Check for
Updates

Arkade: k-Nearest Neighbor Search With Non-Euclidean
Distances using GPU Ray Tracing

Durga Mandarapu
Purdue University
West Lafayette, IN, USA
dmandara@purdue.edu

Artem Pelenitsyn
Purdue University
West Lafayette, IN, USA
apelenit@purdue.edu

ABSTRACT

High-performance implementations of k-Nearest Neighbor Search
(kNN) in low dimensions use tree-based data structures. Tree al-
gorithms are hard to parallelize on GPUs due to their irregularity.
However, newer Nvidia GPUs offer hardware support for tree opera-
tions through ray-tracing cores. Recent works have proposed using
RT cores to implement kNN search, but they all have a hardware-
imposed constraint on the distance metric used in the search—the
Euclidean distance. We propose and implement two reductions to
support kNN for a broad range of distances other than the Euclidean
distance: Arkade Filter-Refine and Arkade Monotone Transforma-
tion, each of which allows non-Euclidean distance-based nearest
neighbor queries to be performed in terms of the Euclidean distance.
With our reductions, we observe that kNN search time speedups
range between 1.6x-200x and 1.3x-33.1x over various state-of-the-
art GPU shader core and RT core baselines, respectively. In evalu-
ation, we provide several insights on RT architectures’ ability to
efficiently build and traverse the tree by analyzing the kNN search
time trends.

CCS CONCEPTS

« Computing methodologies — Ray tracing; Graphics processors;
« Information systems — Nearest-neighbor search; « Theory
of computation — Nearest neighbor algorithms.

KEYWORDS

GPU Ray Tracing, k-Nearest Neighbor Search, Non-Euclidean Dis-
tances

ACM Reference Format:

Durga Mandarapu, Vani Nagarajan, Artem Pelenitsyn, and Milind Kulkarni.
2024. Arkade: k-Nearest Neighbor Search With Non-Euclidean Distances
using GPU Ray Tracing. In Proceedings of the 38th ACM International Con-
ference on Supercomputing (ICS °24), June 04-07, 2024, Kyoto, Japan. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3650200.3656601

This work is licensed under a Creative Commons Attribution-NonCommercial
International 4.0 License.

ICS °24, June 04-07, 2024, Kyoto, Japan

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0610-3/24/06
https://doi.org/10.1145/3650200.3656601

Vani Nagarajan
Purdue University
West Lafayette, IN, USA
nagaral6@purdue.edu

Milind Kulkarni
Purdue University
West Lafayette, IN, USA
milind@purdue.edu

1 INTRODUCTION

k-Nearest Neighbor Search (kNN) is the problem of finding points
similar to a query point based on a desired distance function. Sev-
eral commonly used distance functions include Euclidean distance
(L? norm), Manhattan distance (L' norm), Chebyshev distance (L*
norm), Minkowski distance (L? norm), and Cosine (or Angular)
distance. kNN is used in diverse applications, including point cloud
registration [42], facial recognition [26, 30], recommendation sys-
tems [1], and more.

Due to the computational intensity and the wide applicability
of kNN, many optimization techniques have been proposed in this
space: tree-based approaches, such as kd-tree or ball tree [14, 31,
51]; graphs, such as proximity graphs or kNN graphs [11, 28, 53];
hashing, such as locality sensitive hashing [21, 22, 41]; quantization,
such as product quantization codes [3, 17, 25].

Tree-based approaches to kNN work better and provide logarith-
mic guarantees in lower dimensions [5, 10]. Low-dimensional data
(two to three dimensions) is predominant in several applications,
such as spatial query processing [39] and astronomical data [43],
where tree-based approaches have gained popularity. However, tree-
based approaches can not be efficiently accelerated using GPUs,
unlike the non-tree indexing methods. Tree-based implementations
on GPU run kNN queries in parallel by mapping each query to a
GPU thread that traverses the tree. These traversals are highly ir-
regular: different traversals touch different parts of the tree, leading
to control divergence, and the tree itself can be scattered around
memory, leading to memory divergence [15]. Nevertheless, several
recently proposed algorithmic approaches improve GPU efficiency
for tree traversals, leading to fast nearest neighbor searches on
low-dimensional data [15, 19, 34, 51].

Modern GPUs do not just contain the shader cores used by prior
approaches, but also ray-tracing (RT) cores. RT cores are built to
accelerate ray tracing [2, 23, 37]: identifying which objects in a
scene are intersected by rays cast from a source such as the viewer’s
eye. Ray-tracing is an inherently irregular problem, and these ray
tracing cores perform hardware accelerated tree traversals: they build
a spatial tree called a bounding volume hierarchy over the objects
in a scene, then each ray traverses that tree to find the objects it
intersects. While ray tracing is a highly specific algorithm, and it
may seem that RT cores cannot be used to solve other problems,
prior work has shown that by carefully constructing the objects in a

ICS 24, June 04-07, 2024, Kyoto, Japan

scene and properly defining the rays, it is possible to find solutions
to non-ray tracing problems by reducing them to ray tracing [9,
33, 48, 54]. In particular, several prior papers have shown how to
reduce kNN to ray tracing [9, 33, 52, 54] (see Subsection 7.1,2.4).

Unfortunately, the existing kNN approaches on RT cores are all
based around a single reduction that inherently uses the Euclidean
distance (L% norm) as the desired distance function. This limitation
is unsurprising, as the RT cores arrange objects in a scene according
to the Euclidean distance. However, one cannot merely use L? near-
est neighbor as a proxy for other distance functions. For example,
an object being at a particular Euclidean distance from the point of
interest says nothing about a non-L? distance function such as the
Angular distance between them (Figure 1). In practical applications
like street maps and astronomical settings where Euclidean distance
falls short in conveying essential information, non-L? distances are
needed (see Section 2.1 for more detail). However, prior work on
RT cores cannot address these non-L? distance requirements.

A

Figure 1: Euclidean and Angular distances: a and b are data
points, g is a query point, and O is the point of reference.

L*(q.a) <L*(q.b) = f<a

To support non-Euclidean kNN queries, we make a key obser-
vation that the prior kNN reductions to RT cores do not solve the
nearest neighbor problem directly [9, 33, 54]. Instead, the reduc-
tions accelerate an r-bounded distance query: find all points within
a distance r of a query point g, according to their Euclidean dis-
tance. Similarly, instead of solving kNN problem for other distance
functions on RT cores directly, in this paper, we show how to re-
duce kNN searches in other distances to the r-bounded Euclidean
distance search and implement the reductions for RT cores.

Contributions

This paper introduces Arkade, a suite of two general reductions:
Filter-Refine (RT) and Monotone Transformation (MT), each allow-
ing non-Euclidean distance-based nearest neighbor queries to be
performed on RT cores. In particular, we contribute the following.

(1) Arkade FR reduction performs a generic distance-based kNN
search using RT cores by decoupling the kNN search into Filter
and Refine phases and adapting a tree-based kNN algorithm
for distances besides the Euclidean distance (Section 3). The re-
duction utilizes geometric properties common in some popular
distance functions, such as L? distances.

Arkade MT reduction enables RT-based acceleration of kNN
search for distance functions that do not hold the geometric

properties favored by Arkade FR reduction (Section 4). The
reduction transforms the input such that the original order of

()

15

Mandarapu, et al.

distances between the data points is preserved. Important exam-

ples of such distances are cosine distance or angular distance.
(3) Evaluation of Arkade (FR and MT) implemented as stand-alone

applications using RT cores of the NVIDIA GeForce RTX 4060

Ti GPU (Section 6). Our reductions show speedups of 1.6x-200x

and 1.3x-33.1x over various state-of-the-art GPU shader core

and RT core baselines, respectively.

Arkade (aRKaDe) derives its name from the three parameters

this paper considers — radius (r), number of neighbors (k), and
distance function (D).

2 BACKGROUND

2.1 k-Nearest Neighbour Search

We define the kNN search problem in Definition 1 since there
are several variants of kNN. Importantly, the particular distance
function D is a parameter.

Definition 1 (k-Nearest Neighbor Search). Given a query point
q€ Rd, a set of data points, A C Rd, avalue k € N, and a distance
function D : RY x RY — R, the generalized k-nearest neighbor
problem finds a result set of points, T C A, that contains the closest k
points to q according to D.

The naive way of performing kNN is computing the distance
between ¢ and all of the points in A and ordering them by D, an
O(nlogk) process! (JA| = n). Tree-based approaches [14, 31, 51]
can avoid comparing q to every point in A by efficiently indexing
the points in A using a tree and pruning the search space, resulting
in an O(log nlog k) algorithm. However, the trees built by RT cores
use L%-based pruning [9, 33, 48, 54], and hence this approach only
works if the distance function D is the L? distance.

Other distance functions. The key focus of this paper is using RT
cores, which are inherently tied to L? distances, to solve non-L?
distance problems. This subsection summarizes some of these non-
L2 distance functions.

