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Abstract 

A novel protocol utilizing a phase-field model was used to process the reconstruction of a 

polycrystalline microstructure from synchrotron-based high-energy X-ray diffraction 

microscopy. This approach is an intuitive and standardized alternative to typical image 

processing routines. It preserves high-confidence regions by deploying a completeness-based 

mobility parameter in the phase-field model. Phase-field governing equations result in a space-

filling grain map that adheres to the physics of the microstructure, i.e., it penalizes high-energy 

grain shapes and configurations and promotes grain boundary (GB) smoothing. We quantify GB 

smoothing by measuring, in 2D, the circularity of interior grains and the tortuosity of individual 

GBs. Results are also presented in 3D. This post-processing protocol can be applied to any X-ray 

diffraction microscopy reconstruction that consists of a spatial map of grains and corresponding 

confidence values. Furthermore, it can be adapted to accommodate other types of 

microstructures, including those that are polyphase. 
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Various defects arise from the arrangement of grains in a microstructure [1]. Two grains 

converge at a grain boundary (GB), three grains at a triple junction (TJ), and four grains at a 

quadruple node (QN). In 3D space, the GBs, TJs, and QNs are represented by surfaces, lines, and 

points, respectively. In 2D, the GBs are represented by lines and the TJs by points. Due to 

capillary forces and assuming a constant GB energy, a higher-order connectivity, e.g., a 

quintuple node, is unstable in 3D (a QN is similarly unstable in 2D). The distributions of these 

defects can either bolster or hinder material performance depending on the specific application 

context. They provide pathways for crack propagation [2-4], corrosion [5, 6], and intergranular 

diffusion [7, 8] as a result of the weaker atomic bonding and the excess volume. Therefore, 

control of polycrystalline microstructure is of great importance to the manufacture of 

technological materials, and such control demands an understanding of the polycrystalline 

microstructure in all its complexity. 

Peering into the 3D structure of polycrystals has proved challenging for decades [9-11] but 

recently the advent of laboratory- and synchrotron-based X-ray diffraction imaging has enabled 

researchers to uncover microstructural details nondestructively and at high spatial and temporal 

resolutions [12-18]. Diffraction is required because the material density is the same on either side 

of a GB, while the crystallographic orientation is different. Each time a grain in the bulk satisfies 

the Bragg condition, a diffracted beam is generated; this signal is then transmitted through the 

sample and collected by 2D detectors. Since different grains satisfy Braggs’ law at different 

angles, the sample is rotated to capture all unique reflections. The microstructure of the 

illuminated sample volume is then reconstructed from the set of 2D diffraction images. To fully 

realize the utility of these modern characterization tools, we must first maximize the fidelity of 

the reconstructions, which are susceptible to various types and sources of errors and uncertainties 

inherent to the experiment. Reconstructions of polycrystalline microstructures are influenced, in 

practice, by heterogeneous grain size distributions, differences in scattering cross sections 

between phases, limited dynamic range of detectors, fluctuations in incident intensity, 

overlapping Bragg peaks, and other measurement errors [16]. This noise gives rise to an 

unphysical roughness of the GBs at the mesoscale, making it difficult to quantify GB properties, 

e.g., tortuosities [19-21], characters [22-24], curvatures [25], and contact affinities [26]. 

Uncertainties in these quantities propagate into estimations of effective diffusivity [21], 

corrosion resistance [6, 27], electrical resistance [28], and fracture strength [29].  

In this work, we present a new post-processing protocol that utilizes a phase-field model to 

enhance the reconstructed microstructures by replacing the untrustworthy regions. As a proof-of-

concept of our approach, we examined the shape memory alloy Cu71.6Al17Mn11.4 and 

thermomechanically processed it following Refs. [30] and [31]. A cylindrical 1-mm diameter 

sample was cut from the bulk ingot using electric discharge machining. To characterize its 3D 

microstructure, we conducted near-field (nf) high-energy diffraction microscopy (nf-HEDM) at 

the 1-ID-E beamline of Argonne National Laboratory’s Advanced Photon Source (Lemont, IL, 

