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Estimating Polarization Purity With Noise
Alexander Kostinski , Daniel Kestner , and Jothiram Vivekanandan

Abstract— We formulate a problem of estimating and mon-
itoring mismatch (unwanted departure from orthogonality) of
two ostensibly orthogonal polarization channels in a fully polari-
metric general device such as a polarimetric weather radar.
A statistical approach is proposed by using thermal noise or,
more generally, a “polarimetric noise” class of sources. The
suitable noise class of distributions is shown to be rooted in the
complex multivariate Gaussian probability density function (pdf),
the latter possessing a uniform pdf on the Poincare sphere (PS),
with a probability measure given by a fractional surface area.
To that end, we develop a parameter to estimate polarization
purity. By relating an inner (dot) product of noisy electric
fields to their cross-correlation coefficient, we arrive at a simple
relation between the ellipticity δϵ and tilt δτ mismatches and
the measured complex voltage cross-correlation coefficient ρ:
ρ ≈ ∓ cos(2ϵ)δτ ± iδϵ . Our results are confirmed by Monte
Carlo simulations. Thermal noise microwave data collected by the
S-band radar of the National Center for Atmospheric Research
(NCAR) during solar calibration scans is used to set bounds on
δϵ and δτ , thereby characterizing polarization purity.

Index Terms— Imbalance, noise, polarimetry, radar.

I. INTRODUCTION

PHASED array configuration is currently being considered
as a leading contender for next-generation weather radars

in the USA. The polarization diversity is an important of part
of the design and the change in transmitted polarization will
be accomplished digitally, along with the beam steering. This
renders precise timing a particularly important requirement for
avoiding phase errors in the arrays [1]. Timing errors can turn
into polarization errors (ellipticity, in particular), and here,
we shall focus on polarimetry within the context of distributed
weather targets. The state of polarization typically changes as
the weather radar beam is steered away from broadside [2]
and such changes have been thoroughly modeled by others
by assuming the cross-dipole configuration and other specific
architectures [3], [4].

The question we pose and address here complements these
modeling studies as our goal is not to predict polarization
errors but rather to detect and estimate them. Throughout
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this article, by polarimetric errors or mismatches, we mean
a departure from perfect orthogonality of two (ostensibly
orthogonal) polarization channels. We shall try here to
accomplish the task of estimating these mismatches in a
parsimonious, model-independent manner. It may become
important to monitor polarization purity in real time, e.g.,
during weather radar observations and then distributed targets
themselves may serve as a source for polarimetric calibration.

To motivate the basic problem, recall that one must mea-
sure the ellipticity and tilt of the instantaneous polarization
ellipse of incident (and/or transmitted) electromagnetic radi-
ation accurately enough to clearly separate system-inherent
polarization errors from polarization changes caused by the
distributed targets. But to do that, one needs to know, to what
precision the two orthogonal channels of a polarimteric radar
basis are actually orthogonal. It is particularly desirable to
have such capability while the weather radar system is in
operation. This is the problem considered here, and our goal
is to devise a method with minimal assumptions regarding
modeling of the propagation media.

To that end, here we propose a method for detecting polar-
ization nonorthogonality in a pair of ostensibly cross-polarized
receivers via a “noisy,” or unpolarized input. This method
is suggested by an analogy with detecting phase error in
quadrature receivers, previously implemented in [5], [6],
and [7]. That method was developed to employ weather radar
signals from precipitation, the latter stochastic because of
the hydrometeors’ random location and size distribution. The
real (I) and imaginary (Q) components of the received weather
signals are zero mean, statistically independent and identically
distributed (IID) Gaussian random variables [8], [9]. Simulta-
neous quadrature signals I and Q are statistically independent
and have the same autocorrelation function (ACF).

In a dual-polarized radar, the co- and cross-polarized
simultaneous I and Q values are also statistically indepen-
dent, although not necessarily identically distributed because
of differential reflectivity. Whatever the target is, however,
it must always be required that the polarization states of
the dual-channel receivers are orthogonal so that the trans-
mitted signal has negligible cross-polarization contamination.
Such orthogonality in radar measurements is essential to
secure unbiased estimates of dual-polarimetric observations.
This requirement is likely to become more stringent for the
next-generation phase array implementation of polarimetric
radars.

By a way of motivation, consider the slant ±45◦ design
of transmitting horizontally (H) and vertically (V) polarized
waves, currently being examined at the National Center for
Atmospheric Research (NCAR) and one with a long history,
see [10]. Right from the outset it requires a π phase shift to
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Fig. 1. Sketch of the detection problem. Two (nearly) orthogonal receivers,
denoted by hollow rectangles, resolve incident radiation E⃗ in field into
two components: polarization states represented by complex unit vectors
u⃗∥ and u⃗

⊥̃
(e.g., horizontal and (near) vertical, H and V of a linear basis, and

left-handed polarization (LCP) and right-handed polarization (RCP) of the
circular basis). Measured amplitude (E∥, E

⊥̃
) outputs (voltages) are depicted

with filled rectangles. The tilde in the subscript above ⊥ indicates the deviation
from perfect orthogonality, quantified by the generally complex quantity α.
The question we pose is: how to estimate the orthogonality mismatch α from
measurements of complex amplitudes (proportional to voltages) E∥ and E

⊥̃
.

get from the ±45◦ hardware to the HV orthogonal basis. But
how does one ensure that the phase shift is exactly 180◦ rather
than, say, 179◦? This type of question led us to the research
reported here and, insofar as phased arrays are all about phase
shifts, this is an important question to consider.