In 2-dimensional space, we recall the set of functions that give
the distance between point a and b based in L? spaces [6] as follows,
where ay, ay are X,y coordinates of point a, and |.| represents the
absolute value:

1
LP(a,b) = (Jay — by|P + lay - bylp)E,p eR>1
L®(a,b) = max(|ax — bxl, |ay - by|)

While L? norms use Cartesian coordinates, distances such as
angular distance, cosine distance, inner product, or dot product use
spherical coordinates [46]. Angular distance is the shorter angle
between two vectors, while cosine distance or cosine similarity is
the cosine function applied to this angle. The inner product or dot
product is the same for vectors, and these are, in turn, the same as
cosine distance when the vectors are of unit length. Because cosine
distance measures how similar two vectors are, it is highly useful
in recommendation systems.

This paper confines its scope to 2- and 3-dimensional spaces
because RT cores operate solely within these dimensions. The util-
ity of non-Euclidean distances in these lower dimensions remains
evident in several domains, such as geospatial applications and

The log k term comes from efficiently maintaining distances of the top k neighbors

Arkade: k-Nearest Neighbor Search With Non-Euclidean Distances using GPU Ray Tracing

astronomy. For instance, consider street maps, where the determi-
nation of nearest points of interest hinges on the ordering of their
Manhattan distance from the query point location since the data
points in a city usually adhere to taxicab geometry. Similarly, visu-
ally nearby stars are identified with cosine distance in 3 dimensions
instead of Euclidean distance: the three stars in Orion’s belt are not
L%-close together—they are approximately 2000, 1200, and 700 light
years away from Earth—despite being visually adjacent.

2.2 Ray Tracing Architecture

Ray tracing is a graphics rendering algorithm where rays are mod-
eled from a starting point as a source and followed (traced) till they
hit the objects in a scene. The fundamental operation in ray tracing
is computing ray-object intersections: for a given ray, what object(s)
does the ray intersect? This problem shares some features with
nearest-neighbor search: the naive algorithm compares a ray to
each object in a scene but can be accelerated using a spatial tree to
prune the space. In the case of ray tracing, this spatial tree is called
a bounding volume hierarchy (BVH) [45], and the RT architecture
on modern GPUs provides acceleration for building and traversing
this spatial tree.

The RT architecture employs both RT cores and shader cores
(also called streaming multiprocessors) to accelerate various stages
of the ray-tracing pipeline. Optimized drivers build a BVH bottom-
up by enclosing each object in an axis-aligned bounding box (AABB)
and grouping AABBs such that several AABBs can be enclosed
in a larger AABB. Eventually, the overall scene is enclosed in a
single AABB. RT cores recursively traverse the BVH tree to com-
pute ray-object intersections. In particular, if a ray intersects an
AABB, then the enclosed bounding boxes will be tested next. The
process continues until it reaches leaf AABBs. At that point, the
shader cores execute user-defined code to determine whether the
ray intersects the object contained in the AABB. If an intersection
is found, another user-specified code is called.

2.3 Programming and Execution Model

Optix [35] is a programming interface that provides access to the
entire RT architecture. This interface allows the user to write tra-
ditional shader programs that are executed on the shader cores
and leverage the RT hardware for BVH construction, traversal,
and, if applicable, intersection testing. Optix allows the user to
specify user-defined geometries, which we use to represent neigh-
borhoods in non-L? distances. Important Optix kernels that we
use are RayGen and Intersection. RayGen kernel creates rays with
user-specified parameters such as the origin, direction, and length
of the ray. It then calls for BVH traversal and intersection testing.
For user-defined geometries, the user is required to provide a cus-
tom intersection test for ray-object intersections in the form of an
Intersection kernel.

Geometric Objects. For a distance function D, all the points that are
at a D-distance of r could be described by a geometric object. For
example, if the distance function is L' norm, then the geometric
object is a square rhombus in 2D space and a square bi-pyramid in
3D space. Similarly, if the distance is L? norm, then the geometric
object is a circle in 2D space and a sphere in 3D space. A geometric
object simply refers to a geometry whose periphery contains points

16

ICS ’24, June 04-07, 2024, Kyoto, Japan

that are equidistant from the center of the geometry. The geometric
objects are then placed inside AABBs. With the Optix interface,
it is up to the user to define the distance function of geometric
objects, so these geometric objects are also called user-defined or
custom-defined geometries.

Limitations. There are several limitations when re-purposing RT
architecture to perform a non-RT task. First, we are limited to using
data with three dimensions. Second, the BVH built by the RT archi-
tecture is not accessible nor programmable in any kind by a user.
There is no available information on how the BVH is constructed or
traversed. Third, during the traversal, the Optix interface notifies
the user only when a successful ray-AABB intersection occurs. We
do not know the actual number of AABBs that are tested during the
traversal or the actual traversal path. Fourth, even after successful
mapping, it is hard to assess the resource utilization of our mapping
and identify opportunities to optimize the hardware usage due to
inadequate support from the profilers.

2.4 RT-kNN: kNN on RT architecture

Accelerating a non-RT problem with RT cores requires defining
several components that we call a reduction. A reduction defines a
scene with objects and rays such that the hardware-accelerated ray-
AABB intersection detection encodes a partial or complete solution
to the initial non-RT problem. The reduction should define how to
decode that solution.

In particular, the reduction of kNN to RT only aims to accelerate
a part of the problem, which is the r-bounded distance query. We
refer to this reduction as ‘RT-kNN’ for the rest of the paper. Figure 2
shows how the RT-kNN reduction (on the right) solves a flipped-
around version of the conventional kNN algorithm (on the left). It
tries to find if the query point is at a distance less than or equal
to r to a data point rather than finding the data points that are
within a distance of less than or equal to r to a query point. To
find the neighbors of query points, RT-kNN reduction models the
data points as spheres, the query points as rays, and the neighbor
identification as an intersection of the corresponding ray with the
spheres, as explained in more detail below [52].

Figure 2: RT-kNN reduction (right) finds all query points
within radius r to data point unlike the conventional kNN
algorithm (left) that finds all data points within radius r to
the query point. Blue circles and red rhombus represent data
and query points, respectively.

Given a set of data points A and a set of query points Q, the
RT-kNN reduction builds spheres of radius r centered around all
data points in A, as shown in the right part of Figure 2. To find

ICS 24, June 04-07, 2024, Kyoto, Japan

the neighbors, the reduction launches point rays from every query
point. A point ray is a ray whose length is a very small positive
number. If a point ray cast from the point ¢ € Q as the source
intersects with the sphere of radius r and center a € A, then it
means that the point g is present inside the sphere and so the
Euclidean distance between points a and g is at most r.

3 FILTER-REFINE

In this section, we show how to map k-nearest neighbor search for
distance functions beside L2 norm to a ray tracing problem. For
this purpose, we use a general framework called Filter-Refine. In
particular, we formulate Arkade Filter-Refine reduction (Subsec. 3.1)
and prove its correctness (Subsec. 3.2).

Filter-Refine is a two-step selection framework for search prob-
lems [50]. First, we filter a subset of the possible candidates from
the data points and then refine this subset to produce a result that
answers the original search query, exactly or approximately. Draw-
ing on the principles of this framework, we devise a reduction that
breaks down kNN search for a generic distance function into Filter
and Refine phases and maps these phases to operations performed
by the RT architecture.

3.1 Arkade Filter-Refine Reduction

Assume an arbitrary distance function D. To find the nearest k
points within the D-distance of r to a query point g, the Arkade
Filter-Refine (FR) reduction employs the following Filter and Refine
phases.

(1) Filter Phasefinds all the candidate data points that are within the
D-distance of r, by mapping the data points and query points
to a ray tracing scene.

(2) Refine Phase, once the candidates are filtered, sorts them ac-
cording to their D-distance to the query point ¢ and finds the k
nearest neighbors.

The first step of the reduction involves solving the r-bound
query problem, which is where the RT architecture comes in. The
hardware accelerates the search process of candidates since we
encode them as a part of the ray tracing problem. In particular, to
find all the data points within a D distance of r from the query
points, the reduction builds specific distance function geometric
objects centered at data points and launch point rays originating
from query points. The ray traverses the BVH to find the candidates
that will be passed to the Refine phase.

In Figure 3, part (a) on the left shows data points and query
points colored in blue and red, respectively. When an RT core finds
an intersection, the intersection is with the AABB that contains
the geometric object, rather than the geometric object itself. To
ensure that there are no false positive candidates, the ray-AABB
intersections are further filtered to remove the data points where
the query point lies inside the AABB but outside the geometric
object. Part (b) of Figure 3 shows how the Filter phase first uses RT
cores to get the AABBs that a point ray intersects and then uses the
shader cores to perform the intersection with the geometric object
present inside these intersected AABBs. AABBs and geometric
objects are represented by squares and circles, respectively. The
green AABBs or circles are the ones selected, while the blue ones
are not.