USA) [16, 32-36]. In nf-HEDM, a line-focused monochromatic X-ray beam illuminated a quasi-



 3 

2D cross-section of the sample, and diffraction images were collected at two sample-to-detector 

distances, 10 mm and 12 mm. For each cross-section, the sample was rotated about the vertical 

axis (parallel to gravity, i.e., normal to the plane defined by the beam) at 0.25° intervals from 0 

to 180°. Images were collected at each detector distance (yielding 1440 images for each cross-

section). The first set of images was collected 3.000 mm from the tip of the cylindrical specimen, 

the next set at 3.007 mm, and so on until reaching 4.316 mm (188 cross-sections at 7 µm 

spacing). 

The nf data was used to reconstruct a map of crystallographic orientations on an array of square 

pixels. The forward-simulation-based HEXOMAP reconstruction package [17, 37] was 

employed for this purpose, achieving high spatial resolution (3 µm pixel size) and orientation 

resolution (0.1°). Pixel orientations were optimized based on comparison between 

forward-simulated and experimental diffraction peaks. The 2D ‘slice’ reconstructions of each 

cross-section were then concatenated into a 3D map of crystallographic orientations. The 

resulting anisotropic voxels (3 µm × 3 µm × 7 µm) were made isotropic (3 µm × 3 µm × 3 µm) 

via supersampling without interpolation of the orientations (the supersampling procedure is 

described in the Supplementary Information). Next, the orientation map was segmented into 

grains with the PolyProc function package [38], using a misorientation threshold of 0.7° for 

neighboring voxels. Finally, the mask of the sample boundary was defined with the aid of a 

conventional, absorption contrast tomography scan [39] collected with the Zeiss Xradia 520 

Versa X-ray microscope at the University of Michigan. 

In addition to the orientation map, the HEXOMAP algorithm outputs a corresponding map of 

completeness values [17, 37]; see Figs. 1(a,b). Completeness, 𝐶, is defined as the overlap 

between the experimental and simulated diffraction peaks [35]. By definition, 𝐶 ∈ [0,1]. It 
indicates the trustworthiness of the corresponding pixel orientation, where 1 indicates a perfect 

match between simulated and observed peaks. A review of the HEDM literature shows a lack of 

consideration for the completeness values of GBs. Instead, attention was given to classifying a 

region as either recrystallized or deformed [34, 37]. In our case, we do not externally deform the 

material, and the sample is taken to be fully recrystallized (supported by relatively high 

grain-averaged completeness values of ~0.7). The bulk of large grains exhibit the highest values 

of 𝐶, while the edges of grains show the lowest values of 𝐶 (where the grain contacts either 

another grain or the sample surface, i.e., there is a sudden change in orientation or material). 

Following reconstruction and grain segmentation, typical post-processing procedures remove 

low-completeness voxels and small grains that might be attributed to noise [38]. This operation 

results in a microstructure with false voids in the sample. Frequently, such artifacts are then 

‘filled in’ via morphological filters, e.g., image dilation (which can be performed in the software 

DREAM.3D [24, 40]; see the Supplementary Information for further discussion). While the 

end-result is a space-filling microstructure, such image processing is nevertheless susceptible to 

arbitrary selections of numerous parameters (e.g., the shape and size of the morphological 
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structuring elements). This variability in parameter choices may lead to differences in 

approaches across similar studies. Another deficiency of the typical post-processing procedure is 

that image processing does not respect the underlying physics of the microstructure. For 

example, in Fig. S1, we demonstrate an image processing routine performed on a square pixel 

array that creates and fills a gap between four grains but fails to penalize a quadruple point 

(unstable in 2D).  

