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Abstract—To achieve net-zero emission in America by 2050,
high voltage transmission capacity must expand approximately
60% by 2030 and triple by 2050 to connect further
renewable(wind and solar) facilities to demand. We will fail to
achieve a net-zero America through 100% renewables by 2050
unless high-capacity overhead lines are developed in conjunction
with other technological advances. To tackle this problem, we
developed a revolutionary and flexible design for transmission
lines(TL) by changing phase configurations and sub-conductors
into unconventional way, geometrically optimal arrangements
within the space. To realize these unconventional high surge
impedance loading (HSIL) lines, different line design aspects need
to be studied. This paper calculates and studies the magnetic field
under the aforementioned lines. When calculating the magnetic
field from conventional lines at/or near ground level, we can
assume an equivalent conductor located in the center of each
bundle, however this is not the case for unconventional HSIL lines.
As the distance between subconductors is comparable with their
height from the ground, we have to calculate the magnetic field
generated by each subconductor, so the equivalent conductor
mentioned above does not work.

Keywords—Magnetic  field, unconventional high surge
impedance loading (HSIL) lines, overhead line

I. INTRODUCTION

Electric power generation, transmission, and distribution
businesses have been horizontally integrated over the past
several decades. Supply and demand changed significantly as a
result of this restructuring. Light-weight generators (such as gas
turbines) and renewable resources are replacing large
synchronous generators. In structure, industrial equipment, and
consumer goods, distributed and variable generation resources
are increasingly used along with modern converters and energy-
efficient solutions. Transmission lines, however, are not subject
to this rule.

Generally, underground cables cost three to ten times more
than overhead lines [1], tend to higher ratios by higher voltages.
As an example,estimated by Dominion Energy, underground
lines to cost between $4-10 million per mile, contrary overhead
lines typically cost between $1-~2 million per mile [2].
Additionally, HVAC underground cables have a transmission
limit due to their charging current.
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There are no reliable and commercial High Voltage DC
circuit breakers (CBs) [3-6]. The converter station’s cost is also
high, so HVAC transmission is preferable. In addition, power
system planner cannot use a point-to-point connection without
HVDC CBs. Submarine projects sometime consider using
HVDC submarine cables when there is no alternative technical
option for long-distance transmission.

There have been studies on higher-phase order transmission
lines (e.g., 6- or 12-phase lines) as alternatives to traditional 3-
phase lines [7-13], but the only commercially available line
(only 1.5 miles long) was operated and built by reconfiguring
115-kV double-circuit 3-phase lines. With higher phase-order
lines, the same power can be transferred over smaller right-of-
ways (ROWs) than with traditional 3-phase lines. A 6-phase
line, however, requires 6 CBs and 6 bays, increasing the overall
cost.

Therefore, 3-phase AC overhead TL will continue to
dominate power transmission in the future. Transmission
networks are increasingly important due to the trend towards
100% renewable energy and the focus on larger renewables,
such as solar power plants and wind farms. Transmission
networks are necessary for such massive resources(renewable)
since most of the time they are far from load centers.

Power transmission on an AC TL is traditionally constrained
by thermal, voltage-drop, and specially transient stability
limitations, depending on the line's length. The line length
feature addressed above is substituted by voltage limits at
branches and buses(including transformers and lines) loading
(thermal) limits when analyzing power flow in a power system.
Short-circuit studies prefer to plann scenarios that do not
increase currents(short-circuit) higher than the limits of circuit
breakers(CBs) in existing substations to avoid replacing circuit
breakers(CBs) or employing methods related to short-circuit
reduction. As a result, more transmission lines reach lower
network impedance, resulting in higher short-circuit currents.
Additionally, transmission line(TL) plays a crucial charecter in
maintaining dynamic stability along with transient stability.
Thus, these power transmission highways are major bottlenecks
that largely determine the power system's loadability.

It is possible to achieve greater line loadability and maintain
near-rated voltages by using lumped reactive compensation
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techniques. Static Var Compensators (SVC), for example, have
been used as an advanced control device to increase system
voltage stability and voltage control on medium- and long-
length transmission lines. Series capacitors are also used on long
lines to lower series impedance, reducing voltage dips and
enhancing voltage stability limits. However, each option has its
disadvantages, and the main one is their high costs.

