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Abstract— The proliferation of digital health technologies has
led to an abundance of personal health data. However, querying
and retrieving specific health-related information from disparate
sources can be challenging and inconvenient, particularly for
older individuals unfamiliar with technology. While ChatGPT
offers a conversational interface, it lacks domain-specific
knowledge, including personalized health information. To address
this limitation, we present a novel approach that combines a
knowledge graph and GPT to enable personalized health queries.
Our solution utilizes a personal knowledge graph as a
comprehensive knowledge source and fine-tunes GPT to provide
accurate responses. We have implemented a voice assistant mobile
app incorporating this knowledge graph-assisted GPT model and
conducted initial feasibility testing.

Keywords— personal health data, knowledge graph, Generative
Pre-trained Transformer, graph database, chatbot

[. INTRODUCTION

In the current era of digital health and wearable devices,
individuals have unprecedented access to a vast array of
personal health data [1], [2]. For instance, health apps generate
data such as daily activity levels, heart rate, sleep patterns, and
nutrition intake. Wearable devices, like fitness trackers and
smartwatches, track physical activity, exercise routines, and
vital signs. Medical records store comprehensive health
histories, diagnoses, and treatment plans. Lab data, including
blood tests and imaging results, provide insights into individuals'
physiological conditions. Additionally, insurance data contains
information on coverage, claims, and reimbursement records.
Today, approximately 30% of the world's data volume is being
generated by the healthcare industry [3]. By 2025, the compound
annual growth rate of data for healthcare will reach 36%. That's
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6% faster than manufacturing, 10% faster than financial
services, and 11% faster than media & entertainment [3].

Despite the availability of these data sources, the fragmented
nature of the data across various platforms presents a significant
challenge for individuals seeking a holistic view of their health.
For example, consider a user who wants to assess their lifestyle
and make improvements based on recommendations from their
primary doctor. This user would typically need to search for
their Electronic Health Records (EHR) data to retrieve the
doctor's suggestions. They would then have to navigate through
various health apps and wearable devices to access data on their
physical activity, sleep patterns, and nutrition. Finally, they
would need to synthesize this information to make informed
lifestyle choices. This fragmented process can be time-
consuming and cumbersome, often requiring manual efforts and
technical proficiency.

The primary objective of this research is to develop a
knowledge graph-assisted GPT model that enables individuals
to query and retrieve personalized health information
effortlessly. The proposed system aims to bridge the gap
between users and their health data by leveraging the power of
natural language processing and knowledge graph technology.
By integrating a personal knowledge graph and fine-tuning the
GPT model, we strive to provide accurate and tailored responses
to users' health-related queries, regardless of their technological
proficiency.

ChatGPT has gained significant popularity across various
domains, revolutionizing the way people interact with
conversational AI. From customer support to content
generation, ChatGPT has showcased its capabilities in
understanding and generating human-like responses. While
ChatGPT excels in generating responses based on general



knowledge, it falls short when it comes to addressing
personalized questions that require access to personal private
data. ChatGPT cannot tap into an individual's specific health
information. Furthermore, there have been instances where
ChatGPT produces plausible-sounding but incorrect or
nonsensical answers. This phenomenon, often referred to as
"hallucination," poses significant risks when it comes to critical
domains such as medical advice or accurate health-related facts.
To ensure the reliability and safety of using Al in such contexts,
it is crucial to address these limitations and enhance the accuracy
of responses.

By integrating various data sources, such as health apps,
wearable devices, electronic health records (EHRs), lab data,
and insurance records, into a comprehensive knowledge graph,
we create a unified representation of an individual's health
information. This knowledge graph serves as a contextualized
and structured knowledge foundation that can be used to fine-
tune GPT. During the fine-tuning process, we train GPT using a
specialized dataset derived from the integrated knowledge
graph. This dataset consists of personalized health data, ensuring
that the model learns to generate accurate and personalized
answers. By incorporating the knowledge graph during the fine-
tuning phase, we enhance the model's understanding of health-
related concepts, relationships, and context, enabling it to
provide context-aware and reliable responses.

