
Journal of Scientific Computing (2024) 98:59
https://doi.org/10.1007/s10915-024-02454-z

A Positivity-Preserving and Robust Fast Solver for
Time-Fractional Convection–Diffusion Problems

Boyang Yu1 · Yonghai Li1 · Jiangguo Liu2

Received: 12 October 2023 / Revised: 30 December 2023 / Accepted: 5 January 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
This paper presents a fast solver for time-fractional two-dimensional convection-diffusion
problems that maintains non-negativity of numerical solutions. To this end, two new tech-
niques are developed. (i) A three-part decomposition of the L1 discretization for Caputo
derivatives is proposed and justified for fast evaluation while maintaining positivity; (ii)
A positivity-correction technique is devised for both diffusive and convective fluxes. An
upwinding technique for the bilinear finite volume approximation on general quadrilaterals
is utilized for enabling the solver robustness in handling convection dominance. The solver
attains optimal convergence rates when graded temporal meshes are used. These properties
are theoretically justified and numerically illustrated.

Keywords Caputo derivatives · Fast numerical solver · Finite volume method ·
Positivity-preserving · Time-fractional convection-diffusion · Upwinding

Mathematics Subject Classification 65M08 · 65M12 · 76R99 · 26A33 · 35R11

1 Introduction

This paper is concerned with fast numerical solvers with certain desired properties, e.g., non-
negativity of numerical solutions, for time-fractional 2-dimensional convection-diffusion
boundary initial value problems prototyped as

B Jiangguo Liu
liu@math.colostate.edu

Boyang Yu
yuby21@mails.jlu.edu.cn

Yonghai Li
yonghai@jlu.edu.cn

1 School of Mathematics, Jilin University, Changchun 130012, China

2 Department of Mathematics, Colorado State University, Fort Collins, CO 80523, USA

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-024-02454-z&domain=pdf
http://orcid.org/0000-0002-2188-5157

 59 Page 2 of 26 Journal of Scientific Computing (2024) 98:59

⎧
⎨

⎩

∂α
t u + ∇ · (bu − A∇u) = f , in Ω × (0, T],
u(x, y, t) = g1(x, y, t), on ∂Ω × (0, T],
u(x, y, 0) = g2(x, y), in Ω,

(1.1)

where ∂α
t u, α ∈ (0, 1) is the Caputo derivative defined as

∂α
t u(t) := 1

Γ (1 − α)

∫ t

0

∂su(s)

(t − s)α
ds. (1.2)

Here, Ω ⊂ R
2 is a bounded connected open domain with a Lipschitz boundary ∂Ω , T > 0

the final time, b a known velocity, A > 0 a constant for diffusivity, u(x, y, t) the unknown
concentration for the substance being transported, f ≥ 0 a known source, and g1 ≥ 0, g2 ≥ 0
boundary and initial data.

Fractional order partial differential equations (PDEs) have been attracting significant research
efforts, since they provide models for many problems in science and engineering [6, 16, 40],
biology [17], medical and health science [24], and finance [11]. A new collection of such
problems up to 2018 was presented in [38]. In particular, the equation in (1.1) can be used to
model gas transport through heterogeneous reservoirs [8].

For discretization of the Caputo derivative, the L1 scheme based on linear approximation
of the integrand is a popular choice [22, 27, 33, 45], whereas the L2 schemes based on
quadratic approximation of the integrand [13, 30] can be used to match higher order spatial
approximations. The L2-1σ discretization provides a more delicate choice [1].

Due to the nonlocal nature of fractional order derivatives [9], their discretizations involve
solution values at all spatial nodes/elements and/or all previous time steps. This results in
high computational costs. Various types of techniques have been investigated for develop-
ment of fast numerical solvers. Numerical methods based on the concept of nested meshes
were proposed in [10, 12]. Based on the integral representations of the singular kernels,
kernel compression techniques were developed in [2–4]. Based on approximation of a neg-
ative power kernel by sum-of-exponentials (SOE) [5], a new set of fast solvers have been
developed recently [19, 37, 43, 51]. As demonstrated in [47], fast Poisson solvers for spa-
tial discretization can also be utilized for time-fractional subdiffusion problems. However,
the fast solvers developed for time-fractional subdiffusion problems may not be extended
directly to fast solvers for time-fractional convection-diffusion problems when the positivity
of numerical solutions is concerned.

Positivity or non-negativity of numerical solutions is an important aspect of PDEs. For general
PDEs, there have beenmanymature results. In [14, 41, 46], a monotone finite volume scheme
for diffusion equations on polygonal and general quadrilateral meshes was proposed. Some
work on the finite element method can be found in [28]. A cut off method for the numerical
computation of nonnegative solutions of parabolic PDEs is studied in [29]. However, only few
work addressed such an issue of fractional order PDEs, e.g., [21] for a class of piecewise linear
finite element approximations for subdiffusion equations; [49] for a maximum-principle
preserving scheme for the time-fractional Allen-Cahn equation. As of our best knowledge,
there is not yet a known fast solver for time-fractional convection-diffusion problems that
preserves positivity, although recent developments of numerical methods can be found in [7,
18, 26, 31, 32, 34, 35, 42, 48, 50]. Some work on the meshless methods can be found in [39,
52].

This paper intends to fill such gaps.We take a comprehensive approach to develop a numerical
solver for time-fractional convection-diffusion problems that has several desired properties,

123

Journal of Scientific Computing (2024) 98:59 Page 3 of 26 59

e.g., preserving positivity, robust in handling convectional dominance, attaining optimal
convergence rates, and being a fast solver.

(i) For discretization of the Caputo derivative, we still consider L1 discretization and
approximation by sums of exponentials, but we propose a three-part decomposition
(current, transition, and history terms) that will play a key role in positivity-preserving.
It will be shown that a fast solver based on the conventional 2-part decomposition fails
to preserve positivity. Our fast solver based on the 3-part decomposition combined with
the graded temporal meshes will attain optimal temporal convergence rates.

(ii) For spatial discretization, we use bilinear finite volumes for general quadrilaterals. It
has been recognized that quadrilateral meshes are equally flexible as triangular meshes
for accommodating complicated domain geometry [15].

(iii) As motivated by the work [25], a new upwinding technique for bilinear finite volumes
is developed, which allows the solver to handle well convectional dominance.

(iv) A positivity-correction technique is developed for both diffusive and convective fluxes.
This contributes to a slightly nonlinear approximation, which is implemented via Picard
iterations. It will be discussed later such nonlinearization will be worthwhile in main-
taining positivity. A combination of the correction technique and the new upwinding
technique ensures the optimal spatial convergence rate.

The rest of this paper is organized as follows. Section 2 reviews the L1 discretization and then
proposes a 3-term decomposition for a modified fast evaluation algorithm (MFL1). Section 3
describes a new upwinding technique for the finite volume discretization on general quadri-
lateral meshes. Section 4 presents a positivity-correction technique for both convective and
diffusive fluxes. Section 5 describes our new solver that combines MFL1 and flux-correction
and its implementation based on Picard iterations. Section 6 elaborates on the positivity-
preserving property and computational efficiency of this solver. Section 7 presents numerical
tests to demonstrate convergence rates, positivity-preserving property, and efficiency of the
solver. The paper is concluded with some remarks in Sect. 8.

2 AModified Fast L1 Evaluation Algorithm for Caputo Derivatives

This section briefly reviews the L1 discretization for Caputo derivatives and the conventional
fast evaluation algorithm based on a two-part decomposition and approximation of a negative
power kernel by sums of exponentials (SOE). Then we propose a modified fast L1 algorithm
(MFL1) that will play an important role in positivity-preserving.

2.1 L1 Discretization and SOE Approximation

TheL1 discretization is based on a piecewise linear approximation of function u(·) in the inte-
grand. Assume the time interval [0, T] has a partition tn = T (n/NT)r for n = 0, 1, . . . , NT ,
where r ≥ 1. Let τn = tn − tn−1 and τn,k = tn − tk for n ≥ k ≥ 0 and n = 1, 2, . . . , NT .
For convenience, we denote u(tn) as u(n). The piecewise linear approximant is expressed as

(Πku)(t) = u(k−1) tk − t

τk
+ u(k) t − tk−1

τk
, ∀t ∈ [tk−1, tk], 1 ≤ k ≤ NT . (2.1)

123

 59 Page 4 of 26 Journal of Scientific Computing (2024) 98:59

Its derivative is a piecewise constant

(Πku)′(t) = u(k) − u(k−1)

τk
, ∀t ∈ (tk−1, tk). (2.2)

This implies that, for any tn with 1 ≤ n ≤ NT ,

∂α
t u(tn) = 1

Γ (1 − α)

∫ tn

0

u′(s)
(tn − s)α

ds ≈ 1

Γ (1 − α)

n∑

k=1

∫ tk

tk−1

(Πku)′(s)
(tn − s)α

ds

= 1

Γ (1 − α)

n∑

k=1

u(k) − u(k−1)

τk

∫ tk

tk−1

ds

(tn − s)α
=: Dα

L1u
(n).