17

Mandarapu, et al.

The second step of the reduction, the Refine phase, processes
the candidates that are passed on from the Filter step. In particular,
the candidates are ordered to select the nearest k data points to
the query point. Part (c) in Figure 3 shows that the blue and green
points are the candidates processed in the refine phase, out of which
only the green points are selected as the top-k neighbors.

RT Cores
(a) (b)Filter

Shader Cores

(c)Refine

Figure 3: Filter-Refine: (a) map points to RT scene, (b) RT
cores filter AABBs and shader cores filter geometric objects,
(c) refine candidates to select k = 1 nearest neighbors.

We present Arkade Filter-Refine reduction in algorithm 1. In Line 1,
AABBs corresponding to each data point are defined. If D is L norm,
then the geometric object is a square rhombus and the AABB with
a side of length 2r should be defined to tightly fit the rhombus. It
is up to the user to decide how big of a bounding box is needed to
render the desired geometry. However, the tighter, the better. In
line 2, an Optix API call is made to build the BVH on the defined
AABBs. The constructed BVH is not returned to the user but is
available for the RT architecture to traverse. In line 3, an Optix API
call is made to launch point rays from each query point. From line 4,
the neighbor search starts. In lines 4-5, RT cores perform the BVH
tree traversal of the ray and return the AABB intersection when
a ray is found to intersect with AABB. Lines 5-9 and lines 10-12
indicate the Filter and Refine phases respectively. Lines 6-7 extract
the data point, which is the center of geometry inside the hit AABB,
and the query point, which is the source of the point ray hitting
the AABB. In line 8, we compute the D-distance between them.
In line 9, we filter out all the data points that are farther than a
D-distance of r. Lines 10-12 refine the selected candidates and store
the top k closest points.

Algorithm 1 Arkade Filter-Refine Reduction

Input: Training set A, Query set Q, distance function D, r, k
Output: Vg € Q, top k neighbors of q within D distance r

1: Ya € A, define AABB on the geometry centered at a
2: construct BVH on all the AABBs

3: Vg € Q, launch point ray at g

4: while each ray is traversing BVH do

5. if RT cores return ray-AABB intersection then

6 a < geometry.center > data point
7 q < ray.origin > query point
8: w < D(a,q)

9 if w < r then

10: if w < max(neighbors(q).distance)

11: or |neighbors| < k then

12: neighbors.insert(a, w)

Arkade: k-Nearest Neighbor Search With Non-Euclidean Distances using GPU Ray Tracing

In the Algorithm 1, the Filter and Refine phases are interleaved.
Instead of storing all the candidates from the Filter phase, each
candidate is refined on the go. Once the RT core finds a point
that is within r distance, the reduction uses the shader cores to
dynamically update the list of k nearest neighbors, and return the
control to RT cores to resume the search for candidates.

The Arkade FR reduction presented above is a generalization of
the RT-kNN reduction and uses RT cores in a novel way. RT-kNN
ships spheres to RT cores because an r, L?-ball (Def 2) is exactly
a sphere. Similarly, for a distance D, we need to build geometric
objects customized to the distance function to represent an r, D-
ball. Our key observation with Arkade Filter-Refine is that the RT
architecture can process custom geometric objects.

Although Arkade FR reduction depends on a more advanced
feature of RT cores, it finds a way to stay agnostic to the inherent
property of RT cores, which only understand L? distances. The
distance fixed by the hardware does not impact the core idea of the
reduction—using point rays to find the kNN candidates. A point ray
intersects with an object containing it as long as the query point is
present inside the geometric object centered at a data point, and
this does not depend on the hardware-defined metric.

Arkade FR reduction is generic over the distance function D.
Hence, the effectiveness of this reduction depends on the distance
function and consequently, the geometric objects that will be built
centered at the data points. If a distance function geometric object is
such that the Filter phase forwards most of the data points as kNN
candidates, Arkade FR reduction is not useful. Because it has to
process the unnecessarily large number of candidates in the Refine
phase and this might not be better than a linear scan. An example
of such a distance function is cosine distance. We address how to
perform cosine distance-based kNN search in Section 4.

3.2 Correctness of Arkade FR Reduction

To prove the correctness of Arkade FR reduction, we first introduce
r, D-ball in Definition 2 and then formally define Filter and Refine
phases in Definitions 3 and 4 respectively.

Definition 2 (r, D-ball centered at a point b, Bp(b,r)). r, D-ball
in RY centered at a point b is a set of points a that are within a
D-distance of r from b:

Bp(b,r)={a|aeR% D(ba) <r} (1)

Definition 3 (Filter). Given a training set of data points A, a set of
query points Q, and a positive real number r, the Filter phase outputs
all the data points in A that are within a D-distance r of each query

pointq € Q (i.e. AN Bp(q,r)).

Definition 4 (Refine). Given a natural number k and a set of points
in Bp(q,r) for each query point q € Q, the Refine phase outputs the
k closest points to q according to the D distance.

THEOREM 1 (CORRECTNESS OF ARKADE FR REDUCTION). Given
a training set of data points A, a set of query points Q,q € Q, a
natural number k, a positive real number r, and a distance function
D, Algorithm 1 computes the k nearest data points of q within a
D-distance of r from q.

18

ICS 24, June 04-07, 2024, Kyoto, Japan

Proor. We first show that any point removed by the Filter phase
of Algorithm 1 is not inside Bp (g, r). Then, we show that any point
not within the k closest points to g gets removed by the Refine
phase. We use these two claims to conclude that the set of points
returned by Algorithm 1 is exactly the k nearest neighbors to ¢
within Bp(q,r).

We first claim that the Filter phase does not remove any points
inside Bp(q, r). Let a be a point in A and G, be the AABB centered
at a. Notice that by construction, the r, D-ball centered at point
a, Bp(a,r) is contained in the AABB G, (i.e., Bp(a,r) € Gg). The
point a is removed by the Filter phase exactly when the point ray
originating from ¢ does not intersect G,, which by the discussion
in Section 2.4 means q is not a point on or inside G, so g is not an
element of Bp (a, r) which implies that the D distance between g
and a is greater than r.

q¢Gqa = q¢Bp(ar) = D(aq) >r

However, this also implies that Bp(g,r) does not contain a (i.e.,
a ¢ Bp(q,r)) and hence a should be removed.

Now, we claim that any point not within the k nearest neighbors
of g gets correctly removed by the Refine phase. Let a € Abea
point not removed by the Filter phase (so D(a,q) < r) but such
that a is not one of the k nearest neighbors to g. This means that
there must be k other points ay, az, . . ., ag such that the farthest of
k neighbors is closer to g than a is (i.e., a; # a and max; D(a;, q) <
D(a, q)). Then a gets removed on line 12 of Algorithm 1.

Since Algorithm 1 does not remove any points that should be
kept, and does not keep any points that should be removed, its
output is exactly the k points in Bp(q, r) that are closestto q. O

4 MONOTONE TRANSFORMATION

This section introduces a new reduction, Arkade Monotone Trans-
formation (MT), that handles some metrics outside L? better than
the Arkade FR reduction. The L? distance functions, the primary
focus of Section 3, share an important property: their r, D-balls cor-
respond to geometric shapes that can be efficiently represented and
processed by RT cores. But this property fails for some important
distances, e.g. the cosine distance. To accommodate some of such
distances (including cosine), the Arkade MT reduction uses mono-
tone transformations to reduce kNN in the given metric to kNN in
L%, The resulting kNN problem is solved with the well-established
L2-distance based RT-accelerated search using spheres [9], which
is implemented as the L?-instance of Arkade FT.
Arkade MT reduction is based on the following property.

Definition 5 (Monotonicity of distance functions). A distance
function D on R™ is monotonically increasing (resp. decreasing) at
a point ¢ € R" if there exists a transformation f: R* — R" such
that for any two points a1 and az inR", if q is closer to a; than ay in
terms of the distance D, then after applying the transformation, f(q)
is still closer to (resp. further from) f(ay) than f(ap) in terms of L?
distance:

D(q,a1) < D(q,a2) =
LA(f(q), f(a) < LE(f(q), f(az))
(resp. L(f(q), f(a1)) > L*(f(q), f(a2))).

ICS 24, June 04-07, 2024, Kyoto, Japan

Figure 4: Arkade Monotone Transformation reduction: nor-
malizing points for the cosine distance. Data and query points
are marked with, blue and red colors, respectively. L?-based
Arkade FR reduction can only be applied after the Mono-
tonic Transformation (normalization) to get the correct co-
sine distance-based kKNN.

A distance function D is monotonically increasing (decreasing) if
it is monotonically increasing (resp. decreasing) at every point q € R™.