By combining the strengths of GPT's natural language
processing capabilities with the contextual knowledge from the
personal health knowledge graph, we aim to create a chatbot
system that can bridge the gap between general knowledge and
personalized health information. This approach ensures that
users receive accurate, reliable, and tailored responses to their
health queries while maintaining privacy and data security.

In the following sections, we will delve into the details of
constructing the personal health knowledge graph, fine-tuning
GPT using the knowledge graph, and conducting feasibility
testing to evaluate the effectiveness and usability of our
approach.

II. RELATED WORK

Knowledge graph-based approaches have gained attention in
the healthcare domain for organizing and querying personal
health information.

[4] introduces and explores the use of knowledge graphs for
question answering in the context of electronic health records
(EHR). The authors propose a graph-based approach for EHR
question answering, which leverages the natural representation
of relationships in knowledge graphs to facilitate more accurate
and intuitive querying compared to table-based approaches. The
authors compare the performance of EHR question answering
model on both the table-based and graph-based datasets. The
experimental results demonstrate that the graph-based approach
significantly improves accuracy compared to the table-based
approach, even without modifications to the model
architectures. Another work [5] tries to address the U.S. opioid
epidemic using a knowledge graph-based approach. The
approach leverages the Opioid Drug Knowledge Graph (ODKG)
as a comprehensive network encompassing opioid-related drugs,
active ingredients, formulations, combinations, and brand
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names. They use the ODKG to normalize drug strings in a
clinical data warehouse and showcase the use of ODKG to
generate summary statistics of opioid prescription trends across
US regions.

[6] proposed a blockchain-based personal health knowledge
graph to address the challenges associated with managing and
integrating personal health data (PHD) from various sources.
The approach utilizes knowledge graphs to structure and
integrate different types of PHD, and they used blockchain to
ensure data privacy and security. The proposed approach aims
to provide a comprehensive view of an individual's health by
integrating and managing diverse PHD sources. [7] presents a
medical knowledge-based dialogue system that acts as a health
assistant chatbot. The chatbot analyzes users' reported disease
symptoms and provides personalized medical advice and
nutrition suggestions. By utilizing a medical knowledge graph,
the chatbot can ask relevant questions to narrow down the search
range of possible diseases. The system efficiently matches
symptoms against its medical knowledge base and recommends
suitable diagnoses. Similarly, [8] introduces KnowHealth, a
knowledge graph-based question-answer platform designed to
manage health data for elderly people. KnowHealth utilizes an
ontology to define entities and relations in the domain of aged
diseases. Health-related information is crawled and extracted
from various sources, and entities and relations are used to
construct a knowledge graph. The platform provides a historical
behavior-driven question-answering system that accurately
retrieves and reasons answers by analyzing and extending the
intention of questions.

ChatGPT, a language model developed by OpenAl, has
gained significant attention in the healthcare domain due to its
potential applications in improving patient care, medical
research, and healthcare operations [9]. [10] examines the
advantages and limitations of using ChatGPT in health
education. The study utilizes expert panel discussions and
literature review to assess the benefits and drawbacks of
ChatGPT in healthcare educational domains. The findings
indicate potential benefits such as personalized learning,
improved clinical reasoning, and enhanced understanding of
complex concepts in medical education. However, the
limitations identified across all healthcare disciplines include
data privacy concerns, the risk of biased or inaccurate content
generation, and potential negative effects on critical thinking
and communication skills among students.

Sharma et al. [11] explore the use of ChatGPT in providing
healthcare services to mariners in the maritime industry. The
authors highlight how ChatGPT can revolutionize maritime
healthcare by offering personalized and prompt healthcare
services. By leveraging the expertise and conversational
capabilities of ChatGPT, virtual consultations with healthcare
professionals can be enabled, allowing for the analysis of health
data. The integration of ChatGPT technology in maritime
healthcare has the potential to transform the way seafarers
receive care and support. However, the study acknowledges the
need to address challenges associated with implementing
ChatGPT-powered healthcare services in the maritime sector.
Another research [12] developed a voice assistant app powered
by GPT to empower caregivers of individuals with Alzheimer's



% Backend Server - .
L =

Information Sources

Personal Health .