(2.3)

Direct calculations of the above integrals yield, for 1 ≤ n ≤ NT ,

Dα
L1u

(n) = 1

Γ (2 − α)

n∑

k=1

u(k) − u(k−1)

τk
(τ 1−α

n,k−1 − τ 1−α
n,k). (2.4)

Now we rewrite the above discretization formula of the Caputo derivative as

Dα
L1u

(n) = dn,1

Γ (2 − α)
u(n) − dn,n

Γ (2 − α)
u(0) −

n−1∑

k=1

dn,k − dn,k+1

Γ (2 − α)
u(n−k), (2.5)

where

dn,k := τ 1−α
n,n−k − τ 1−α

n,n−k+1

τn−k+1
, 1 ≤ k ≤ n. (2.6)

It is easy to prove that

dn,k ≥ 0 for 1 ≤ k ≤ n; dn,k − dn,k+1 ≥ 0 for 1 ≤ k ≤ n − 1. (2.7)

Remark 1 Note that in the L1 discretization (2.5), the coefficients of the history layers u(k)

(k = 0, . . . , n − 1) are negative, whereas the coefficient of the current layer u(n) is positive.

Computational costs for numerically solving time-fractional PDEs would be very high if the
direct L1 discretization formula was used. Fast evaluation algorithms have been developed
thanks to approximation by a sum of exponentials (SOE) to the negative power kernel in the
definition of the Caputo derivative.

Lemma 1 (Approximation to a negative power by SOE). For any fractional exponent β ∈
(0, 1), an error tolerance ε ∈ (0, e−1], and a cut-off time δ ∈ (0, 1], there exist a positive
integer Nexp, positive constants λ j and positive weights θ j for j = 1, 2, . . . , Nexp, such that
the relative error

∣
∣
∣t−β −

Nexp∑

j=1

θ j e
−λ j t

∣
∣
∣

/
t−β ≤ ε, ∀t ∈ [δ, 1]. (2.8)

Discussion of selection of Nexp, λ j and θ j can be found in [5].

123

Journal of Scientific Computing (2024) 98:59 Page 5 of 26 59

2.2 AModified Fast L1 Evaluation Algorithm

Recall the L1 discretization involves

Dα
L1u

(n) = 1

Γ (1 − α)

n∑

k=1

∫ tk

tk−1

(Πku)′(s)
(tn − s)α

ds. (2.9)

For the conventional fast algorithm based on SOE approximation [19], a common practice is
to split the sum (2.9) into two parts. The current term for interval [tn−1, tn] is approximated
directly via L1, whereas the history term for interval [t0, tn−1], which is related to the “long-
tail”, is approximated by SOE. However, this conventional fast algorithm fails to preserve
non-negativity of numerical solutions. Here, we propose a new algorithm that splits the sum
(2.9) into three parts (for n ≥ 3) as follows.

– The current term

IC (tn) = 1

Γ (1 − α)

∫ tn

tn−1

(Πnu)′(s)
(tn − s)α

ds; (2.10)

– A transitional term

IT (tn) = 1

Γ (1 − α)

∫ tn−1

tn−2

(Πn−1u)′(s)
(tn − s)α

ds; (2.11)

– The history term

IH (tn) = 1

Γ (1 − α)

n−2∑

k=1

∫ tk

tk−1

(Πku)′(s)
(tn − s)α

ds. (2.12)

The current term IC (tn) on [tn−1, tn] can still be handled by direct L1 approximation

IC (tn) = 1

Γ (1 − α)

∫ tn

tn−1

(Πnu)′(s)
(tn − s)α

ds = dn,1

Γ (2 − α)
.
(
u(n) − u(n−1)

)
. (2.13)

For the transitional term, we apply the SOE approximation Lemma 1 partially,

IT (tn) = 1

Γ (1 − α)

∫ tn−1

tn−2

(Πn−1u)′(s) (tn − s)−α ds

= 1

Γ (1 − α)

∫ tn−1

tn−2

u(n−1)

τn−1
(tn − s)−α ds − T−α

Γ (1 − α)

∫ tn−1

tn−2

u(n−2)

τn−1

(tn − s

T

)−α

ds

≈ dn,2

Γ (2 − α)
u(n−1) − T−α

Γ (1 − α)

Nexp∑

j=1

θ j

∫ tn−1

tn−2

u(n−2)

τn−1
e−λ j (tn−s)/T ds

= dn,2

Γ (2 − α)
u(n−1) − T−α

Γ (1 − α)

Nexp∑

j=1

θ j
e−λ j (τn/T) − e−λ j (τn,n−2/T)

λ jτn−1/T
u(n−2).

(2.14)

123

 59 Page 6 of 26 Journal of Scientific Computing (2024) 98:59

The history term IH (tn) on [0, tn−2] causing the “long-tail” needs to be reformulated. Apply-
ing Lemma 1, we obtain

IH (tn) = T−α

Γ (1 − α)

n−2∑

k=1

∫ tk

tk−1

(Πku)′(s)
(tn − s

T

)−α

ds

≈ T−α

Γ (1 − α)

n−2∑

k=1

∫ tk

tk−1

(Πku)′(s)
Nexp∑

j=1

θ j e
−λ j (tn−s)/T ds

= T−α

Γ (1 − α)

Nexp∑

j=1

θ j

n−2∑

k=1

∫ tk

tk−1

(Πku)′(s) e−λ j (tn−s)/T ds.

(2.15)

For convenience, we denote, for 2 ≤ n ≤ NT and 1 ≤ j ≤ Nexp ,

w
(n)
j =

n−2∑

k=1

∫ tk

tk−1

(Πku)′(s) e−λ j (tn−s)/T ds. (2.16)

Specifically, w(2)
j = 0. We split the above sum and perform direct calculations to obtain

w
(n)
j =

n−3∑

k=1

∫ tk

tk−1

(Πku)′(s) e−λ j (tn−s)/T ds +
∫ tn−2

tn−3

(Πn−2u)′(s) e−λ j (tn−s)/T ds

= e−λ j (τn/T)
n−3∑

k=1

∫ tk

tk−1

(Πku)′(s) e−λ j (tn−1−s)/T ds +
∫ tn−2

tn−3

u(n−2) − u(n−3)

τn−2
e−λ j (tn−s)/T ds,

(2.17)

which yields, for 3 ≤ n ≤ NT and 1 ≤ j ≤ Nexp ,

w
(n)
j = e−λ j (τn/T)w

(n−1)
j + e−λ j (τn,n−2/T) − e−λ j (τn,n−3/T)

λ jτn−2/T

(
u(n−2) − u(n−3)). (2.18)

Shownbelow is ourmodified fast L1 evaluation algorithm (MFL1) for theCaputo derivative.

– For n = 1, 2, this algorithm is the direct L1 evaluation formula

Dα
F u(n) = Dα

L1 u
(n) = dn,1

Γ (2 − α)
u(n) − dn,n

Γ (2 − α)
u(0) −

n−1∑

k=1

dn,k − dn,k+1

Γ (2 − α)
u(n−k).

(2.19)

– For n = 3, 4, · · · , NT , we have

Dα
F u(n) = dn,1

Γ (2 − α)
u(n) − dn,1 − dn,2

Γ (2 − α)
u(n−1)

− T−α

Γ (1 − α)

Nexp∑

j=1

θ j
e−λ j (τn/T) − e−λ j (τn,n−2/T)

λ j τn−1/T
u(n−2) + T−α

Γ (1 − α)

Nexp∑

j=1

θ jw
(n)
j ,

(2.20)

where the auxiliary quantity w
(n)
j satisfies a recurrence formula stated above but refor-

mulated as follows
⎧
⎪⎨

⎪⎩

w
(n)
j = e−λ j (τn/T)w

(n−1)
j + e−λ j (τn,n−2/T) − e−λ j (τn,n−3/T)

λ j τn−2/T

(
u(n−2) − u(n−3)),

w
(2)
j = 0, ∀1 ≤ j ≤ Nexp.

(2.21)

123

Journal of Scientific Computing (2024) 98:59 Page 7 of 26 59

Next we show that the MFL1 algorithm maintains certain properties of the L1 discretization.

Theorem 1 For the MFL1 algorithm, Dα
F u(n) has the following properties.

(i) The coefficient of the current layer u(n) is positive;
(ii) The coefficients of the history layers u(k)(k = 0, . . . , n − 1) are negative.

Proof It is clear from (2.19) and (2.20) that the coefficient of the current layer u(n) is positive.
Yes, the MFL1 algorithm satisfies Property (i).

For n = 1, 2, we know that Dα
F u(n) = Dα

L1 u
(n) from (2.19). Property (ii) holds for

Dα
F u(n), n = 1, 2. To ease presentation, for n ≥ 3, we denote

v
(n)
j = −e−λ j (τn/T) − e−λ j (τn,n−2/T)

λ jτn−1/T
u(n−2) + w

(n)
j . (2.22)

Then (2.20) can be written as

Dα
F u(n) = dn,1

Γ (2 − α)
u(n) − dn,1 − dn,2

Γ (2 − α)
u(n−1) + T−α

Γ (1 − α)

Nexp∑

j=1

θ jv
(n)
j . (2.23)

According to (2.7), the coefficient of u(n−1) is negative.

Next, we prove that the coefficients of time layers in v
(n)
j (n ≥ 3) are negative by math

induction. When n = 3, from (2.20) and (2.21), we obtain

v
(3)
j = −e−λ j (τ3/T) − e−λ j (τ3,1/T)

λ jτ2/T
u(1) + e−λ j (τ3,1/T) − e−λ j (τ3,0/T)

λ jτ1/T

(
u(1) − u(0)).