In [14] by changing phase configurations and sub-
conductors into unorthodox arrangements that are geometrically
optimized inside the space, we created a novel and flexible
transmission line design that we called it unconventional HSIL
line. Different line design aspects, such as electric and magnetic
fields under the line, must be studied to realize these
unconventional HSIL lines. In recent years, high-voltage(HV)
power lines have been mentioned intermittently in media as a
potential health hazard. Therefore, the extremely low frequency
(ELF) at 50 or 60 Hz of the electric field (E) distribution and
especially magnetic field (B) distribution beneath the line and
alsoat the vicinity at the right-of-way has to be calculated
precisely. This paper deals with magnetic field calculation
where we have to compute it for each subconductor in these
unconventional HSIL lines instead of simplifying assumption of
an equivalent located in the middle of the bundle in conventional
lines, so these calculations can be challenging.

II. METHOD

A. Magnetic-Field Calculation under Transmission Lines

Overhead lines generate magnetic fields(B) at 50 or 60 Hz in
response to the electric current flowing through them. For N,
number of horizontal conductors, a formula for magnetic flux
density that also considers the induced eddy currents in a
conducting earth is [15-18]:
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where pg is denoting earth resistivity (.. m), f is denoting the
frequency in Hz, I, is denoting the conductor current (Amps-
rms), and all distances are considered in meter. The n-th
conductor is positioned at (x,y) = (h,,d,) . For each
conductor, its earth current equals its magnitude and runs in the
opposite direction. Furthermore, each earth current is buried in
the earth with a complex depth proportional to §, earth's skin
depth.

The lateral profile of the magnetic field can be computed
using the measured currents in the conductors and the line
diameters. Fig. 1a [15] shows a comparison of measurements
and computations for a 735-kV transmission line arrangement.
Fig. 1b shows the transmission line’s lateral profile of magnetic

field. Compared to Fig. la, the code written for magnetic
field(B) calculation around the transmission line is verified.
The magnetic field profiles in Fig. 1 are at a height of 1 m above
the ground.
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Fig. 1: (a) Distribution of magnetic field(B) and geometry of the 735 kV
overhead line, (280 A) [15], (b) magnetic field profile calculated by the code
written for this paper.

B. Conventional Line (Base Case)

In this paper, we have considered an actual conventional 500
kV transmission line [19] shown in Fig. 2 as the base case. Phase
arrangement on the line is horizontal, with four subconductors
in each phase which are placed symmetrically on circumference
of a circle. In this circuit, each subconductor has a diameter of
26.82 mm, and the bundle spacing is 45 cm. Each phase is
located 28 meters above ground. There is a distance of 12.3
meters between adjacent phases. The surge impedance loading
(SIL) for this design is 996.0 MW.
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C. Unconventional HSIL Line

In our previous work [14], we introduced two
unconventional HSIL lines as alternatives for the traditional
lines shown in Fig. 2. Shown in Figs. 3 and 4, both
unconventional HSIL lines are 500 kV and have 8 sub-
conductors. The diameter of the subconductors used in HSIL-
1, shown in Fig. 3, is 20.93 mm. In the outer phases, the
subconductor having the highest height is 32 meters, while the
middle one having the lowest height of 24 meters.

To compute the magnetic field for these two unconventional
HSIL lines, we must consider each subconductor separately.
Because of its orientation, we cannot consider each bundle of
subconductors as one equivalent conductor as done for
conventional lines. That’s why we must calculate the effect of
8%3=24 conductors with its image conductors.

Positions of the subconductors HSIL TL-1
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Fig. 3. Phase and bundle arrangement of the HSIL-1.

Besides the magnetic field around these unconventional
lines, the electric field around them, corona loss, radio and
television noises, audible noise, live line working, etc. [20-29]
should also studied about these lines towards their realization.

55 . Positions of the subconductors HSIL TL-2
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Fig. 4. Location of subconductors in HSIL-2.

III. CALCULATIONS AND RESULTS

In this paper, we have considered three transmission lines one
of which is a conventional 500 kV transmission line and others
are unconventional HSIL ones as alternatives introduced for the
conventional line. It is assumed that all transmission lines
mentioned above carry the same current to compare their
magnetic field. Fig. 5 shows magnetic field for the transmission
lines at ground level. As seen in Fig. 5, the newly designed
HSIL(unconventional) lines possess less magnetic field than
the mentioned conventional line, highlighting another merit of
these lines.

Magnetic Field Calculation at Ground level
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Fig. 5. Magnetic field under three transmission lines at ground level.

IV. CONCLUSION

In this paper first, the methods and mathematical equations
for calculation of the magnetic field of transmission lines are
explained in detail. The computer code written is validated by
comparing results with measurements and simulations from
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literature and then the code is developed to able to calculate the
magnetic field for two new unconventional HSIL lines designed
in our previous work where the magnetic field should calculate
for each subconductor instead of an equivalent conductor for
each bundle in the conventional line, making computing
challenging. Both unconventional HSIL lines have a lower
magnetic field at the ground level than the conventional line,
showing another advantage of unconventional HSIL lines.
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