To circumvent the above two issues, we introduce a new procedure for post-processing that 

utilizes a phase-field (PF) model for polycrystalline grain growth. Grains are represented by 

order parameters 𝜂* that indicate different crystallographic domains (𝜂* = 1 within the 𝑖-. grain 

and 𝜂* = 0 elsewhere, with a smooth hyperbolic tangent profile across the interface). The 

evolution is driven by the reduction of the system free energy, 

𝐹 = 0(𝑓3456 + 𝑓89:;*<=-) 𝑑𝑉,	
    (1) 

where 𝑓3456  and 𝑓89:;*<=-  are expressed in terms of the order parameters. The bulk free energy 

density is given by the form used in [41], 

𝑓3456 = 𝑊 CDE−12𝜂*H 	+ 14 𝜂*J		K
L
*MN + 32DDP𝜂*H𝜂QHRL

QSN
L
*MN + 14T, 

 (2) 

where 𝑊 is the bulk free energy density coefficient that affects the grain boundary thickness, 

which is a model parameter. The gradient energy term penalizes gradients in the order 

parameters according to  

𝑓89:;*<=- = 𝜅2D|𝛻𝜂*|HL
*MN ,	

    (3) 

where 𝜅 is the gradient energy coefficient. The values for 𝑊 and 𝜅 are related to the grain 

boundary width 𝑙83 according to 

𝑙83 = 2Y2𝜅𝑊 .	
    (4) 
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Each unique grain in the 2D reconstruction is assigned its own order parameter 𝜂*, which evolves 

according to the Allen-Cahn equation, 

𝜕𝜂*𝜕𝑡 = −𝑀 𝛿𝐹𝛿𝜂* ,	
    (5) 

where 𝑀 is the PF mobility, which will be further described below, and 𝐹 is given by Eq. 1. The 

resulting Eq. 5 was solved numerically using the finite difference method with a uniform spatial 

mesh and forward Euler time integration with time step size sufficiently small to yield numerical 

stability (∆𝑡∗ = 0.01). The grid spacing was chosen to be equal to the pixel width in the 

experiment, 𝛥𝑥 = 3	𝜇𝑚. When scaling by the average grain radius 𝑟f, the dimensionless grid 

spacing is 𝛥𝑥∗ = 0.075, where the superscript ∗ indicates a dimensionless quantity. Since Eq. 5 

involves second-order spatial derivatives of the order parameters, it is necessary to adequately 

resolve the diffuse interfaces to reduce numerical errors of the solution [42, 43]. We chose to use 

four grid spacings for the grain boundary width, i.e., 𝑙83 = 4𝛥𝑥 = 12	𝜇𝑚. All parameters used 

in the PF computations are summarized in Table 1. After evolving according to Eq. 5, each pixel 

(voxel in 3D) was then labeled according to the order parameter with the highest value at that 

location, and subsequently segmented into specific grain indices to yield the post-processed grain 

map. The number of the time iterations was determined such that it was sufficient to modify the 

order parameters in regions with low completeness values. This was accomplished in a separate 

calculation for which pixels that were below a desired completeness threshold (0.5 in this case) 

were not assigned to any order parameter; then, Eq. 5 was evolved until the unassigned pixels 

were filled by neighboring grains (which occurred at approximately 𝑡i∗ = 4.5). Note that since 

we are not simulating the physical evolution of the system, time has no physical meaning and 

therefore no physical units. 

Table 1: Dimensional and dimensionless PF parameters. 

Parameters Dimensionless parameters (indicated by *) 

𝑊 𝑊∗ = 1 

𝜅 𝜅∗ = 𝜅𝑊𝑟fH = 18k𝑙83𝑟f l
H = 0.01125 

𝑀 𝑀∗ = 𝑀𝑀m:n = 𝑀 
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The full proposed workflow is shown in Fig. 1. A representative 2D slice of the reconstruction is 

used to show the orientation and completeness outputs of the HEXOMAP reconstruction 

algorithm. Instead of creating artificial gaps in the microstructure where the completeness is low, 

as is the conventional approach [38, 44] we retain all data from the HEXOMAP output and 

construct the mobility parameter 𝑀 in the PF evolution equation (Eq. 5) as a function of the 

completeness 𝐶. Specifically, we define 𝑀 as  

𝑀 = o 𝑀m*= 𝐶 > 𝑏(𝑀m:n −𝑀m*=)𝑝(𝜙) + 𝑀m*= 𝑎 ≤ 𝐶 ≤ 𝑏𝑀m:n 𝐶 < 𝑎 ,	
  (6) 

where 

𝑝(𝜙) = 𝜙w(6𝜙H − 15𝜙 + 10),	
 (7) 

