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ARTICLE INFO ABSTRACT

MSC: This paper develops novel finite element solvers for linear poroelasticity problems on quadri-
65M12 lateral meshes. These solvers are based on the primal formulations of linear elasticity and
65M60 Darcy flow. Specifically, the fluid pressure and solid displacement are approximated by scalar-
74F10

or vector-valued polynomials of degree k > 0 separately in element interiors and on edges.

The discrete weak gradients of these shape functions are established in the broken (vector-

Keywords: or matrix-version) Arbogast—Correa spaces for approximations of the classical gradients in the

A}'Ij_ogaSt_Correa spaces variational forms. These weak Galerkin spatial discretizations are combined with the implicit

Finite elements . . S . .

Locking-free Euler or Crank-Nicolson temporal discretizations to develop locking-free numerical solvers that
have optimal order (k + 1) convergence rates in pressure, velocity, displacement, stress, and

74505

Poroelasticity
Quadrilateral meshes dilation. Rigorous analysis is presented and illustrated by numerical experiments on popular
Weak Galerkin test cases.

1. Introduction

In this paper, we consider the Biot’s model for linear poroelasticity as shown below
—V-Que)+ AV -wD+aVp=f, inQ2x(0,T],
0,(aV-u+cyp)+ V- -(-KVp)=s, inQx(0,T],

@

where 2 € R? is an open bounded and connected domain with Lipschitz continuous boundary d£2, u is the solid displacement,
e(n) = % (Vu+ (Vu)T) is the strain tensor, 2 = vE/((1 —2v)(1 +v)) and y = E/(2(1 +v)) are Lamé constants, ¢ = 2ue(u) + AV - w)
is the (effective) Cauchy stress (here I is the identity matrix), f is the body force, p is the fluid pressure, s is the fluid source (a
sink is treated as a negative source), a (usually close to 1) is the Biot-Williams constant, ¢, > 0 is the coefficient for specific storage
capacity, K is the permeability tensor that has absorbed the fluid viscosity (for notational convenience) and is uniformly symmetric
positive-definite. To close the PDE system, we consider the following boundary and initial conditions,

ulpe =up, (0 —aphm)|re =ty, onoR2x(0.T],
Plrp =pp. —KVp-nlpp=uy, ono@2x(,T], (2)

u=uy, p=p;, onNLx{r=0}.
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It is assumed that 02 = 'Y uI'Y and 02 = I T, are two non-overlapped partitions of the boundary 0. Compatibility conditions
uy| e =up and pylp = pp are also assumed.

The Biot’s model for poroelasticity can be applied to many real-life problems, e.g., geosciences [1-4], biomechanics [5], tissue
mechanics [6], and others [7]. Analytical solutions are unavailable for many cases, and hence accurate and robust numerical solvers
will be the main focus.

Among the various types of numerical solvers for poroelasticity problems, finite element solvers based on the three-field
formulations are the most popular, although the three fields could be different. Noticeable well designed such FE solvers can be
found in [8-13].

A four-field formulation was adopted in [14] and then a solver based on mixed finite elements was developed. In a recent work
[15], a four-field formulation was adopted and then conforming mixed FEs, e.g., Nédélec or BDM elements [16], were used for
spatial discretizations. A five-field formulation of the Biot system was adopted in [17] for developing a mixed FE method that
couples multipoint stress and multipoint flux, which was reduced to a cell-centered pressure-displacement system on simplicial and
quadrilateral meshes.

Virtual element methods for poroelasticity were developed in [4,18,19]. With adoption of the enriched Galerkin (EG) methodol-
ogy [20] for the approximation of solid displacement or fluid pressure, 2-field finite element solvers were developed in [3,21,22],
local mass conservation and locking-free properties are satisfied.

The weak Galerkin (WG) methodology first introduced in [23] brings in new perspectives in development of finite element
methods. WG FEMs have been developed for a wide range of differential equations [24,25], linear elasticity problems [26,27], the
Maxwell equations [28], the Cahn-Hilliard equations [29], biharmonic problems [30], anisotropic diffusion problems [31], coupled
Stokes-Darcy problems [32], parabolic problems [33]. Weak Galerkin FEMs for linear poroelasticity (Biot’s consolidation model)
can be found in [34-38].

Based on our previous work on any order WG FEMs for Darcy flow and linear elasticity [39,40], we develop in this paper two-field
finite element solvers for linear poroelasticity on convex quadrilateral meshes, which are equally flexible as triangular meshes in
accommodation of complicated domain geometry but could potentially use less unknowns and align better with physical features
of the problems to be solved. In particular, we will use any order k > 0 polynomial WG shape functions in element interiors and on
edges, scalar- or vector-valued. Their discrete weak gradients are constructed in the broken (vector- or matrix-version) Arbogast—
Correa spaces [41], for which we have explicit local bases. The discrete weak gradients and discrete weak divergence (constructed
as elementwise polynomials) are utilized to approximate the classical gradient and divergence in the variational formulations for
Darcy flow and linear elasticity. Such full weak Galerkin spatial discretizations will be combined with the implicit Euler or Crank—
Nicolson temporal discretization to develop two sets of new solvers for time-dependent poroelasticity problems. Rigorous analysis
and numerical experiments on benchmarks will demonstrate that these new solvers are locking-free and have optimal order (k + 1)
accuracy displacement, stress, dilation, pressure, and velocity.

The rest of this paper is organized as follows. Section 2 presents WG finite element discretizations on convex quadrilateral meshes
for Darcy flow and linear elasticity, respectively. Section 3 develops two sets of novel two-field finite element solvers (Algorithms I
and II) for linear poroelasticity problems by combining the above full WG spatial discretizations with the implicit Euler or Crank-
Nicolson temporal discretizations. Section 4 presents our main theoretical results (Theorems 1 and 2) on error estimates for these
two sets of solvers, whereas details are postponed to Appendix. Numerical experiments are presented in Section 5 to illustrate the
accuracy and locking-free property of these new solvers. Section 6 concludes the paper with remarks about on-going and future
work.