(2.24)

It is easy to see that the coefficient for u(0) is negative. As for the coefficient of u(1), we fix
1 ≤ j ≤ Nexp and then apply the Mean Value Theorem to obtain

e−λ j (τ3,1/T) − e−λ j (τ3,0/T)

λ jτ1/T
− e−λ j (τ3/T) − e−λ j (τ3,1/T)

λ jτ2/T
< 0. (2.25)

Thus the coefficients of time layers in v
(3)
j are indeed negative.

By induction hypothesis, the coefficients of time layers in v
(n)
j (n = 3, 4, . . . , l − 1) are

negative. According to (2.18) and (2.22), we have

v
(l)
j = eλ j (τl/T)v

(l−1)
j +

(
e−λ j (τl,l−2/T) − e−λ j (τl,l−3/T)

λ j τl−2/T
− e−λ j (τl/T) − e−λ j (τl,l−2/T)

λ jτl−1/T

)

u(l−2).

(2.26)

Similarly, the Mean Value Theorem implies that

e−λ j (τl,l−2/T) − e−λ j (τl,l−3/T)

λ jτl−2/T
− e−λ j (τl/T) − e−λ j (τl,l−2/T)

λ jτl−1/T
< 0. (2.27)

So the claim about the time layer coefficients for v
(l)
j holds. Property (ii) holds by mathemat-

ical induction.
�

123

 59 Page 8 of 26 Journal of Scientific Computing (2024) 98:59

Fig. 1 A bilinear mapping FK

Remark 2 The conventional fast L1 algorithm (CFL1) basedon a two-part decomposition [19]
does not satisfy Property (ii). The correction technique in (4.30) and (4.31) (to be elaborated
on later) will not work under CFL1. The modified fast L1 algorithm (MFL1) based on the
above three-part decomposition will play a key role in preserving positivity of numerical
solutions.

3 Upwinding for Bilinear Finite Volume Discretization

Let Th = {K } be a quadrilateral mesh on Ω , where K represents a typical quadrilateral and
h denotes the mesh size. Let Ph be the set of all vertices and NP be the number of vertices.
Let K̂ = [0, 1]2 be the reference element with coordinates (ξ, η). We consider a typical
quadrilateral K with vertices Pi = (xi , yi)(i = 1, 2, 3, 4) ordered in the counterclockwise
orientation. There exists a unique invertible bilinear mapping FK from K̂ to K (see Fig. 1):

{
x = x1 + a1ξ + a2η + a3ξη,

y = y1 + b1ξ + b2η + b3ξη,
(3.1)

where
{
a1 = x2 − x1, a2 = x4 − x1, a3 = x3 − x4 − x2 + x1,
b1 = y2 − y1, b2 = y4 − y1, b3 = y3 − y4 − y2 + y1.

(3.2)

The Jacobian matrix of the mapping FK is

JK (ξ, η) =
[

∂x
∂ξ

∂x
∂η

∂ y
∂ξ

∂ y
∂η

]

=
[
a1 + a3η a2 + a3ξ
b1 + b3η b2 + b3ξ

]

. (3.3)

Denote the Jacobian determinant as JK (ξ, η). By direct calculations, we get

∇ξ =
[

∂ξ

∂x
,

∂ξ

∂ y

]�
= ((1 − ξ)q14 + ξq23) /JK (ξ, η),

∇η =
[

∂η

∂x
,

∂η

∂ y

]�
= ((1 − η)q21 + ηq34) /JK (ξ, η),

(3.4)

where qi j is obtained by rotating the vector
−−→
Pi Pj by π/2 clockwise (see Fig. 2). We denote

q1(ξ) = (1 − ξ)q14 + ξq23, q2(η) = (1 − η)q21 + ηq34. (3.5)

123

Journal of Scientific Computing (2024) 98:59 Page 9 of 26 59

Fig. 2 The normal vectors on the
edges of a quadrilateral

Fig. 3 The dual elements
surrounding the primal vertices
P1, P2, P3, P4

Then

∇ξ = q1(ξ)

JK (ξ, η)
, ∇η = q2(η)

JK (ξ, η)
. (3.6)

Let Uh(K̂) be the standard bilinear polynomial space on K̂ . Define the trial space as

Uh = {uh ∈ C(Ω) : uh |K = ûh ◦ F−1
K , ûh ∈ Uh(K̂), ∀K ∈ Th} = Span{φP : P ∈ Ph},

(3.7)

where φP represents a typical nodal basis function. For any shape function uh ∈ Uh , the
reference shape function ûh corresponding to uh |K can be expressed as

ûh = uP1 (1 − ξ)(1 − η) + uP2 ξ(1 − η) + uP3 ξη + uP4 (1 − ξ)η. (3.8)

By combining Formulas (3.6) and (3.8), we obtain the gradient of uh |K as follows.

∇(uh |K) = ∂ ûh
∂ξ

∇ξ + ∂ ûh
∂η

∇η

= (uP2 − uP1)(1 − η)
q1(ξ)

JK (ξ, η)
+ (uP3 − uP4)η

q1(ξ)

JK (ξ, η)

+ (uP4 − uP1)(1 − ξ)
q2(η)

JK (ξ, η)
+ (uP3 − uP2)ξ

q2(η)

JK (ξ, η)
.

(3.9)

Let T ∗
h be the dual mesh corresponding to the primary mesh Th . A dual element is a polygon

centred at a given node and enclosed by zig-zag line segments that connect the midpoints of
the adjacent edges and the centers of the surrounding primal volumes (see Fig. 3). We define
the test function space as the space of piecewise constants on the dual mesh

Vh = {vh ∈ L2(Ω) : vh |K ∗
P

= constant, ∀K ∗
P ∈ T ∗

h } = Span{ψP : P ∈ Ph}, (3.10)

123

 59 Page 10 of 26 Journal of Scientific Computing (2024) 98:59

where ψP is the characteristic function for K ∗
P .

The finite volume bilinear form for diffusion is defined as

Ah(uh, vh) = −
∑

K ∗
P∈T ∗

h

∫

∂K ∗
P

A∇uh · n vh ds, ∀uh ∈ Uh, ∀vh ∈ Vh, (3.11)

where n is the outward unit normal vector on ∂K ∗
P .

Now we introduce the pointwise average gradient on a shared edge. Let K1
∣
∣K2 be the

common edge of two adjacent elements K1 and K2 in Th . Define the average gradient of v

at (x, y) ∈ K1
∣
∣K2 as

∇v(x, y) = 1

2

(
(∇v|K1)(x, y) + (∇v|K2)(x, y)

)
. (3.12)

Consider e1 as a line segment shared by two adjacent dual elements K ∗
P1

and K ∗
P2

(see Fig. 3).

The reference coordinates corresponding to e1 are 1
2 and η with η ∈ (0, 1

2). The upstream
point (x̂(η), ŷ(η)) is defined as

(x̂(η), ŷ(η)) =
{
FK (0, η), if

∫

e1
b · n1 ≥ 0,

FK (1, η), if
∫

e1
b · n1 ≤ 0,

η ∈
(
0,

1

2

)
, (3.13)

where n1 is the outward unit normal vector for K ∗
P1

with respect to edge M1O . Then we
obtain the upwind approximation of u at any point (x0, y0) ∈ e1 as

u(x0, y0) ≈ uup(η0) := u(x̂(η0), ŷ(η0)) + v · ∇u(x̂(η0), ŷ(η0)), (3.14)

where (12 , η0) are the reference coordinates corresponding to (x0, y0), and v = [x0 −
x̂(η0), y0 − ŷ(η0)]�. Especially, if (x̂, ŷ) ∈ ∂Ω , then we take ∇u(x̂, ŷ) = ∇u(x̂, ŷ).

Accordingly, the bilinear form for convection reads as

Bh(uh, vh) =
∑

K ∗
P∈T ∗

h

∫

∂K ∗
P

(b · n)uuph vhds, ∀uh ∈ Uh, ∀vh ∈ Vh . (3.15)

Thus, our semi-discrete upwinding finite volume scheme for the time-fractional 2-dim
convection-diffusion Eq. (1.1) is formulated as

(
∂α
t uh, vh

)+ Ah(uh, vh) + Bh(uh, vh) = (f , vh) , ∀vh ∈ Vh, (3.16)

where

(
∂α
t uh, vh

) =
∑

K ∗
P∈T ∗

h

∫∫

K ∗
P

(∂α
t uh)vh dxdy, ∀vh ∈ Vh, (3.17)

(f , vh) =
∑

K ∗
P∈T ∗

h

∫∫

K ∗
P

f vh dxdy, ∀vh ∈ Vh . (3.18)

4 Flux Correction for Bilinear Finite Volume Discretization

The semi-discrete bilinear finite volume scheme (3.16) can be rewritten as
(
∂α
t uh, ψP

)+ Ah(uh, ψP) + Bh(uh, ψP) = (f , ψP) , ∀P ∈ Ph . (4.1)

123

Journal of Scientific Computing (2024) 98:59 Page 11 of 26 59

The discrete bilinear forms Ah(uh, ψP) and Bh(uh, ψP) involve line integrals along the
boundary segments of a typical dual element K ∗

P . In this section, our flux correction technique
is established for these integral terms. For ease of presentation, assume e1 is a common
boundary segment of two adjacent dual elements K ∗

P1
and K ∗

P2
.