𝜙 = 𝑏 − 𝐶𝑏 − 𝑎 .	
 (8) 

Here, 𝑝(𝜙) interpolates between 𝑀m*= and 𝑀m:n in the range 𝑎 ≤ 𝐶 ≤ 𝑏	. The form of 𝑝(𝜙) is 

typically used in PF models of solidification [45] and ensures 𝑀	is a smooth function. Eq. (6) is 

plotted in Fig. 2(a). Arrows in Figs. 1(b,c) correspond to line profiles in Fig. 2(b), which show 

Fig. 1. Data processing workflow starting with HEXOMAP reconstruction outputs of (a) pixel 

orientations and (b) completeness, from which we calculate the (c) completeness-derived 

mobility. Finally, (d) gives the output grain map from PF processing, taking segmented grains 

and (c) as inputs. The insets in (a) and (d) show a magnified view of the same region before and 

after PF post-processing, within which the black lines represent the GBs. 
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the inverse relationship between completeness and mobility. The bounds of the mobility in 

Eq. (6) are taken from the experimental observations of high and low completeness values. 

Above the upper completeness limit of 𝑏 = 0.8 (typical of the bulk), the mobility is highly 

restricted but nonzero; this has the added advantage that all GBs are mobile enough to achieve a 

small degree of smoothing. The value for 𝑀m*=	(0.12) was set to the ratio of the length scale of 

the desired smoothing for all grain boundaries (3 pixels) to the length scale of the largest 

low-completeness region (25 pixels, in 2D). Below the lower completeness limit of 𝑎 = 0.5 

(typical of low-completeness grains and TJ points in 2D), the mobility takes on a maximum 

value, 𝑀m:n = 	1. The mobility here is unitless because time is not a physical quantity since we 

are not simulating actual evolution. This helps to ‘repair’ any higher-order connectivity points by 

providing sufficient mobility to split them into multiple triple points (see, e.g., the insets of 

Figs. 1(a,d), which show the evolution of a quadruple point to two triple points separated by a 

GB). Ultimately, this protocol is intended to preserve the highest-confidence regions of the 

reconstruction while allowing evolution of the low confidence regions that are most prone to 

error. While PF models with a constant mobility 𝑀 have been used previously to reduce the 

roughness of the GBs [46], the novelty in our approach is that 𝑀 varies based on the 

completeness of the reconstruction. The Supplementary Information provides further discussion 

on the two cases.  

We quantified the extent of boundary smoothing in 2D by computing both the circularity of the 

interior grains and the tortuosity of the individual GBs, before and after PF post-processing. 

Circularity, 𝑐, is defined as 𝑐 = 4𝜋𝐴 𝑃H⁄ , where 𝐴 is the area of a grain and 𝑃 is the perimeter. 

This metric has a maximum value of 1 for a circle and approaches 0 for highly irregular or 

elongated shapes. Grains intersecting the sample surface had an immobile section of their 

perimeter during PF processing and were not included in this analysis. As a benchmark for 

Fig. 2. (a) Plot of relationship between mobility and completeness. (b) Line profiles of 

completeness, C, and the corresponding mobility, M, versus position, see Figs. 1(b) and (c), 

respectively. This plot was generated using a centered moving mean that considers five pixels. 
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comparison, we note that DeCost and Holm [47] found in 2D Monte Carlo Potts simulations that 

the average circularity of equiaxed grains in a normal grain growth regime is 𝑐̄ = 0.877. Figs. 

3(a,b) show the distributions in grain circularities. We obtained 𝑐̄ = 0.63 before post-processing 

and 𝑐̄ = 0.81 after, which is closer to the benchmark value for equiaxed grains. An increase in 

mean circularity indicates that the grains either became more equiaxed or the GBs became 

smoother. Since the PF processing runs for a relatively small number of iterations, there should 

not be major changes in the grain shape (e.g. compression), and therefore the change in the 

circularity can be attributed mainly to the smoothing of the GBs.  