2. Weak Galerkin finite element discretizations for Darcy flow and linear elasticity
2.1. Arbogast—Correa spaces AC,(k > 0) on quadrilaterals

For nonnegative integers k > 0, the AC, spaces for vector-valued functions on quadrilaterals were developed in [41]. These
spaces extend the traditional Raviart-Thomas spaces RT};, on rectangles [16] to general convex quadrilaterals. Let E be a convex
quadrilateral, the local Arbogast—Correa space is defined as

AC((E) = P(E)* + P(E)X + S (E), ©)

where P (E)? is the subspace of vector-valued polynomials with total degree < k, P,(E) is the subspace of scalar-valued polynomials
with degree = k, and S, (E) = P;S, is the subspace of rational functions obtained via the Piola transformation 7, where S, is defined
on the reference element £ = [0, 1]2. The coordinates for the reference element are denoted as (%, §). Space Sk can be generated as
follows.

* For k=0,
S, = Span{curl(3$)};
e For k > 1,

§; = Span{curl(x*"'$(1 — £2)), curlG*'2(1 — )}
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It should be noticed that in (3) the vector polynomials in P(E)* + ﬁk(E)x are defined directly on the quadrilateral, whereas the
shape functions (not necessarily polynomials) in S, (E) are obtained via the Piola transformation.
It can be found in [41] that the degrees of freedom for u € AC,(E) are given by
(u-mn,v), Vv € Pi(e),Ve C OE,
u, Vw)g Yw € P(E), (€]
(w,v)g Vv € B, (E),
where n is the outward unit normal vector to dE and B, (E) is a space of divergence-free bubble functions. Moreover, for any
u € AC,(E), we have
V.u€ P(E),
(u-m)|, € P(e), VeCOE.

G))

Let &, be a shape-regular convex quadrilateral mesh for Q. For any E € &, let h; be the diameter of the circumscribed circle of
E. Let h = maxgeg, hp be the mesh size. Let I, be the set of all edges in &,. There are two types of global Arbogast-Correa spaces:

« The broken space: ACy () = {v € LY (2)? : v|z € ACL(E),VE € &,};
» The H(div)-conforming subspace: AC,(&;,) = AC,(E,) N H(div; 2).

Note that functions in AC; (&) are continuous in the normal direction across edges.

We will also consider spaces of matrix-valued functions AC,(E)?, AC(E,)%, or AC,(E,,)?, whose row vectors are respectively in
AC,(E), AC, (&), Or ACL(E)).

A linear poroelasticity problem couples Darcy flow for fluid pressure and linear elasticity for solid displacement. Next, we
construct weak Galerkin finite elements for Darcy flow and linear elasticity, respectively.

2.2. WG(P,, P; AC,) (k = 0) finite element scheme for Darcy flow

For Darcy flow, we consider WG(P,, P,; AC,) finite elements. A discrete weak function pj, = {p°, p°} has two parts: The interior
part p° € P,(E°) is defined in element interior E° for any E € &,; The boundary part p’ € P,(e) is defined for each edge e € I7,.
Note that p? is not necessarily the trace of some p°. Denote by W}, the space of such weak functions p,. Let W;? be the subspace of
W,, consisting of functions that vanish on I’g. For p, = {p°,p°} € W, we define its weak gradient V,p, € AC,(E,) elementwise by

/(prh)~w=/ p"(w-n)—/ P°(V-W), Vw e AC(E), VE € &, )
E E9 E°

A weak Galerkin finite element scheme for the Darcy flow problem

V- (-KVp)=V-u=s, in Q,
- — @
Plrp=pp. @-mlp =uy
read as: Find p, € W), satisfying p°| = 09(pp) and
APy.a1) = FPap). Va,=1{4°.4°} € W, ®)
where
ARy ap) = Z KV obps Vi) s ©
Eeé&),
FPa =Y (.65 = Y, (un-q"e (10)
Ee&y eer’?
N
and QY is the L?-projection operator onto space P(e) for each edge e € I’;.
The following functional defines a norm on space WhO:
1
2
Ngnll = < > <quh,quh>5> . ap €W an
E€g,

The proof is very similar to that in [40] and hence omitted here.
2.3. Wg(P%, P2, AC%; Py) (k > 0) FE scheme for linear elasticity

For linear elasticity, we consider WG(P2, sz)—type vector-valued discrete weak functions. Such a function v, = {v°,v?} has two
parts: v° € P,(E°)? is defined in the element interior E° for any E € &,, whereas v’ € P,(e)? is defined on each edge e € I',. Denote

by V,, the space of such weak functions and V‘;’ the subspace of V,, consisting of functions that vanish on Fg.

3
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For any v, € V,, we establish its discrete weak gradient V,,v, € AC,(&,)* through integration by parts
/(vah) W =/ v".(Wn)—/ Ve - (V- W), YW € AC(E)*,YE € &, (12)
E E? E°

where : is the standard colon product for matrices and n is the outward unit normal vector on the boundary E°. We define the
discrete weak strain as

£,(V) = % (Vi¥i + (Vuv)T)
Similarly, we establish its discrete weak divergence V , - v € P (&,) by
/E(Vw SV w = /Ed v - (wn) — /E v’ - (Vw), VYw € P(E),VE € &, (13)
where P, (€, is the space of piecewise polynomials with degree < k.
For the linear elasticity problem

V- Quew)+ AV -wh =f, in 2,
a4
ulrg =up, (an)lrﬁ =ty,
a weak Galerkin finite element scheme in the strain-div formulation reads as: Find u,, € V,, satisfying u’| .« = QZ(u p) and
D
AL, v) = FE(wy), Yy, eV, @15)
where
Ai(uh,vh) = Z 2u(e,(up), €, (Vi E + AV - Wy, Vi - Vi) ES (16)
E€E,
FEO = X EV)p+ Y (ty,v),, a7)
Eeé, eers,

and Qz is the L2-projection operator onto space P,(e)?, Ve € I),. Note that ty = on here is slightly different than that in the
poroelasticity equation.
It has been shown in [40] that

1
2
(\A :=<Z ||vwvh||2E> . VhEV) (18)

Eeé&),

is a norm on the space V(;l.

3. Two-field WG finite element solvers for linear poroelasticity problems

We now define some projection operators. Let

* 0} (or Q)) be the L2-projection onto space P,(E) (or P.(E)?) for each element E € &;
+ Q7 (or Q)) be the L2-projection onto space P, (e) (or P;(e)*) on each edge e € I;

© 0, =1{05,09} (or Q, = {Q;,Q)}) be the L>-projection onto space W) (orV,);

+ Q, be the L?-projection into the broken Arbogast-Correa space AC,(&));

* Q, be the L2-projection into the broken Arbogast-Correa space AC(E,)>.