4.1 Splitting of the Diffusive Flux

Plugging the test functions ψP1 , ψP2 into (3.11), respectively, we end up with the following
integrals on the line segment e1:

FP1,e1 = −
∫

e1
A∇uh · n1ds, FP2,e1 = −

∫

e1
A∇uh · (−n1)ds. (4.2)

Obviously, FP1,e1 + FP2,e1 = 0.

For a quadrilateral element K , the normal vector n1 can be written as

n1 = q1(12)

|q1(12)|
. (4.3)

Applying Formula (3.9), we obtain the gradient of uh |e1 as shown below.

∇(uh |e1) = (uP2 − uP1)(1 − η)
q1(12)

JK (12 , η)
+ (uP3 − uP4)η

q1(12)

JK (12 , η)

+ (uP4 − uP1)
(
1 − 1

2

) q2(η)

JK (12 , η)
+ (uP3 − uP2)

1

2

q2(η)

JK (12 , η)
,

(4.4)

where η ∈ [0, 1
2]. Then we have

FP1,e1 = −
∫ 1

2

0
A∇(uh |e1)(η) · q1

(1

2

)
dη

=
∫ 1

2

0
A(1 − η)

|q1(12)|2
JK (12 , η)

dη
(
uP1 − uP2

)+
∫ 1

2

0
Aη

|q1(12)|2
JK (12 , η)

dη
(
uP4 − uP3

)

+
∫ 1

2

0

A

2

q2(η) · q1(12)
JK (12 , η)

dη
(
uP1 − uP4

)+
∫ 1

2

0

A

2

q2(η) · q1(12)
JK (12 , η)

dη
(
uP2 − uP3

)
.

(4.5)

Examining the 1st term of the right-hand side of (4.5), we note that the numerical flux FP1,e1
demonstrates a two-point flux structure γ (uP1 − uP2) with γ ≥ 0. Therefore, we split the
numerical flux FP1,e1 into two parts: the major part with a two-point flux structure and a
remainder. Specifically,

FP1,e1 = γe1
(uP1 − uP2) + Rd

P1,e1 , (4.6)

where

γe1
=
∫ 1

2

0
A(1 − η)

|q1(12)|2
JK (12 , η)

dη, (4.7)

123

 59 Page 12 of 26 Journal of Scientific Computing (2024) 98:59

and

Rd
P1,e1 =

∫ 1
2

0
Aη

|q1(12)|2
JK (12 , η)

dη
(
uP4 − uP3

)+
∫ 1

2

0

A

2

q2(η) · q1(12)
JK (12 , η)

dη
(
uP1 − uP4

)

+
∫ 1

2

0

A

2

q2(η) · q1(12)
JK (12 , η)

dη
(
uP2 − uP3

)
.

(4.8)

Direct calculations yield

FP2,e1 = γe1
(uP2 − uP1) + Rd

P2,e1 , Rd
P2,e1 = −Rd

P1,e1 . (4.9)

4.2 Splitting of the Convective Flux

Now we consider the convection terms expressed as integrals on the line segment e1:

GP1,e1 =
∫

e1
(b · n1)uuph ds, GP2,e1 = −

∫

e1
(b · n1)uuph ds. (4.10)

Assume that
∫

e1
(b · n1)ds ≥ 0. According to (3.13), we have

(x̂(η), ŷ(η)) = FK (0, η), η ∈
(
0,

1

2

)
. (4.11)

Combining (3.14), (4.3) and (4.11), we obtain

GP1,e1 =
∫ 1

2

0

(

b̂
(1

2
, η
)

· q1
(1

2

))(

uh(x̂(η), ŷ(η)) + v̂(η) · ∇uh(x̂(η), ŷ(η))

)

dη

=
∫ 1

2

0

(

b̂
(1

2
, η
)

· q1
(1

2

))(

(1 − η)uP1 + ηuP4 + v̂(η) · ∇uh(x̂(η), ŷ(η))

)

dη

=
∫ 1

2

0

(

b̂
(1

2
, η
)

· q1
(1

2

))

dη uP1 − 0 × uP2

+
∫ 1

2

0

(

b̂
(1

2
, η
)

· q1
(1

2

))(

η
(
uP4 − uP1

)+ v̂(η) · ∇uh(x̂(η), ŷ(η))

)

dη,

(4.12)

where b̂(ξ, η) = b ◦ FK (ξ, η) and v̂(η) = FK (12 , η) − FK (0, η).

We conduct a splitting similar to that in handling the diffusion term. We choose the terms
containing uP1 and uP2 as the major part that demonstrates a quasi two-point flux structure,
since uP1 ,uP2 are respectively the upstream and downstream nodes. Accordingly, the integral
can be decomposed as

GP1,e1 = κe1
uP1 − 0 × uP2 + Rc

P1,e1 , (4.13)

where

κe1
=
∫ 1

2

0

(

b̂
(1

2
, η
)

· q1
(1

2

))

dη ≥ 0, (4.14)

and

Rc
P1,e1 =

∫ 1
2

0

(

b̂
(1

2
, η
)

· q1
(1

2

))(

η(uP4 − uP1) + v̂(η) · ∇uh(x̂(η), ŷ(η))

)

dη. (4.15)

123

Journal of Scientific Computing (2024) 98:59 Page 13 of 26 59

Similarly, we obtain a splitting as shown below.

GP2,e1 = 0 × uP2 − κe1
uP1 + Rc

P2,e1 , Rc
P2,e1 = −Rc

P1,e1 . (4.16)

4.3 Positivity-Correction for Diffusive and Convective Fluxes

Nowwe explain the technique for positivity correction. First, we introduce two integral terms

IP1,e1 = FP1,e1 + GP1,e1 =
(
γe1

+ κe1

)
uP1 − γe1

uP2 + Rd
P1,e1 + Rc

P1,e1 , (4.17)

IP2,e1 = FP2,e1 + GP2,e1 = γe1
uP2 −

(
γe1

+ κe1

)
uP1 + Rd

P2,e1 + Rc
P2,e1 . (4.18)

Setting

Re1 = Rd
P1,e1 + Rc

P1,e1 = −Rd
P2,e1 − Rc

P2,e1 , (4.19)

we obtain

IP1,e1 =
(
γe1

+ κe1

)
uP1 − γe1

uP2 + Re1 , (4.20)

IP2,e1 = γe1
uP2 −

(
γe1

+ κe1

)
uP1 − Re1 . (4.21)

Next, we denote the positive and negative parts of Re1 as

R+
e1 = |Re1 | + Re1

2
, R−

e1 = |Re1 | − Re1

2
. (4.22)

The integrals can be rewritten as

IP1,e1 =
(
γe1

+ κe1

)
uP1 − γe1

uP2 + R+
e1 − R−

e1 , (4.23)

IP2,e1 = γe1
uP2 −

(
γe1

+ κe1

)
uP1 − R+

e1 + R−
e1 . (4.24)

Let B be an empirical large positive constant. Then we have

IP1,e1 =
(

γe1
+ κe1

+ BR+
e1

BuP1 + h2

)

uP1

−
(

γe1
+ BR−

e1

BuP2 + h2

)

uP2 + h2R+
e1

BuP1 + h2
− h2R−

e1

BuP2 + h2
, (4.25)

IP2,e1 =
(

γe1
+ BR−

e1

BuP2 + h2

)

uP2

−
(

γe1
+ κe1

+ BR+
e1

BuP1 + h2

)

uP1 − h2R+
e1

BuP1 + h2
+ h2R−

e1

BuP2 + h2
. (4.26)

Dropping the last two terms in (4.25) and (4.26), respectively, we obtain nonlinear approx-
imations to IP1,e1 and IP2,e1 as follows.

ĨP1,e1 =
(

γe1
+ κe1

+ BR+
e1

BuP1 + h2

)

uP1 −
(

γe1
+ BR−

e1

BuP2 + h2

)

uP2 , (4.27)

123

 59 Page 14 of 26 Journal of Scientific Computing (2024) 98:59

ĨP2,e1 =
(

γe1
+ BR−

e1

BuP2 + h2

)

uP2 −
(

γe1
+ κe1

+ BR+
e1

BuP1 + h2

)

uP1 . (4.28)

Note that ĨP1,e1 + ĨP2,e1 = 0, which means the corrected finite volumemethod satisfies local
mass conservation. Note also that when the node is on the domain boundary, the corrected
integral terms appear as

⎧
⎪⎪⎨

⎪⎪⎩

ĨP1,e1 =
(

γe1
+ κe1

+ BR+
e1

BuP1+h2

)

uP1 − γe1
uP2 − R−

e1 , if P2 ∈ ∂Ω,

ĨP2,e1 =
(

γe1
+ BR−

e1
BuP2+h2

)

uP2 −
(
γe1

+ κe1

)
uP1 − R+

e1 , if P1 ∈ ∂Ω.

(4.29)

Finally, the fully discrete finite volume scheme with flux positivity-correction read as

Ãh(uh, ψP1) + B̃h(uh, ψP1) =
∑

e⊂∂K ∗
P1

ĨP1,e, (4.30)

Ãh(uh, ψP2) + B̃h(uh, ψP2) =
∑

e⊂∂K ∗
P2

ĨP2,e. (4.31)

5 A Positivity-Preserving Fast Solver for Time-fractional
Convection-Diffusion Problems

Combining the techniques and results in Sections 2–4, we establish a novel numerical scheme
(MFL1-Correction) for the time-fractional convection-diffusion equation in (1.1) that seeks
u(n)
h ∈ Uh such that

(
Dα

Fu
(n)
h , ψP

)
+ Ãh(u

(n)
h , ψP) + B̃h(u

(n)
h , ψP) = (f , ψP) , ∀P ∈ Ph . (5.1)

5.1 A Nonlinear Discrete System for the Solver

We examine the algebraic aspects of the nonlinear system resulted from (5.1).