The Arkade MT reduction transforms the input points such that
the ordering of the points according to the given distance function
is preserved when the transformed points are ordered according
to the L? distance. The preservation of the ordering can be either
positive or negative i.e., the ordering of the transformed points is
either the same or the reverse as that of the original points. Now,
we formally define the Arkade MT reduction in Definition 6.

Definition 6 (Arkade Monotone Transformation Reduction).
Given a training set of data points A, a set of query points Q,q € Q, a
natural number k, a monotonic distance metric D and the correspond-
ing transformation f, Arkade Monotone Transformation reduction
applies f to points in A and Q and performs the Arkade Filter-Refine
reduction with L? distance to find k nearest neighbors of every query
point from the set of data points.

Cosine Distance. As shown in Figure 1, the cosine distance
between arbitrary vectors does not correlate with the Euclidean
distance between vectors’ endpoints. To introduce a correlation be-
tween the cosine and Euclidean distances, the transformation f we
apply is normalization. In Equation 2, the normalization multiplier
divides each of the coordinate components ay, ay, and a; of the
vector a by the vector’s magnitude w.

ax A4y a
VE (ax’ay;az)ﬁ(Zx,;y,;z),w=1/a,zc+a2y+a§ (2)

When the vectors are normalized, the end points (data points)
fall on the unit circle. The cosine distance between two vectors is
the same as the cosine distance between their normalized versions.
Let a be the angle between the query point q and data point a.
Because g and a are normalized, they have a unit magnitude. The
relation between their Euclidean and cosine distances would be the
following:

L2(q.a) = \llall? + llall? - 2llql llallcos(a)
= \/12 +1%2-2-1%cos(a) = \/2 —2cos(a).

According to the above relation between the Euclidean and co-
sine distances in the normalized space, as the cosine distance be-
tween the vectors g and a increases, the angle (@) they make at

19

Mandarapu, et al.

the center decreases, and so the endpoints (data points) of the vec-
tors move closer to the circle, which makes the Euclidean distance
between the endpoints smaller. Therefore, the cosine distance de-
creases as the Euclidean distance between two data points increases.
While cosine distance ordering is negatively preserved (reversed)
by Euclidean distance ordering, the Angular distance () ordering,
is positively preserved by Euclidean distance ordering.

In Figure 4, the left and right pictures represent the original and
transformed points, respectively. The left part shows that simply
building L? distance-based spheres and using the Arkade FR reduc-
tion with L? distance will not give us correct neighbors according
to the cosine distance. The right part signifies that since the nor-
malization preserves the ordering, the Arkade MT reduction can
feed the normalized points to the Arkade RF reduction to get the
correct k nearest neighbors according to the cosine distance.

5 DISCUSSION

5.1 Inclusion property to generalize RT-kNN

The closest prior work, RT-kNN (Section 2.4), is limited to the L?
distance. In this subsection, we define the inclusion property of a
distance function, which allows us to generalize RT-kNN to other
metrics. We also explain why this generalization cannot perform
better than Arkade and will typically perform worse.

The RT-kNN reduction cannot solve the problem with an arbi-
trary metric D without certain alterations. For example, consider
the L™ distance and the r-bounded kNN problem. If we supply
the RT-kNN reduction with the radius r, the candidates outside of
the circle but inside the square (an L® “circle”) will not be found
(subfigure 5(a)) and become false negatives. On the other hand, we
could try to supply the RT-kNN reduction with a radius r’ larger
than r (e.g. ¥ = V2r, subfigure 5(b)). In that case, the k closest
neighbors computed according to the L? distance are not the same
as that of the L™ distance. In particular, point a is further than any
point in the space between the square and circle according to the
L? distance, but the reverse is true according to the L® distance.
Hence, RT-kNN reduction may have to exclude point a from the
resulting set of nearest neighbors, while the point should be in the
set according to the L* metric. Point a becomes a false negative
in this case. Note, that this issue can be avoided if we increase k to
some k’. In general, by choosing r’ and k" arbitrarily larger than
the given r and k, we can use the RT-kNN reduction to perform the
kNN search based on a non-L? distance D, although it may take
extra time to test the candidates that could have been discarded
early.

We call the property of a distance D that allows us to find a finite
r’ the Inclusion Property (Definition 7). This property states that it
is possible to find the kNN candidates according to distance D as
kNN candidates according to L? distance. For example, consider
the L distance and r = 1. By the inclusion property, it is possible
to construct a finite-sized sphere S of radius ’ = V2 according to
the L? norm such that all the points that are within a distance r
according to L norm will fall inside sphere S.

Definition 7 (L?-inclusion property of distance D). A distance
function D holds the L?-inclusion property if for any point b and
positive real number r there exists a positive real number r’ such that

Arkade: k-Nearest Neighbor Search With Non-Euclidean Distances using GPU Ray Tracing

(e
N IR

(b)

(a)

Figure 5: RT-kNN reduction can be extended to perform non-
L%-based kNN with a larger r and k using Inclusion property
(Definition 7).

the r, D-ball around point b is contained in the r’, L%-ball around
point b.

3’ : Bp(b,r) C Br2(b,1’). 3)

However, the inclusion property is only helpful when the sphere
of radius r” efficiently filters the candidates. In the case of distances
where r’ is too large that it includes all the points in the dataset,
the search process is no better than a linear scan. Moreover, the
inclusion property only addresses how to choose r” but not k” for
given r and k, respectively. Currently, we choose k’ through trial-
and-error. We keep on incrementing k’ until the RT-kNN can find
all the k actual nearest neighbors.

5.1.1 RT-kNN reduction vs Arkade FR reduction. The benefit and
utility of Arkade FR reduction over RT-kNN reduction can be clearly
seen in the case of L? norms. With RT-kNN, as p increases, r’
increases from r to V/3r in 3D space. (The exact value of r’ would be
max(r,r - dl/zfl/"). When p is less than 2, the r’ from the inclusion
property is the same as the input r.) The side length of AABBs that
contain the corresponding spheres also increases from 2r to 2v/3r.
But with Arkade FR reduction, the side length of AABB remains
the same at 2r. Arkade FR reduction highlights that we do not have
to be constricted to using only spheres when we can directly place
the distance function geometric objects inside AABB. Moreover,
the RT cores index the AABBs and not the spheres.

AABBs in Arkade FR reduction are smaller than in the case of
RT-kNN reduction. Tighter and smaller AABBs potentially cause
less overlap between AABBs, which in turn reduces the number of
unnecessary ray-AABB intersections, thus making the reduction
run faster. In L? norms, as p increases, the geometry of the L
norm morphs from a sphere into a cube. Note that a cube is also an
AABB. Therefore, as p increases, the region inside AABB that does
not contribute to the L norm geometry decreases. The probability
that a ray-AABB intersection would be an output of filter phases
increases and reaches 1 for L norm. Hence, for L* norm, a ray-
AABB intersection can be forwarded by the Filter phase of Arkade
FR reduction without having to perform an additional geometry
check since the geometric object and the AABB are the same. So,
Arkade FR reduction achieves optimal performance for a L* norm-
based kNN search.

5.2 Other Distances

Jaccard Distance. Jaccard similarity(JS) between two sets A, B is
the AN B/A U B and Jaccard distance is 1 — JS [24]. The reduction

20

ICS ’24, June 04-07, 2024, Kyoto, Japan

depends on the type of data and the application for which the data
is being ranked. Assume that set A is represented by a bit vector

Av where it" bit indicates the presence of it in the set.
5= |A N B
" JAUB]

Preserving the order according to Jaccard distance and mapping
the distance computation is not feasible either using Arkade FR or
Arkade MT reductions. With the existing work on repurposing RT
architecture, we do not have a way to perform set operations using
RT architecture yet. We leave this as a future work.

Hamming Distance. Given two binary data strings, the Hamming
distance is the count of bit positions in which the respective bits
of the strings are different [18]. Hamming distance is equivalent to
the Manhattan distance on binary strings. Indeed, in 3D space, all
the possible binary data strings represent vertices of a unit cube,
and the Hamming distance between these strings, therefore, is the
number of edges that need to be walked from one vertex to the
other. Hence, we can use L' norm-based Arkade FR reduction.

Mahalanobis Distance. Mahalanobis distance is the distance be-
tween a point and a given distribution, where the standard deviation
of the point is compared to the mean of the distribution. After a
particular spatial transformation, when the axes are scaled to unit
variance, Mahalanobis distance is Euclidean distance [27]. Hence,
we can use L? norm-based Arkade FR reduction.

5.3 Choice of radius

Our reduction require radius (r) as an input parameter. Selecting
a optimal radius is a challenging task because an arbitrary choice
of radius might result in poor performance or accuracy. However,
this issue is orthogonal to Arkade’s reductions. Presently, we adopt
an approach of prior work, TrueKNN [33], which we elaborate
on in the Evaluation Section 6. Exploring alternative approaches
for determining optimal radius is an intriguing avenue for future
investigation.