Properties in (5) of the AC spaces yield the following commuting identities, which are the most important properties of weak
Galerkin finite elements. For any u € H'(2)?> and any p € H'(Q), there holds

V,(Qpu) = Q4 (Vu),
Vo - (Quu) = Q5(V - ), 19
V. (Qpp) = Q,(Vp).

For space discretizations, we consider WG(Py, P; AC;) FE scheme for fluid pressure and WG(P2, sz; ACZ; P,) FE scheme for solid
displacement. The implicit Euler and the Crank-Nicolson temporal discretizations can be combined with any order discretization.
But it will become clear that k = 0 matches well with the implicit Euler whereas k = 1 matches well with Crank—Nicolson.

Let N > 0 be an integer. Denote by Ar = T'/N the time step. Let 7, = ndt for n =0, 1,..., N. For a function u of space and time,
denote u(-,t,) as u™.
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3.1. Full WG discretizations combined with the implicit Euler

Algorithm I (Full WG FE discretizations combined with implicit Euler). The time-marching scheme starts with u(ho) = Quy,
p;lo) = Qyp,- Then for 1 < n < N, seek ug') €V, and pg’) € W), satisfying u?| s = QZu(D") and p™9| p = QZp%’) such that for any
D D
v, € V) and any g, € W9,

£
Ai(ll;"),Vh) - Bh(Vh,p(h”)) =F, @),
u(") _ u("—l) (n) (n—1)

h h Py — Py
Bh(T’qh)+Ch(T’qh) 20)
+APG". q,) = FP V().

This is equivalent to

{ AL, v,) = By(vy, o) = F (v, on
By, )+ Cu 0y ) + aAL DY, q,) = S\ (qy,).
for all v, € V2 and all ¢, € Wg. The two new bilinear forms are
Bp(Vp, 45) = Z a(Vy - Vi 4%,
E€E),
.. (22)
Chlop = Y o a°)p-
E€g,
The linear forms are
Ff’(")(vh) - 2 (f(n)’VO)E + Z (tﬁ\']’),v’j)c,
EeE, cer?
Fo @ = Y, ".qp — Y, wl).a%e (23)
Eeé) eerl

- -1
Sy = AFL " (g) + Byl ™V, q,) + Cu(p) . g,

with ty = (6 — apD)n.
3.2. Full WG discretizations combined with Crank—Nicolson

We consider space discretizations provided by WG(P,, P,; AC,) for fluid pressure and WG(P2, sz; ACZ; P,) for solid displacement
for any k > 1. Of course, one can set k = 1 for simplicity.

Algorithm II (Full WG FE discretizations combined with Crank-Nicolson). The time-marching scheme starts with uzo) =Qpu,
and pzo) = Q,p,- For 1 <n < N, seek u(h") ev,, p(h") € W, satisfying u®-9| re = Q‘Zu([')') and p?| = Qflp(D”) such that for any v, € V9

and g, € WY, there holds

(n) (n—1) (n) (n—1) E,(n) E,(n—1)
A (I ) B T BT
h 2 >vh h\ Yh> 2 2 ’
(n) (n—=1) (n) (n—1) (n) (n—1)
W -u Py P Py TP, 24
(i) v (B ) (B ) o
h A qdn h At qn h ) 4dn
D, D,(n—1
@)+ 72 V)
- . :

4. Analysis

We first address well-posedness of both Algorithm I and Algorithm II. For ease of presentation, we assume I’ DD = Fg = 0Q. For
the bilinear form for linear elasticity, we adopt the grad-div formulation shown below for analysis.

AL v = D u(V 0 Vo Vi) g+ (A 10V - 0 Vi - Vi) g (25)
Eeé&),

This is not an unusual practice [42]. It is also known that the strain-div and grad-div formulations are equivalent when a Dirichlet
condition is posed on the entire boundary.

Lemma 1. There exists a constant f > 0 such that

Bh(Vh,qcf,l)l > 4. (26)

n
aw<Whv,ev, Vil llg,
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Proof. It is known [43] that for any g, € W, there exists W € H'(2)? so that
(V- W, q)

vl
where C| > 0 is a constant independent of the choice of g,. Let w = Q,W € V,,. Using the first commuting identity in (19), we obtain

MWl = D) IVewliZ = D0 IV@QWllE = Y I1Qu(VWIIE < IVWI2.

Eeé&y, Ee€&y Ee€g&y

z Ciligyll.

The second commuting identity in (19) implies
Y Ve W ae= Y Vo QW) g)p= D (QV-W.q)p= Y (VW q)).
Ecg, E€g, Ecg), E€g,
Therefore,
By an) Yree, "V W dp)p  (V-W, qp

)
> za = 2 fligll,
vaeVy, IVl liwil Ivwil "

with g = aC), as claimed. [J

Remark 1. From the definitions of the bilinear form Ai (-,+) and norm || - ||, we know that this bilinear form is coercive, i.e.,

Aﬁ(vhavh) = 2 HOV Vi Voo Vi) g + A 1)V - Vi, Vi - Vi) g 2 vl
E€E,

As for the bilinear form C,(-,-) + At A5(~, -), we cannot claim coercivity, since parameter ¢, = 0 is possible and At approaches zero.
It is reasonable to assume the permeability tensor has a positive lower bound, that is,

/ ETKedx > my / E-Edx >0, VEE€ ACL(E), VE € &, (27)
E E
with the constant mg > 0. It is known from [37] that there exists a constant C > 0 such that

lall < ClIVyaull,  Vau € Wy (28)
Therefore, the bilinear form C,(-,-) + 4t Af(~, -) is nonnegative, in other words,

Chlan- ap) + At AP (@ @) = Y, co(afap)e + At D (KV a5, V)i
Ee&)y Ee&)y

> (cg + 4t mgC)lg; 1> > 0.
Note also that the skeleton part qz of g, is not included in the inf-sup condition (26), since it is not used in the bilinear form
By(Vi, ap)-

Lemma 2. For each time step n € {1, ..., N}, the solution (u;"), p;")) €V, x W, of Algorithm I or II exists and is unique.