Firstly, consider the stiffness matrix for the diffusion and convection terms combined. Let
K ∗

Pi
and K ∗

Pj
be two adjacent dual elements sharing a common boundary e. Similar to (4.27)

and (4.28), the integral terms ĨPi ,e and ĨPj ,e are represented in a nonlinear algebraic form

[
ĨPi ,e

ĨPj ,e

]

= Ke(uh)
[
uPi
uPj

]

− ge (uh), (5.2)

where uh = [uP1 , uP2 , . . . , uPNP
]� with NP being the number of nodes in the mesh,

Ke(uh) =
⎡

⎢
⎣

βe + BR+
e

BuPi +h2
− ρe − BR−

e
BuPj +h2

−βe − BR+
e

BuPi +h2
ρe + BR−

e
BuPj +h2

⎤

⎥
⎦ , ge (uh) =

[
0
0

]

, (5.3)

and βe and ρe are positive constants. If one of the nodes Pi and Pj is on the boundary ∂Ω , the
scheme changes slightly. Assume that Pi is an interior node but Pj ∈ ∂Ω . Then ĨPj ,e = 0.

123

Journal of Scientific Computing (2024) 98:59 Page 15 of 26 59

By (4.29), we have

Ke(uh) =
[

βe + BR+
e

BuPi +h2
0

0 0

]

, ge (uh) =
[

ρe uPj + R−
e

0

]

. (5.4)

Denote byTe an NP×2matrixwhose entries are 1 at positions (i, 1) and (j, 2). The assembly
from element stiffness matrices into the global stiffness matrix is expressed as

K(uh) =
∑

e

TeKe(uh)T�
e , g(uh) =

∑

e

Tege (uh). (5.5)

For the time-fractional derivative, we apply the lump-of-mass technique to obtain
(
Dα

Fu
(n)
h , ψP

)
= |K ∗

P |Dα
Fu

(n)
P , (5.6)

where |K ∗
P | is the area of K ∗

P . This implies that the mass matrix M is a diagonal matrix
whose entries are just the areas of the dual elements.

Accordingly, the MFL1-correction time-marching solver is formulated as

– For n = 1, 2, the temporal discretization is handled by the direct L1 algorithm as
(

dn,1

Γ (2 − α)
M + K(u(n)

h)

)

u(n)
h = f (n) + g(u(n)

h)

+ M

(
dn,n

Γ (2 − α)
u(0)
h +

n−1∑

k=1

dn,k − dn,k+1

Γ (2 − α)
u(n−k)
h

)

.

(5.7)

– For n = 3, 4, · · · , NT ,
(

dn,1

Γ (2 − α)
M + K(u(n)

h)

)

u(n)
h = f (n) + g(u(n)

h) + dn,1 − dn,2

Γ (2 − α)
Mu(n−1)

h

+ M

⎛

⎝
T−α

Γ (1 − α)

Nexp∑

j=1

θ j
e−λ j (τn/T) − e−λ j (τn,n−2/T)

λ jτn−1/T
u(n−2)
h − T−α

Γ (1 − α)

Nexp∑

j=1

θ jw
(n)
j

⎞

⎠ ,

(5.8)

where the auxiliary quantity w(n)
j satisfies a recurrence formula

⎧
⎪⎨

⎪⎩

w
(n)
j = e−λ j (τn/T)w

(n−1)
j + e−λ j (τn,n−2/T) − e−λ j (τn,n−3/T)

λ jτn−2/T

(
u(n−2)
h − u(n−3)

h

)
,

w
(2)
j = 0, ∀1 ≤ j ≤ Nexp.

(5.9)

For both cases, f (n) is the contribution from the source term.

123

 59 Page 16 of 26 Journal of Scientific Computing (2024) 98:59

5.2 Implementation Based on Picard Iterations

Algorithm 1 Picard iterations for the MFL1-Correction solver
1: Choose a small positive value ε, a large parameter B, NT as # of time-marching steps
2: Determine a error tolerance of SOE approximation ε, parameters Nexp, λ j , θ j

3: Let u(0)
h = (g2(P1), g2(P2), . . . , g2(PNP)

)� ≥ 0
4: for n = 1, 2 do
5: [u(n)

h]0 = u(n−1)
h ;

6: for p = 0, 1, · · · do
7: S([u(n)

h]p) [u(n)
h]p+1 = f(n) + g([u(n)

h]p) + w1(u
(0)
h , . . . , u(n−1)

h);
8: Solve the linear system

9: if ‖[u(n)
h]p+1 − [u(n)

h]p‖max < ε then

10: u(n)
h = [u(n)

h]p+1;
11: Stop.
12: end if
13: end for
14: end for
15: for n = 3, 4, · · · , NT do
16: [u(n)

h]0 = u(n−1)
h ;

17: Compute w(n)
j , 1 ≤ j ≤ Nexp by the recurrence formula (5.9)

18: for p = 0, 1, · · · do
19: S([u(n)

h]p) [u(n)
h]p+1 = f(n) + g([u(n)

h]p) + w2(w
(n)
1 , . . . ,w

(n)
Nexp

, u(n−2)
h , u(n−1)

h);

20: Solve the linear system

21: if ‖[u(n)
h]p+1 − [u(n)

h]p‖max < ε then

22: u(n)
h = [u(n)

h]p+1;
23: Stop.
24: end if
25: end for
26: end for

Picard iterations can be used to solve the nonlinear systems (5.7) and (5.8), that is, for an
integer p ≥ 0,

(
dn,1

Γ (2 − α)
M + K([u(n)

h]p)
)

[u(n)
h]p+1 = f (n) + g([u(n)

h]p)

+ M

(
dn,n

Γ (2 − α)
u(0)
h +

n−1∑

k=1

dn,k − dn,k+1

Γ (2 − α)
u(n−k)
h

)

,

(5.10)

and similarly,
(

dn,1

Γ (2 − α)
M + K([u(n)

h]p)
)

[u(n)
h]p+1 = f (n) + g([u(n)

h]p) + dn,1 − dn,2

Γ (2 − α)
Mu(n−1)

h

+ M

⎛

⎝
T−α

Γ (1 − α)

Nexp∑

j=1

θ j
e−λ j (τn/T) − e−λ j (τn,n−2/T)

λ jτn−1/T
u(n−2)
h − T−α

Γ (1 − α)

Nexp∑

j=1

θ jw
(n)
j

⎞

⎠ ,

(5.11)

where [u(n)
h]p is the approximate solution at the p-th iteration. We set

S(u(n)
h) = dn,1

Γ (2 − α)
M + K(u(n)

h), (5.12)

123

Journal of Scientific Computing (2024) 98:59 Page 17 of 26 59

along with

w1(u
(0)
h , . . . , u(n−1)

h) = M

(
dn,n

Γ (2 − α)
u(0)
h +

n−1∑

k=1

dn,k − dn,k+1

Γ (2 − α)
u(n−k)
h

)

, (5.13)

and

w2(w
(n)
1 , . . . ,w

(n)
Nexp

, u(n−2)
h , u(n−1)

h) = dn,1 − dn,2

Γ (2 − α)
Mu(n−1)

h

+ M

⎛

⎝
T−α

Γ (1 − α)

Nexp∑

j=1

θ j
e−λ j (τn/T) − e−λ j (τn,n−2/T)

λ jτn−1/T
u(n−2)
h − T−α

Γ (1 − α)

Nexp∑

j=1

θ jw
(n)
j

⎞

⎠ .

(5.14)

Note that (5.10) and (5.11) can be simplified as

S([u(n)
h]p) [u(n)

h]p+1 = f (n) + g([u(n)
h]p) + w1(u

(0)
h , . . . , u(n−1)

h) (5.15)

and

S([u(n)
h]p) [u(n)

h]p+1 = f (n) + g([u(n)
h]p) + w2(w

(n)
1 , . . . ,w

(n)
Nexp

, u(n−2)
h , u(n−1)

h),

(5.16)

respectively.

6 Advantages of theMFL1-Correction Solver

This section elaborates on the positivity-preserving property and computational efficiency of
our new solver that combines the modified fast L1 evaluation algorithm and flux correction.

6.1 Positivity-Preserving Property of theMFL1-Correction Solver

For the upwinding bilinear finite volume scheme on a general quadrilateral mesh, some off-
diagonal entries of the coefficient matrix may be positive. The scheme does not guarantee
positivity of the numerical solution to problem (1.1). However, our flux correction technique
converts the coefficient matrix to an M-matrix. As is well known, the inverse of an M-matrix
has the non-negativity property, which guarantees non-negativity of the numerical solution
produced by Algorithm 1.

Theorem 2 The solution by Algorithm 1 (MFL1-Correction solver) is nonnegative.