6 EVALUATION

In this section, we evaluate Arkade’s Filter-Refine and Monotone
Transformation reductions on four groups of realistic datasets us-
ing four baselines. We analyze various factors such as the BVH
tree quality, the average number of ray-AABB intersections, and
the number of rounds (defined in Sec. 6.2.4) that impact the perfor-
mance of Arkade on these datasets. Then, we look at the effect of
parameters such as k.

Datasets. The characteristics of the datasets we used are sum-

marized in Table 1. As RT cores can only build BVH on three-

dimensional data, we use only 2D and 3D datasets. For 2D datasets,
we set the third dimension to zero.

Geospatial Datasets Gowalla [8] dataset contains check-in lo-
cations of users from across the world in the form of lat-
itude and longitude [8]. We processed the dataset to get
only distinct locations. Cali OSM [38] contains geo-spatial
coordinates of a very small region in California, sourced
from OpenStreetMap. Because the coordinates are local, we
treat it as 2-dimensional data. Gbif [12] contains information

ICS 24, June 04-07, 2024, Kyoto, Japan

on several birds and the locations where they are spotted.
We obtained the geospatial coordinates of the spottings for
January 2018. We convert the geospatial coordinates into
Cartesian coordinates before passing the data as input to the
Arkade reductions.

Point Clouds Kitti [13] is an autonomous driving footage pop-
ularly used in computer vision benchmarks. The data we
used is in the form of 3D point clouds generated by the Velo-
dyne scanner. We combined several frames to make up our
dataset. Randnet [7] is a synthetic point cloud generated
from real-world and synthetic environments using RandLA-
Net architecture [20]. This particular dataset is built on an
aerial view of a city landscape.

3D Scans Manuscript [44] dataset is an XYZ RGB 3D scan of a
page in Latin from Vellum manuscript.

Synthetic Datasets Glove 3D is a three-dimensional PCA projec-
tion of 25-dimensional Glove data [40]. Randnet is also a
synthetic dataset.

Table 1: Datasets Characteristics

Dataset Data Points Queries Dimension
Gowalla [8] 1270969 10000 3
Glove 3D [40] 1183514 10000 3
Manuscript [44] 2145617 10000 3
Cali OSM [38] 4195951 10000 2
Kitti [13] 4000000 10000 3
Randnet [20] 6815065 10000 3
Gbif [12] 8475714 10000 3

Baselines. We used three GPU and one state-of-the-art CPU kNN
libraries to evaluate Arkade. This mixture contains both tree-based
and non-tree-based approaches.

SCANN is a quantization-based approximate similarity search li-
brary [17]. It is the state-of-the-art in CPU kNN implemen-
tations [4]. We use the same parameters as ANN bench-
marks [4] to get a recall? of 0.99.

Treelogy implements a KD-tree-based exact GPU implementa-
tion [15]. We modify the Treelogy code to perform L? and
cosine distance-based kNN search.

FAISS is a state-of-the-art exact quantization-based GPU library [4,
25]. FAISS uses tensorflow-gpu to interface with CUDA cores.
We use the IVFFlatL2 index (as used in ANN benchmarks [4])
and train the data before the search.

FastRNN uses RT architecture to perform fixed-radius search, only
in case of Euclidean distances [9]. To correctly perform the
kNN search using other distances, we use a larger radius
\/ar, where r is the given radius and d is the data dimension,
and a larger number of nearest neighbors k’ just enough
to obtain k nearest neighbors according to a given distance.
(see Subsection 5.1).

We use Treelogy and FastRNN to evaluate the Arkade Filter-

Refine reduction, while we use SCANN, FAISS, and Treelogy to

ZRecall is the ratio of the number of correctly found nearest neighbors by the search
to the number of true nearest neighbors from the ground truth.

21

Mandarapu, et al.

evaluate the Arkade Monotone Transformation reduction. SCANN
and FAISS implement only L? and cosine distances on CPU and
GPU respectively. On the other hand, the modifications of FastRNN
only work for L? distances.

Experimental Setup. We used NVIDIA GeForce RTX 4070 Ti GPU
with 12GB memory for all of our experiments. To interface with the
RT architecture on the GPU, we used Optix Wrapper Library [47].
Arkade builds the BVH tree index once over the entire set of data
points for chosen parameters and searches for neighbors once for all
the query points in every run. We perform 5 such runs to collect and
average the performance metrics such as build time and search time.
All the reported numbers are rounded to two non-zero decimals.

We evaluate Filter-Refine reduction with the L! and L™ distance
functions, and Monotone Transformation reduction with cosine
distance. We plug in TrueKNN’s [33] approach of choosing a small
radius and iteratively increasing the radius until all the query points
find their k neighbors. To make a fair comparison, we also apply
TrueKNN to the baseline FastRNN.

6.1 Performance Evaluation

We compare the search times and the speedups of Arkade reductions
over all the baselines and the datasets in Tables 2 and 3. Table 2
shows the comparison of Arkade to the baselines, Treelogy and
FastRNN, for L! and L*® norms. In Table 3, we show the same
performance numbers for Cosine distance.

Among all the baselines, we see that Arkade is significantly
faster than SCANN, although the speedup can be attributed to
SCANN being a purely CPU-based implementation. In the case of
GPU baselines, Arkade is still faster by 1.5x-200x. The speedup of
Arkade over non-RT baselines demonstrates the ability of RT cores
to efficiently accelerate the irregular tree traversals. The speedups
over the RT baseline, FastRNN, show how Arkade efficiently utilizes
the RT cores to accelerate a broader range of applications.

In general, we find that the speedups of Arkade over baselines
do not increase with an increase in the dataset size. For example,
Gowalla and Glove3D datasets are roughly 1M in size but Arkade’s
speedups on these datasets are very different. The search times
of non-RT-based implementations such as SCANN, Treelogy, and
FAISS increase with the increase in the size of the dataset, however,
RT implementations such as Arkade and FastRNN do not follow
the same trend. We go into more detail in Section 6.2.1.

6.1.1 L' norm. In the first half of Table 2, we see that Arkade
achieves speedups of 1.6x-160.9x and 1.3x-33.1x over Treelogy and
FastRNN, respectively. Arkade is faster than Treelogy since Arkade
uses RT cores to accelerate the BVH tree traversals, while Treelogy
uses shader cores.

In this experiment, we use the same search radius for FastRNN
and Arkade. This is because the L' norm geometric object (thombus)
is present inside the L? norm geometric object (circle). Even though
the search radius is the same, FastRNN searches for a larger number
of neighbors. FastRNN uses L? distance to rank the neighbors unlike
Arkade, which uses the actual distance function, L! norm. Because
L' norm geometric object is smaller in volume compared to L?
norm geometric object, Arkade can efficiently search neighbors in
a smaller space, which is why Arkade is consistently faster than
FastRNN.

Arkade: k-Nearest Neighbor Search With Non-Euclidean Distances using GPU Ray Tracing

ICS ’24, June 04-07, 2024, Kyoto, Japan

Table 2: Search times and speedups of Arkade over all baselines for distance functions L! and L

L! distance

L* distance

Dataset Search time (seconds) Arkade speedup over Search time (seconds) Arkade speedup over

Treelogy FastRNN Arkade Treelogy FastRNN Treelogy FastRNN Arkade Treelogy FastRNN
Gowalla 0.16 1.06 0.032 5.0 33.1 0.16 0.34 0.022 7.3 154
Glove3D 0.16 0.14 0.0063 25.4 22.2 0.14 0.011 0.0025 56.0 4.4
Manuscript 0.18 0.075 0.011 16.4 6.8 0.19 0.032 0.010 19.0 3.2
CaliOSM 0.25 0.21 0.16 1.6 1.3 0.24 0.11 0.029 8.3 3.8
Kitti4M 0.25 0.41 0.045 5.6 9.1 0.26 0.18 0.043 6.1 4.2
Randnet 0.37 0.07 0.0023 160.9 30.4 0.36 0.028 0.0018 200.0 15.6
Gbif 0.39 1.25 0.082 4.8 15.2 0.37 1.14 0.077 4.8 14.8

Table 3: Search times and speedups of Arkade over all baselines for cosine distance function

Search time (seconds) Arkade speedup over

D

Aaset SCANN Treelogy FAISS Arkade SCANN Treelogy FAISS
Gowalla 79.37 0.29 0.22 0.10 793.7 2.9 2.2
Glove3D 76.52 0.32 0.21 0.0033 23,187.9 97.0 63.6
Manuscript 149.04 0.47 0.38 0.012 12,420.0 39.1 16.7
CaliOSM 284.67 1.02 0.74 0.013 21,897.7 78.5 56.9
Kitti4M 261.39 0.86 0.7 0.14 1,867.1 6.1 5.0
Randnet 471.12 1.45 1.2 0.026 18,120.0 55.8 46.2
Gbif 581.01 1.81 1.49 0.29 2,003.5 6.2 5.1

6.1.2 L™ norm. In the second half of Table 2, we see that Arkade 6.2.1 Breakdown. To understand the factors impacting the Arkade

achieves speedups of 4.8x-200x and 3.2x-15.6x over Treelogy and
FastRNN, respectively. We find that Arkade outperforms Treelogy
for the same reason as in the case of the L! norm.