(n)

Proof. It is clear that at each time step n, Algorithm I and II can be rewritten as: Finding u,

{ AL v,) = By(v,,. p") = RHS,,
By, ) + C, (0" qp) + 4t AP (P q;) = RHS,,

€V, and p;") € W), such that
(29)

for any v, € V(;l and ¢, € W}? The right-hand side terms RHS; and RHS, can be readily identified from Algorithm I or Algorithm
II. Assume RHS, = 0 or RHS, = 0. Let v, = ug') and g, = p;'”. Summing up the two equations in (29) yields
AL u) + Cu(p . py) + At AP p) = 0.
The definitions of the bilinear forms Ai (-, and C,(-,-) + 4t AE(~, -) imply that
My _ (-
I, "Il = 0, llp, "Il =0,

for which we have used the assumption (27) about the permeability tensor. Since Algorithm (29) is a finite-dimensional linear
problem, the existence of the solution can be derived from the uniqueness. []

For analysis, we need two interpolation operators defined as 7, : H(div; 2) —» AC,(E,) and IT), : H(div; 2)?> - AC,(E,)?. They
satisfy the following properties:

(i). For any v € H(div; Q) and 7 € H(div; 2)?,

Vv, =V (V). g, Vq € P(E),VE €&,

(30)
(V-r,w) =(V-T,0), W) Vwe P(E)?VE €&,

6
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(ii). For any v € H*'(Q)?, r € H*1(2)>?, and k > 0,
v = VIl S R VI

31)
Iz = Mzl S A el

(iii). When I‘[Z)’ =T g = 040, the above properties combined with the definitions of discrete weak gradients and the fact that
AC(&,) C H(div; Q) imply that

D Vv = Y (. V) Va, =14}, q)) € Wy, (32)
E€é&, E€é),
D =Ver e = ) UL,V Ve, Vv, = {v), v} € V). (33)
Eeé&y, Eeé&y,

Lemma 3. For any u € H'(2)? and p € H'(Q), there hold

ALQuuv,) = Y (Y, (Qu) + (A + (Y, - QUL YV, ¥y,
Eeg&y

By Q) = Y oV, vy (O P)Dg

Eeé),

BL(Quu, g,) = z a(V-u,q4°)g, (34)
E€E,

ChQpp.ar) = Y, 0P,

Eeé&y,

ARQup.ap) = Y KV, QD). V)i

Eeg,

for any v, € V9 and g, € W.

Proof. For any function w € P(E), since wl € AC,(£,)?, we have
Y Vi V) = Y (V¥ whp, Vv, € V.
E€E, E€g,
Taking w = V,, - Q,u and w = Qj p, respectively, we obtain
Y Vi Q. Vo Vi)p = Y (Y QuuL V¥4,
E€g, Ecg,

Y Vi Vi Qe = Y, (VioVy Q50D

E€E), E€E,

(35)

Applying the commuting identity (11) and the definitions of the projection operators, we reach the conclusion of this lemma. []

Lemma 4. Let u € H*(Q)? and p € H?*(R) be the solutions of poroelasticity problem (1). Then we have, for any v, € V(,’l and g, € W,?,

Y Ve =Y, W (Vw) + G+ (Y - W) = alT, (D), V Vi) g,

E€é), E€é), 36)
Y (sae= D @aV-u+cop).a)p+ D, Ty(KVp),V,a;)p
Eeé&y, Eeé&, Eeg)y

Proof. It is clear that
=V - Que)+ AV -w))+aVp=-V-@uVa+ A+ p)(V-w)l - apl).

One tests the PDE by the interior parts v°, ¢° of discrete weak functions v, € V(;l, qn € W,?. Applying (32) (33) leads to the desired
conclusion. []

4.1. Analysis for Algorithm I

Lemma 5. Letu € H*(2)?, p € H*(Q) be the solutions of Problem (1). Let u, € V,,, p, € W, be the numerical solutions of Algorithm .
Let & = Quu—u, € VY, ¢, = Qp—p;, € W). Then the error equations are

ALED V) = By 60 = ) (6™ + y (™), V Vi)
Eeé&),

-1 —1
EZ") _ 52" ) C(") _ é«(" )

Bh<KE At ’qh) + Ch(%’%) + ARG an) v

= Y @), Veap + Y, @V R@.1,) + R 1,),4°) g
Eeé&), Eeg,
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where the remainders are
™) = u(V,,(Quu™) - I, (Vu™))
+(A+ (Y, - (Quu)I = I,((V - u™)D)),
w(p") = a(IT,("D) - Q5 (p"™ D)),
(") = KV ,(0;,p") - m,(KVp™),

(38)

and

L™
R(l.l, tn) = E / (T - In—l)attu(f)dfv
1,

n—1

1 Iy
R, 1,) = yr / (t —t,_1)0,p(r)dT.
Tht

Proof. Take ¢t =1, in Lemmas 3 and 4. Applying the facts that

u® gD

1 In
- —ou" = — (T — 1, u(r)dr =: R(u,1,),

-t (39)

(n) _ p(n—1) h

14 p 1

—— W=7 / (= t,_dyp(x)d7 =1 R(p, 1,),
the1

At

we reach the conclusion of this lemma. []

Theorem 1. Let (u, p) be the exact solutions of poroelasticity problem (1). Let u, € V, and p, € W,, be the numerical solutions of (21)
byl Algorithm I. Let &, = Qu—u, € V?l and §, = Qp—py, € W}?. Then under the following assumptions about regularity of the exact
solutions

u € [L2(0,T; H*2(Q)12, p € L*(0,T; H?(Q)),
du € [L®0,T; H*2(Q))?, 9,p € L*(0,T; H*(Q)), (40)
o,u € [L>0,T; H*2(Q)?, 0,p € L*(0,T; H*'(Q)),

there holds an error estimate

()12 (n) 12 0,(n) 12
max LIV, &1+ 21V, - 01+ 16 1P |

N (41)
+ ) MV, PN < O (R 4 a2)
n=1

Note that after taking square roots, the errors of displacement, dilation, pressure, and velocity, measured in the L,-norm, are actually of
(k + 1)st order.

Proof. See Appendix. [

4.2. Analysis for Algorithm IT

u® =1
2

n

1
For convenience, we denote 2 for a vector-valued function u. For ease of presentation, we focus on the case

k=1

by u

Lemma 6. Assume u € H*(22)? and p € H*(Q2) be the exact solutions of poroelasticity problem (1). Let u, € V,, and p, € W), be the
numerical solutions of (21) by Algorithm II. Let &, = Quu —u, € Vz and ¢, = Qup—py € W,?. We can establish the following error
equations.

