








Arkade: k-Nearest Neighbor Search With Non-Euclidean Distances using GPU Ray Tracing ICS ’24, June 04–07, 2024, Kyoto, Japan

In the Algorithm 1, the Filter and Re�ne phases are interleaved.

Instead of storing all the candidates from the Filter phase, each

candidate is re�ned on the go. Once the RT core �nds a point

that is within A distance, the reduction uses the shader cores to

dynamically update the list of : nearest neighbors, and return the

control to RT cores to resume the search for candidates.

The Arkade FR reduction presented above is a generalization of

the RT-:NN reduction and uses RT cores in a novel way. RT-:NN

ships spheres to RT cores because an A, !2-ball (Def 2) is exactly

a sphere. Similarly, for a distance � , we need to build geometric

objects customized to the distance function to represent an A, �-

ball. Our key observation with Arkade Filter-Re�ne is that the RT

architecture can process custom geometric objects.

Although Arkade FR reduction depends on a more advanced

feature of RT cores, it �nds a way to stay agnostic to the inherent

property of RT cores, which only understand !2 distances. The

distance �xed by the hardware does not impact the core idea of the

reduction—using point rays to �nd the :NN candidates. A point ray

intersects with an object containing it as long as the query point is

present inside the geometric object centered at a data point, and

this does not depend on the hardware-de�ned metric.

Arkade FR reduction is generic over the distance function � .

Hence, the e�ectiveness of this reduction depends on the distance

function and consequently, the geometric objects that will be built

centered at the data points. If a distance function geometric object is

such that the Filter phase forwards most of the data points as :NN

candidates, Arkade FR reduction is not useful. Because it has to

process the unnecessarily large number of candidates in the Re�ne

phase and this might not be better than a linear scan. An example

of such a distance function is cosine distance. We address how to

perform cosine distance-based :NN search in Section 4.

3.2 Correctness of Arkade FR Reduction

To prove the correctness of Arkade FR reduction, we �rst introduce

A, �-ball in De�nition 2 and then formally de�ne Filter and Re�ne

phases in De�nitions 3 and 4 respectively.

De�nition 2 (A, �-ball centered at a point 1, �� (1, A )). A, �-ball

in R3 centered at a point 1 is a set of points 0 that are within a

�-distance of A from 1:

�� (1, A ) = {0 | 0 ∈ R3 , � (1, 0) ≤ A } (1)

De�nition 3 (Filter). Given a training set of data points �, a set of

query points & , and a positive real number A , the Filter phase outputs

all the data points in � that are within a �-distance A of each query

point @ ∈ & (i.e. � ∩ �� (@, A )).

De�nition 4 (Re�ne). Given a natural number : and a set of points

in �� (@, A ) for each query point @ ∈ & , the Re�ne phase outputs the

: closest points to @ according to the � distance.

Theorem 1 (Correctness of Arkade FR reduction). Given

a training set of data points �, a set of query points &,@ ∈ & , a

natural number : , a positive real number A , and a distance function

� , Algorithm 1 computes the : nearest data points of @ within a

�-distance of A from @.

Proof. We�rst show that any point removed by the Filter phase

of Algorithm 1 is not inside �� (@, A ). Then, we show that any point

not within the : closest points to @ gets removed by the Re�ne

phase. We use these two claims to conclude that the set of points

returned by Algorithm 1 is exactly the : nearest neighbors to @

within �� (@, A ).
We �rst claim that the Filter phase does not remove any points

inside �� (@, A ). Let 0 be a point in � and�0 be the AABB centered

at 0. Notice that by construction, the A, �-ball centered at point

0, �� (0, A ) is contained in the AABB �0 (i.e., �� (0, A ) ⊆ �0). The

point 0 is removed by the Filter phase exactly when the point ray

originating from @ does not intersect �0 , which by the discussion

in Section 2.4 means @ is not a point on or inside �0 , so @ is not an

element of �� (0, A ) which implies that the � distance between @

and 0 is greater than A .