Polarimetric weather radar systems are typically calibrated
using one of the following: sphere calibration, radar obser-
vations of precipitation, and solar calibration [4], [9], [11].
Sphere calibration and backscatter from precipitation are used
for calibrating transmitter and receiver subsystems. Randomly
polarized solar microwave radiation is often used to calibrate
dual-channel receivers, and this is our main interest here.
Specifically, we shall focus on the deviation from orthogonal-
ity and, for the sake of clarity, shall use receiver calibration
as a practical example.

II. MATHEMATICAL FRAMEWORK

A typical polarimetric radar setup (in the receiving mode) is
sketched in Fig. 1, where a stochastic incident electric field E⃗ in
irradiates two (presumably) orthogonal channels. In order to
focus on the state of polarization, separately from the absolute
calibration of intensity, we shall denote polarization states by
u⃗ (u for unitary or unit magnitude). Such normalized 2-D
complex vectors (variously called polarization states, Jones
vector or spinors [12], [13], [14]) are typically represented
as u⃗ = [cos(β), sin(β)eiφ

]
T, with the superscript T denoting

transpose. This representation holds in any basis but if we
define β and φ in the HV basis; then, H and V are represented
as u⃗ = [1, 0]T and u⃗ = [0, 1]T, respectively, whereas the
angle β defines the electric field tilt for a linearly polarized
wave, e.g., u⃗ = 1/(2)1/2

[1, 1]T = [cos(45◦), sin(45◦)]T. The
circular right and left polarizations in the same HV basis are

represented as u⃗ = 1/(2)1/2
[1, j]T and u⃗ = 1/(2)1/2

[1,− j]T,
respectively [15].

Returning to the general basis setup of Fig. 1 (e.g., circular
right and left bases), the incoming radiation is resolved by the
two receiver channels into two components u⃗∥ and u⃗⊥̃. The
tilde in the subscript above ⊥ indicates that the (Hermitian)
orthogonality is neither perfect either because of the geometric
arrangement or phase difference or nor is perfect. The problem
posed here is to estimate and monitor these departures from
exact orthogonality between the two ostensibly orthogonal
channels. Note that the absolute magnitude calibration is nei-
ther considered nor do we invoke any models of the scattering
medium (unlike [9], [11], and [16], where the notion of a
scattering matrix is employed from the outset).

A key step is to find the simplest route to capture the (com-
plex) mismatch mathematically. To that end, we represent the
deviation from orthogonality by writing the Jones vector of the
near orthogonal antenna (u⃗⊥̃) as a sum of the true orthogonal
vector (u⃗⊥) and a small projection onto the parallel channel
Jones vector (u⃗∥) due to the nonorthogonality (mismatch).
Thus, we can write

u⃗⊥̃ ≡
u⃗⊥ + αu⃗∥(
1 + |α|2

) 1
2

. (1)

Returning to the polarization mismatch (departure from exact
Hermitian orthogonality u⃗†

⊥
u⃗∥ = 0), the latter is captured by

the complex variable α, which is implicitly defined by (1). The
Hermitian conjugate symbol † denotes the conjugate transpose,
and conjugation has the meaning of reversing the sense of
rotation for a polarization ellipse. Although we introduce α

with a small deviation in mind (|α| ≪ 1), u⃗∥ and u⃗⊥̃ are left
generic in (1) so that α ranges in magnitude from 0 (perfectly
orthogonal channels, u⃗⊥̃ = u⃗⊥), to ∞ (parallel channels,
u⃗⊥̃ = u⃗∥).

The mismatch α can also be expressed explicitly in terms of
u⃗∥ and u⃗⊥̃, by taking the inner product of both sides of (1) with
each of these antenna polarizations, in turn, and combining the
results

α =
u⃗†
∥
u⃗⊥̃

u⃗†
⊥

u⃗⊥̃

. (2)

This mismatch expression, reminiscent of a crosstalk,
together with (1) yields, to 1st order in (|α| ≪ 1)

α ≈ u⃗†
∥
u⃗⊥̃ (3)

as is also indicated by the legend of Fig. 1. Thus, α encapsu-
lates and quantifies our approach to polarization purity.

Randomness enters the development now as our next move
is to relate this a priori unknown complex mismatch α to
the measured received electric field (complex voltage) cross
correlation coefficient. Why the cross correlation to esti-
mate α? We were guided by the fact that both α and the
Pearson cross-correlation coefficient ρ at zero lag are the
inner products. The latter can be viewed as a cosine of an
angle between two random variables, regarded as elements of
a functional space [17] but it will be shown here to be related
to actual angles, describing mismatches in ellipticity and tilt.
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However, for the cross-correlation idea to work, the incident
field has to be “sufficiently random” as a simple counterexam-
ple suffices to show. Indeed, consider a 45◦ linearly polarized
incident wave, decomposed by an HV dual-polarized receiver.
Although the two channels are perfectly orthogonal, the cor-
relation coefficient between them is unity. This is contrary
to a perfectly random incident polarization (e.g., precipitation
returns from a vertically pointing radar, solar microwave
emission, or thermal noise), where one intuitively expects zero
correlation between the H and V channels, see [11], which
brings us to Section III.