Proof We apply mathematical induction on the time-marching step n. The claim is true for
n = 0, since

u(0)
h = (g2(P1), g2(P2), . . . , g2(PNP)

)� ≥ 0. (6.1)

Fix n ∈ {1, 2}. Assume that u(k)
h is nonnegative for k = 0, . . . , n − 1. By (2.7), we have

w1(u
(0)
h , . . . , u(n−1)

h) ≥ 0. (6.2)

123

 59 Page 18 of 26 Journal of Scientific Computing (2024) 98:59

According to Algorithm 1, the iterative approximation [u(n)
h]0 = u(n−1)

h is nonnegative. Note
that

S([u(n)
h]p) [u(n)

h]p+1 = f (n) + g([u(n)
h]p) + w1(u

(0)
h , . . . , u(n−1)

h). (6.3)

From (5.3),(5.4), we know g([u(n)
h]p) ≥ 0. Note matrix S([u(n)

h]p) satisfies the following
conditions

(i) All diagonal entries are positive;
(ii) All off-diagonal entries are non-positive;
(iii) The column sum is positive.

This implies that S� is anM-matrix and hence S−1 = ((S�)−1)� is a nonnegativematrix. For
the model problem (1.1) with f ≥ 0, it is clear that f (n) ≥ 0. By the induction hypothesis,

[u(n)
h]p+1 =

(
S([u(n)

h]p)
)−1 (

f (n) + g([u(n)
h]p) + w1(u

(0)
h , . . . , u(n−1)

h)
)

≥ 0, for n ≤ 2.

(6.4)

Thus u(n)
h ≥ 0 for n ∈ {0, 1, 2}.

Similarly, fix n ∈ {3, 4, . . . , NT }. Assume that u(k)
h is nonnegative for k = 0, . . . , n − 1.

According to Theorem 1, we have

T−α

Γ (1 − α)

Nexp∑

j=1

θ j
e−λ j (τn/T) − e−λ j (τn,n−2/T)

λ jτn−1/T
u(n−2)
h − T−α

Γ (1 − α)

Nexp∑

j=1

θ jw
(n)
j ≥ 0. (6.5)

Then

w2(w
(n)
1 , . . . ,w

(n)
Nexp

, u(n−2)
h , u(n−1)

h) ≥ 0. (6.6)

It is straightforward to prove that

[u(n)
h]p+1 =

(
S([u(n)

h]p)
)−1 (

f (n) + g([u(n)
h]p) + w2(w

(n)
1 , . . . ,w

(n)
Nexp

, u(n−2)
h , u(n−1)

h)
)

≥ 0,

(6.7)

where n ∈ {3, 4, . . . , NT }. By mathematical induction, this implies that the numerical solu-
tion produced by Algorithm 1 is indeed nonnegative.
�

6.2 Reduction in Bandwidth and Computational Complexity

Anoticeable benefit offlux-correction is the reductionof stencil size and thenbandwidthof the
coefficient matrix of the discrete algebraic system, and accordingly savings in computational
costs for each Picard iteration.

Recall discretization of convection utilize information from the upstream elements/nodes.
For instance, in the case b ≥ 0, the stencil size of the original scheme on the dual element
K ∗

P (shown in Fig. 4a) is 15. It is clear from a comparison of (4.5), (4.12), and (4.27) that
our flux correction technique can reduce the stencil size to 5, as shown in Fig. 4b.

Assume a primal mesh has NP nodes. The MFL1-Correction solver requires O(NP) opera-
tions for w

(n)
j for each fixed n (one step in time-marching) and each fixed j (one term in the

123

Journal of Scientific Computing (2024) 98:59 Page 19 of 26 59

Fig. 4 Reduction in stencil size and hence bandwidth of the coefficient matrix thanks to positivity correction.
a Before correction: 15 nodes with nonzero coefficients; b After correction: Only 5 nodes with nonzero
coefficients

SOE approximation) in the recurrence formula. Since Nexp ≤ O((log NT)2) (see [5]), this
solver requires only

O(NP NT (log NT)2), O(NP (log NT)2) (6.8)

for operations and storage, respectively.

On the other hand, the L1 discretization does satisfy the two properties in Theorem 1, it can
also be combined with our flux correction technique. Such a combination is more expensive,
since its requirements for operations and storage are respectively

O(NPN
2
T), O(NP NT).

7 Numerical Experiments

This section presents numerical examples to demonstrate accuracy, efficiency, and positivity-
preserving property of our fast solver. General quadrilateral meshes are used. They are
generated from random perturbations of uniform rectangular meshes. For an interior node
(x, y) in a uniform rectangular mesh with size h, the corresponding node of the quadrilateral
mesh is

(x, y) = (x, y) +
(

−h

4
+ h

2
∗ rand(1, 2)

)

, (7.1)

where rand(1, 2) generates a matrix of size 1 × 2 with entries being random numbers in
(0, 1). The distortion range of node coordinates is (−h/4, h/4). Such meshes (see Fig. 5)
are used in Example 1 & 3. For all numerical tests, NE denotes the number of elements and
NT denotes the number of time steps.

Example 1 (Convergence rates). We consider a time-fractional convection-diffusion prob-
lem with Ω = (0, 1)2, T = 1, α = 0.6, b(x, y) = [2, 1]�, A = 10−8, and a known exact
solution

u(x, y, t) = (1 − e2x+y− 3
A + ex+y) (t3 + tα), (7.2)

123

 59 Page 20 of 26 Journal of Scientific Computing (2024) 98:59

Fig. 5 A quadrilateral mesh obtained from perturbation of a rectangular mesh

which is weakly singular at t = 0. More specifically, there exists a constant C > 0 so that

|∂t u(x, y, t)| ≤ C(1 + tα−1). (7.3)

Such singularitymay result in accumulation of errors as time-marching progresses. To address
this issue, temporal gradedmeshes should be used. For instance, one may set tn = T (n/NT)r

for n = 0, 1, . . . , NT . The optimal index is r = 2−α
α

, as suggested in [36], while r = 1 gives
a uniform temporal partition. We examine two types of errors.

– The L2-norm of the spatial errors at the final time T : ‖u(·, T) − u(NT)
h (·)‖L2 ;

– The overall spatial-temporal errors: max
0≤n≤NT

||u(·, tn) − u(n)
h (·)||L2 .

We use quadrilateral meshes obtained from perturbation of uniform rectangular meshes.
Parameter B = 1010 is used for correction and ε = 10−6 for controlling Picard iterations.

Remark 3 Parameter B is problem-dependent, somewhat like the penalty factor for the
discontinuous Galerkin finite element methods. It needs to be large enough to guarantee
convergence of the numerical solutions to that of the given problem. Here we make a simple
empirical choice B = 1010 for Example 1. Parameter ε is also empirical. Here we expect
various types of errors to reach the level of 10−3 and accordingly choose ε = 10−6, which
is three-magnitude lower.

Our numerical solver has errors O((Δt)2−α + h2), when quasi-uniform spatial meshes
(with size h) and graded temporal partitions (with understanding Δt = 1

NT
) are used. But

a rigorous proof is omitted due to page limitation. With the consideration to emphasize
(Δt)2−α , we choose h ≈ Δt (so that h2 is a higher order infinitesimal) or equivalently
NE ≈ N 2

T in Tables 1 & 3. With the consideration to emphasize h2, we choose h2 ≈ Δt or
equivalently NE ≈ NT in Table 4. Listed below are observations for the individual tables.

(i) When the optimal graded temporal mesh (r = 2−α
α

) is used and h ≈ 1
NT

, the overall

errors are proportional to (Δt)2−α , as shown in Table 1;
(ii) If a uniform temporal mesh is used instead and h ≈ 1

NT
, the overall errors converge at

a lower rate (close to α), as shown in Table 2;
(iii) When the optimal graded temporal mesh is used and h ≈ 1

NT
, the spatial L2-errors at

the final time T exhibit a convergence rate close to (2 − α), as shown in Table 3;

123

Journal of Scientific Computing (2024) 98:59 Page 21 of 26 59

Table 1 Ex.1 (α = 0.6): Overall errors for graded temporal meshes with r = 2−α
α

CFL1-Uncorrected solver MFL1-Correction solver

NE NT max
n

||u(n)
h − u(tn)||L2 Rate max

n
||u(n)

h − u(tn)||L2 Rate

8 × 8 8 1.4558 × 10−1 – 1.4514 × 10−1 –

16 × 16 16 6.3456 × 10−2 1.198 6.3683 × 10−2 1.188

32 × 32 32 2.5641 × 10−2 1.307 2.5805 × 10−2 1.303

64 × 64 64 1.0117 × 10−2 1.341 1.0118 × 10−2 1.350

128 × 128 128 3.9192 × 10−3 1.368 3.9251 × 10−3 1.366

Table 2 Ex.1 (α = 0.6): Overall errors for uniform temporal partitions (r = 1)

CFL1-Uncorrected solver MFL1-Correction solver

NE NT max
n

||u(n)
h − u(tn)||L2 Rate max

n
||u(n)

h − u(tn)||L2 Rate

8 × 8 8 9.7168 × 10−2 – 9.8382 × 10−2 –

16 × 16 16 9.1061 × 10−2 0.093 9.1020 × 10−2 0.112

32 × 32 32 7.3654 × 10−2 0.306 7.3571 × 10−2 0.307

64 × 64 64 5.5226 × 10−2 0.415 5.5227 × 10−2 0.413

128 × 128 128 3.9651 × 10−2 0.478 3.9659 × 10−2 0.477

Table 3 Ex.1 (α = 0.6): Spatial errors of numerical solutions at t = 1 for graded temporal meshes with
r = 2−α

α

CFL1-Uncorrected solver MFL1-Correction solver

NE NT L2-error Rate L2-error Rate

8 × 8 8 1.4558 × 10−1 – 1.4514 × 10−1 –

16 × 16 16 6.3456 × 10−2 1.198 6.3683 × 10−2 1.188

32 × 32 32 2.5641 × 10−2 1.307 2.5805 × 10−2 1.303

64 × 64 64 1.0117 × 10−2 1.341 1.0118 × 10−2 1.350

128 × 128 128 3.9192 × 10−3 1.368 3.9251 × 10−3 1.366

(iv) When the optimal graded temporal mesh is used and h2 ≈ 1
NT

, the spatial L2-errors

at the final time T behave like h2, as shown in Table 4.

