no physical meaning and
therefore no physical units.

Table 1: Dimensional and dimensionless PF parameters.

Parameters Dimensionless parameters (indicated by *)
w wr=1
K SR Y () PP
CTwrr T8\ ) T
M M* = Mo M
Mmax




The full proposed workflow is shown in Fig. 1. A representative 2D slice of the reconstruction is
used to show the orientation and completeness outputs of the HEXOMAP reconstruction
algorithm. Instead of creating artificial gaps in the microstructure where the completeness is low,
as is the conventional approach [38, 44] we retain all data from the HEXOMAP output and
construct the mobility parameter M in the PF evolution equation (Eq. 5) as a function of the
completeness C. Specifically, we define M as

M = (Mpax — Mpin)p(@) + Mppiy, a<C<b,
Mo ax C<a
(6)
where
p(¢) = ¢°(6¢* — 15¢ + 10),
(7)
_ b—-C
*=p—a
)

Here, p(¢) interpolates between M,,;, and M,,,, in the range a < C < b . The form of p(¢) is
typically used in PF models of solidification [45] and ensures M is a smooth function. Eq. (6) is
plotted in Fig. 2(a). Arrows in Figs. 1(b,c) correspond to line profiles in Fig. 2(b), which show
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Fig. 1. Data processing workflow starting with HEXOMAP reconstruction outputs of (a) pixel
orientations and (b) completeness, from which we calculate the (¢) completeness-derived
mobility. Finally, (d) gives the output grain map from PF processing, taking segmented grains
and (c) as inputs. The insets in (a) and (d) show a magnified view of the same region before and
after PF post-processing, within which the black lines represent the GBs.
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Fig. 2. (a) Plot of relationship between mobility and completeness. (b) Line profiles of
completeness, C, and the corresponding mobility, M, versus position, see Figs. 1(b) and (c),
respectively. This plot was generated using a centered moving mean that considers five pixels.

the inverse relationship between completeness and mobility. The bounds of the mobility in

Eq. (6) are taken from the experimental observations of high and low completeness values.
Above the upper completeness limit of b = 0.8 (typical of the bulk), the mobility is highly
restricted but nonzero; this has the added advantage that all GBs are mobile enough to achieve a
small degree of smoothing. The value for M,,;,, (0.12) was set to the ratio of the length scale of
the desired smoothing for all grain boundaries (3 pixels) to the length scale of the largest
low-completeness region (25 pixels, in 2D). Below the lower completeness limit of a = 0.5
(typical of low-completeness grains and TJ points in 2D), the mobility takes on a maximum
value, M., = 1. The mobility here is unitless because time is not a physical quantity since we
are not simulating actual evolution. This helps to ‘repair’ any higher-order connectivity points by
providing sufficient mobility to split them into multiple triple points (see, e.g., the insets of
Figs. 1(a,d), which show the evolution of a quadruple point to two triple points separated by a
GB). Ultimately, this protocol is intended to preserve the highest-confidence regions of the
reconstruction while allowing evolution of the low confidence regions that are most prone to
error. While PF models with a constant mobility M have been used previously to reduce the
roughness of the GBs [46], the novelty in our approach is that M varies based on the
completeness of the reconstruction. The Supplementary Information provides further discussion
on the two cases.

We quantified the extent of boundary smoothing in 2D by computing both the circularity of the
interior grains and the tortuosity of the individual GBs, before and after PF post-processing.
Circularity, c, is defined as ¢ = 4mA/P?, where A is the area of a grain and P is the perimeter.
This metric has a maximum value of 1 for a circle and approaches 0 for highly irregular or
elongated shapes. Grains intersecting the sample surface had an immobile section of their
perimeter during PF processing and were not included in this analysis. As a benchmark for
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Fig. 1. Evaluation of grain maps, before (left) and after (right) 2D PF processing, according to
(a,b) circularity of interior grains and (c,d) tortuosity of grain boundaries. Solid black vertical
lines indicate the mean of each distribution. Dashed red vertical lines in (a,b) show mean
circularity of normal grains from Ref. [47]. The circularity distribution shifts from

0.63 £+ 0.2 to 0.81 + 0.07, and tortuosity shifts from 1.23 + 0.3 to 1.08 + 0.05.

comparison, we note that DeCost and Holm [47] found in 2D Monte Carlo Potts simulations that
the average circularity of equiaxed grains in a normal grain growth regime is ¢ = 0.877. Figs.
3(a,b) show the distributions in grain circularities. We obtained ¢ = 0.63 before post-processing
and ¢ = 0.81 after, which is closer to the benchmark value for equiaxed grains. An increase in
mean circularity indicates that the grains either became more equiaxed or the GBs became
smoother. Since the PF processing runs for a relatively small number of iterations, there should
not be major changes in the grain shape (e.g. compression), and therefore the change in the
circularity can be attributed mainly to the smoothing of the GBs.