III. RELATING MISMATCH TO COMPLEX
CROSS-CORRELATION COEFFICIENT FOR

RANDOM INCIDENT POLARIZATIONS

For an incident electric field E (measured complex voltage),
the Pearson cross-correlation coefficient between any two
channels is given by

ρ(E1, E2) ≡

〈
E1 − ⟨E1⟩

σE1

(
E2 − ⟨E2⟩

σE2

)∗〉
(4)

yielding for zero-mean fields

ρ(E1, E2) =

〈
E1 E∗

2

〉
σE1σE2

(5)

where the averaging over a random ensemble is implied by the
angular brackets, i.e., for random variables x and y, ⟨xy⟩ ≡∫

xyp(x, y)dxdy with p(x, y) being the joint pdf and σ s are
the associated standard deviations.

The statistics of the randomly polarized incident radiation,
such as sun microwave emission or thermal noise, are those of
the multivariate circular Gaussian pdf [8], [18]. The joint pdf
can be expressed in terms of the four in-phase and quadrature
IID components (two for each polarization) or, more generally,
in four real variables E ′

x , E ′′
x , E ′

y , and E ′′
y with Ex = E ′

x +i E ′′
x ,

Ey = E ′
y + i E ′′

y , as p(E ′
x , E ′′

x , E ′
y, E ′′

y )

p
(

E ′

x , E ′′

x , E ′

y, E ′′

y

)
=

(
1

2πσ 2

)2

e−
E ′

x
2
+E ′′

x
2
+E ′

y
2
+E ′′

y
2

2σ2 . (6)

The model is called circular because the variances of real
and imaginary parts are equal for a given direction [8]. Hence
the name “multivariate circular Gaussian model” (MCGM).
The MCGM pdf is almost invariably derived in the radar
meteorology literature by an appeal to the central limit theorem
(CLT) [9], [18], e.g., when justifying MCGM for precipitation
backscatter. But CLT arguments work well near the center of
the pdf but not in the far tails. There is another and exact
route to MCGM pdf of (6). The pdf can be deduced from
two requirements only: 1) isotropy (rotational invariance) in
the space of four random variables and 2) statistical indepen-
dence [17]. In the context of polarimetry, the MCGM pdf maps
onto a uniform pdf of polarization ellipses on the Poincare
sphere (PS) as discussed below.

Now observe that (4) is general but when the channels are
exactly orthogonal and the observed radiation is sufficiently
random, the cross correlation vanishes: ρ = 0. The meaning
of “sufficiently random” is discussed below but the joint pdf of
MCGM in (6) fits the bill. Loosely, any unpolarized and noise-
like radiation, e.g., backscatter from precipitation, suffices.

Thus, the main idea of this article is that the deviation from
orthogonality causes deviation from ρ = 0 as proven below
and this suggests that various mismatches between imperfectly
orthogonal channels can be quantified by observing simple
thermal noise. This notion was used for in-phase and quadra-
ture monitoring in the radar and nuclear magnetic resonance
(NMR) receiver contexts [5], [6], [7], and a similar idea was
employed to explore differential phase versus the fluctuating
state of polarization in [19]. Here, we posit a polarimetric
analog, likely to be particularly useful in the context of
polarimetric phased array weather radar [4], [20], [21], [22].

The polarimetric mismatch problem is solved below at the
confluence of three lines of reasoning. First, we argue that
perfect (for our purposes) polarimetric noise is the circular
Gaussian (IID) process whose density on the PS is uniform,
that is, pdf = d A/4π , with the spherical surface area element
d A = sin(θ)dθdφ. The marginal pdfs are: f (φ) = 1/2π

and f (θ) = sin(θ)/2. In our Monte-Carlo simulations, the
complex field circular Gaussian process (MCGM) [9], [23]
indeed yields the uniformity. Second, we treat probability as
a measure, i.e., the probability of a polarization state within a
given tolerance equals the corresponding (fractional) area on
the spherical PS surface. Third, the Jones vector formalism
and a small parameter expansion are employed to arrive at
a simple relationship between polarization imbalance and the
cross-correlation coefficient.

Let us now address the last item and consider the field cross-
correlation coefficient between two nearly orthogonal polariza-
tion channels, denoted by ρ∥⊥̃. Specializing the definition of
cross correlation coefficient (4) to the case at hand, we get

ρ∥⊥̃ ≡

〈
E∥E∗

⊥̃

〉
σ∥σ⊥̃

(7)

where σ s are the corresponding standard deviations and
σ∥ = σ⊥̃ is assumed. Throughout the rest of this article,
we drop the subscripts in ρ∥⊥̃ and use a simple ρ instead,
except in the S-Pol radar section, where ρHV is used. Note
that this ρHV is distinct from the traditional ρHV of weather
radar polarimetry. The latter is a measure of the similarity
of co-polar HH and VV returns and is typically near unity
whereas ours is typically near 0 and measures deviation from
the polarization orthogonality.

As above, the statistical average is denoted by angular
brackets ⟨⟩, and it is an integral of the variable in ques-
tion [such as E∥ in (7)] over the space spanned by the
complex fields Ex and Ey , and weighted by their joint pdf
p(Ex , Ey).