Remark 4 . It is also interesting to note that Tables 1 and 3 record the same results. This
is mainly due to the weak singularity of the solution at t = 0. When the optimal graded
temporal partition (r = 2−α

α
) is used, the following holds

max
0≤n≤NT

‖u(·, tn) − u(n)
h ‖L2 = ‖u(·, tNT) − u(NT)

h ‖L2 .

Example 2 (Positivity-preservingproperty).Hereweconsider a time-fractional convection-
diffusion problem in Ω = (− 1

2 ,
1
2)

2 with T = π , b = [2y,−2x]�, A = 10−4, and f = 0.

123

 59 Page 22 of 26 Journal of Scientific Computing (2024) 98:59

Table 4 Ex.1 (α = 0.6): Spatial errors of numerical solutions at t = 1 for graded temporal meshes with
r = 2−α

α

CFL1-Uncorrected solver MFL1-Correction solver

NE NT L2-error Rate L2-error Rate

4 × 4 42 1.5836 × 10−1 – 1.5700 × 10−1 –

8 × 8 82 4.2648 × 10−2 1.892 4.4818 × 10−2 1.808

16 × 16 162 1.0322 × 10−2 2.046 1.0296 × 10−2 2.121

32 × 32 322 2.5676 × 10−3 2.007 2.5155 × 10−3 2.033

Fig. 6 Ex.2 with α = 0.3: Numerical solutions at t = π by three different solvers. a, b Solutions exhibit
negative values (shown as white dots) for the solvers without correction; c the solution remains nonnegative
for the solver with correction

Fig. 7 Ex.2 (α = 0.95): Numerical solutions by the MFL1-Correction solver at t = 0, π
3 , 2π

3 , π (from left to
right)

A Gaussian hump is specified as the initial condition

g2(x, y) = exp

(

− (x − xc)2 + (y − yc)2

2σ 2

)

, (xc, yc) = (−0.25, 0), σ = 0.0447.

(7.4)

The boundary condition is set as

g1(x, y, t) = 2σ 2

2σ 2 + 4At

exp

(

− (cos(2t)x − sin(2t)y − xc)2 + (sin(2t)x + cos(2t)y − yc)2

2σ 2 + 4At

)

. (7.5)

According to the maximum principle [23], for α ∈ (0, 1), the solution u is nonnegative on
Ω × (0, T].
The problemwas solved forα = 0.3 by four different solvers on a 96×96 uniform rectangular
mesh with a uniform time partition (NT = 3000). Picard iteration control parameter is set as

123

Journal of Scientific Computing (2024) 98:59 Page 23 of 26 59

Fig. 8 Ex.3: Numerical solutions at t = 1 by three different solvers. a Nonphysical oscillations; b, c No
nonphysical oscillations

ε = 10−5. Other parameters are the same as in Ex.1. The concentration profiles for the final
time T = π (see Fig. 6) show clearly negative values (marked as white dots) for the solvers
without correction. For CFL1 with correction, it still produced negative solution values as
early as n = 3 (graphics not presented though). Only the MFL1-Correction solver works and
maintains non-negativity of the numerical solution as shown in Fig. 6c. It is clear that both
temporal modification and spatial correction are needed.

Example 2 was also solved for α = 0.95 by the MFL1-Correction solver. Concentration
profiles at time moments t = 0, π

3 , 2π
3 , π are shown in Fig. 7. The numerical solution

remains nonnegative and a “long tail" is clearly observed as the counterclockwise rotation
progresses.

Example 3 (Efficiency while preserving positivity). We consider a quasi-2d problem with
a boundary layer, which is similar to those in [20, 44]. Specifically, Ω = (0, 1)2, T = 1,
α = 0.5, A = 1, and b = [x(1 − x) + 400, 0]�. The initial condition is g2(x, y) = 0 and
the boundary condition is

g1(x, y, t) = − 1 − e10x

2.20255 × 104
t2. (7.6)

The problem is solved on a 24 × 24 quadrilateral mesh with a uniform temporal partition
NT = 128. The correction parameter is B = 1010 and the control parameter for Picard
iterations is ε = 10−6.

As shown in Table 5, there could be six solvers. But none of Solver#1,#3,#5 would guarantee
non-negativity of numerical solutions, since there is no flux correction. Solver#4 does not
preserve positivity either, since it is based on a conventional fast L1 algorithm, namely, a 2-part
decomposition of the L1 discretization (see Section 2). Solver#2 does preserve positivity but
may be slow. Solver#6 preserves positivity and is faster than Solver#2, as shown in Table 6.
Figure 8 provides more details about features of the numerical solutions. Therefore, Solver#6
(MFL1-Correction) is the right choice.

8 Concluding Remarks

In this paper, we have developed a novel positivity-preserving fast solver for time-fractional
2-dim convection-diffusion problems. The solver is robust in handling convection dominance.
It attains optimal convergence rates when graded temporal meshes are used.

123

 59 Page 24 of 26 Journal of Scientific Computing (2024) 98:59

Table 5 Six possible solvers

Without flux correction With flux correction

L1 discretization Solver#1 Solver#2 (L1-correction)

2-part splitting Solver#3 Solver#4 (CFL1-correction)

3-part splitting Solver#5 Solver#6 (MFL1-correction)

Table 6 Ex.3: Comparison of #steps of Picard iteration and solver runtime

L1-correction (solver#2) MFL1-correction (solver#6)

NT Avg. #steps for CPU time Avg. #steps for CPU time
Picard iteration (s) Picard iteration (s)

10,000 2.09 717.87 2.09 444.64

15,000 1.99 1251.32 1.99 632.19

20,000 1.99 1946.26 1.99 841.37

The three-part decomposition of L1 discretization of Caputo derivatives plays an important
role in maintaining numerical solutions nonnegative. As discussed in Section 2, the conven-
tional two-part splitting fails to preserve positivity of numerical solutions.

The flux-correction technique discussed in Section 4 leads to a slightly nonlinear problem
that involves Picard iterations. As demonstrated in numerical experiments, only few iterations
are needed for each time-marching step. But the bandwidth of the stiffness matrix is actually
reduced. The numerical solution is guaranteed to be nonnegative and hence the efforts are
worthwhile.

Our solver applies to the time-fractional Fokker-Planck equation also. Here we would like
to comment on the differences between our work and that in [44]. The work in [44] is con-
cerned with the discrete maximum principle by using the cell-centred finite volume method,
but it does not consider fast computation. For our work, the non-negativity of numerical
solutions is critical to time-fractional convection-diffusion problems. The finite volume ele-
ment method was used and our positivity-correction applies to both diffusive and convective
fluxes. Moreover, our solver is a fast solver.

The methodology for developing the new solver in this paper can be extended to 3-dim
problems and other fractional order PDEs. Combining the higher order temporal discretiza-
tions L2 and L2-1σ with the upwinding and flux-correction techniques in this paper will be
interesting topics for further study. These will be reported in our future work.

Acknowledgements Y.Li was partially supported by theNational Natural Science Foundation of China (Grant
No.12071177). J.Liu was partially supported by USNational Science Foundation under Grant DMS-2208590.
We sincerely thank the anonymous reviewers, whose comments have helped improve the quality of this paper,
and also Prof. Guangwei Yuan, with whom we have meaningful discussion about certain techniques in this
paper.

Declarations

Conflict of interests All authors declare no conflict of interests.

Data Availability The data related to this manuscript will be available upon request.