Fine Tune Model

Speech/Text

Knowledge Graph

Healpp Wearable Sensor

onversion

B|T

Prompt

g”)g @ I~

Context

®Lo
%

;4

=
=Cb

GPT

N —-
Similarity Gra

Engineering ‘[: Info
Semantic Knowledge

h
Emgedding

Diet & Lifestyle

e '
7% // Diary

Fig. 1. Sysfér; architecture

Disease and Related Dementias (ADRD). The proposed voice
assistant aims to facilitate caregivers of ADRD in accessing
shared experiences and practical tips from peers, providing them
with valuable insights. Initial evaluation of the app has shown
promising results, indicating its feasibility and potential impact
on caregivers.

III. SYSTEM DESIGN

In our system, depicted in Fig. 1, users can effortlessly
access their health knowledge through a voice assistant. By
speaking their queries, the voice assistant converts the speech to
text and forwards it to GPT for processing. GPT, utilizing the
user's query, consults the knowledge base comprising the user's
personalized health data to provide relevant answers. To build
the knowledge base, we construct a comprehensive knowledge
graph that connects various health-related data through nodes
and edges. To optimize GPT's utilization of the knowledge
graph, we convert it into a knowledge graph embedding. This
embedding serves as a contextual reference for GPT during the
query processing, enabling a more effective response.

A. Construction of Personal Health Knowledge Graph

We start with real-time data collection from diverse sources,
including health apps, wearable devices, medical records, lab
data, and insurance records. These sources provide valuable
information about the patient's health condition and context,
enabling a holistic view of their well-being. To ensure
consistency and interoperability, the raw data from different
sources undergoes transformation into a unified format based on
a common ontology — HealthOnto.

As shown in Figure 2, this ontology defines relevant health
concepts, such as symptoms, diseases, treatments, medications,
etc., along with their relationships. We reused HealthOnto that
was designed in our previous research [6]. This ontology serves
as the foundation for the personal health knowledge graph
ensuring a uniform framework for organizing and displaying
personal health data. To design the ontology, we followed the
HL7 FHIR [13] standard. This approach enhances consistency
and interoperability across diverse sources of personal health
data. The HL7 FHIR-based ontology proposed in [14] serves as
our foundation. We extended the HL7 FHIR ontology to include
additional aspects of an individual's health, such as profiles,
lifestyle interventions, healthcare providers, and data generated
by health-related wearable devices. For example, the expanded
ontology now includes classes like Physical Activity, Diet,
Smoking Status, and Alcohol Consumption, along with their
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sub-classes and properties, which provide valuable information
about an individual's lifestyle.

Based on HealthOnto we can align and link the data from
various sources for building a coherent and comprehensive
knowledge graph. Semantic similarity and advanced entity
resolution techniques [15], [16] are employed to match and
connect similar or related data points. This step addresses
challenges arising from variations in naming conventions or
identifiers across different sources.

Figure 3 illustrates a segment of a personalized health
knowledge graph utilized to capture individual health insights.
In this example, the graph pertains to a user named Heinz,
encompassing both specific and confidential data, such as
allergies and family medical history. Furthermore, due to his
type 2 diabetes diagnosis, the knowledge graph
comprehensively stores details about Heinz's primary physician,
upcoming appointments, lab results, prescribed medications,
and more. Heinz takes a proactive approach to monitor his well-
being and enhance his lifestyle by leveraging wearable devices,
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health applications, and similar tools to track vital metrics like
heart rate, blood glucose levels, step count, and sleep quality.
Additionally, the knowledge graph encompasses pertinent data
regarding the conditions Heinz is managing, encompassing
facets such as type 2 diabetes complications and symptoms
associated with asthma. As Heinz engages with inquiries
concerning his health status, treatments, appointments, and
related subjects, the system delivers precise responses anchored
in his private information. This level of tailored insight goes
beyond the capabilities of a general GPT model, ensuring
accurate and personalized assistance for Heinz's distinct health

journey.