A(E ) =B (082 ) = T G +u G .
E€E,

(n) (n=1) (n) (n—1)
‘:h _éh " cn

1
h h—3
) R L AR A CIR)

_1 ~ ~ R
= (@@ ), V@) + Y @V R, 1)+ R, 1,), 0,

(42)

Ee€&,
where
~ ) _ ygn=D 1
u u —n—=
R, 1,) = ——— —9,0" 12,
(n) _ p(n=1)
= P —=p -l
R(p,1,) = - 0,p"
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Proof. This can be obtained in a straightforward way by taking r =1, and 7 =7,_, in Lemmas 3 and 4. [J

Theorem 2. Assume the exact solutions (u,p) of poroelasticity problem (1) satisfy the regularity assumptions (40). Let u;, € V, and
pp € W), be the numerical solutions of (21) by Algorithm II. Let ¢, = Q,u—u,, € V(;l and ¢, = Qup—py € Wi?. The following error estimate
holds.

()12 ()12 o,(n) 12
max {1V, &1+ 21V, - 671 + 117 1P |

N n L (43)
+ 2 AV, 8, P IP < Ot + A,
n=1
Obviously, after taking square roots, the errors for displacement, dilation, pressure, and velocity, measured in the L,—norms, are actually
of 2nd order.

Proof. See Appendix. [

Theorem 3. For two-dimensional problems (d = 2) and k = 0, under the regularity assumption [44] for the exact solution u € H?(2)?
that

ullally + AV -ully < Cliflly 44
with C > 0 being a constant independent of u,f, the numerical solution of Algorithm I is locking-free in the sense that

max 1Quu — uj”ll < C(h+ an, )

max_[Ju® — u;")lll < C(h+ A1),
1<n<N

where the positive constant C is independent of A and h.
For k > 1, we need a stronger regularity assumption [45] in a similar form

ullallyn + AV - ullyy < ClIENl, (46)
with C > 0 being a constant independent of u,f. Accordingly, the numerical solutions of Algorithms I and II are locking-free, that is,

(n) k+1
e 1O~ <€ (1 + ), )

max_[lu® —u”| < C (K + ar),
1<n<N

where C > 0 is a constant independent of A and h.

Proof. See Appendix. []
5. Numerical experiments

This section presents numerical experiments on our 2-field finite element solvers that utilize the implicit Euler or Crank-Nicolson
for temporal discretization, the weak Galerkin (P,, P,; AC,)(k > 0) elements for Darcy flow, and the weak Galerkin (P2, sz; AC,E; P)
elements for linear elasticity.

Example 1 (Smooth Solutions). This example is adopted from [46] with slight modifications. Here 2 = (0,1)>, T=1, K=1, ¢, =0,
and a = 1. The analytical solutions are known as

$in27y)(—1 + cos(2xx)) + ﬁ sin(zzx) sin(zy)

sin(zx)(1 — cos(2zy)) + ﬁ sin(zx) sin(ry)
and
p = —tsin(zx) sin(xy).

Dirichlet boundary conditions are posed for the whole boundary using the values of the exact solutions.

To effectively demonstrate the locking-free property of our solvers, we choose the Poisson ratio as v = 0.49999, which is close to
0.5. Thus 4 = 16666 and u = 0.33334. Notably, the full WG solvers are specifically tested on the trapezoidal meshes used [47]. The
numerical results shown in Tables 1 and 2 exhibit optimal order convergence in the errors of displacement, dilation, stress, pressure,
and velocity. In Table 3, the results obtained from WG(PZ, Plz; ACIZ; P)) + WG(P,, P;; AC)) and Crank-Nicolson demonstrate clearly
second-order convergence of all errors. It is worth noting that our solvers are effective on rectangular meshes as well but the results
are omitted due to page limitation.
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Table 1
Example 1: Optimal convergence rates of the 2-field solver WG(POZ, Pnz; AC&; Py) + WG(P,, Py; AC,) on trapezoidal meshes (slant parameter 0.35, see [47]) combined
with implicit Euler and Ar = h.

h [la = uj ll2r2) Rate Ilp = Py lle2y Rate llg = qpllzc2y Rate IV-u=Veu,llpge Rate lle = oy llizcr2y Rate

273 2.1355e-1 - 5.2852e-2 - 1.7438e-1 - 1.5202e-5 - 7.4037e-1 -

2-4 1.0181e-1 1.06 2.5375e-2 1.05 8.4363e-2 1.04 7.2055e—6 1.07 3.5543e-1 1.05

23 4.9694e—-2 1.03 1.2413e-2 1.03 4.1528e—-2 1.02 3.4937e—6 1.04 1.7384e-1 1.03

276 2.4553e-2 1.01 6.1369e—-3 1.01 2.0603e—-2 1.01 1.7201e-6 1.02 8.5921e-2 1.01

277 1.2204e-2 1.00 3.0508e-3 1.00 1.0261e-2 1.00 8.5373e-7 1.01 4.2708e-2 1.00
Table 2

Example 1: Results of the 2-field solver WG(PIZ,PIZ;ACIZ;PI) + WG(P,, P;; AC)) on trapezoidal meshes (slant parameter 0.35, see [47]) combined with implicit
Euler and At = h?.

h lla = ll2r2y Rate P = pyllec2y Rate lla = apull2) Rate IV-u=Veu,llege Rate lle = oulli2cr2y Rate

273 3.0913e-2 - 4.7507e-3 - 1.0811e-3 - 1.5725e-6 - 8.4123e-2 -

274 7.7875e-3 1.98 1.1836e-3 2.00 2.7257e-3 1.98 3.9234e-7 2.00 2.1530e-2 1.96

2-3 1.9509e-3 1.99 2.9566e—4 2.00 6.8487e—4 1.99 9.7956e—-8 2.00 5.4427e-3 1.98

276 4.8798e—4 1.99 7.3898e-5 2.00 1.7168e—-4 1.99 2.4443e-8 2.00 1.3673e-3 1.99
Table 3

Example 1: Optimal convergence rates of the 2-field solver WG( P]z, Pf; ACIZ; P)) + WG(P,, P;; AC)) on trapezoidal meshes (slant parameter 0.35, see [47]) combined
with Crank-Nicolson and A7 = h.

h Hu—u;\l,z(,_z) Rate ”p—p;”,z”_z) Rate lla =g ll2r2y Rate IV-u=Veu,llege Rate lle = onlli2cr2y Rate
273 3.3373e-2 - 5.1326e-3 - 1.1701e-2 - 1.6991e—-6 - 9.1235e-2 -

24 8.1258e-3 2.03 1.2353e-3 2.05 2.8470e-3 2.03 4.0944e-7 2.05 2.2512e-2 2.01
273 1.9950e-3 2.02 3.0235e—4 2.03 7.0078e—4 2.02 1.0017e-7 2.03 5.5735e-3 2.01
276 4.9360e—4 2.01 7.4750e-5 2.01 1.7375e—-4 2.01 2.4723e-8 2.01 1.3848e-3 2.00