@ ∉ �0 =⇒ @ ∉ �� (0, A ) =⇒ � (0, @) > A

However, this also implies that �� (@, A ) does not contain 0 (i.e.,

0 ∉ �� (@, A )) and hence 0 should be removed.

Now, we claim that any point not within the : nearest neighbors

of @ gets correctly removed by the Re�ne phase. Let 0 ∈ � be a

point not removed by the Filter phase (so � (0, @) ≤ A ) but such

that 0 is not one of the : nearest neighbors to @. This means that

there must be : other points 01, 02, . . . , 0: such that the farthest of

: neighbors is closer to @ than 0 is (i.e., 08 ≠ 0 and max8 � (08 , @) ≤
� (0, @)). Then 0 gets removed on line 12 of Algorithm 1.

Since Algorithm 1 does not remove any points that should be

kept, and does not keep any points that should be removed, its

output is exactly the : points in �� (@, A ) that are closest to @. □

4 MONOTONE TRANSFORMATION

This section introduces a new reduction, Arkade Monotone Trans-

formation (MT), that handles some metrics outside !? better than

the Arkade FR reduction. The !? distance functions, the primary

focus of Section 3, share an important property: their A, �-balls cor-

respond to geometric shapes that can be e�ciently represented and

processed by RT cores. But this property fails for some important

distances, e.g. the cosine distance. To accommodate some of such

distances (including cosine), the Arkade MT reduction uses mono-

tone transformations to reduce :NN in the given metric to :NN in

!2. The resulting :NN problem is solved with the well-established

!2-distance based RT-accelerated search using spheres [9], which

is implemented as the !2-instance of Arkade FT.

Arkade MT reduction is based on the following property.

De�nition 5 (Monotonicity of distance functions). A distance

function � on R= is monotonically increasing (resp. decreasing) at

a point @ ∈ R= if there exists a transformation 5 : R= → R
= such

that for any two points 01 and 02 in R
= , if @ is closer to 01 than 02 in

terms of the distance � , then after applying the transformation, 5 (@)
is still closer to (resp. further from) 5 (01) than 5 (02) in terms of !2

distance:

� (@, 01) < � (@, 02) =⇒
!2 (5 (@), 5 (01)) < !2 (5 (@), 5 (02))

(resp. !2 (5 (@), 5 (01)) > !2 (5 (@), 5 (02))).

18







ICS ’24, June 04–07, 2024, Kyoto, Japan Mandarapu, et al.

on several birds and the locations where they are spotted.

We obtained the geospatial coordinates of the spottings for

January 2018. We convert the geospatial coordinates into

Cartesian coordinates before passing the data as input to the

Arkade reductions.

Point Clouds Kitti [13] is an autonomous driving footage pop-

ularly used in computer vision benchmarks. The data we

used is in the form of 3D point clouds generated by the Velo-

dyne scanner. We combined several frames to make up our

dataset. Randnet [7] is a synthetic point cloud generated

from real-world and synthetic environments using RandLA-

Net architecture [20]. This particular dataset is built on an

aerial view of a city landscape.

3D Scans Manuscript [44] dataset is an XYZ RGB 3D scan of a

page in Latin from Vellum manuscript.

Synthetic Datasets Glove 3D is a three-dimensional PCA projec-

tion of 25-dimensional Glove data [40]. Randnet is also a

synthetic dataset.

Table 1: Datasets Characteristics

Dataset Data Points Queries Dimension

Gowalla [8] 1270969 10000 3

Glove 3D [40] 1183514 10000 3

Manuscript [44] 2145617 10000 3

Cali OSM [38] 4195951 10000 2

Kitti [13] 4000000 10000 3

Randnet [20] 6815065 10000 3

Gbif [12] 8475714 10000 3

Baselines. We used three GPU and one state-of-the-art CPU :NN

libraries to evaluate Arkade. This mixture contains both tree-based

and non-tree-based approaches.