In order to relate α to the field cross-correlation coeffi-
cient ρ, we first work toward the numerator of ρ in (5)

E∥ = u⃗†
∥
E⃗ in; E⊥̃ = u⃗†

⊥̃
E⃗ in (8)

E⊥̃ =

 u⃗⊥ + αu⃗∥(
1 + |α|2

) 1
2

†

E⃗ in

=
1(

1 + |α|2
) 1

2

(
u⃗†
⊥

E⃗ in + α∗u⃗†
∥
E⃗ in

)
=

1(
1 + |α|2

) 1
2

(
E⊥ + α∗E∥

)
(9)
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and the numerator in (7) becomes〈
E∥E∗

⊥̃

〉
=

1(
1 + |α|2

) 1
2

(〈
E∥E∗

⊥

〉
+ α

〈
|E∥|

2〉). (10)

We digress briefly to interpret the above equations and recall
that the complex voltage measured by a dual-polarized antenna
in polarization state u⃗1 in response to the incident field of
polarization u⃗2 is proportional to the Hermitian product u⃗†

1u⃗2
(† denoting the conjugate transpose). The conjugation of the
Hermitian transpose † reverses the sense of rotation of the
polarization ellipse, described by u⃗ = [cos(β), sin(β)eiφ

]
T.

By reciprocity, the antenna polarization in transmitting and
receiving modes (so-called antenna height, [24], [25]) are
related by conjugation. The resultant helicity thus depends
on the context [12] and does not affect the present for-
malism. For example, a dual-polarized receiver with the
circular right and left polarized basis, given in the HV system
by u⃗1 = 1/(2)1/2(1, j) and u⃗2 = 1/(2)1/2(1,− j) with
their inner product being 0. Also, the inner product of an
antenna in polarization u⃗1 = 1/(2)1/2(1, j) and incident
wave with polarization u⃗2 = 1/(2)1/2(1,− j) is given by
(1/2)(1, j)†(1,− j) = 1 + j2

= 0 as it should.
Returning to the main derivation and to advance further

toward a simple expression, we use statistical independence of
the zero-mean fields E∥ and E⊥ so that only the second term
survives the averaging ⟨⟩ in the above expression. We can thus
obtain 〈

E∥E∗

⊥̃

〉
=

α(
1 + |α|2

) 1
2

〈
|E∥|

2〉. (11)

With equal variance in addition to the independence assump-
tion, (explicitly satisfied by the classical joint circular Gaussian
pdf on natural unpolarized radiation, see [8] but also [26])

σ 2
∥
= σ 2

⊥̃
=

〈
|E∥|

2〉 (12)

finally yielding for the cross correlation coefficient

ρ =
α(

1 + |α|2
) 1

2

. (13)

For small mismatches, we arrive at the remarkably simple
expression for the unknown mismatch in terms of measured
(sample) cross-correlation coefficient.

α ≈ ρ. (14)

This in itself, apart from applications, is already an important
theoretical result. Here, we press on to express this equation in
explicitly terms of ϵ and τ , as defined in Fig. 2. We remark that
for the more general case of unequal received intensity vari-
ances (e.g., joint “elliptical” Gaussians), the cross-correlation
corresponding to incident fields that are independent in the
orthogonal u⃗∥ u⃗⊥ basis, generalizes to

ρ =

(
σ∥

σ⊥̃

)
α(

1 + |α|2
) 1

2

. (15)

The prefactor (σ∥/σ⊥̃) is essentially a square root of differen-
tial reflectivity (ZDR) when the radar basis is HV. Thus, if ZDR
is measured at the same time, (15) permits nonorthogonality
estimation during actual weather observations.

Fig. 2. (Left) Polarization ellipse and (right) its representation on the PS.
Ellipticity is characterized by the axial ratio (b/a), 0 < b < a, and the
ellipticity angle ϵ = ± tan−1

[(b/a)], positive for RCPs, a clockwise rotation
looking into the beam (see [13], p. 28), and negative for LCP, ranging from
−π/4 to π/4 (from LCP to RCP), ϵ = 0 (equator) for the linear ones. The
angle of the major axis w.r.t +x-axis is the tilt angle τ , ranging from −π/2 to
π/2, consistent with the range of inverse tangent [27]. The associated PS
angles (position P) are 2ϵ and 2τ , ranging from −π/2 to π/2 and −π to π ,
respectively.

IV. MISMATCHES ON THE POINCARE SPHERE

We now proceed to express the results directly in terms of
ellipticity ϵ and tilt τ of the polarization ellipse, see Fig. 2,
to render setting tolerances on measurements of, say, radar
differential reflectivity, ZDR or differential phase, KDP more
intuitive. In this emphasis on ϵ and τ , we follow [11] who
were first to examine polarimetric weather radar performance
specifically in terms of ellipticity and tilt but we choose the
PS device to express mismatch α, a complex variable, in terms
of ϵ and τ . By employing the sphere, we take advantage
of the joint circular Gaussian pdf mapping onto a uniform
pdf on the spherical surface. Then, the probability of having
a polarization ϵ0 and τo within some tolerances is simply
the fractional area on the sphere (probability as a measure).
To recap so far, taking the scalar product of (1) led us to
expression for mismatch in terms of the Jones vector inner
product

u⃗†
∥
u⃗⊥̃ =

α(
1 + |α|2

) 1
2

(16)

but with the Jones vectors now viewed as functions of
ellipticity and tilt.