Example 2 (Terzaghi’s Consolidation Problem). With known analytical solutions, the problem has been frequently tested [2,3,48].
Here we consider the domain Q = (0,1) x (—10,0) and the exact pressure solution along with some dimensionless quantities

* * < 2 M *
(z*, 1) = —e sin(M z*), (48)
P ; +
Mo ez
2 H? H

with z being the distance from the drainage boundary (at the top), H = 10 the height of the domain, ¢ the time, ¢, the coefficient
of consolidation, and
kUK

1+v)u
The problem involves the application of a surface loading to the poroelastic domain. Due to the domain’s 1:10 aspect ratio, the fluid
pressure near the bottom of the domain is subsequently influenced. The top surface is the drainage surface while the other 3 surfaces
allow no flow. Therefore, the external loading induces compression of the solid, which leads to the drainage of fluid through the
top surface.

v

The Terzaghi’s consolidation problem assumes an external force applied at the top boundary of a fully saturated poroelastic
domain, which is also the drainage boundary. All other boundaries are impermeable. See Fig. 1(a) for an illustration. Since the
domain is tall enough, the fluid pressure at the bottom is supposed not to be affected in the early stage.

To test this problem, we take @ = l,¢, = 5.5 X 10™*,v = 0.25, an isotropic permeability k; = 1072, a dynamic viscosity
u = 107% (k(Pa)s) with a bulk modulus K = 1000 (kPa). Then we have ¢, = 0.0018 (m?/s), Young’s modulus E = 10°, permeability
K = kI, x = 1076, Lamé constants A, u are calculated accordingly. The following boundary and initial conditions are posed.

(i) Boundary conditions for solid displacement u = [u;,u,]":

Dirichlet condition u = [0,0]” on the bottom boundary;
Partial Dirichlet condition u; = 0 on the left and right boundaries;
Neumann condition n = [0, —F]”, F = 10° on the top boundary.

(i) Boundary conditions for fluid pressure p:
No flow (-KVp) - n = 0 on the bottom, left, and right boundaries;
Dirichlet condition p = 0 on the top boundary.

(iii) Initial conditions:
Displacement: u = [0,0]7;
Pressure: Known exact pressure projected to the finite element space.

10
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Vp-n=0

u1=0

NSO

Distance from the drainage boundary
&

Numer. sin. at T = 0.6s
Numer. sin. at T = 5s
Numer. sin. at T = 555
e Numer. sin_ at T = 138s |
——Anal. sin. at T = 0.55
Anal. sin. at T = 55
Anal. sin. at T = 555
——Anal. sin. at T = 138s

-10
o o2 0.4 0.6 oa 1.2

Pressure

“ld
(a) (b)

Fig. 1. Example 2: (a) An illustration of the problem; (b) Analytical (solid lines) vs. numerical (symbols) pressure along the z-axis. Black: T = 0.5 s; Red: T =
5's; Green: T = 55 s; Blue: T = 138 s. Note that for better visualization, the height and width of the domain are not proportional.).

We test the example with the solver WG(P}, P3; ACZ; Py) + WG(Py, Py; ACy) with the implicit Euler time discretization.

» When T = 0.5 s, for better approximation, we take At = 0.1 and spatial discretization 10 x 300.
* When T =55, 55s, 138 s, we use 4t = 0.1 and spatial discretization 10 x 100.

We report numerical pressures on the edges along the z-direction. Numerical and analytical pressures are presented in Fig. 1(b).
Our results demonstrate nice agreement between the numerical and analytical pressures.

Example 3 (Heterogeneous Permeability). This example is adopted from [10] with slight modifications. We have 2 = (0,1)2, T = 1073,
A =12500, u = 8333, K = «I, ¢, =0, and « = 1. The permeability is heterogeneous as shown in Fig. 2(a). In the lower-left and upper-
right quarters of the domain, the permeability x = 107, but k¥ = 1 elsewhere. For the displacement, an external loading (Neumann
condition) is placed on the top boundary, but a homogeneous Dirichlet boundary condition is specified on other boundaries. For the
pressure, the top boundary assumes the drainage (Dirichlet p = 0), while other boundaries have a no-flow (Neumann) condition.

Fig. 2(b) shows the numerical solution obtained from applying the solver WG(Py, P; AC3; Py) + WG(Py, Py; ACo) on a rectangular
mesh (h = Els) with the implicit Euler for temporal discretization. Steep pressure fronts can be clearly observed near the internal
boundaries (x = 0.5 or y = 0.5) of permeability. Fig. 2(c) presents more details of the pressure contours. No spurious pressure
oscillations are spotted.

Example 3 is also solved using higher order WG(PZ,PIZ;ACIZ;PI) + WG(P,, P;; AC)) on rectangular meshes. Fig. 3(a)(c) show
the results with A = 61—4 and the implicit Euler with 4Ar = ﬁ. Fig. 3(b)(d) show the results with h = 3—12 and Crank-Nicolson with
At = % For comparison, both numerical pressures and contours at the final time T are plotted on the 128 x 128 meshes. Comparable

results are observed, but the Crank—Nicolson solver uses less time steps.
6. Concluding remarks

In this paper, we have developed two sets of new finite element solvers for linear poroelasticity problems. Both sets are based
on full weak Galerkin discretizations on quadrilateral meshes, which are equally flexible as triangular meshes for accommodation
of complicated geometry. These solvers are developed for the primal variables, namely, solid displacement and fluid pressure.
Other physical quantities such as stress, dilation, and velocity can be easily obtained via postprocessing with the weak Galerkin
methodology. These solvers have optimal order spatial and temporal accuracy. Moreover, the solvers are locking-free. The robustness
of these novel solvers have been demonstrated by numerical experiments on popular test cases.

Both sets of solvers developed in this paper utilize one-step temporal discretization. Each can be efficiently used as a starter
solver for more sophisticated poroelasticity solvers that are based on higher order temporal discretizations.