We augment the personalized health knowledge graph
(PHKG) with external knowledge, leveraging resources such as
the Systematized Nomenclature of Medicine (SNOMED) [17],
[18], a widely used clinical terminology standard. This enriches
the graph with additional information, including general facts
about diseases or treatments, contextual details like weather or
air quality, and other relevant insights.

B. Multi-Modal Data Storage

For real-time sensor data and other dynamic information, we
adopt a high-performance and scalable data storage solution.
This ensures rapid and efficient access to the constantly evolving
health data, which is crucial for providing up-to-date
information through the voice assistant. Dynamic data refers to
real-time or near-real-time data that is continuously generated
and updated, such as sensor data from wearable devices, health
app inputs, vital signs, activity levels, and other dynamic health-
related metrics. To effectively store and manage this constantly
evolving data, we employ a dynamic data storage solution that
is designed to handle high volumes of incoming data and support
rapid data retrieval. Specifically, a time-series database is
employed for storing dynamic health data as it is specifically
designed to handle time-stamped data points. Each data point is
associated with a timestamp, allowing for easy retrieval and
analysis of data over time. Time-series databases are optimized

for efficient storage and retrieval of time-series data, making
them well-suited for sensor data and other time-sensitive health
metrics. By implementing a dynamic data storage, our voice
assistant mobile application can efficiently capture, store, and
retrieve real-time health data, providing users with accurate and
timely health information through the power of voice
interactions.

On the other hand, static data, such as the patient's medical
history and past records, are stored in a secure and reliable data
storage repository. This static data is essential for building a
comprehensive understanding of the patient's health profile,
which aids in delivering accurate and personalized responses.
By combining these data storage approaches, our voice assistant
mobile application effectively utilizes multi-modal access to
health data.

C. Health Knowledge Graph Embedding

Creating a knowledge graph embedding is a crucial step in
accurately capturing the semantics and relationships between
concepts and entities in the health domain. Knowledge graph
embedding techniques aim to represent entities and relationships
from a knowledge graph in a continuous vector space, where the
spatial proximity of embeddings reflects the semantic similarity
and relationships between them.

In the proposed system, we adopt one popular approach,
Sentence-BERT [19], a transformer model trained by SNLI
corpus [20], TriviaQA [21], wikiHow [22], etc. Sentence-BERT
fine-tunes BERT in a Siamese/Triplet network architecture [19]
which is a specialized neural network structure designed for
learning similarity and dissimilarity between two pieces of data
like sentences. Based on the different downstream tasks, the
Sentence-BERT used different datasets, downstream structures,
and loss functions to produce semantically meaningful sentence

embeddings.

Our knowledge graph embedding aims to quantify how
relevant a knowledge sentence relates to a user's question.
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Knowledge graphs consist of a large number of interconnected
triplets (a head entity such as "Heinz", a relationship such as
"HAS DISEASE", and a tail entity such as "Asthma"). The
knowledge graph embedding technique translates each triplet
into a semantic statement in the form of a subject-predicate-
object sentence (e.g., "Heinz has disease asthma"), and further
converts the sentence into a dense vector as shown in Figure 4.
By measuring the similarities (spatial proximities) between the
user-question vector and all the knowledge vectors, the
sentences semantically relevant to the user's question can be
found. The sentences with the top n largest similarities will be
sent as context to the GPT model via prompt engineering.

D. Tuning the GPT Model

In our pursuit of providing natural language responses to
user queries, we leverage the power of the GPT model. To
address the inherent challenges associated with GPT, such as the
inability to offer personalized information and the potential to
generate plausible sounding yet incorrect answers, we employ a
set of strategies. Central to our approach are two critical
components: prompt engineering and the integration of
contextual embeddings. These elements collectively contribute
to elevating the accuracy and relevance of the model's responses.
Our prompt engineering strategy revolves around a fundamental
principle: instructing GPT to generate responses that are as
truthful as possible, hinging solely on the context and the content
encapsulated within the knowledge graph, presented in the form
of embeddings.