SCANN is a quantization-based approximate similarity search li-

brary [17]. It is the state-of-the-art in CPU :NN implemen-

tations [4]. We use the same parameters as ANN bench-

marks [4] to get a recall2 of 0.99.

Treelogy implements a KD-tree-based exact GPU implementa-

tion [15]. We modify the Treelogy code to perform !? and

cosine distance-based :NN search.

FAISS is a state-of-the-art exact quantization-based GPU library [4,

25]. FAISS uses tensor�ow-gpu to interface with CUDA cores.

We use the IVFFlatL2 index (as used in ANN benchmarks [4])

and train the data before the search.

FastRNN uses RT architecture to perform �xed-radius search, only

in case of Euclidean distances [9]. To correctly perform the

:NN search using other distances, we use a larger radius√
3A , where A is the given radius and 3 is the data dimension,

and a larger number of nearest neighbors :′ just enough
to obtain : nearest neighbors according to a given distance.

(see Subsection 5.1).

We use Treelogy and FastRNN to evaluate the Arkade Filter-

Re�ne reduction, while we use SCANN, FAISS, and Treelogy to

2Recall is the ratio of the number of correctly found nearest neighbors by the search
to the number of true nearest neighbors from the ground truth.

evaluate the Arkade Monotone Transformation reduction. SCANN

and FAISS implement only !2 and cosine distances on CPU and

GPU respectively. On the other hand, the modi�cations of FastRNN

only work for !? distances.

Experimental Setup. We used NVIDIA GeForce RTX 4070 Ti GPU

with 12GB memory for all of our experiments. To interface with the

RT architecture on the GPU, we used Optix Wrapper Library [47].

Arkade builds the BVH tree index once over the entire set of data

points for chosen parameters and searches for neighbors once for all

the query points in every run.We perform 5 such runs to collect and

average the performance metrics such as build time and search time.

All the reported numbers are rounded to two non-zero decimals.

We evaluate Filter-Re�ne reduction with the !1 and !∞ distance

functions, and Monotone Transformation reduction with cosine

distance. We plug in TrueKNN’s [33] approach of choosing a small

radius and iteratively increasing the radius until all the query points

�nd their : neighbors. To make a fair comparison, we also apply

TrueKNN to the baseline FastRNN.

6.1 Performance Evaluation

We compare the search times and the speedups of Arkade reductions

over all the baselines and the datasets in Tables 2 and 3. Table 2

shows the comparison of Arkade to the baselines, Treelogy and

FastRNN, for !1 and !∞ norms. In Table 3, we show the same

performance numbers for Cosine distance.

Among all the baselines, we see that Arkade is signi�cantly

faster than SCANN, although the speedup can be attributed to

SCANN being a purely CPU-based implementation. In the case of

GPU baselines, Arkade is still faster by 1.5x-200x. The speedup of

Arkade over non-RT baselines demonstrates the ability of RT cores

to e�ciently accelerate the irregular tree traversals. The speedups

over the RT baseline, FastRNN, show howArkade e�ciently utilizes

the RT cores to accelerate a broader range of applications.

In general, we �nd that the speedups of Arkade over baselines

do not increase with an increase in the dataset size. For example,

Gowalla and Glove3D datasets are roughly 1M in size but Arkade’s

speedups on these datasets are very di�erent. The search times

of non-RT-based implementations such as SCANN, Treelogy, and

FAISS increase with the increase in the size of the dataset, however,

RT implementations such as Arkade and FastRNN do not follow

the same trend. We go into more detail in Section 6.2.1.

6.1.1 !1 norm. In the �rst half of Table 2, we see that Arkade

achieves speedups of 1.6x-160.9x and 1.3x-33.1x over Treelogy and

FastRNN, respectively. Arkade is faster than Treelogy since Arkade

uses RT cores to accelerate the BVH tree traversals, while Treelogy

uses shader cores.