The smoothness of the GBs can be separated from the overall shape of the grain by examining
the GB tortuosity, 7, which is calculated by identifying the GBs via image processing and
computing T = [/l,. Here, [ is the shortest connected path length (found through the Dijkstra
algorithm [48]) between the endpoints of a GB (corresponding to the triple points, in 2D) and [,
is the Euclidean distance between those same endpoints. In general, tortuosity is large when the



path is winding, smaller for straighter paths, and attains a minimum value of 1 for a perfectly
straight path. Unless a GB is faceted [49], it must have T > 1 owing to its curvature. The
calculation of tortuosity is described further in the Supplementary Information. Paths across the
entire sample diameter (along multiple, contiguous GBs) were not considered because they
would have captured topological information belonging to the arrangement of the grains; here,
we sought only to quantify the GB smoothing by the PF post-processing protocol. Figs. 3(c,d)
shows that the GB tortuosity decreased from 1.23 to 1.08 after PF post-processing. This decrease
indicates that the shortest connected path length [ was reduced due to smoothing, as also
evidenced in the insets of Figs. 1(a,d).

Data processing in 3D is the ultimate goal, as the microstructure captured in any given
cross-section is no doubt influenced by its neighboring sections. With this in mind, our protocol
can be extended to 3D without loss of generality. We perform PF processing in 3D with the
concatenated and supersampled stack of 2D data taken as input (see the Supplementary
Information for discussion on the assignment of order parameters). The stopping time in 3D was
determined using a separate simulation (analogous to the approach in 2D, described above). The
minimum mobility was also determined in analogous fashion; a low-completeness region
spanning 40 voxels in 3D yielded the ratio 3:40; thus, M,,,;,, = 0.075. Figs. 4(a,b) show the
smoothing of GBs in 3D. For the same 2D slice of the tomographic reconstruction as in

Fig. 1(d), Fig. 4(c) shows that 4 additional grains have apparently ‘survived’ in the 3D PF result,
relative to the 2D result. More specifically, after PF processing in 2D, the number of grains
decreased from 71 to 60 (15%); the grains that vanish contributed less than 3% of the cross-
sectional area. In 3D, grains can not only disappear from but also appear into the plane-of-
interest. That is, more degrees of freedom are accessible to the system in higher dimensions [50],
hence why 5% more grains (64 in total) remained after PF processing; less than 4% of the voxels

D ' %, Isosurface (C)
(n: = 0.5)
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Fig. 4. Proof-of-concept of our approach in 3D. Direct reconstruction (a) before and (b) after PF
post-processing, showing only the interior grains of the microstructure in a voxelized
representation. Insets show a zoomed-in and isolated view of the grain indicated in (a), and the
‘isosurface’ inset displays the order parameter representation. (c¢) 3D results shown for the same
slice as in Fig. 1, with GBs from 2D and 3D results shown in red and blue, respectively. Boxed
regions are magnified for clarity.
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were reindexed in due course. Likewise, in the entire 3D volume, less than 4% of voxels were
reassigned, and the number of grains decreased from 1161 to 997 (14%).

We performed a quantitative analysis of these 3D results. The 3D analog of circularity is
sphericity, S, defined (for the interior grains) as § = 4mnr,,?/p?, where 1, is the equivalent

radius of a grain and p is the surface area. This metric has a maximum value of 1 for a sphere
and approaches 0 for highly irregular or elongated shapes. Fig. S3 shows distributions of
sphericity for the unprocessed data, DREAM.3D-processed data, and the PF processed data (see
the Supplementary Information for discussion on the conventional post-processing routine). The
mean sphericities are 0.71, 0.72, and 0.86, respectively. For reference, the sphericity of a Kelvin
cell is 0.91 [51]. A higher value for the PF processed data than that of the DREAM.3D-processed
state implies that the former is more effective at reducing GB surface area via smoothing.
Furthermore, we compared our results to that of a 3D front-tracking simulation of grain growth
[50]. This work reports an isoperimetric value, I, defined as I = 36mV?/p3, where V is the
volume of a grain. Whereas sphericity compares the surfaces areas of a grain and a sphere of
equivalent volumes, the isoperimetric value compares the volumes of a grain and a sphere of
equivalent surface area. Our unprocessed data, DREAM.3D-processed data, and PF-processed
data yielded values of 0.38, 0.40, and 0.69, respectively. In comparison, Ref. [50] find I =
0.76803 when steady-state is achieved. While such values for circularity and tortuosity are
useful as benchmarks, we do not recommend using them as criteria for determining the stopping
point in the PF-based approach. The PF processing routine should be generalized enough to be
applicable to microstructures with non-equiaxed grains.