Consider the scenario where a user raises a query: "What was
my heart rate this afternoon? Was it normal?" To guide the GPT
model in generating precise, coherent, and satisfactory
responses, the prompt must strike a balance between offering
pertinent details and curbing the tendency of over-generating,
which could result in erroneous answers. Our prompt's design
takes a strategic approach. It initially presents a comprehensive
enumeration of specific information in the "Context" segment.
This information comprises highly individualized details that are
outside the realm of the GPT model's knowledge. This tailored
domain-specific context acts as a pivotal foundation.
Simultaneously, the prompt underlines the significance of
logical reasoning, haressing the GPT model's capacity to make
sound inferences based on the provided factual data. This
directive enhances the model's capability to address intricate
queries effectively within the designated domain. However, to
preclude the model from offering misguided responses that often
stem from an inclination to respond even when information is
absent, our prompt employs a precautionary measure. It
explicitly instructs the GPT model to "answer the question as
truthfully as possible," while also incorporating a fail-safe
option of "I don't know" when an answer cannot be identified.
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By imparting this guidance, we ensure that GPT derives its
responses from the amalgamation of contextually relevant
information contained within the knowledge graph embeddings.
This approach enhances the coherence and veracity of the
generated responses, effectively minimizing the possibility of
unfounded or speculative answers.

IV. SYSTEM EVALUATION

To gauge the effectiveness of our approach, we developed a
functional prototype in the shape of a mobile application.
Rigorous evaluation procedures were conducted, encompassing
a multitude of use case scenarios as well as comprehensive user
studies.

A. Prototype Impementation

Our implementation involves creating databases, back-end
service, and a user-friendly mobile chatbot application,
synergistically designed to deliver a seamless and intuitive user
experience. We used Neodj [23] to store the personal health
knowledge graph and employed InfluxDB [24] to process all
types of time series data. The back-end service developed using
the Django web framework [25], acts as a crucial hub for data
management and query processing. It interfaces between the
user's personal health data and the GPT model. It ensures the
integration and transformation of data from various sources into
the knowledge graph, maintaining up-to-date health data for
query processing. Additionally, it manages GPT model
communication, training, and personalized response generation.
For user interaction, we built a cross-platform mobile app using
Flutter, Google's open-source Ul toolkit. This chatbot interface
enables users to submit natural language health queries. Flutter's
flexibility, expressive UI, and native performance are ideal for
swift development of natively compiled applications across
multiple platforms. The app is accessible on both Android and
iOS devices.

B. Use Case Study

We assessed our system's effectiveness through use case
study based on various health data query scenarios. A
hypothetical user, Heinz, is a 60-year-old male managing type 2
diabetes and hypertension. He employs a wearable device for
monitoring blood glucose, heart rate, and activity levels. His
health app tracks dietary habits and medication schedules, while
his medical records reside in an electronic health record system.
Using our system, Heinz's real-time wearable and health app
data are integrated into a personal health knowledge graph. He
interacts with our chatbot mobile app, seeking natural language
responses regarding his health, medications, and more. The
system leverages the knowledge graph and GPT model to
furnish Heinz with personalized, accurate, and reliable answers.

For instance, Heinz feels chest tightness and inquires about
his recent heart rate. As shown in Fig.5 (a), the system accesses
wearable data from the knowledge graph, contextualizing the
response by indicating his heart rate falls within the standard
range. This relieves Heinz from manually interpreting data or
seeking medical advice. Similarly, Heinz inquires about his
daily calorie burn. The system accesses fitness tracker data,
offering the calorie count and comparing it to his daily goal, as
shown in Fig. 5 (b). Such instant access and interpretation aid
Heinz in meeting his health objectives. Further, as illustrated in



| feel a bit of chest tightness. What is my heart rate?