Equation (13) for the cross-correlation coefficient,
using (16) can be written simply and generally in terms of
the inner product of antenna Jones vectors

ρ = u⃗†
∥
u⃗⊥̃. (17)

We shall denote the ellipticities and tilts of our basis au⃗⊥

and u⃗∥ as ϵ⊥, ϵ∥ and τ⊥ τ∥, respectively. Perfectly orthogonal
polarization ellipses are antipodal, lying on opposite sides of
the PS. In terms of their ellipticity and tilt, ϵ⊥ = −ϵ∥, and
τ⊥ = τ∥± (π/2). The sign of (π/2) is such that the tilt is kept
in the range −(π/2) to (π/2).

Returning to (17), it can be shown that the magnitude of
ρ = |ρ|eiφ is |ρ| = cos(θ/2), where the angle θ is also
the arc length between u⃗∥ and u⃗⊥̃ on the (unit radius) sphere
(Fig. 2) [28]. Orthogonal states are antipodal (on opposite sides
of the PS), so it is convenient to work with the deviation from
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Fig. 3. Link from the mismatch α to the instrumental tolerances δϵ and δτ ,
provided by the PS. For any polarization state u⃗∥, its orthogonal polarization,
u⃗⊥ is the antipodal point on the PS (cross section shown). Polarization states,
u⃗
⊥̃

, nearly orthogonal to u⃗∥ lie a small “mismatch arc length” (shaded sector),
away. Arc length is the geodesic distance between u⃗

⊥̃
and u⃗⊥, i.e., from

(2ϵ, 2τ ) to (2ϵ + 2δϵ , 2τ + 2δτ ). The polarization mismatch α is related to
the arc length l as l = 2 tan−1(|α|) ≈ 2α.

antipodality and write l = π − θ . Then, |ρ| = sin((l/2)) ≈

(l/2), where l is the arc length between u⃗⊥ and u⃗⊥̃ (Fig. 3).
We shall denote the ellipticity and tilt deviations from the

orthogonality of the (presumably) perpendicular state u⊥̃ as
δϵ and δτ , respectively. For small l, according to Pythago-
ras’ theorem in the planar approximation, l = ((2δϵ)

2
+

(2 cos(2ϵ)δτ )
2)1/2. This leads to the following expression for

the magnitude of ρ in terms of ellipticity and tilt errors:
|ρ| = (l/2) = (δ2

ϵ + cos2(2ϵ)δ2
τ )

1/2. This indicates how cross
correlation arises from independent tilt error and ellipticity
error, for incident polarized fields with a uniform density on
the sphere. For such fields, the field intensity coefficient ρI is a
square of the complex cross-correlation magnitude: ρI = |ρ|2.
Taking a square root (see [28] for details) in the small error
approximation, to 1st order, then yields

ρ = u⃗†
∥
u⃗⊥̃ ≈ ∓ cos

(
2ϵ∥

)
δτ ± iδϵ (18)

where the upper sign is for τ∥ in the 4th quadrant, and the
lower sign for τ∥ in the 1st quadrant. Given the smallness
of the δs in this work, the ± for various quadrants can be
omitted in practice. Equation (18) can also be verified as a
small angle expansion of an exact result, derived recently in a
physics context [28], [29]. This is a completely general result
for the inner (scalar) product of two polarization states u1 and
u2: u†

1u2 = cos(τ2−τ1) cos(ϵ2−ϵ1)+i sin(τ2−τ1) sin(ϵ2+ϵ1).
In the present context, however, it is the approximate (18)

that encapsulates our main result and, to leading order,
elegantly decouples ellipticity and tilt contributions: with ellip-
ticity being solely responsible for the imaginary part. In this
regard, we note that modeling studies of specific radar systems,
in contrast to the present work, assumed orthogonality of tilt
and ellipticity errors (see [11, eq. (8)]) and the ellipticity error
was found to dominate the total error.

Although our mathematical framework is developed with
the view of a completely general polarimetric basis, special
cases of practical interest in current weather radars are the HV
and circular bases: 1) pure linear polarization; ρ ≈ ∓δτ and

2) purely circular polarization; ρ ≈ ±iδϵ , with the lin-
ear/circular duality of the answers. For the circular basis,
where ∥ is RCP, ρ = δϵ while for the horizontal/vertical basis,
∥ = H , ρ = δτ , assuming, for the sake of clarity, that ⊥̃ is not
contaminated by an ellipticity error. Both cases are confirmed
via simulation as shown in Fig. 4 and detailed next.

V. MONTE CARLO CONFIRMATION

To test (18) for polarimetric noise observations, we sim-
ulated the joint circular Gaussian pdf model for incident
radiation, see [8]. This distribution is the “gold standard”
for modeling distributed targets and yields a uniform pdf of
polarization states on the PS, see [30]. We used the built-in
MATLAB function (randn, 1i option) to generate complex
number samples of zero-mean unit variance circular normal
CN (0, 1). This corresponds to the real and imaginary parts
having variance (1/2). Incident radiation intensities satisfy
⟨|Ex |

2
⟩ = ⟨|Ey |

2
⟩ = ⟨I∥⟩ = ⟨I⊥⟩ = 1/2 with an associated

uniform pdf on the unit sphere. We then calculated the
measured fields (complex voltages) as E∥ = u⃗†

∥
E⃗in and E⊥̃ =

u⃗†
⊥̃

E⃗ in. In passing, we note that this method of generating
uniform distributions via simulation of multivariate Gaussians
is often employed in statistics on spheres [31].