In this experiment, we use the same search radius for FastRNN

andArkade. This is because the !1 norm geometric object (rhombus)

is present inside the !2 norm geometric object (circle). Even though

the search radius is the same, FastRNN searches for a larger number

of neighbors. FastRNN uses !2 distance to rank the neighbors unlike

Arkade, which uses the actual distance function, !1 norm. Because

!1 norm geometric object is smaller in volume compared to !2

norm geometric object, Arkade can e�ciently search neighbors in

a smaller space, which is why Arkade is consistently faster than

FastRNN.

21







Arkade: k-Nearest Neighbor Search With Non-Euclidean Distances using GPU Ray Tracing ICS ’24, June 04–07, 2024, Kyoto, Japan

Table 4: Average number of ray-AABB intersection and number of rounds for !∞ distance (Table 2) and cosine distance (Table 3).

Dataset

!∞ distance Cosine distance

Arkade FastRNN Arkade

Average
Rounds

Average
Rounds

Average
Rounds

#Intersections #Intersections #Intersections

Gowalla 263.47 10 510.40 10 10613.80 7

Glove3D 26.12 2 60.46 2 60.46 2

Manuscript 173.20 4 510.50 4 357.77 3

CaliOSM 440.11 6 827.03 6 2695.24 1

Kitti4M 366.38 8 365.28 7 20669.20 1

Randnet 121.92 1 397.79 1 211.86 4

Gbif 3093.40 5 5185.58 5 20708.30 1

to acceleration with RT cores [9, 32, 48, 52, 54]. Wald et. al. [48] were

the �rst to use RT cores to accelerate non-ray tracing applications.

They looked at the problem of identifying the location of a point in

a tetrahedral mesh. By modeling the point as a ray and reporting

the closest tetrahedron intersected by the ray, they identi�ed the

tetrahedron in which the point was contained. Zellman et. al. [52]

showed how to use RT cores to perform graph drawing. They re-

formulated the nearest neighbor search subroutine as a ray tracing

problem and used the force exerted by the nearest neighbors to

direct their graph drawing algorithm. They found their approach

to be signi�cantly faster than the state-of-the-art force-directed

graph drawing algorithms. Evangelou et. al. [9] used RT cores to

perform photon mapping by �nding the set points in a �xed-radius

neighborhood of a query point. They used the reduction proposed

by Zellman et. al. and found that they were up to 15x faster than

non-RT-accelerated baselines. Zhu et. al. [54] proposed optimiza-

tions such as point reordering and query partitioning to improve

the performance of RT-accelerated neighbor searches. Nagarajan et.

al. proposed RT-DBSCAN [32] and TrueKNN [33] to leverage RT

cores to solve DBSCAN clustering and e�ciently perform :-nearest

neighbor search, respectively.

7.2 Tree-based, GPU-accelerated kNN

Tree-based :NN algorithms are only e�cient at lower dimensions

due to the curse of dimensionality [49]. They are mostly specialized

for certain applications. Merry et. al. [29] propose an optimization

to leverage the coherence of points when traversed in :d tree order

so as to reuse traversal information of neighboring points. They

�nd that their approach is 4.4x to 4.6x faster and does not require

any modi�cations to the :d tree. Treelogy[15, 19] proposes several

optimizations to improve memory coalescing and reduce diver-

gence caused by GPU threads that traverse di�erent parts of the

tree. Gieseke et. al. [14] propose the idea of a bu�er :d tree to create

batches of query points that all target the same leaf nodes of the

:d tree, exploiting data locality. However, their work is specialized

for data with dimensionality between 4 and 25. An optimized ap-

proximate KD-tree-based KNN is proposed to aid in point cloud

registration [51]. However, this optimization is application-speci�c.