In summary, our PF-model-based post-processing protocol offers an alternative to conventional
image processing solutions, which may produce or retain non-physical grain configurations. We
have demonstrated the utility of our proposed technique by highlighting the splitting of unstable
quadruple points (in 2D) into multiple triple points and by quantifying the mesoscale GB
roughness using interior grain circularity and GB tortuosity in 2D, and sphericity and the
isoperimetric value in 3D. Our study used nf-HEDM data reconstructed by the HEXOMAP
algorithm, but this approach can, in principle, be applied to any diffraction-based imaging
technique that provides a spatial map of the crystallographic orientations and their associated
confidence indices, e.g., EBSD [52] or DCT [12-15] . It can also be extended to polyphase
microstructures (such as the dual-phase Cu-Al-Mn shape memory alloy [17, 18, 30, 31]) with
artificially rough interfaces; in that case, the interphase boundaries take the place of the GBs
here. Finally, the mobility function can be extended to account also for crystallographic effects,
such as the grain boundary character, in addition to confidence indices. Broadly, these
enhancements will aid efforts in understanding and mapping processing-structure relationships
through improved reconstructions of polycrystalline microstructures.
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Supplementary Information
Order parameter assignment for 3D phase-field code

For 2D evolution, each cross-section of the experimental sample contains roughly 100 grains, so
it is feasible to assign each grain its own order parameter. However, for the 3D microstructure
(which contains over 1000 grains), this was no longer possible due to the large memory
requirement. To make the 3D PF processing computationally tractable, each order parameter
tracked multiple grains.

In order to prevent grain coalescence during evolution between two grains sharing the same
order parameter, grains were assigned to order parameters ensuring that they were sufficiently
spaced using an exclusion zone. This was accomplished by the following algorithm in
MATLAB:

1. For each unique grain index i in the 3D grain orientation map, generate a binary field n;
where n; = 1 at voxels equal to i and n; = 0 elsewhere;

2. For each binary field, generate a distance field d; from the grain surface using the built-in
MATLAB bwdist() function;

3. Set the voxels of the binary fields n; to 1 if the value of their corresponding distance field
d; is less than or equal the exclusion distance d,,;

4. Loop over every pair of binary fields n; and n; to check if they overlap, i.e., n;(r) =
n;(r) = 1, and construct an N X N adjacency matrix;

5. Input the adjacency matrix into a greedy coloring algorithm to obtain k sets of indices m
corresponding to grains that are sufficiently spaced;

The k sets of grain indices are used to generate k order parameters 1; which are initialized to 1 at
the locations of grain indices within the set.



Conventional processing routine

We first demonstrate the conventional post-processing routine in an illustration, and then we
apply it to the actual HEDM data. In general, the conventional routine involves applying size and
completeness thresholds to mask out grains or voxels that are deemed untrustworthy [38]. These
artificial voids are filled in (or inpainted) with image dilation in software such as DREAM.3D
[24, 40]. Image dilation may result in the formation of unstable higher-connectivity
configurations, such as a QN in 2D, demonstrated in Fig. S1. Our PF method uses a more
informed approach — one that adheres to the physics of capillary-driven microstructure evolution,
thus avoiding thermodynamically unstable configurations.

Fig. S1. Schematic of an image post-processing routine. (a) Reconstruction of 5 grains (colored).
(b) Middle yellow grain is removed due to either size or completeness filtering and leaves a false
void (white). (c¢) Image dilation fills the false void but creates an unstable 2D quadruple node.

In Fig. S2 below, we present in (a-d) a conventional 3D workflow and (e) the result of our 3D
phase-field processing, for comparison. A cross-section of the 3D reconstruction in (a) is
depicted in (b-e). We apply size and completeness thresholds to unassign voxels to grains. Some
of those voxels (but not all) adorn the grain boundaries and triple junctions since they possess
low completeness (in practice, one could unassign all grain boundary voxels by examining their
local neighborhoods). The size threshold is 19 voxels (where each voxel measures

3 x 3 x 3 um3), corresponding to a volume of 8 voxels in the native HEDM resolution (where
each voxel is 3 X 7 X 3 um3). The completeness threshold is 0.5. Voxels are unindexed based on
these thresholds, and then the surrounding grains are dilated into the unindexed regions. The
result of this conventional processing routine contains grain boundaries with a residual
roughness, as will be quantified below.



Fig. S2. (a-d) Demonstration of conventional processing pipeline. (a) 3D view of the
HEXOMAP reconstruction. (b-e) 2D slices corresponding to the gray plane cut through the
volume in (a). Application of (b) a size threshold of 8 voxels in the native HEDM resolution,
followed by (c) a completeness threshold of 0.5, and finally (d) dilation using ‘Fill Bad Data’ in
DREAM.3D [40]. (e) After 3D PF processing.