For each pair of the mismatches, δϵ and δτ , we generated
104 independent samples of Jones vectors u⃗in from the circular
multivariate Gaussian ensemble CN (0,1)×CN (0,1) and, with
the given u⃗∥ and u⃗⊥̃, calculated the associated E∥ and E⊥̃.
We then calculated the cross-correlation coefficient ρ for this
ensemble of 2 × 104 values for each data point, to generate
the two panels of Fig. 4. In passing, we note that the procedure
can generate univariate Gaussian with a specified Doppler
spectrum as well (e.g., so that the pulse pair techniques can
recover the spectrum).

The bottom x-axis in both panels are in radians to illustrate
the slope of ±1 predicted by (18), represented by the solid
lines, and the top x-axis is shown in degrees for practical
convenience.

Recall that the sample cross correlation coefficient is a
(fluctuating) random variable and is, therefore, associated
with some statistical uncertainty, even for large sample sizes.
In passing, we note that in the statistical signal processing lit-
erature, the common notation for the sample cross-correlation
coefficient would be ρ̂ rather than ρ but there is no ambiguity
in the current context.

VI. THERMAL NOISE FROM SOLAR SCAN DATA
COLLECTED BY NCAR S-POL-RADAR

To apply (18) in the weather radar context, we examined
data from NCAR S-Pol’s radar system [32]. S-Pol has a
horizontal/vertical basis and, therefore, cos(2ϵ∥) = 1 and (18)
reduces to

δτ + iδϵ = Re(ρHV) + iIm(ρHV) (19)

where the right-hand side (RHS) is calculated from measured
data, thereby establishing bounds on the two polarization
mismatches on the left-hand side (LHS) of (19).
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Fig. 4. Monte Carlo confirmation of theoretical results. (a) Sample (complex) cross-correlation coefficient ρ versus tilt imbalance δτ for (nearly) ±45◦
linear receivers. The −45◦ antenna is held fixed, while the other receive antenna ranges from +35◦ to +55◦ in 1◦ increments. The real part fits well to a
linear dependence with slope −1 and no offset, which is shown by the solid line, as predicted in (18). The vertical error bars display the 1/(N )1/2

= 10−2

range of uncertainty in the computed cross-correlation coefficient for the sample size N = 104. The imaginary part is approximately 0 and does not depend
on the tilt error, in agreement with (18). (b) Right and left circular polarization antennae of the receiver form the basis for polarization measurements here.
The right circular antenna departs from ϵ = +π/4 by a given δϵ on the x-axis. Error bars on ρ are as in (a). The real part of ρ does not depend on the
ellipticity error, and its imaginary part shows a linear dependence in the error, both in agreement with (18).

We used time-series data from the S-Pol radar (NCAR/EOL
S-Pol Team, 2023) collected in 2002 during the PRECIP
field campaign in Taiwan. [33] The S-Pol time-series data
is available at https://doi.org/10.26023/EMAT-JPBX-S20T
(NCAR/EOL S-Pol Team, 2023). The time-series data were
converted from their original TsArchive format to NetCDF
using the Ts2NetCDF utility from the Lidar Radar Open
Software Environment (LROSE, http://lrose.net/).

We selected solar scan receiver calibration time series as
illustrated by range gate 1500 in Fig. 5. Although the range
gates have no particular significance during such solar scans
designed to calibrate the receiver, the transmitter was kept on
at full power, in order to ensure S-Pol’s circuitry’s proper
operating temperature (John Hubbert, personal communica-
tion). The data for near-range gates, corresponding to smaller
gate numbers, contained ground clutter (ground reflection by
sidelobes) and, therefore, range gates below 400 were avoided
in our analysis.

We examined the raw data of digital counts (from an A/D
converter), consisting of scalar time-series of voltage at each
antenna polarization, measured for in-phase (I) and quadra-
ture (Q) components, for each of the H and V polarizations.
This data quartet of panels in Fig. 5 is arranged as in-phase and
quadrature data for the horizontally and vertically polarized
channels of the dual-polarized S-Pol’s receiver. This particular
data segment represents an azimuth scan across the solar disk
at a fixed elevation angle of 20.7◦ and spans about 7◦ in
azimuth. These solar scan data were recorded on June 23,
2022 at 22:51:53 UTC.