Gowanlock [16] proposes a hybrid CPU-GPU algorithm that breaks

computation up so that areas of large density are assigned to the

GPU, while the CPU handles the rest of the data. This approach

leverages the advantages o�ered by the di�erent architectures to

optimize performance.

8 CONCLUSION

Irregular problems like tree traversals are ubiquitous, especially

queries like nearest neighbor search that have applications in do-

mains such as point cloud registration in computer vision, data

compression, similarity scoring, DNA sequencing, etc. Tree-based

nearest neighbor search is naturally challenging to scale up us-

ing purely software approaches on massively parallel commodity

hardware such as GPUs. Even though ray tracing cores of GPU are

specialized hardware to cater to graphics applications, we show

that this specialized hardware can be generalized to accelerate tree

operations in other domains, To that end, we provide a set of re-

ductions to the ray tracing scene. Without our reductions, distance

metric computations such as !? norm and cosine distance take sig-

ni�cantly longer to complete or cannot be run on RT cores (it varies

between previous works). While RT cores accelerate tree traversals

through BVH construction, this tree structure is not accessible to

the user and is limited to 3D space. Availability and programma-

bility of the spatial tree itself would be more helpful in using RT

cores for general applications.

ACKNOWLEDGMENTS

We are thankful to all the anonymous reviewers for providing

valuable feedback. We also thank Kirshanthan Sundararajah for

helping us improve the earlier versions of the paper and Raghav

Malik for helping us with the proof. This work was funded by NSF

grants CCF-1908504, CCF-1919197 and CCF-2216978.

REFERENCES
[1] David Adedayo Adeniyi, Zhaoqiang Wei, and Yang Yongquan. 2016. Automated

web usage data mining and recommendation system using K-Nearest Neighbor
(KNN) classi�cation method. Applied Computing and Informatics 12, 1 (2016),
90–108.

[2] AMD. 2023. AMD Ray tracing. https://www.amd.com/en/technologies/rdna
[3] Fabien André, Anne-Marie Kermarrec, and Nicolas Le Scouarnec. 2015. Cache

locality is not enough: High-Performance Nearest Neighbor Search with Product
Quantization Fast Scan. Proc. VLDB Endow. 9, 4 (2015), 288–299.

[4] Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. 2020. ANN-
Benchmarks: A benchmarking tool for approximate nearest neighbor algorithms.
Information Systems 87 (2020), 101374. https://doi.org/10.1016/j.is.2019.02.006

[5] Jon Louis Bentley. 1975. Multidimensional binary search trees used for associative
searching. Commun. ACM 18, 9 (1975), 509–517.

24



ICS ’24, June 04–07, 2024, Kyoto, Japan Mandarapu, et al.

[6] N. Bourbaki. 1987. Topological Vector Spaces: Chapters 1-5. Springer-Verlag, Berlin.
https://books.google.com/books?id=S4wnAQAAIAAJ

[7] Meida Chen, Qingyong Hu, Zifan Yu, Hugues THOMAS, Andrew Feng, Yu Hou,
Kyle McCullough, Fengbo Ren, and Lucio Soibelman. 2022. STPLS3D: A Large-
Scale Synthetic and Real Aerial Photogrammetry 3D Point Cloud Dataset. In 33rd
British Machine Vision Conference, November 21-24, 2022. BMVA Press, London,
UK, 429. https://bmvc2022.mpi-inf.mpg.de/0429.pdf

[8] E. Cho, S. A. Myers, and J. Leskoven. 2023. Friendship and Mobility: User
Movement in Location-Based Social Networks. Retrieved from UCR-STAR
https://star.cs.ucr.edu/?stanford-gowalla&d.

[9] I. Evangelou, G. Papaioannou, K. Vardis, and A. A. Vasilakis. 2021. Fast Radius
Search Exploiting Ray Tracing Frameworks. Journal of Computer Graphics Tech-
niques (JCGT) 10, 1 (5 February 2021), 25–48. http://jcgt.org/published/0010/01/
02/

[10] JeromeH Friedman, Jon Louis Bentley, and Raphael Ari Finkel. 1977. An algorithm
for �nding best matches in logarithmic expected time. ACM Transactions on
Mathematical Software (TOMS) 3, 3 (1977), 209–226.