123

Journal of Scientific Computing (2024) 98:59 Page 25 of 26 59

References

1. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys.
280, 424–438 (2015)

2. Baffet, D.: A Gauss–Jacobi kernel compression scheme for fractional differential equations. J. Sci. Com-
put. 79, 227–248 (2019)

3. Baffet, D., Hesthaven, J.S.: High-order accurate adaptive kernel compression time-stepping schemes for
fractional differential equations. J. Sci. Comput. 72, 1169–1195 (2017)

4. Baffet, D., Hesthaven, J.S.: A kernel compression scheme for fractional differential equations. SIAM J.
Numer. Anal. 55, 496–520 (2017)

5. Beylkin, G., Monzón, L.: Approximation by exponential sums revisited. Appl. Comput. Harmon. Anal.
28(2), 131–149 (2010)

6. Bueno-Orovio, A., Teh, I., Schneider, J.E., Burrage, K., Grau, V.: Anomalous diffusion in cardiac tissue
as an index of myocardial microstructure. IEEE Trans. Med. Imaging 35(9), 2200–2207 (2016)

7. Cao, J., Xiao, A., Bu, W.: Finite difference/finite element method for tempered time fractional advection-
dispersion equation with fast evaluation of Caputo derivative. J. Sci. Comput. 83, 1–29 (2020)

8. Chang, A., Sun, H., Zheng, C., Lu, B., Lu, C., Ma, R., Zhang, Y.: A time fractional convection-diffusion
equation to model gas transport through heterogeneous soil and gas reservoirs. Phys. A 502, 356–369
(2018)

9. D’Elia, M., Du, Q., Glusa, C., Gunzburger, M., Tian, X., Zhou, Z.: Numerical methods for nonlocal and
fractional models. Acta Numer. 29, 1–124 (2020)

10. Diethelm, K., Freed, A.D.: An efficient algorithm for the evaluation of convolution integrals. Comput.
Math. Appl. 51(1), 51–72 (2006)

11. Fallahgoul, H., Focardi, S., Fabozzi, F.: Fractional calculus and fractional processes with applications to
financial economics: theory and application. Academic Press, Cambridge (2016)

12. Ford, N.J., Simpson, A.C.: The numerical solution of fractional differential equations: speed versus
accuracy. Numer. Algorithms 26, 333–346 (2001)

13. Gao, G., Sun, Z., Zhang, H.: A new fractional numerical differentiation formula to approximate theCaputo
fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

14. Gao, Y., Yuan, G., Wang, S., Hang, X.: A finite volume element scheme with a monotonicity correction
for anisotropic diffusion problems on general quadrilateral meshes. J. Comput. Phys. 407, 109143 (2020)

15. Harper, G., Liu, J., Tavener, S., Wildey, T.: Coupling Arbogast–Correa and Bernardi–Raugel elements to
resolve coupled Stokes–Darcy flow problems. Comput. Methods Appl. Mech. Eng. 373, 113469 (2021)

16. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)
17. Ionescu, C., Lopes, A., Copot, D., Machado, J., Bates, J.: The role of fractional calculus in modeling

biological phenomena: a review. Commun. Nonlinear Sci. Numer. Simul. 51, 141–159 (2017)
18. Jannelli, A.: Adaptive numerical solutions of time-fractional advection-diffusion-reaction equations.

Commun. Nonlinear Sci. Numer. Simul. 105, 106073 (2022)
19. Jiang, S., Zhang, J., Zhang, Q., Zhang, Z.: Fast evaluation of the Caputo fractional derivative and its

applications to fractional diffusion equations. Commun. Comput. Phys. 21(3), 650–678 (2017)
20. Jiang, Y., Xu, X.: A monotone finite volume method for time fractional Fokker–Planck equations. Sci.

China Math. 62, 783–794 (2019)
21. Jin, B., Lazarov, R., Thomée, V., Zhou, Z.: On nonnegativity preservation in finite element methods for

subdiffusion equations. Math. Comput. 86, 2239–2260 (2017)
22. Jin, B., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth

data. IMA J. Numer. Anal. 36(1), 197–221 (2016)
23. Kopteva, N.: Maximum principle for time-fractional parabolic equations with a reaction coefficient of

arbitrary sign. Appl. Math. Lett. 132, 108209 (2022)
24. Kumar, D., Singh, J.: Fractional Calculus in Medical and Health Science. CRC Press, Boca Raton (2020)
25. Lan, B., Sheng, Z., Yuan, G.: A new positive finite volume scheme for two-dimensional convection-

diffusion equation. Z. Angew. Math. Mech. 99, e201800067 (2019)
26. Li, C., Wang, Z.: Numerical methods for the time-fractional convection-diffusion-reaction equation.

Numer. Funct. Anal. Optim. 42, 1115–1153 (2021)
27. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J.

Comput. Phys. 225(2), 1533–1552 (2007)
28. Lu, C., Huang, W., Qiu, J.: Maximum principle in linear finite element approximations of anisotropic

diffusion-convection-reaction problems. Numer. Math. 127, 515–537 (2014)
29. Lu, C., Huang, W., Vleck, E.S.V.: The cutoff method for the numerical computation of nonnegative

solutions of parabolic PDEs with application to anisotropic diffusion and Lubrication-type equations. J.
Comput. Phys. 242, 24–36 (2013)

123

 59 Page 26 of 26 Journal of Scientific Computing (2024) 98:59

30. Lv, C., Xu, C.: Error analysis of a high order method for time-fractional diffusion equations. SIAM J.
Sci. Comput. 38(5), A2699–A2724 (2016)

31. Ngondiep, E.: A two-level fourth-order approach for time-fractional convection-diffusion-reaction equa-
tion with variable coefficients. Commun. Nonlinear Sci. Numer. Simul. 111, 106444 (2022)

32. Ngondiep, E.: A high-order numerical scheme for multidimensional convection-diffusion-reaction equa-
tion with time-fractional derivative. Numer. Algorithms 91, 681–700 (2023)

33. Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Inte-
gration toArbitrayOrder,Mathematics in Science and Engineering, vol. 111. Academic Press, Cambridge
(1974)

34. Roul, P., Rohil, V.: A high-order numerical scheme based on graded mesh and its analysis for the two-
dimensional time-fractional convection-diffusion equation. Comput. Math. Appl. 126, 1–13 (2022)

35. Sahoo, S.K., Gupta, V.: A robust uniformly convergent finite difference scheme for the time-fractional
singularly perturbed convection-diffusion problem. Comput. Math. Appl. 137, 126–146 (2023)

36. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes
for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2016)

37. Sun, H., Cao, W.: A fast temporal second-order difference scheme for the time-fractional subdiffusion
equation. Numer. Meth. PDEs 37(3), 1825–1846 (2021)

38. Sun, H., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.: A new collection of real world applications of
fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 64, 213–231
(2018)

39. Tayebi, A., Shekari, Y., Heydari, M.: Ameshless method for solving two-dimensional variable-order time
fractional advection-diffusion equation. J. Comput. Phys. 340, 655–669 (2017)

40. West, B.J., Bologna, M., Grigolini, P.: Physics of Fractal Operators. Springer, Berlin (2003)
41. Wu, J., Gao, Z.: Interpolation-based second-order monotone finite volume schemes for anisotropic dif-

fusion equations on general grids. J. Comput. Phys. 275, 569–588 (2014)
42. Wu, L., Zhai, S.: A new high order ADI numerical difference formula for time-fractional convection-

diffusion equation. Appl. Math. Comput. 387, 124564 (2020)
43. Yan, Y., Sun, Z., Zhang, J.: Fast evaluation of the Caputo fractional derivative and its applications to

fractional diffusion equations: a second-order scheme. Commun. Comput. Phys. 22(4), 1028–1048 (2017)
44. Yang, X., Zhang, H., Zhang, Q., Yuan, G., Sheng, Z.: The finite volume scheme preserving maximum

principle for two-dimensional time-fractional Fokker–Planck equations on distorted meshes. Appl. Math.
Lett. 97, 99–106 (2019)

45. Yang, Z., Zeng, F.: A corrected L1 method for a time-tractional subdiffusion equation. J. Sci. Comput.
95(3), 85 (2023)

46. Yuan, G., Sheng, Z.: Monotone finite volume schemes for diffusion equations on polygonal meshes. J.
Comput. Phys. 227(12), 6288–6312 (2008)

47. Zeng, F., Zhang, Z., Karniadakis, G.E.: Fast difference schemes for solving high-dimensional time-
fractional subdiffusion equations. J. Comput. Phys. 307, 15–33 (2016)

48. Zhai, S., Feng, X., He, Y.: An unconditionally stable compact ADI method for three-dimensional time-
fractional convection-diffusion equation. J. Comput. Phys. 269, 138–155 (2014)

49. Zhang, G., Huang, C., Alikhanov, A.A., Yin, B.: A high-order discrete energy decay and maximum-
principle preserving scheme for time fractional Allen–Cahn equation. J. Sci. Comput. 96(2), 39 (2023)

50. Zhang, J., Zhang, X., Yang, B.: An approximation scheme for the time fractional convection-diffusion
equation. Appl. Math. Comput. 335, 305–312 (2018)

51. Zhu, H., Xu, C.: A fast high order method for the time-fractional diffusion equation. SIAM J. Numer.
Anal. 57, 2829–2849 (2019)

52. Zhuang, P., Gu, Y., Liu, F., Turner, I., Yarlagadda, P.: Time-dependent fractional advection-diffusion
equations by an implicit MLS meshless method. Int. J. Numer. Meth. Eng. 88, 1346–1362 (2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

	A Positivity-Preserving and Robust Fast Solver for Time-Fractional Convection–Diffusion Problems
	Abstract
	1 Introduction
	2 A Modified Fast L1 Evaluation Algorithm for Caputo Derivatives
	2.1 L1 Discretization and SOE Approximation
	2.2 A Modified Fast L1 Evaluation Algorithm

	3 Upwinding for Bilinear Finite Volume Discretization
	4 Flux Correction for Bilinear Finite Volume Discretization
	4.1 Splitting of the Diffusive Flux
	4.2 Splitting of the Convective Flux
	4.3 Positivity-Correction for Diffusive and Convective Fluxes

	5 A Positivity-Preserving Fast Solver for Time-fractional Convection-Diffusion Problems
	5.1 A Nonlinear Discrete System for the Solver
	5.2 Implementation Based on Picard Iterations

	6 Advantages of the MFL1-Correction Solver
	6.1 Positivity-Preserving Property of the MFL1-Correction Solver
	6.2 Reduction in Bandwidth and Computational Complexity

	7 Numerical Experiments
	8 Concluding Remarks
	Acknowledgements
	References