Although solar microwave emission is an ideal example of
jointly normal circular Gaussian pdf, it is not stationary as
the scan data of Fig. 5 has a hump in the middle portion,
corresponding to the radar beam (0.92◦) being centered on the

Fig. 5. Four in-phase and quadrature voltages (two for each of H and
V polarizations), collected during a solar scan by the NCAR dual-polarized
S-band radar, microsecond range samples recorded at millisecond intervals.
The elevation for this data segment is held at 20.7◦ while the azimuth varies
(4911 values along the horizontal axis). Voltages in A/D converter counts are
given on the vertical axis (a.u. denoting arbitrary units). The broad hump in
the middle is due to an alignment of the main S-Pol beam 0.92◦ wide with
the sun, 0.53◦ wide. The dashed vertical lines indicate the hump portion that
is removed in later plots. The data shown are for gate 1500, and the total
number of gates is 1593, with the first 400 omitted in subsequent analysis.

sun (angular size 0.53◦). Therefore, the zero-mean in-phase
and quadrature time series are not statistically stationary in
variance. To examine thermal noise (radar pointing at the sky)
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Fig. 6. As shown in Fig. 5 but with hump removed (times 1500–3500)
so that the remaining N = 2912 data points constitute stationary time
series, aside from a couple of outliers (see below). The standard deviations
are σIV = 0.102 × 10−3, σQV = 0.106 × 10−3, σIH = 0.107 × 10−3,
and σQH = 0.104 × 10−3. The sample mean σ for the four plots is
0.105 × 10−3, and all four standard deviations lie within 2σ of this value,
where σ = 0.105 × 10−3/(N )1/2 is an estimate of the standard error of the
standard deviation. This is in accordance with sampling from the MCGM joint
pdf (see main text).

parts of the data, we removed the solar hump as indicated by
dashed vertical lines. The remaining data are shown in Fig. 6
and are wide-sense stationary [17] and zero-mean traces. This
is important as the notion of the cross-correlation coefficient,
strictly speaking, holds only for stationary time series, a point
often forgotten in the literature, e.g., when examining weather
echo signals. For example, ensuring orthogonality of the
in-phase and quadrature components (sin and cos) at the chip
level of an A/D converter does not render the resulting time
series immune to spurious correlation due to nonstationary
features such as the solar hump.

To test the remaining noise further for multivariate Gaussian
characteristics (important, among other things, for the uni-
formity on the PS), the cumulative distribution is examined
in Fig. 7 and the ACF is shown in the inset. The ACF is
that of white noise, within sampling variability, considering
that neither thermal noise nor solar microwave emission are
coherent at a microsecond scale. A good agreement of the four
data curves with the Gaussian cdf is seen (despite containing
a couple of outliers) and the voltages, indeed, consist of
independent samples drawn from a multivariate jointly normal
circular distribution (MCGM, perhaps better recognized as the
Rayleigh amplitude and uniform phase pdfs for each for the
two polarizations).

Insofar as the multivariate Gaussian tests are single-point
statistics, they are often blind to more subtle effects of
nonstationarity, affecting two-point characteristics such cross
correlation coefficients. Just a couple of outliers do not affect
the former (based on population mostly) but do the latter.

Fig. 7. Cumulative distribution function of the “humpless” data is close to a
normal distribution. The four empirical distributions (H/V × I/Q) are plotted,
as well as the standard normal distribution. All these appear to overlap at the
resolution shown, despite including the outliers.

Fig. 8. Statistical stationarity versus orthogonality of I and Q components.
Time-series for S-Pol H channel and gate 423, including extreme outliers at the
far right, probably caused by a small plane or a flock of birds within S-Pol’s
beam. The two outliers here are at 42σ and 68σ (σ is the standard deviation
of the time-series data). Upon removing the two outliers, ρIQ falls 0 within
sampling variability, in accordance with I and Q orthogonality. Specifically,
with the outliers, ρIQ = 0.4 and without the outliers it is ρIQ = 0.003, the
latter well below the expected 1(N )−1/2 sampling variability of 0.02.

To that end, in Fig. 8, we examine the effect of outliers
where one can see that although infrequent, these outliers
affect the correlation coefficient a great deal. We used a
generous threshold of 10σ to remove such outliers from
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Fig. 9. S-Pol thermal noise data. (a) To avoid ground clutter, gates beyond 400 were used to calculate ρHV. An example gate with spuriously large ρHV is
423 (the tiny dot at the center of the black circle). (b) Time series associated with large value of ρHV in gate 423, showing outliers. (c) Values of ρHV for
the same gates as in (a) but with the outliers removed; the threshold for outliers is about 10−3 or 10σ . (d) Closeup of (c). Bullseye coordinates (center of red
circle): ρHV = 0.003–0.001i and δτ + iδϵ = Re(ρHV) + iIm(ρHV) yields the systematic tilt mismatch of δτ = 0.17◦ and δϵ = 0 within sampling variability.
Possible causes of the outliers include sidelobes seeing the sun, birds, or radio interference.

all-time series (gates) used and confirmed that there was no
discernible change in the results when 5σ threshold was used.

Next, we get to the punchline and estimate polarization
purity by estimating α via ρ by calculating the complex
voltage cross-correlation coefficient ρHV as follows (see [11]):

ρHV =

∑N
i=1 VH,i V ∗

V,i√∑N
i=1 VH,i V ∗

H,i
∑N

i=1 VV,i V ∗
V,i

(20)

with the results displayed in the four panels (for many gates,
one gate point on a plot) Fig. 9. It is seen from Fig. 9(a) of the
figure that the values of ρHV are surprisingly large and follow
a peculiar pattern, indicating nonstationary behavior, despite
the solar hump removal. A common feature of those gates
with large coefficients once again turns out to be the presence
of rare but extreme outliers in the time-series as illustrated in
Fig. 9(b). Once these outliers were removed with the simple
10σ threshold, a much closer clustering of coefficients about
zero resulted as shown in (c) and the closeup in (d) of Fig. 9.
Fig. 9(d) is the culmination of the analysis as the bullseye
coordinates set bounds on polarization purity. As a reminder,
to get to the bullseye, we avoided near gates, removed the
hump, and filtered out extreme outliers.