Your heart rate is 97 bpm recorded at 2023-08-02 16:35:46.

Is my heart rate within the normal range?

The normal heart rate range is between 60 to 100 bpm. Since your heart rate is
97 bpm, it is within the normal range

(@

How many calories did i burn today?

Today you have burned approximately 1850 calories

Is that within my target calorie burn for the day ?

Your target is to burn 2000 calories per day, you are just 150 calories short of
your daily target

(b)

Is my blood pressure deceasing over time?

Over the last seven days, your blood pressure levels have shown a decreasing
trend. However, you transitioned from 'Hypertension Stage 3' to 'Hypertension
Stage 2'. While this indicates improvement, your blood pressure is still above
the normal range for your age and health profile. It's essential to continue
monitoring and consult your doctor for ongoing management.

What was my last recorded blood pressure ?

Your most recent blood pressure reading, taken on 20th Aug, 10:45 AM was 151
for systolic and 101 for diastolic.

©

Fig. 5. Example use cases

Fig. 5 (c), Heinz wants to track his blood pressure trajectory.
Drawing from historical data in the knowledge graph, the system
informs him that his blood pressure has improved, moving from
'Hypertension Stage 3' to 'Hypertension Stage 2'. Despite
improvement, values still exceed recommended limits for his
age and profile. The system's concise yet insightful summaries
assist Heinz in making informed health choices.

Through this use case study, we demonstrate our system's
value in delivering personalized and contextually relevant health
insights. This approach empowers users like Heinz, simplifying
health management and informed decision-making.

C. Pilot Study

Before public deployment, particularly for systems
involving personal health data, internal testing is vital to uncover
and rectify potential issues. A pilot study with lab members is
an initial and crucial step to assess system effectiveness, spot
operational glitches, and gain valuable feedback for
enhancements.

a) Comparative User Study:

To rigorously assess our system's efficacy and compare it
with existing health information retrieval methods, we
conducted a comprehensive pilot study involving lab members.
This internal evaluation served as a crucial initial step in
identifying potential issues and refining our system.

The study encompassed four distinct categories of health-
related tasks, designed to mirror real-world scenarios. These
categories covered Personal Health Profile, Lifestyle and
Wellness, Medical Procedures and Treatments, and Clinical
Records and Medical History. Participants performed these
tasks using both our Virtual Assistant (VA) system and
Traditional Methods (TM), allowing us to collect data on
completion time and information accuracy. The traditional
methods include browsing university and local hospital health
portals, checking wearable devices apps like smartwatches,
smartphone health applications, and other established means of
interacting with health-related data. The results are listed in
Table 1.

Across all four categories, the VA consistently outperformed
TM in terms of completion time, without compromising
information accuracy. For example, in the Personal Health
Profile category, the VA achieved a 100% completion rate with
an average time of 13.5 seconds, while TM lagged at 41.5
seconds. A similar trend was observed in the Lifestyle and
Wellness and Clinical Records and Medical History categories.
The efficiency of the VA was particularly evident in the Medical
Procedures and Treatments category, where it maintained a
100% success rate and accuracy, completing tasks in just 11.2
seconds on average. In contrast, TM's accuracy slightly dropped
to 80% and required an average of 60.1 seconds.

These results underscore the VA's ability to swiftly retrieve
accurate health data across diverse categories. By integrating
various data sources into a unified platform, the VA minimizes
the time required for information access, compared to TM where
data might be dispersed across different tools and documents.
However, it's important to note that this study's participants were
tech-savvy graduate students, which may limit the
generalizability of our findings. Our next steps include
expanding the study to encompass a more diverse user group,
ensuring robustness and applicability in various contexts.