[11] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast Approximate
Nearest Neighbor Search With The Navigating Spreading-out Graph. Proc. VLDB
Endow. 12, 5 (2019), 461–474.

[12] GBIF.Org User. 2023. Occurrence Download. https://doi.org/10.15468/DL.
QQ7KRQ

[13] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. 2013. Vision
meets Robotics: The KITTI Dataset. https://www.cvlibs.net/datasets/kitti/raw_
data.php

[14] Fabian Gieseke, Justin Heinermann, Cosmin E. Oancea, and Christian Igel. 2014.
Bu�er k-d Trees: Processing Massive Nearest Neighbor Queries on GPUs. In
ICML (JMLR Workshop and Conference Proceedings, Vol. 32). JMLR.org, 172–180.

[15] Michael Goldfarb, Youngjoon Jo, and Milind Kulkarni. 2013. General Transfor-
mations for GPU Execution of Tree Traversals. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis
(Denver, Colorado) (SC ’13). Association for Computing Machinery, New York,
NY, USA, Article 10, 12 pages. https://doi.org/10.1145/2503210.2503223

[16] Michael Gowanlock. 2021. Hybrid KNN-join: Parallel nearest neighbor searches
exploiting CPU and GPU architectural features. J. Parallel and Distrib. Comput.
149 (2021), 119–137.

[17] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern,
and Sanjiv Kumar. 2019. Accelerating Large-Scale Inference with Anisotropic
Vector Quantization. https://doi.org/10.48550/ARXIV.1908.10396

[18] R. W. Hamming. 1950. Error detecting and error correcting codes. The Bell
System Technical Journal 29, 2 (1950), 147–160. https://doi.org/10.1002/j.1538-
7305.1950.tb00463.x

[19] Nikhil Hegde, Jianqiao Liu, Kirshanthan Sundararajah, and Milind Kulkarni.
2017. Treelogy: A benchmark suite for tree traversals. In 2017 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS). 227–238.
https://doi.org/10.1109/ISPASS.2017.7975294

[20] Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan Guo, Zhihua Wang,
Niki Trigoni, and Andrew Markham. 2020. RandLA-Net: E�cient Semantic
Segmentation of Large-Scale Point Clouds. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (2020).

[21] Qiang Huang, Jianlin Feng, Yikai Zhang, Qiong Fang, and Wilfred Ng. 2015.
Query-aware locality-sensitive hashing for approximate nearest neighbor search.
Proceedings of the VLDB Endowment 9, 1 (2015), 1–12.

[22] Piotr Indyk and Rajeev Motwani. 1998. Approximate nearest neighbors: towards
removing the curse of dimensionality. In Proceedings of the thirtieth annual ACM
symposium on Theory of computing. 604–613.

[23] Intel. 2023. Intel Ray tracing. https://www.intel.com/content/www/us/en/
developer/articles/guide/real-time-ray-tracing-in-games.html

[24] Paul Jaccard. 1912. THE DISTRIBUTION OF THE FLORA IN THE ALPINE
ZONE.1. New Phytologist 11, 2 (1912), 37–50. https://doi.org/10.1111/j.1469-
8137.1912.tb05611.x

[25] J. Johnson, M. Douze, and H. Jegou. 2021. Billion-Scale Similarity Search with
GPUs. IEEE Transactions on Big Data 7, 03 (Jul 2021), 535–547. https://doi.org/
10.1109/TBDATA.2019.2921572

[26] Lukasz Kaiser and Ilya Sutskever. 2015. Neural GPUs Learn Algorithms. https:
//doi.org/10.48550/ARXIV.1511.08228