As noted in Section 5.1, FastRNN needs a larger search radius
(V3 times Arkade’s radius) and k compared to Arkade. When the
radius increases, the size of the AABB increases, which causes an
increase in the number of ray-AABB intersection tests performed
during the BVH traversal. As these intersection tests are the most
computationally intensive part of the ray tracing pipeline, we find
that Arkade is significantly faster than FastRNN. We further analyze
the performance of Arkade and FastRNN in Section 6.2.

6.1.3 Cosine distance. In Table 3, we see that Arkade achieves
speedups of 793.7x-23,187.9x, 2.9x-97.0x, and 2.2x-63.6x over
SCANN, FAISS, and Treelogy, respectively. Though FAISS is the
current state-of-the-art GPU-based kNN search, it is designed for
higher dimensional kNN and uses a heavy tensorflow framework.
We believe that the combination of FAISS’s overheads and Arkade’s
RT-accelerated neighbor search algorithm results in Arkade’s better
performance.

6.2 Performance Analysis

The speedup trend of Arkade can be explained by the data distribu-
tion of the dataset. This is because the way the data is distributed
affects the quality of the constructed BVH, the number of ray-AABB
tests performed for each query point, and, consequently, the num-
ber of candidates the Filter phase forwards to the Refine phase. We
unroll the effects of data distribution on each of the reductions in
the following subsections.

22

speedups, we present a complete breakdown of Arkade and Fas-
tRNN execution times for L™ norm in Figure 6. The execution time
is comprised of both BVH build and search times. The search time is
further divided into four parts - time taken by the Filter phase, Re-
fine phase, refit, and miscellaneous maintenance in between these
steps.

[0 Build [0 Refine W Misc [0 Build [0 Refine W Misc
[0 Filter WM Refit I Filter WM Refit
100 100
—~ 75 — 75
X X
o [0}
g 50 g 50
= =
25 25
O ot oM oW (et o 0 0 ot oM dM et o
& A \ 3 A A

(a) Arkade (b) FastRNN
Figure 6: Run time breakdown of RT implementations for
L* norm-based kNN search

Figures 6a and 6b show the breakdown of execution times of
Arkade and FastRNN for L™ distance, respectively. The percentage
of build time is higher in the case of Arkade than in FastRNN.
However, the actual build times in both cases are approximately
the same for respective datasets. Because Arkade’s search times are
lower than FastRNN’s, the percentage of build time of Arkade is
higher.

ICS 24, June 04-07, 2024, Kyoto, Japan

In Figures 6a and 6b, the Filter phase predominantly takes more
time than any other steps. In the Filter phase, the ray traverses the
BVH and checks if it intersects an AABB, and when it does intersect
an AABB, it further checks if the ray intersects the geometry. The
time the filter phase takes is affected by the quality of BVH the RT
architecture constructs. The structure of BVH further impacts the
BVH traversal and the number of intersection tests performed.

6.2.2 Impact of BVH Tree Quality. The negligible amount of time
spent in the Refine phase (Refine time is barely visible in Figure 6)
supports the observation that more time is spent in traversal and
filtering AABBs rather than ordering the candidates present inside
them. The mapping of the kNN problem to RT architecture needs
the geometric objects to overlap to produce results. As the k value
increases, the search radius needed to find all k neighbors also in-
creases. This increases the potential of geometric objects to overlap
and reduces the effectiveness of the BVH in pruning large parts of
the neighbor search space, resulting in a BVH of poor quality. High
overlap, in turn, increases the number of ray-AABB intersections.

6.2.3 Impact of ray-AABB intersections. In Table 4, we present the
average number of ray-AABB intersections per query point that
occurred in the RT-based implementations in the case of L and
Cosine distances. In the case of Cosine distance, the search times of
Arkade increase with an increase in the number of intersections and
decrease with a decrease in the number of intersections. Similarly,
in the case of L distance, Arkade and FastRNN search times are
proportional to the number of intersections except for the Kitti4M
dataset. Moreover, the number of intersections is higher for any
dataset in the case of Cosine distance compared to L® norm, and
we observe that Cosine distance-based search takes longer than
that of L* norm. Due to normalization, the points become denser
in the Cosine distance scenario.

6.24 Impact of number of rounds. While the number of inter-
sections explains most of the trends in search times of RT-based
implementations, there are certain instances where the number of
intersections alone does not suffice. For example, FastRNN spends
more search time on Kitti4M than the Randnet dataset, but the
number of ray-AABB intersections on Kitti4M is lower than that
of Randnet. We observe that the number of rounds is higher in the
case of Kitti4M than in Randnet. We present the number of rounds
for each RT-implementation and dataset in Table 4. The number of
rounds is the number of times TrueKNN doubles the radius until it
finds k nearest neighbors of all query points.

A higher number of rounds increases the refit time. In Figure 6,
we see that refit is the second most time-consuming part of the
search. The refit time corresponds to doubling the radius of geome-
tries, updating the AABBs to fit the new larger geometries, and
refitting the BVH for every round.

The need for a higher number of rounds arises from the data
distribution. A new round is performed when the neighbors of some
of the query points can only be found at a larger radius. Hence, the
number of rounds indicates that some neighborhoods of the dataset
are denser than others.

6.2.5 Sensitivity to k. In Figure 7a, we study the speedup of Arkade
performance over FAISS in the case of Cosine distance as k increases.
We vary from k as 1, 50, and 100 on Gowalla, Kitti4M, and Gbif

23

Mandarapu, et al.

datasets. We also plot the build time speedup of Arkade over FAISS
for each dataset. Arkade’s search time speedups decrease as k in-
creases. But, observe that the build times of Arkade are much lower
than FAISS. So the overall runtime (build + search time) of Arkade
is still lower than FAISS. At a sufficiently large dataset size and
k, it is possible that the benefit of using Arkade might diminish.
However, in practice, k is typically at most 100 [4].

B Treelogy Build [0 Faiss Build

k=1
80 k=50 103 [0 Treelogy Search [Faiss Search
k=100
60 Build El
Ey 8102
g g
o 40 o
@ $ 10t
&
20
10°
led 1le5 le6 le7 7e7
Gowalla Kitti Gbif Dataset size
(a) For k = 1,50,100, Arkade’s (b) Arkade’s search and build time

speedups over Faiss and Treelogy
as the dataset size changes

search and build time speedup
over Faiss

Figure 7: Sensitive analysis of Arkade’s search and build time
speedups for Cosine distance

6.2.6 Sensitivity to Dataset size. In Figure 7b, we study the speedup
(in log scale) of Arkade performance over Treelogy and FAISS in
the case of Cosine distance as the magnitude of the dataset size
increases. We uniformly sample a randomly generated dataset to
get the number of data points from 10K to 70M. In Figure 7b, green
shaded bars show the speedup of Arkade build times over Treelogy
and Faiss, respectively, while blue shaded bars show the speedup
of Arkade search times over the same baselines. Arkade’s build and
search time speedups over Treelogy increase almost linearly with
the increasing magnitude of the dataset size. We attribute these
speedups to the optimized strategies employed for tree construc-
tion and traversal by the RT architecture. Conversely, search time
speedups over Faiss slightly decrease when the dataset size reaches
10M. We also note that Arkade runs out of memory on our 12GB
GPU after 70M points, however, both the baselines can execute up
to 100M points.

6.2.7 Impact of hardware utilization. Available Nvidia profilers [36]
can not differentiate RT cores from shader cores. Nvidia 4060Ti, the
GPU on which we ran our experiments, has 4352 and 32 shader and
RT cores, respectively. Without knowing how the architecture maps
the point ray queries to the hardware, it is difficult to determine
if Arkade is saturating the resources on RT architecture. However,
applying optimizations like balancing the workload among the
threads may improve the utilization and performance. We leave
this for future work.

7 RELATED WORK
7.1 Non-RT Applications Accelerated With RT
Architecture

Recent work has shown that non-ray-tracing problems can be ex-
pressed as ray-object intersection problems, making them amenable

Arkade: k-Nearest Neighbor Search With Non-Euclidean Distances using GPU Ray Tracing

ICS 24, June 04-07, 2024, Kyoto, Japan

Table 4: Average number of ray-AABB intersection and number of rounds for L* distance (Table 2) and cosine distance (Table 3).

