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FAST NUMERICAL SOLVERS FOR SUBDIFFUSION PROBLEMS

WITH SPATIAL INTERFACES

BOYANG YU, YONGHAI LI, AND JIANGGUO LIU∗

Abstract. This paper develops novel fast numerical solvers for subdiffusion problems with spa-
tial interfaces. These problems are modeled by partial differential equations that contain both
fractional order and conventional first order time derivatives. The former is non-local and approx-

imated by L1 and L2 discretizations along with fast evaluation algorithms based on approximation
by sums of exponentials. This results in an effective treatment of the “long-tail” kernel of subdif-
fusion. The latter is local and hence conventional implicit Euler or Crank-Nicolson discretizations
can be used. Finite volumes are utilized for spatial discretization based on consideration of local

mass conservation. Interface conditions for mass and fractional fluxes are incorporated into these
fast solvers. Computational complexity and implementation procedures are briefly discussed.
Numerical experiments demonstrate accuracy and efficiency of these new fast solvers.
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1. Introduction

Anomalous diffusion happens in many physical, chemical, and biological processes
[7, 8, 30, 33, 37, 44]. It is known that subdiffusion is a measure of cytoplasmic
crowdedness in living cells [44] and anomalous diffusion in cardiac tissues is an
index of myocardial microstructure [7].

Mathematically, subdiffusion is modeled by partial differential equations with
fractional order time derivatives in Caputo, Riemann-Liouville, or other forms [8,
30].

The work in [11] offers a kind of guide to identify some common pitfalls in
fractional-order differential problems. Approximation of fractional derivatives by
polynomial interpolation is the common idea: L1, L2 schemes [30] and fractional
linear multistep methods [25, 26, 27, 28]. [11] also discusses that the effect of the
solution regularity on the accuracy of the numerical scheme for fractional-derivative
problems briefly. Furthermore, because of the non-locality of the fractional-order
operator, nested mesh techniques [14, 10], the fast fourier transform algorithm
[15, 16] and kernel compression scheme [2, 3, 4] are mentioned for a fast, efficient
and reliable treatment of fractional-derivative problems.

The conventional discretization methods applied to the frational partial differ-
ential equations [24, 23, 39, 40, 36, 48] also involve computation for the entire time
period and/or across the whole domain and hence are very expensive. Therefore,
fast PDE numerical solvers have been developed to overcome these disadvantages
[12, 17, 36, 43, 46, 47, 48, 38]. Various techniques have been developed, e.g., ap-
proximation of kernels by sums of exponentials [17, 36, 46], and parallelization in
time [45].

Subdiffusion may happen simultaneously in subdomains that are separated by
spatial interfaces. Time-fractional anomalous diffusion models are used in [13]
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for simulations of transport processes in heterogeneous binary media for which
interface conditions are established. Subdiffusive flow in a composite medium with
a communicating interface has been investigated in [34]. In [42], 1-dim moving
interface problems governed by subdiffusion is investigated. More work can be
found in [9].

However, fast numerical solvers for subdiffusion problems with spatial interfaces
are not yet available in the literature, to the best of our knowledge. There are
well developed numerical methods in [13] for subdiffusion problems with spatial
interfaces and nonlinear terms, but no discussion on fast solvers. Fast solvers are
undoubtedly important for this type of problems. Our paper intends to fill this
gap.

Our fast solvers rely on a special treatment of the convolutional kernel. Specif-
ically, the integral for the Caputo derivative is split as a recent past term and a
history term (the so-called “long-tail”). Based on approximation of the negative
kernel by a sum of exponentials [5, 6], a recurrence formula is established for the
history term and efficient time-marching schemes are developed (See Sections 3 and
5 for details). Moreover, interface conditions are naturally incorporated. It is in-
teresting to notice that similar notion for handling kernels was applied in an early
work on parabolic problems [41].

The rest of this paper is organized as follows. Section 2 describes the governing
equations and interface conditions. Section 3 briefly reviews the L1, L2 temporal
discretizations on graded meshes and then establishes fast evaluation algorithms
based on approximation of negative power kernels by sums of exponentials. Section
4 focuses on spatial discretization using finite volumes. Section 5 develops fast
numerical solvers for subdiffusion problems with spatial interfaces by combining
the implicit Euler or Crank-Nicolson discretization for the conventional 1st order
time derivative with the fast L1 or L2 evaluation algorithms for the fractional
order derivatives. Stability analysis of the direct/fast L1 + back-Euler solvers for
a simplified model is presented in Section 6. Section 7 discusses computational
complexity and implementation of the fast solvers. Section 8 presents numerical
experiments. The paper is concluded with remarks in Section 9.

2. Mathematical Models for Subdiffusion Problems with Spatial Inter-

faces

In essence, such problems involve subdiffusion with different diffusion indexes
in subdomains that are separated by interfaces. For ease of representation, we
consider two 1-dim or 2-dim subdomains Ω1,Ω2 that are separated by one interface
Γ. Specifically, we consider the following governing equations

(1)

{

∂tu−
R
0 D

1−α1

t ∇ · (A1(x)∇u) = f1(x, t) in Ω1 × (0, T ],

∂tu−
R
0 D

1−α2

t ∇ · (A2(x)∇u) = f2(x, t) in Ω2 × (0, T ],

where Ω = Ω1 ∪ Ω2 is an open bounded connected domain in R
d(d = 1, 2),

(i) The time-fractional indices αi ∈ (0, 1) for i = 1, 2;

(ii) Ai(x) =
[

a
(i)
j,k(x)

]

1≤j,k≤d
, i = 1, 2 are the diffusion tensors that are sym-

metric, bounded, and uniformly positive-definite on Ωi;
(iii) The source terms fi ∈ L2(Ω) for i = 1, 2.