In Fig. S3, we present a quantitative comparison of the degree of grain boundary smoothing
achieved through the conventional image processing and proposed PF processing routines. The
sphericity of interior grains was calculated for the size-thresholded data, the phase-field-
processed data, and the DREAM.3D-processed data. The size-thresholded data is used to avoid
including many negligibly small, equiaxed grains that artificially raise the sphericity to 1. The
distributions of sphericity for each dataset are shown in Fig. S3. The means of each distribution
can be compared to the sphericity of a low-surface-area tetrakaidecahedron, the Kelvin cell [51].
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Fig. S3. Evaluation of grain maps (a) before, (b) after phase-field processing, and (c) after
dilation using DREAM.3D, following the same routine indicated in Fig. S2. Solid black vertical
lines indicate the means of each distribution. Dashed red vertical lines give the sphericity of a
Kelvin cell, 0.91, from Ref. [51]. The distribution shifts from 0.71 + 0.08 to 0.86 + 0.04 for

the phase-field processing. The DREAM.3D processing yields a distribution with 0.72 + 0.08.



Supersampling from native HEDM resolution to isotropic voxels

Due to the 3-um reconstructed pixel size (in the x-z plane) and the 7-pm layer spacing (along y),
the HEDM data is naturally anisotropic. We elected to perform a supersampling procedure in the
y direction to arrive at isotropic pixels; see Fig. S4 for a schematic illustration.

This operation was performed before the grain segmentation step, meaning the operating array
contained voxel-wise orientation information. Although it is tempting to interpolate orientations
for the newly created slices, we recommend against it because it may join grains that otherwise
do not satisfy the voxel-to-voxel misorientation criterion of 0.7° used in the grain segmentation
procedure. For example, two grains with a misorientation of 1.2° between 2 layers of HEDM
data would be combined, because interpolation would provide a path of voxels that connects
them via two 0.6° misorientations over the same distance. The non-integer ratio of 7:3, combined
with the decision not to interpolate, means that one in every three layers is overrepresented, and
the other two layers are underrepresented. To avoid this, in future work, it is recommended to set
the desired pixel size as a divisor of the inter-layer spacing, e.g., 3.5 um.
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Fig. S4. Demonstration of the supersampling procedure. Reconstructed HEDM data are
inherently anisotropic (left), which we correct for via supersampling (right). Orientations
(colored) are not interpolated because doing so would disrupt the downstream grain
segmentation (possibly joining grains with a small misorientation). The non-integer ratio of 7:3
results in an overrepresentation of the orientation o2.



Specification of image processing required for calculation of tortuosity

The quantification of the grain boundary tortuosity, T, begins with the pixelated representation of
our data (in 2D), such that it is possible to make a comparison to the original HEXOMAP
reconstruction. First, we must identify the pixels belonging to the grain boundary. The pixels are
taken to be any pixels on the perimeter of grain i that lie adjacent to any pixel on the perimeter of
grain j. The tortuosity is then computed by finding the shortest connected path along grain
boundary pixels. For any pair of pixels, there is a Dijkstra shortest path [48] between them. The
longest path among that set of “shortest paths™ (1) is associated with the two endpoints that
define the beginning and end of the grain boundary. These endpoints are saved and the Euclidean
distance between them (l) is also determined. Finally, the tortuosity 7 is computed as T = (/1.
Fig. SS gives a proof-of-concept of this procedure for the unprocessed and PF-processed data.

=119
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Fig. S5. Demonstration of image processing for the calculation of tortuosity 7. In 2D, a grain
boundary between grains i and j is defined by those pixels on the perimeter of i (j) that have a
nearest-neighbor pixel in j (i). Tortuosity is then computed on the graph of the identified grain
boundary pixels. This approach is shown for (a) the unprocessed and (b) PF-processed data. The
tortuosity of the same grain boundary reduces by over 10%, consistent with Figs. 3(c-d).



Comparison between constant and completeness-based mobility

We compare PF processing with constant mobility (M = 1) and completeness-based mobility at
t;" = 4.5 in Fig. S6. Regions of significant difference are shown inset. It is clear that in the case
of constant mobility, small grains undergo significantly more evolution, either rapidly shrinking
or disappearing as a result of capillarity-driven evolution. In the case of completeness-based
mobility, small grains with high-completeness are more resistant to shrinkage, despite their size.
The difference in the two cases would become even more pronounced if PF processing runs for

longer times t¢".

Fig. S6. Overlay of PF processed reconstruction with constant mobility (red contours) and
completeness-based mobility (black contours). Insets show zoomed-in regions that illustrate
differences in the two cases, for clarity.