[27] Prasanta Chandra Mahalanobis. 1936. On the generalised distance in statis-
tics. http://library.isical.ac.in:8080/xmlui/bitstream/handle/10263/6765/Vol02_
1936_1_Art05-pcm.pdf

[28] Yu A. Malkov and D. A. Yashunin. 2020. E�cient and Robust Approximate
Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs.
IEEE Trans. Pattern Anal. Mach. Intell. 42, 4 (apr 2020), 824–836. https://doi.org/
10.1109/TPAMI.2018.2889473

[29] Bruce Merry, James Gain, and Patrick Marais. 2013. Accelerating kd-tree Searches
for all k-nearest Neighbours. In Eurographics 2013 - Short Papers, M.-A. Otaduy
and O. Sorkine (Eds.). The Eurographics Association. https://doi.org/10.2312/

conf/EG2013/short/037-040
[30] G. Mori, S. Belongie, and J. Malik. 2001. Shape contexts enable e�cient retrieval

of similar shapes. In Proceedings of the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. CVPR 2001, Vol. 1. I–I. https://doi.org/
10.1109/CVPR.2001.990547

[31] Marius Muja and David G. Lowe. 2014. Scalable Nearest Neighbor Algorithms
for High Dimensional Data. IEEE Transactions on Pattern Analysis and Machine
Intelligence 36, 11 (2014), 2227–2240. https://doi.org/10.1109/TPAMI.2014.2321376

[32] Vani Nagarajan and Milind Kulkarni. 2023. RT-DBSCAN: Accelerating DBSCAN
using Ray Tracing Hardware. In IPDPS. IEEE, 963–973.

[33] Vani Nagarajan, Durga Mandarapu, and Milind Kulkarni. 2023. RT-kNNS
Unbound: Using RT Cores to Accelerate Unrestricted Neighbor Search. In
Proceedings of the 37th International Conference on Supercomputing, ICS 2023,
Orlando, FL, USA, June 21-23, 2023, Kyle A. Gallivan, Efstratios Gallopoulos,
Dimitrios S. Nikolopoulos, and Ramón Beivide (Eds.). ACM, 289–300. https:
//doi.org/10.1145/3577193.3593738

[34] Moohyeon Nam, Jinwoong Kim, and Beomseok Nam. 2016. Parallel tree traversal
for nearest neighbor query on the GPU. In 2016 45th International Conference on
Parallel Processing (ICPP). IEEE, 113–122.

[35] NVIDIA. [n. d.]. NVIDIA OptiX 7.5 – Programming Guide. https://raytracing-
docs.nvidia.com/optix7/guide/index.html

[36] Nvidia. 2023. NVIDIA Nsight Compute. https://developer.nvidia.com/nsight-
compute

[37] Nvidia. 2023. NVIDIA Ray tracing. https://developer.nvidia.com/rtx/ray-tracing
[38] OpenStreetMap. [n. d.]. https://www.openstreetmap.org
[39] Varun Pandey, Andreas Kipf, Thomas Neumann, and Alfons Kemper. 2018. How

good are modern spatial analytics systems? Proceedings of the VLDB Endowment
11, 11 (2018), 1661–1673.

[40] Je�rey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:
Global Vectors for Word Representation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP). 1532–1543. http://www.aclweb.org/anthology/D14-
1162

[41] Ninh Pham and Tao Liu. 2022. Falconn++: A Locality-sensitive Filtering Approach
for Approximate Nearest Neighbor Search. arXiv:2206.01382 [cs.DS]

[42] Deyuan Qiu, Stefan May, and Andreas Nüchter. 2009. GPU-accelerated nearest
neighbor search for 3D registration. In Computer Vision Systems: 7th International
Conference on Computer Vision Systems, ICVS 2009 Liège, Belgium, October 13-15,
2009. Proceedings 7. Springer, 194–203.