The smoothness of the GBs can be separated from the overall shape of the grain by examining 

the GB tortuosity, 𝜏, which is calculated by identifying the GBs via image processing and 

computing 𝜏 = 𝑙 𝑙f⁄ . Here, 𝑙 is the shortest connected path length (found through the Dijkstra 

algorithm [48]) between the endpoints of a GB (corresponding to the triple points, in 2D) and 𝑙f 

is the Euclidean distance between those same endpoints. In general, tortuosity is large when the 

Fig. 1. Evaluation of grain maps, before (left) and after (right) 2D PF processing, according to 

(a,b) circularity of interior grains and (c,d) tortuosity of grain boundaries. Solid black vertical 

lines indicate the mean of each distribution. Dashed red vertical lines in (a,b) show mean 

circularity of normal grains from Ref. [47]. The circularity distribution shifts from  0.63 ± 0.2 to 0.81 ± 0.07, and tortuosity shifts from 1.23 ± 0.3 to 1.08 ± 0.05. 
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path is winding, smaller for straighter paths, and attains a minimum value of 1 for a perfectly 

straight path. Unless a GB is faceted [49], it must have 𝜏 > 1 owing to its curvature. The 

calculation of tortuosity is described further in the Supplementary Information. Paths across the 

entire sample diameter (along multiple, contiguous GBs) were not considered because they 

would have captured topological information belonging to the arrangement of the grains; here, 

we sought only to quantify the GB smoothing by the PF post-processing protocol. Figs. 3(c,d) 

shows that the GB tortuosity decreased from 1.23 to 1.08 after PF post-processing. This decrease 

indicates that the shortest connected path length 𝑙 was reduced due to smoothing, as also 

evidenced in the insets of Figs. 1(a,d). 

Data processing in 3D is the ultimate goal, as the microstructure captured in any given 

cross-section is no doubt influenced by its neighboring sections. With this in mind, our protocol 

can be extended to 3D without loss of generality. We perform PF processing in 3D with the 

concatenated and supersampled stack of 2D data taken as input (see the Supplementary 

Information for discussion on the assignment of order parameters). The stopping time in 3D was 

determined using a separate simulation (analogous to the approach in 2D, described above). The 

minimum mobility was also determined in analogous fashion; a low-completeness region 

spanning 40 voxels in 3D yielded the ratio 3:40; thus, 𝑀m*= = 0.075. Figs. 4(a,b) show the 

smoothing of GBs in 3D. For the same 2D slice of the tomographic reconstruction as in 

Fig. 1(d), Fig. 4(c) shows that 4 additional grains have apparently ‘survived’ in the 3D PF result, 

relative to the 2D result. More specifically, after PF processing in 2D, the number of grains 

decreased from 71 to 60 (15%); the grains that vanish contributed less than 3% of the cross-

sectional area. In 3D, grains can not only disappear from but also appear into the plane-of-

interest. That is, more degrees of freedom are accessible to the system in higher dimensions [50], 

hence why 5% more grains (64 in total) remained after PF processing; less than 4% of the voxels 

(a) (b) (c)

250 μm250 μm

Isosurface(𝜂𝑖 = 0.5)

Voxelized

Fig. 4. Proof-of-concept of our approach in 3D. Direct reconstruction (a) before and (b) after PF 

post-processing, showing only the interior grains of the microstructure in a voxelized 

representation. Insets show a zoomed-in and isolated view of the grain indicated in (a), and the 

‘isosurface’ inset displays the order parameter representation. (c) 3D results shown for the same 

slice as in Fig. 1, with GBs from 2D and 3D results shown in red and blue, respectively. Boxed 

regions are magnified for clarity. 
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were reindexed in due course. Likewise, in the entire 3D volume, less than 4% of voxels were 

reassigned, and the number of grains decreased from 1161 to 997 (14%). 