L*™ distance

Cosine distance

Arkade FastRNN Arkade

Dataset

Averagfe Rounds Averagf: Rounds Averag.e Rounds

#Intersections #Intersections #Intersections

Gowalla 263.47 10 510.40 10 10613.80 7
Glove3D 26.12 2 60.46 2 60.46 2
Manuscript 173.20 4 510.50 4 357.77 3
CaliOSM 440.11 6 827.03 6 2695.24 1
KittiaM 366.38 8 365.28 7 20669.20 1
Randnet 121.92 1 397.79 1 211.86 4
Gbif 3093.40 5 5185.58 5 20708.30 1

to acceleration with RT cores [9, 32, 48, 52, 54]. Wald et. al. [48] were
the first to use RT cores to accelerate non-ray tracing applications.
They looked at the problem of identifying the location of a point in
a tetrahedral mesh. By modeling the point as a ray and reporting
the closest tetrahedron intersected by the ray, they identified the
tetrahedron in which the point was contained. Zellman et. al. [52]
showed how to use RT cores to perform graph drawing. They re-
formulated the nearest neighbor search subroutine as a ray tracing
problem and used the force exerted by the nearest neighbors to
direct their graph drawing algorithm. They found their approach
to be significantly faster than the state-of-the-art force-directed
graph drawing algorithms. Evangelou et. al. [9] used RT cores to
perform photon mapping by finding the set points in a fixed-radius
neighborhood of a query point. They used the reduction proposed
by Zellman et. al. and found that they were up to 15x faster than
non-RT-accelerated baselines. Zhu et. al. [54] proposed optimiza-
tions such as point reordering and query partitioning to improve
the performance of RT-accelerated neighbor searches. Nagarajan et.
al. proposed RT-DBSCAN [32] and TrueKNN [33] to leverage RT
cores to solve DBSCAN clustering and efficiently perform k-nearest
neighbor search, respectively.

7.2 Tree-based, GPU-accelerated kNN

Tree-based kNN algorithms are only efficient at lower dimensions
due to the curse of dimensionality [49]. They are mostly specialized
for certain applications. Merry et. al. [29] propose an optimization
to leverage the coherence of points when traversed in kd tree order
so as to reuse traversal information of neighboring points. They
find that their approach is 4.4x to 4.6x faster and does not require
any modifications to the kd tree. Treelogy[15, 19] proposes several
optimizations to improve memory coalescing and reduce diver-
gence caused by GPU threads that traverse different parts of the
tree. Gieseke et. al. [14] propose the idea of a buffer kd tree to create
batches of query points that all target the same leaf nodes of the
kd tree, exploiting data locality. However, their work is specialized
for data with dimensionality between 4 and 25. An optimized ap-
proximate KD-tree-based KNN is proposed to aid in point cloud
registration [51]. However, this optimization is application-specific.
Gowanlock [16] proposes a hybrid CPU-GPU algorithm that breaks
computation up so that areas of large density are assigned to the
GPU, while the CPU handles the rest of the data. This approach

24

leverages the advantages offered by the different architectures to
optimize performance.

8 CONCLUSION

Irregular problems like tree traversals are ubiquitous, especially
queries like nearest neighbor search that have applications in do-
mains such as point cloud registration in computer vision, data
compression, similarity scoring, DNA sequencing, etc. Tree-based
nearest neighbor search is naturally challenging to scale up us-
ing purely software approaches on massively parallel commodity
hardware such as GPUs. Even though ray tracing cores of GPU are
specialized hardware to cater to graphics applications, we show
that this specialized hardware can be generalized to accelerate tree
operations in other domains, To that end, we provide a set of re-
ductions to the ray tracing scene. Without our reductions, distance
metric computations such as L? norm and cosine distance take sig-
nificantly longer to complete or cannot be run on RT cores (it varies
between previous works). While RT cores accelerate tree traversals
through BVH construction, this tree structure is not accessible to
the user and is limited to 3D space. Availability and programma-
bility of the spatial tree itself would be more helpful in using RT
cores for general applications.

ACKNOWLEDGMENTS

We are thankful to all the anonymous reviewers for providing
valuable feedback. We also thank Kirshanthan Sundararajah for
helping us improve the earlier versions of the paper and Raghav
Malik for helping us with the proof. This work was funded by NSF
grants CCF-1908504, CCF-1919197 and CCF-2216978.

REFERENCES

[1] David Adedayo Adeniyi, Zhaoqiang Wei, and Yang Yongquan. 2016. Automated
web usage data mining and recommendation system using K-Nearest Neighbor
(KNN) classification method. Applied Computing and Informatics 12, 1 (2016),
90-108.
AMD. 2023. AMD Ray tracing. https://www.amd.com/en/technologies/rdna
Fabien André, Anne-Marie Kermarrec, and Nicolas Le Scouarnec. 2015. Cache
locality is not enough: High-Performance Nearest Neighbor Search with Product
Quantization Fast Scan. Proc. VLDB Endow. 9, 4 (2015), 288-299.
Martin Aumiiller, Erik Bernhardsson, and Alexander Faithfull. 2020. ANN-
Benchmarks: A benchmarking tool for approximate nearest neighbor algorithms.
Information Systems 87 (2020), 101374. https://doi.org/10.1016/j.i5.2019.02.006
[5] Jon Louis Bentley. 1975. Multidimensional binary search trees used for associative
searching. Commun. ACM 18, 9 (1975), 509-517.

=

ICS °24, June 04-07, 2024, Kyoto, Japan

N. Bourbaki. 1987. Topological Vector Spaces: Chapters 1-5. Springer-Verlag, Berlin.
https://books.google.com/books?id=S4wnAQAAIAA]

Meida Chen, Qingyong Hu, Zifan Yu, Hugues THOMAS, Andrew Feng, Yu Hou,
Kyle McCullough, Fengbo Ren, and Lucio Soibelman. 2022. STPLS3D: A Large-
Scale Synthetic and Real Aerial Photogrammetry 3D Point Cloud Dataset. In 33rd
British Machine Vision Conference, November 21-24, 2022. BMVA Press, London,
UK, 429. https://bmvc2022.mpi-inf.mpg.de/0429.pdf

E. Cho, S. A. Myers, and J. Leskoven. 2023. Friendship and Mobility: User
Movement in Location-Based Social Networks. Retrieved from UCR-STAR
https://star.cs.ucr.edu/?stanford-gowalla&d.

I. Evangelou, G. Papaioannou, K. Vardis, and A. A. Vasilakis. 2021. Fast Radius
Search Exploiting Ray Tracing Frameworks. Journal of Computer Graphics Tech-
niques (JCGT) 10, 1 (5 February 2021), 25-48. http://jcgt.org/published/0010/01/
02/

Jerome H Friedman, Jon Louis Bentley, and Raphael Ari Finkel. 1977. An algorithm
for finding best matches in logarithmic expected time. ACM Transactions on
Mathematical Software (TOMS) 3, 3 (1977), 209-226.

Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast Approximate
Nearest Neighbor Search With The Navigating Spreading-out Graph. Proc. VLDB
Endow. 12, 5 (2019), 461-474.

GBIF.Org User. 2023. Occurrence Download. https://doi.org/10.15468/DL.
QQ7KRQ

Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. 2013. Vision
meets Robotics: The KITTI Dataset. https://www.cvlibs.net/datasets/kitti/raw_
data.php

Fabian Gieseke, Justin Heinermann, Cosmin E. Oancea, and Christian Igel. 2014.
Buffer k-d Trees: Processing Massive Nearest Neighbor Queries on GPUs. In
ICML (JMLR Workshop and Conference Proceedings, Vol. 32). JMLR.org, 172-180.
Michael Goldfarb, Youngjoon Jo, and Milind Kulkarni. 2013. General Transfor-
mations for GPU Execution of Tree Traversals. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis
(Denver, Colorado) (SC ’13). Association for Computing Machinery, New York,
NY, USA, Article 10, 12 pages. https://doi.org/10.1145/2503210.2503223
Michael Gowanlock. 2021. Hybrid KNN-join: Parallel nearest neighbor searches
exploiting CPU and GPU architectural features. J. Parallel and Distrib. Comput.
149 (2021), 119-137.

Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern,
and Sanjiv Kumar. 2019. Accelerating Large-Scale Inference with Anisotropic
Vector Quantization. https://doi.org/10.48550/ARXIV.1908.10396

R. W. Hamming. 1950. Error detecting and error correcting codes. The Bell
System Technical Journal 29, 2 (1950), 147-160. https://doi.org/10.1002/j.1538-
7305.1950.tb00463.x

Nikhil Hegde, Jianqiao Liu, Kirshanthan Sundararajah, and Milind Kulkarni.
2017. Treelogy: A benchmark suite for tree traversals. In 2017 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS). 227-238.
https://doi.org/10.1109/ISPASS.2017.7975294

Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan Guo, Zhihua Wang,
Niki Trigoni, and Andrew Markham. 2020. RandLA-Net: Efficient Semantic
Segmentation of Large-Scale Point Clouds. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (2020).