The methodology in this paper can be applied to develop finite element solvers for 3-dim poroelasticity problems on cuboidal
hexahedral meshes. Similarly, scalar- and vector-valued P-type polynomials in element interiors and on faces will be used to
approximate fluid pressure and solid placement. Their discrete weak gradients will be established in broken Arbogast-Tao spaces

11
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on=(0,—-1)" 4 Numerical pressure at final time Numerical pressure contours
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(a) (b) ()

Fig. 2. Example 3: (a) Permeability profile and boundary conditions. (b) Numerical pressure at the final time 7 = 103 by Algorithm I: WG(PZ,PGZ;AC(f;PO) +
WG(P,, Py: AC,) on a rectangular mesh (h = é) combined with the implicit Euler (4t = %). (c) Numerical pressure contours (0.1 to 0.8).

1

Numerical pressure at final time

Numerical pressure at final time

.8 0.8
0.7 0.7

0.8 0.8
0.6 0.6
0.6 0.5 0.6 0.5
0.4 0.4

0.4 0.4
0.3 0.3
0.2 0.2
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0.0
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Fig. 3. Example 3: Numerical pressures and contours at the final time T = 10-3. Spatial discretization utilizes WG(P,, AC,). (a)(c) Algorithm I (implicit Euler)
with h = é,At = ﬁ; (b)(d) Algorithm II (Crank—Nicolson) with 4 = ?lz'At = %

12



R. Wang et al. Journal of Computational and Applied Mathematics 443 (2024) 115754

(of vectors or matrices) [49], for which local basis functions need to be constructed. This is under our investigation and will be
reported in our future work.

These solvers can be applied to modeling and simulations of practical poroelasticity problems such as intracellular transport of
viral protein and drug delivery through tissues near cancer sites. This is under our investigation and will be reported in our future
work.
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Data will be made available on request.
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Appendix

In the appendix, we provide complete rigorous proofs of Theorem 1, 2, and 3.
Proof of Theorem 1. For ease of presentation, we assume K = xI with x > 0 being a constant. The proof is divided into three
steps.

Step (i). Take v, = 52") - é;l"_l) and ¢, = ¢, " in (37). Adding these terms up and applying the elementary inequality 2a(a — b) >
a* — b%, we obtain

SV &I + ||vw &l + ||c:,, <")||2+An<||vw Pl
SV 1)||2 e\ 1)”2 Sl R
+ ) <¢(u<">>+w(p<")>, V(&0 - & ”»E
Eeé&y, (49)
+4t Y (@("™), V&
EEE,
+4t ) @V -R@,1,) + R, 1,), &)
Ee&,
Step (ii). Applying the fact that ||¢ ;’(")” <C|IV, ;(,")” (see [37]) and the Young’s inequality, we get
A(@(P™), Y, ") < AV, 612 + AL (™)1
4t Y a(V - R(u,1,), gh "y, < Atlle )2
EEE),
(50)
“R@u, 1)1,
C2C2
a3 eoR(p.1,).5 g < S AV, G+ S— ARG
Ee&y, €
Moreover, we have
SIVLE 1P+ SE IV, - 01 + ||¢h @2
+(3 —e) Azuv WP
A+/4
< SIVu P + SRV, I ||<:h<" D)2
+ ) (¢(u("))+l//(p(")) V(& - & ” (51)
Eeé‘h

||fp(p"”>||2 2 AtIIV R, 1,)|I?
2C2
+2—Af||R(P,t 2,

13
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by math induction and the fact that f((» 0, ¢, O — . Furthermore,
||v MR+ 2By, eV 4 ||¢h M2
+ Z (5- e) MV,
N
<Y Y @)+ ).V, (6" - & e 52)
n=1 EE€&y
al At al a?C?
—lle™)? — Ar||V - R(u, 1,)||?
+; S llo@ ™)1 + ; S AV - Ra )|
N
+ Z Aruch %
Applying the technique of summation by parts, we have
N N
Z a,(b, = b,_1) = ayby — agby - Z(an — Db,y
n=1 n=1
and hence
||wa;<”)||2 2R)9, - &M + ||ch M2
+ 2 (5-¢) Atnvwg;”)nz
< 2 (¢<u<N>> Ve e+ Y we™), Ve
Eeé&), Eeg)
N
=Y D (@) = ), v, &),
n=1 E€€), (53)
N
=2 2 WM =y ).V, ),
n=1 EEE),
+ Z —||<p<p<">)||2 + Z Aznv R(u,1,)|I?
N SCZ 5
+ 2 S ARG 1)1
Applying the Young’s inequality leads to
1
Y @), V&N < SIVLEN I+ Sl ™),
Eeé&), €
N N 1 (54)
2 WMV E e < SIVEY I+ Il ().
Ee&), €
- u® —u-b .
Applying the fact that =d,u"™ 4+ R(u,1,) yields
N
Y Y @) - D), V&),
n=1 Eefh N (55)
<l my2, 1 () 2
<5 Z AV, 1P + 5 ;A"'¢(a’" + R, ).
Similarly,
N
Y W™ = w "), V@& e
n=1 Eeé’h (56)

N
1 1
3 Z ANV &I + 5 2, 4y @ + R, I
=

NS}

14
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Combined together, these yield
(ﬁ —e)nvwa““n2 2, NP

2
2 MR + Z (— —e) v, IR

N-1
1 1
< X AVEIP + @M + Zllw (™)

RS 1 57)
+5 Z Al + R, ) + 5 3 arlly@,0” +Rep.1, )
n=1
2¢?
+ 2 Lo ™) + 2 S AV - Raw )|
+ 2 AzuR(p,z 2.
Step (iii). Applying the commutativity (19) and the Bramble-Hilbert lemma, we obtain
g™ < ullV,,Qpu™) — 1T, Vul™||
+(A+ IV - Qu™N I — T, (V - uM||
= ullQ,Vu™ — 11, vu™| 58)
+(A+ w5V - u™)I - I,V - u™D)|
S ™My + G+ IV - u™ )
— O(hk-#l).
Similarly, we have
lw ™) S B allp™ ]y = OGRS,
N (59)
(n)y]12 2(k+1) 2(k+1)
2‘1 o™ S TR DRIV . i gy = OB D).
=
Moreover, there holds
N
Y atlip@u™)|
"~ 2(k+1) 2 (60)
< Th (”llatulle(o,T;Hk+2(.Q)) + (/l + M)”V : atu”LW((),T;H"J'l(Q)))
— (9(h2<k+1)),
and
N
Z At||u/(6,p("))||2 S Th2(k+l)(a”axP”LOO(QT;HkH(_(_))))2 = O(hz(k+l))- (61)
n=1

Applying the Cauchy-Schwarz inequality, we are led to the following estimates
N N 2
2 _
T akpr = S ar [ ( i / K nat,p(r)dr) dx
< Z / / (t—1,_ l)zdr/ 0 p(r)}drdx (62)
At Q 1

< (4 / loplPdz = O4P).
0

Similarly,

N
> atlpRa.,1,)?

n=1

T
< ARk / wlloullegn + (A + WIV - d,ully)dT
0

— (9((At)2h2("+1)),

(63)
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and
N T
. Aty R, 1) S (A2 R0 / @9l 1) *d 7
n=1 0

— (9((At)2h2(k+l)),

N T
Z At||V - R(u,1,)|1> S A / 110,V - u|>dz = O(4a)).
0

n=1
Therefore, there holds
u
(2 )nvwa”)n2 IV, -1
Sy (N)||2+2( —e)muvw &I
N-1

<A Y IV EDIP + OB 4 (an).