[43] Mark J. Reid and Karl M. Menten. 2020. The �rst stellar parallaxes revisited.
Astronomische Nachrichten 341, 9 (nov 2020), 860–869. https://doi.org/10.1002/
asna.202013833

[44] The Stanford 3D Scanning Repository. 2014. Vellum manuscript, The XYZ RGB
models. http://graphics.stanford.edu/data/3Dscanrep/

[45] Steven Rubin and Turner Whitted. 1980. A 3-dimensional representation for
fast rendering of complex scenes. ACM Siggraph Computer Graphics 14. https:
//doi.org/10.1145/965105.807479

[46] Amit Singhal. 2001. Modern Information Retrieval: A Brief Overview. IEEE Data
Eng. Bull. 24, 4 (2001), 35–43. http://sites.computer.org/debull/A01DEC-CD.pdf

[47] IngoWald, NathanMorrical, andHaines E. [n. d.]. OWL: ANodeGraph "Wrapper"
Library for OptiX 7. https://github.com/owl-project/owl

[48] Ingo Wald, Will Usher, Nathan Morrical, Laura Lediaev, and Valerio Pascucci.
2019. RTX Beyond Ray Tracing: Exploring the Use of Hardware Ray Tracing
Cores for Tet-Mesh Point Location. In High-Performance Graphics - Short Papers,
Markus Steinberger and Tim Foley (Eds.). The Eurographics Association. https:
//doi.org/10.2312/hpg.20191189

[49] Roger Weber, Hans-Jörg Schek, and Stephen Blott. 1998. A Quantitative Analysis
and Performance Study for Similarity-Search Methods in High-Dimensional
Spaces. In VLDB.

[50] Jordan Wood. 2008. Filter and Re�ne Strategy. Springer US, Boston, MA, 320–320.
https://doi.org/10.1007/978-0-387-35973-1_415

[51] Tiancheng Xu, Boyuan Tian, and Yuhao Zhu. 2019. Tigris: Architecture and
Algorithms for 3D Perception in Point Clouds. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture (Columbus, OH, USA)
(MICRO ’52). Association for ComputingMachinery, New York, NY, USA, 629–642.
https://doi.org/10.1145/3352460.3358259

[52] Stefan Zellmann, MartinWeier, and IngoWald. 2020. Accelerating Force-Directed
Graph Drawing with RT Cores. In 2020 IEEE Visualization Conference (VIS). 96–
100. https://doi.org/10.1109/VIS47514.2020.00026

[53] Weijie Zhao, Shulong Tan, and Ping Li. 2020. SONG: Approximate Nearest
Neighbor Search on GPU. In 2020 IEEE 36th International Conference on Data
Engineering (ICDE). 1033–1044. https://doi.org/10.1109/ICDE48307.2020.00094

[54] Yuhao Zhu. 2022. RTNN: Accelerating Neighbor Search Using Hardware Ray
Tracing. In Proceedings of the 27th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (Seoul, Republic of Korea) (PPoPP ’22).
Association for Computing Machinery, New York, NY, USA, 76–89. https:
//doi.org/10.1145/3503221.3508409

25


	Abstract
	1 Introduction
	2 Background
	2.1 k-Nearest Neighbour Search
	2.2 Ray Tracing Architecture
	2.3 Programming and Execution Model
	2.4 RT-kNN: kNN on RT architecture

	3 Filter-Refine
	3.1 Arkade Filter-Refine Reduction
	3.2 Correctness of Arkade FR Reduction

	4 Monotone Transformation
	5 Discussion
	5.1 Inclusion property to generalize RT-kNN
	5.2 Other Distances
	5.3 Choice of radius

	6 Evaluation
	6.1 Performance Evaluation
	6.2 Performance Analysis

	7 Related Work
	7.1 Non-RT Applications Accelerated With RT Architecture
	7.2 Tree-based, GPU-accelerated kNN

	8 Conclusion
	Acknowledgments
	References