We performed a quantitative analysis of these 3D results. The 3D analog of circularity is 

sphericity, 𝑆, defined (for the interior grains) as 𝑆 = 4𝜋𝑟<�H 𝜌H⁄ , where 𝑟<� is the equivalent 

radius of a grain and 𝜌 is the surface area. This metric has a maximum value of 1 for a sphere 

and approaches 0 for highly irregular or elongated shapes. Fig. S3 shows distributions of 

sphericity for the unprocessed data, DREAM.3D-processed data, and the PF processed data (see 

the Supplementary Information for discussion on the conventional post-processing routine). The 

mean sphericities are 0.71, 0.72, and 0.86, respectively. For reference, the sphericity of a Kelvin 

cell is 0.91 [51]. A higher value for the PF processed data than that of the DREAM.3D-processed 

state implies that the former is more effective at reducing GB surface area via smoothing. 

Furthermore, we compared our results to that of a 3D front-tracking simulation of grain growth 

[50]. This work reports an isoperimetric value, 𝐼, defined as 𝐼 = 36𝜋𝑉H 𝜌w⁄ , where 𝑉 is the 

volume of a grain. Whereas sphericity compares the surfaces areas of a grain and a sphere of 

equivalent volumes, the isoperimetric value compares the volumes of a grain and a sphere of 

equivalent surface area. Our unprocessed data, DREAM.3D-processed data, and PF-processed 

data yielded values of 0.38, 0.40, and 0.69, respectively. In comparison, Ref. [50] find 𝐼 =0.76803 when steady-state is achieved. While such values for circularity and tortuosity are 

useful as benchmarks, we do not recommend using them as criteria for determining the stopping 

point in the PF-based approach. The PF processing routine should be generalized enough to be 

applicable to microstructures with non-equiaxed grains. 

In summary, our PF-model-based post-processing protocol offers an alternative to conventional 

image processing solutions, which may produce or retain non-physical grain configurations. We 

have demonstrated the utility of our proposed technique by highlighting the splitting of unstable 

quadruple points (in 2D) into multiple triple points and by quantifying the mesoscale GB 

roughness using interior grain circularity and GB tortuosity in 2D, and sphericity and the 

isoperimetric value in 3D. Our study used nf-HEDM data reconstructed by the HEXOMAP 

algorithm, but this approach can, in principle, be applied to any diffraction-based imaging 

technique that provides a spatial map of the crystallographic orientations and their associated 

confidence indices, e.g., EBSD [52] or DCT [12-15] . It can also be extended to polyphase 

microstructures (such as the dual-phase Cu-Al-Mn shape memory alloy [17, 18, 30, 31]) with 

artificially rough interfaces; in that case, the interphase boundaries take the place of the GBs 

here. Finally, the mobility function can be extended to account also for crystallographic effects, 

such as the grain boundary character, in addition to confidence indices. Broadly, these 

enhancements will aid efforts in understanding and mapping processing-structure relationships 

through improved reconstructions of polycrystalline microstructures. 
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Supplementary Information 

Order parameter assignment for 3D phase-field code 

For 2D evolution, each cross-section of the experimental sample contains roughly 100 grains, so 

it is feasible to assign each grain its own order parameter. However, for the 3D microstructure 

(which contains over 1000 grains), this was no longer possible due to the large memory 

requirement. To make the 3D PF processing computationally tractable, each order parameter 

tracked multiple grains.  

In order to prevent grain coalescence during evolution between two grains sharing the same 

order parameter, grains were assigned to order parameters ensuring that they were sufficiently 

spaced using an exclusion zone. This was accomplished by the following algorithm in 

MATLAB: 

1. For each unique grain index 𝑖 in the 3D grain orientation map, generate a binary field 𝑛  

where 𝑛 = 1 at voxels equal to 𝑖 and 𝑛 = 0 elsewhere; 

2. For each binary field, generate a distance field 𝑑  from the grain surface using the built-in 

MATLAB bwdist() function; 