Finally, the discrete Gronwall inequality leads to

U i+ﬂ €0\ o,
max {(5 = e IVuE 1P + S E N, - 01+ 2 W}

1<n<N

N
K
+y (5 —e) V&1
n=1
< ORFD 1 (41)?),

which completes the proof of Theorem 1. []

Proof of Theorem 2. The proof is divided into three steps.
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(64

(65)

(66)

_1
Step (i). Take v;, = f(") 5(" D and qn = 4‘ , _ in (42). Adding these them up and applying the elementary identity (a+b)(a—b) =

a* — b%, we obtain
H ﬂ+;4 €0\ o -l
SV 1P + ||vw R o R A

H -1 1 €0 poitn=1
< 5 1Vuy )||2 SR 0P+ P

+ Y (g 2>+w<ﬁ“—i>,vw<§§;’>—52”‘”»5

E€E,

+ 3 MGV, e

E€E,

< = Jon-1
+4t Y @V -R@,1,) +oRp.1,).8," ).
Ee&)y

Step (ii). Applying the techniques in Theorem 1 proof Step (ii), we obtain
(5- e)nvw:‘”)n2 v, V1
2
UGV + Z (— - ) a8, )
N-1 1
< 2 1.0 1P + 516G DI + -l )P
€

+= Atz @™ +Raw, 1,12

1 Lol
+§Atz lw (3,52 + Rep, 1,)II*

N 2,0
2 a-C D 2
+ z = 2 + 2 At||V - R(u, ¢
”(P(P )i ~ e Il (u,2,)l

N gcz 5
+ Z 5 AR .1,
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Step (iii). Since

~ (n) _ gn=1) 1
Rur)=2""% " _90"1 =04R),
At
N o) _ =1y i
R(p.t,) = ——— - 952 = o),
t
we have

1<n<N

+
M=

(5-c)anv, g

n=1

<O + Art),

which implies the conclusion of Theorem 2. []

] A+u €0\ o,
max {(5 = eIV 1P + S E N, - 01 + 2 (”)uz}
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(69

Proof of Theorem 3. Applying the same techniques as in the proof of Theorem 1, we obtain

2

N
LTINS o) 2
+52 ™)l +5;Az||¢<a,u" +R(.1,)]

n=1

N 22

€ €

n=1

For k = 0, under the regularity assumption
ullully + AV - ull; < Cliflly,

we have, by applying the commuting identities,

@M = ||V, (Quu™) = T, (Vu™)

+ (A4 (V- (Quu) = I,V - u)D)|

< ullQu(Vu™) — 1, (Vu™M)||

A+ WISV - u™NI = T, (v - u™M)D)|

< Ch (ula™|ly + A+ wlIV -u™],)

< Ch|If™.

Similarly, we obtain, with the constant C > 0 being independent of A and h,

N

2 2 2
Zl Al”‘b(atu(m)” <Ch ”atf”Lm(O'T;LZ(Q))’
n=

N T
Y atllpRu, 1,)I* < C(ar A / 10, f1*d.
n=1 0

N-1
M S w2, 1 N
(——e)llvwéh II? < ;)Arnvw:,, I+ 52 el

N N
1 At
—ZAt 0,0 + R(p, 1)1 Z— O
+3 ly (00" + Rip, 1 )l +n=1 2K|I</)(p )|

N 22
a-C 2 0 2
+ 2, S A - Ra )l +;_2 AR (p. 1,)II%.
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The same techniques in Theorem 1 proof yield the following six estimates

lw (™) < Chrllp™l,,

N
At ()12 2 2
Zﬁurp@ WP < CHIVDIE o 1 1y
p
N
(n)y)12 2 2
Z‘Imuw(a,p I < CH0PI w111y
p

N

T
¥ 4RI < Can? [ lagplPar,
0

n=1

N T
3 4ty R, eI < CCn?i? /0 (@ll0,pll, P,

n=1

N T
Y AV - Ra, )| < cmz/ 19,V - ul|?dz.
n=1 0
Combined together, they imply
4 N-1
(£ e)IVueVIP < a0 3 IV EDIP + C (1 + @),
n=0

The discrete Gronwall inequality gives
() <
|max, V&, Il < Clh+ 4r),

where the positive constant C is independent of 4 and 4. The second inequality in (45) follows from the estimate shown above, the
properties of the projection operators, and a triangle inequality. This completes proof of Theorem 3 for the case k = 0.
As for k > 1, we need a stronger regularity assumption as shown below.

ullullyo + ANV - ullyyy < ClIEY,.

Then we have
lp™)|| < @, V™) — 11, Va™||
+A+ W@V - u™) — I,V - u™MD||
< CH (uu™ e p + A+ IV - u™ [l )
< CAEH e

Similarly,

N

X Al g0 < CHREVIORIG L vy

n=1
N

T
X oI < i [ jo,fiRas,
0

n=1

where the constant C > 0 is independent of 4 and 4. Once again, the techniques for proving Theorem 1 produce

Iy ™) < CRE My,

N
At ONE 2k+1) 2
2 5 oI < CREDIVDIL, 1 i

n=1

N

2 Atlly@p )P < CRE D101 L s
n=1 T

N T

X 4RGP < can? [ ol

n=1 0

N T
D Aty Rp,1,)|I> < C(Ary> 2D / (19, Pllis1)d.
0

n=1

N T

Y AV - R, 1,)|* < CA12/ 19,V - u?dz.
0

n=1
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Together with the discrete Gronwall inequality, they imply

(n) _ () < hk+l At
max 1Q,u ~ Il <C (K" +4r),

where the constant C > 0 is independent of 4 and 4. The previous comment applies also to the second inequality in (47). [
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