TABLE L. COMPARATIVE PERFORMANCE OF VIRTUAL ASSISTANT (VA)
SYSTEM AND TRADITIONAL METHODS (TM) IN PERSONAL HEALTH DATA
RETRIEVAL

Information
Accuracy (%)

Completion
#of | Rate (%)

Completion

Scenario time (seconds)

tasks
VA ™ VA ™ VA ™

Personal health

Profile 10 100 100 135 | 415 100 100

Lifestyle  and

10 100 100 10.6 51 100 100
wellness

Medical
Procedures and 10 100 100 11.2 60.1 100 80
treatments

Clinical Records
and medical 10 100
history.

100 12.4 44 100 100




b) User Experience Evaluation:

During the user experience testing phase of our pilot study,
we thoroughly assessed the interaction aspects of our virtual
assistant. For this evaluation, we employed established metrics
like the User Experience Questionnaire (UEQ) [26] and the
System Usability Scale (SUS) [27]. While the UEQ helps
understand user sentiments about a system, the SUS measures
system usability. To address chatbot-specific evaluations, the
Chatbot Usability Questionnaire (CUQ) [28] was introduced,
focusing on factors such as personality, onboarding, navigation,
comprehension, replies, error resolution, and bot intelligence.

The CUQ, mirroring the SUS's structure, comprises 16
statements assessed on a five-point scale. Odd-numbered
questions represent positive attributes, while even-numbered
ones denote potential limitations. CUQ scores, calculated based
on user responses, range from 0 to 100, with higher scores
indicating better user experience. Our user studies' results,
detailed in Table II, show consistently positive trends, with users
finding the chatbot engaging, helpful, and easy to use. Some
users noted occasional confusion. Overall, the chatbot's CUQ
Score across users was high, with most ratings surpassing 87%,
indicating a highly favorable user experience.

TABLE II. USER STUDIES RESULTS USING CHATBOT USABILITY
QUESTIONNAIRE (CUQ).

Questions \  Users Ul U2 U3 | U4 U5

| The‘ chatbot's perso_nallty was 4 5 4 5 4
realistic and engaging

2 | The chatbot seemed too robotic 2 1 2 2 2

3 Thq chqtbqt was welcoming 4 5 4 5 4
during initial setup

4 The 'chatbot seemed very 5 5 | 5 1
unfriendly

5 The chatbot explained its scope 5 5 5 4 5
and purpose well

6 The c.hatbot gave no indication 1 1 2 2 1
as to its purpose

7 The chanot was easy to interact 5 5 5 5 5
and navigate
It would be easy to get confused

8 when using the chatbot ! 3 2 2 2

9 The chatbot understood me well 4 4 5 3 4

10 The chatbo@ failed to recognize 2 ) 2 1 1
a lot of my inputs

1 Chatbot_responst_: were useful, 5 5 5 5 5
appropriate and informative

I Chatbot response were not | 5 | | 1
relevant

13 The chatbot coped well with 4 4 5 4 4
any errors or mistakes

14 The chatbot seemed unable to 2 1 2 1 2
handle any errors

15 The chatbot was very easy to 5 5 5 5 5
use

16 | The chatbot was very complex. 1 2 1 2 1

CUQ Score for each user out of 100 875 | 875 | 89.1 | 859 | 89.1

Total CUQ Score 87.8+1.3
Median Score 87.5
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V. CONCLUSIONS

The increasing availability of personal health data due to
digital health technologies has created a challenge in efficiently
querying and retrieving specific health-related information from
various sources. This is particularly problematic for older
individuals less familiar with technology. While ChatGPT offers
a conversational interface, it lacks domain-specific knowledge,
including personalized health information. To address this, we
propose a unique solution that combines a knowledge graph and
GPT to enable personalized health queries. Our approach uses a
personal knowledge graph as a comprehensive knowledge
source and fine-tunes GPT to provide accurate responses. A
mobile app incorporating this system was developed and
feasibility testing conducted. By integrating various health data
sources into a knowledge graph and fine-tuning GPT, we enable
context-aware and reliable responses. This bridges the gap
between general knowledge and personalized health
information, facilitating accurate and tailored answers for
health-related queries.
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