3. Set the voxels of the binary fields 𝑛  to 1 if the value of their corresponding distance field 

𝑑  is less than or equal the exclusion distance 𝑑 ; 

4. Loop over every pair of binary fields 𝑛  and 𝑛  to check if they overlap, i.e., 𝑛 (𝑟) =

𝑛 (𝑟) = 1, and construct an 𝑁 × 𝑁 adjacency matrix; 

5. Input the adjacency matrix into a greedy coloring algorithm to obtain 𝑘 sets of indices 𝑚 

corresponding to grains that are sufficiently spaced; 

The 𝑘 sets of grain indices are used to generate 𝑘 order parameters 𝜂  which are initialized to 1 at 

the locations of grain indices within the set. 
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Conventional processing routine 

We first demonstrate the conventional post-processing routine in an illustration, and then we 

apply it to the actual HEDM data. In general, the conventional routine involves applying size and 

completeness thresholds to mask out grains or voxels that are deemed untrustworthy [38]. These 

artificial voids are filled in (or inpainted) with image dilation in software such as DREAM.3D 

[24, 40]. Image dilation may result in the formation of unstable higher-connectivity 

configurations, such as a QN in 2D, demonstrated in Fig. S1. Our PF method uses a more 

informed approach – one that adheres to the physics of capillary-driven microstructure evolution, 

thus avoiding thermodynamically unstable configurations.  

 

 

In Fig. S2 below, we present in (a-d) a conventional 3D workflow and (e) the result of our 3D 

phase-field processing, for comparison. A cross-section of the 3D reconstruction in (a) is 

depicted in (b-e). We apply size and completeness thresholds to unassign voxels to grains. Some 

of those voxels (but not all) adorn the grain boundaries and triple junctions since they possess 

low completeness (in practice, one could unassign all grain boundary voxels by examining their 

local neighborhoods). The size threshold is 19 voxels (where each voxel measures 

3 × 3 × 3	𝜇𝑚 ), corresponding to a volume of 8 voxels in the native HEDM resolution (where 

each voxel is 3 × 7 × 3	𝜇𝑚 ). The completeness threshold is 0.5. Voxels are unindexed based on 

these thresholds, and then the surrounding grains are dilated into the unindexed regions. The 

result of this conventional processing routine contains grain boundaries with a residual 

roughness, as will be quantified below. 

Fig. S1. Schematic of an image post-processing routine. (a) Reconstruction of 5 grains (colored). 

(b) Middle yellow grain is removed due to either size or completeness filtering and leaves a false 

void (white). (c) Image dilation fills the false void but creates an unstable 2D quadruple node. 
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In Fig. S3, we present a quantitative comparison of the degree of grain boundary smoothing 

achieved through the conventional image processing and proposed PF processing routines. The 

sphericity of interior grains was calculated for the size-thresholded data, the phase-field-

processed data, and the DREAM.3D-processed data. The size-thresholded data is used to avoid 

including many negligibly small, equiaxed grains that artificially raise the sphericity to 1. The 

distributions of sphericity for each dataset are shown in Fig. S3. The means of each distribution 

can be compared to the sphericity of a low-surface-area tetrakaidecahedron, the Kelvin cell [51]. 

Fig. S2. (a-d) Demonstration of conventional processing pipeline. (a) 3D view of the 

HEXOMAP reconstruction. (b-e) 2D slices corresponding to the gray plane cut through the 

volume in (a). Application of (b) a size threshold of 8 voxels in the native HEDM resolution, 

followed by (c) a completeness threshold of 0.5, and finally (d) dilation using ‘Fill Bad Data’ in 

DREAM.3D [40]. (e) After 3D PF processing. 