While the sampling variability of an individual time
series ρHV is about 0.02, that for bullseye coordinates is much
more accurate as it is average over ≈1100 time series and
there is an additional gain in accuracy of 1/(1100)1/2, or factor
of 33. Thus, the bullseye coordinates are statistically accurate

to within 0.6 × 10−3
= 1/1650. This number is comparable

to S-Pol cross-channel isolation of 2000 (Eric Loew, private
communication).

Using δτ + iδϵ = Re(ρHV)+ iIm(ρHV) and reading the RHS
of the bullseye coordinates (red circle) in Fig. 9(d) yields
the following bounds on the tilt and ellipticity mismatches:
δτ = 0.17◦ and δϵ = 0.06◦. The systematic ellipticity error is
barely beyond sampling variability and should be regarded as
statistically perfect (zero). This seems reasonable as the S-Pol
polarization basis is linear and phase delays are not needed
(in contrast to, say, circular polarization basis [34] or the slant
45◦ technique for generating HV basis, currently considered
for phased array weather system and requiring a 8 phase shift.
The S-Pol tilt mismatch is also remarkably low and does not
get in the way of measuring such meteorological parameters as
ZDR and LDR. This method can be applied broadly, e.g., recent
findings on polarization purity in borehole antennae [35].

VII. CONCLUDING REMARKS

In summary, our metric for the deviation from the basis
orthogonality, α as defined by (2), can be regarded as a
measure of polarization purity, designed to work with any
polarization basis, not only the linearly polarized basis, dis-
cussed here or a circularly polarized basis. In that regard, this
is a forward-looking approach, anticipating full polarimetric
capability coming with the new generation phased array-based
weather radars. Indeed, while phased array radars have a long
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history, polarimetry with distributed sources of radiation is
still relatively new. Possible dispersion in time and phase
errors in these future systems with fully digital capability
and potential to generate arbitrary polarization ellipses quickly
as evolving basis states may benefit from our method. Cross
coupling away from boresight and the biases can be estimated
by the proposed framework as well. The analysis described
here also suggests that examination of IQ traces via simple
thresholding is quite efficient at detecting spurious outliers
and benefits testing for Rayleigh-type statistics (MCGM), the
ubiquity of which in weather signals is still an open problem.

The S-Pol test results are encouraging as the α approach
leads to polarization purity estimates close to the S-Pol
polarization isolation factor of 2000 (Eric Loew, private com-
munication) as well as other metrics of polarization purity. The
S-Pol radar uses a Potter feed to illuminate the parabolic reflec-
tor dish. The Potter feed offers broadband performance and
beam symmetry for a linear dual-polarimetric radar configura-
tion. Unbiased estimation of co- and cross-pol measurements
depends on matching and orthogonality in polarization basis
between horizontal and vertical co-polarizations and having a
minimum of cross-pol response at the co-pol radiation pattern
maximum. In addition to the above-mentioned requirements of
antenna illumination feed, surface smoothness of the parabolic
reflector better than 0.1 of transmit wavelength is required to
minimize crosstalk between co- and cross-polarization signals
and minimize bias in depolarization measurements due to the
radar system.

Our main result is (18) and its derivation relies on two layers
of orthogonality: the geometric (polarization states) and the
stochastic (random variables). The latter stems from the fact
that a cross-correlation coefficient can be viewed as a cosine of
an angle between two random variables regarded as elements
of an abstract vector space because an expectation value of
a product of two random variables satisfies all properties of
an inner product [17]. In this purely mathematical sense, our
results may be unique insofar as they relate abstract angles in
a functional space with concrete tangible angles in real 3-D
space of polarized waves.

The derivation also requires sufficient randomness of polari-
metric noise so that probability has a simple measure such
as area on the PS. We expect that the uniformity on the
sphere requirement can be softened, e.g., replaced by the
symmetry with respect with the antenna basis at hand. If so,
precipitation itself may supply “calibration noise” and work
in this direction is ongoing. During precipitation observations
(rather than thermal noise), N is a number of correlated (rather
than independent) samples but one considers whitening the
data to reduce the correlation [36]. For non-Gaussian radiation,
one that is nonuniformly distributed on the PS, or general and
otherwise unrestricted IID radiation, the numerical prefactors
such as in (15) can be derived in a similar manner and would,
generally, differ from unity.

Finally, it has not escaped our attention that the technique
proposed here is generic and, in addition to already mentioned
polarimetric weather radars operating in a circular basis [34],
can be applied to any antenna system capable of generating
circular or elliptical polarization whether phased array-based

or not, particularly in the area of wireless communications [37]
and biomedical devices [38]. This work focused on estimating
polarization purity of receivers but transmitters can also be
tested by measuring α, e.g., in bistatic cases, transmitter in
question can send polarized waves directly to a previously
calibrated receiver or use “mirror-like” targets.
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