Qiang Huang, Jianlin Feng, Yikai Zhang, Qiong Fang, and Wilfred Ng. 2015.
Query-aware locality-sensitive hashing for approximate nearest neighbor search.
Proceedings of the VLDB Endowment 9, 1 (2015), 1-12.

Piotr Indyk and Rajeev Motwani. 1998. Approximate nearest neighbors: towards
removing the curse of dimensionality. In Proceedings of the thirtieth annual ACM
symposium on Theory of computing. 604-613.

Intel. 2023. Intel Ray tracing. https://www.intel.com/content/www/us/en/
developer/articles/guide/real-time-ray-tracing-in-games.html

Paul Jaccard. 1912. THE DISTRIBUTION OF THE FLORA IN THE ALPINE
ZONE.1. New Phytologist 11, 2 (1912), 37-50. https://doi.org/10.1111/j.1469-
8137.1912.th05611.x

[25] J. Johnson, M. Douze, and H. Jegou. 2021. Billion-Scale Similarity Search with

GPUs. IEEE Transactions on Big Data 7, 03 (Jul 2021), 535-547. https://doi.org/
10.1109/TBDATA.2019.2921572

Lukasz Kaiser and Ilya Sutskever. 2015. Neural GPUs Learn Algorithms. https:
//doi.org/10.48550/ ARXIV.1511.08228

Prasanta Chandra Mahalanobis. 1936. On the generalised distance in statis-
tics. http://library.isical.ac.in:8080/xmlui/bitstream/handle/10263/6765/Vol02_
1936_1_Art05-pcm.pdf

Yu A. Malkov and D. A. Yashunin. 2020. Efficient and Robust Approximate
Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs.
IEEE Trans. Pattern Anal. Mach. Intell. 42, 4 (apr 2020), 824-836. https://doi.org/
10.1109/TPAMI.2018.2889473

Bruce Merry, James Gain, and Patrick Marais. 2013. Accelerating kd-tree Searches
for all k-nearest Neighbours. In Eurographics 2013 - Short Papers, M.-A. Otaduy
and O. Sorkine (Eds.). The Eurographics Association. https://doi.org/10.2312/

Mandarapu, et al.

conf/EG2013/short/037-040

G. Mori, S. Belongie, and J. Malik. 2001. Shape contexts enable efficient retrieval
of similar shapes. In Proceedings of the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. CVPR 2001, Vol. 1. I-1. https://doi.org/
10.1109/CVPR.2001.990547

Marius Muja and David G. Lowe. 2014. Scalable Nearest Neighbor Algorithms
for High Dimensional Data. IEEE Transactions on Pattern Analysis and Machine
Intelligence 36, 11 (2014), 2227-2240. https://doi.org/10.1109/TPAMI.2014.2321376
Vani Nagarajan and Milind Kulkarni. 2023. RT-DBSCAN: Accelerating DBSCAN
using Ray Tracing Hardware. In IPDPS. IEEE, 963-973.

Vani Nagarajan, Durga Mandarapu, and Milind Kulkarni. 2023. RT-kNNS
Unbound: Using RT Cores to Accelerate Unrestricted Neighbor Search. In
Proceedings of the 37th International Conference on Supercomputing, ICS 2023,
Orlando, FL, USA, June 21-23, 2023, Kyle A. Gallivan, Efstratios Gallopoulos,
Dimitrios S. Nikolopoulos, and Ramon Beivide (Eds.). ACM, 289-300. https:
//doi.org/10.1145/3577193.3593738

Moohyeon Nam, Jinwoong Kim, and Beomseok Nam. 2016. Parallel tree traversal
for nearest neighbor query on the GPU. In 2016 45th International Conference on
Parallel Processing (ICPP). IEEE, 113-122.

NVIDIA. [n.d.]. NVIDIA OptiX 7.5 - Programming Guide. https://raytracing-
docs.nvidia.com/optix7/guide/index.html

Nvidia. 2023. NVIDIA Nsight Compute. https://developer.nvidia.com/nsight-
compute

Nvidia. 2023. NVIDIA Ray tracing. https://developer.nvidia.com/rtx/ray-tracing
OpenStreetMap. [n.d.]. https://www.openstreetmap.org

Varun Pandey, Andreas Kipf, Thomas Neumann, and Alfons Kemper. 2018. How
good are modern spatial analytics systems? Proceedings of the VLDB Endowment
11, 11 (2018), 1661-1673.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:
Global Vectors for Word Representation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP). 1532-1543. http://www.aclweb.org/anthology/D14-
1162

Ninh Pham and Tao Liu. 2022. Falconn++: A Locality-sensitive Filtering Approach
for Approximate Nearest Neighbor Search. arXiv:2206.01382 [cs.DS]

Deyuan Qiu, Stefan May, and Andreas Niichter. 2009. GPU-accelerated nearest
neighbor search for 3D registration. In Computer Vision Systems: 7th International
Conference on Computer Vision Systems, ICVS 2009 Liége, Belgium, October 13-15,
2009. Proceedings 7. Springer, 194-203.

Mark J. Reid and Karl M. Menten. 2020. The first stellar parallaxes revisited.
Astronomische Nachrichten 341, 9 (nov 2020), 860-869. https://doi.org/10.1002/
asna.202013833

The Stanford 3D Scanning Repository. 2014. Vellum manuscript, The XYZ RGB
models. http://graphics.stanford.edu/data/3Dscanrep/

Steven Rubin and Turner Whitted. 1980. A 3-dimensional representation for
fast rendering of complex scenes. ACM Siggraph Computer Graphics 14. https:
//doi.org/10.1145/965105.807479

Amit Singhal. 2001. Modern Information Retrieval: A Brief Overview. IEEE Data
Eng. Bull. 24, 4 (2001), 35-43. http://sites.computer.org/debull/ A0O1IDEC-CD.pdf
Ingo Wald, Nathan Morrical, and Haines E. [n. d.]. OWL: A Node Graph "Wrapper"
Library for OptiX 7. https://github.com/owl-project/owl

Ingo Wald, Will Usher, Nathan Morrical, Laura Lediaev, and Valerio Pascucci.
2019. RTX Beyond Ray Tracing: Exploring the Use of Hardware Ray Tracing
Cores for Tet-Mesh Point Location. In High-Performance Graphics - Short Papers,
Markus Steinberger and Tim Foley (Eds.). The Eurographics Association. https:
//doi.org/10.2312/hpg, 20191189

Roger Weber, Hans-Jorg Schek, and Stephen Blott. 1998. A Quantitative Analysis
and Performance Study for Similarity-Search Methods in High-Dimensional
Spaces. In VLDB.

Jordan Wood. 2008. Filter and Refine Strategy. Springer US, Boston, MA, 320-320.
https://doi.org/10.1007/978-0-387-35973-1_415

Tiancheng Xu, Boyuan Tian, and Yuhao Zhu. 2019. Tigris: Architecture and
Algorithms for 3D Perception in Point Clouds. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture (Columbus, OH, USA)
(MICRO ’52). Association for Computing Machinery, New York, NY, USA, 629-642.
https://doi.org/10.1145/3352460.3358259

Stefan Zellmann, Martin Weier, and Ingo Wald. 2020. Accelerating Force-Directed
Graph Drawing with RT Cores. In 2020 IEEE Visualization Conference (VIS). 96—
100. https://doi.org/10.1109/VIS47514.2020.00026

Weijie Zhao, Shulong Tan, and Ping Li. 2020. SONG: Approximate Nearest
Neighbor Search on GPU. In 2020 IEEE 36th International Conference on Data
Engineering (ICDE). 1033-1044. https://doi.org/10.1109/ICDE48307.2020.00094
Yuhao Zhu. 2022. RTNN: Accelerating Neighbor Search Using Hardware Ray
Tracing. In Proceedings of the 27th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (Seoul, Republic of Korea) (PPoPP '22).
Association for Computing Machinery, New York, NY, USA, 76-89. https:
//doi.org/10.1145/3503221.3508409

	Abstract
	1 Introduction
	2 Background
	2.1 k-Nearest Neighbour Search
	2.2 Ray Tracing Architecture
	2.3 Programming and Execution Model
	2.4 RT-kNN: kNN on RT architecture

	3 Filter-Refine
	3.1 Arkade Filter-Refine Reduction
	3.2 Correctness of Arkade FR Reduction

	4 Monotone Transformation
	5 Discussion
	5.1 Inclusion property to generalize RT-kNN
	5.2 Other Distances
	5.3 Choice of radius

	6 Evaluation
	6.1 Performance Evaluation
	6.2 Performance Analysis

	7 Related Work
	7.1 Non-RT Applications Accelerated With RT Architecture
	7.2 Tree-based, GPU-accelerated kNN

	8 Conclusion
	Acknowledgments
	References