Fig. S3. Evaluation of grain maps (a) before, (b) after phase-field processing, and (c) after 

dilation using DREAM.3D, following the same routine indicated in Fig. S2. Solid black vertical 

lines indicate the means of each distribution. Dashed red vertical lines give the sphericity of a 

Kelvin cell, 0.91, from Ref. [51]. The distribution shifts from 0.71	 ± 0.08 to 0.86	 ± 0.04 for 

the phase-field processing. The DREAM.3D processing yields a distribution with 0.72	 ± 0.08. 
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Supersampling from native HEDM resolution to isotropic voxels 

Due to the 3-µm reconstructed pixel size (in the 𝑥-𝑧 plane) and the 7-µm layer spacing (along 𝑦), 

the HEDM data is naturally anisotropic. We elected to perform a supersampling procedure in the 

𝑦	direction to arrive at isotropic pixels; see Fig. S4 for a schematic illustration.  

This operation was performed before the grain segmentation step, meaning the operating array 

contained voxel-wise orientation information. Although it is tempting to interpolate orientations 

for the newly created slices, we recommend against it because it may join grains that otherwise 

do not satisfy the voxel-to-voxel misorientation criterion of 0.7° used in the grain segmentation 

procedure. For example, two grains with a misorientation of 1.2° between 2 layers of HEDM 

data would be combined, because interpolation would provide a path of voxels that connects 

them via two 0.6° misorientations over the same distance. The non-integer ratio of 7:3, combined 

with the decision not to interpolate, means that one in every three layers is overrepresented, and 

the other two layers are underrepresented. To avoid this, in future work, it is recommended to set 

the desired pixel size as a divisor of the inter-layer spacing, e.g., 3.5 µm. 

 

Fig. S4. Demonstration of the supersampling procedure. Reconstructed HEDM data are 

inherently anisotropic (left), which we correct for via supersampling (right). Orientations 

(colored) are not interpolated because doing so would disrupt the downstream grain 

segmentation (possibly joining grains with a small misorientation). The non-integer ratio of 7:3 

results in an overrepresentation of the orientation o2. 
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Specification of image processing required for calculation of tortuosity 

The quantification of the grain boundary tortuosity, 𝜏, begins with the pixelated representation of 

our data (in 2D), such that it is possible to make a comparison to the original HEXOMAP 

reconstruction. First, we must identify the pixels belonging to the grain boundary. The pixels are 

taken to be any pixels on the perimeter of grain i that lie adjacent to any pixel on the perimeter of 

grain j. The tortuosity is then computed by finding the shortest connected path along grain 

boundary pixels. For any pair of pixels, there is a Dijkstra shortest path [48] between them. The 

longest path among that set of “shortest paths” (𝑙) is associated with the two endpoints that 

define the beginning and end of the grain boundary. These endpoints are saved and the Euclidean 

distance between them (𝑙 ) is also determined. Finally, the tortuosity 𝜏 is computed as 𝜏 = 𝑙/𝑙 . 

Fig. S5 gives a proof-of-concept of this procedure for the unprocessed and PF-processed data.  

 

 

 

Fig. S5. Demonstration of image processing for the calculation of tortuosity 𝜏. In 2D, a grain 

boundary between grains 𝑖 and 𝑗 is defined by those pixels on the perimeter of 𝑖 (𝑗) that have a 

nearest-neighbor pixel in 𝑗 (𝑖). Tortuosity is then computed on the graph of the identified grain 

boundary pixels. This approach is shown for (a) the unprocessed and (b) PF-processed data. The 

tortuosity of the same grain boundary reduces by over 10%, consistent with Figs. 3(c-d).  
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Comparison between constant and completeness-based mobility 

We compare PF processing with constant mobility (𝑀 = 1) and completeness-based mobility at 

𝑡'
∗
= 4.5 in Fig. S6. Regions of significant difference are shown inset. It is clear that in the case 

of constant mobility, small grains undergo significantly more evolution, either rapidly shrinking 

or disappearing as a result of capillarity-driven evolution. In the case of completeness-based 

mobility, small grains with high-completeness are more resistant to shrinkage, despite their size. 

The difference in the two cases would become even more pronounced if PF processing runs for 

longer times 𝑡'
∗.  

 

 

Fig. S6. Overlay of PF processed reconstruction with constant mobility (red contours) and 

completeness-based mobility (black contours). Insets show zoomed-in regions that illustrate 

differences in the two cases, for clarity.   

 


