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Abstract

This paper investigates the resilient control, analysis, recovery, and operation of
mobile robot networks in time-varying formation tracking under deception attacks
on global positioning. Local and global tracking control algorithms are presented
to ensure redundancy of the mobile robot network and to retain the desired func-
tionality for better resilience. Lyapunov stability analysis is utilized to show the
boundedness of the formation tracking error and the stability of the network
under various attack modes. A performance index is designed to compare the effi-
ciency of the proposed formation tracking algorithms in situations with or without
positioning attacks. Subsequently, a communication-free decentralized cooperative
localization approach based on extended information filters is presented for posi-
tioning estimate recovery where the identification of positioning attacks is based
on Kullback–Leibler divergence. A gain-tuning resilient operation is proposed to
strategically synthesize formation control and cooperative localization for accurate
and rapid system recovery from positioning attacks. The proposed methods are
tested using both numerical simulation and experimental validation with a team of
quadrotors.
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1 INTRODUCTION

Formation tracking and control are significant research topics for networked mobile robots such as unmanned ground vehicles1,2

and autonomous aerial3,4 or underwater vehicles5,6. Owing to the benefits of efficiency, redundancy, robustness, scalability, flex-
ibility, and reliability, maintaining formation during the entire mission in mobile robot networks offers many advantages across
various applications such as surveillance, drag reduction, source seeking, environmental sampling, search and rescue operations,
aerial refueling, cooperative transportation, and closed-formation flight7,8,9,10,11,12,13,14. Although several formation-control
approaches have been extensively studied including leader–follower, virtual structure, behavior-based, and consensus-based
techniques, a common assumption in such studies has been the availability of inter-agent communication with accurate agent
position information. In real-world applications, data transmission over cyber networks and the information shared between
agents could become susceptible to not only adverse and malicious threats but also attacks that would crucially compromise or
even destroy a networked robotic system15,16.
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FIGURE 1 An illustration of time-varying formation tracking in mobile robot networks under global positioning attacks.

Although multi-agent systems are advantageous in various tasks with redundancy and scalability, the issues of actuator
faults, fallible robots, and vulnerable communications, especially under deception attacks, have recently attracted significant
attention17,18,14,19,20. Connectivity preservation with respect to robot failures was addressed by17, where a self-optimization
of resilient topologies and experimental validation were provided. The problem of multi-agent systems in achieving a fixed
formation under mismatched compasses, which would lead to distortion, has been studied with estimation and compensation
algorithms18. In19, the authors proposed a consensus strategy to deal with deception attacks on relative information and keep
the normal agents achieving the common value. Alternatively, a similar problem is investigated via distributed optimization in20

to alleviate the influence of deception attacks. However, most of these works did not consider that the attacked agents might
recover and return to the system. The system’s performance is degraded if too many agents are considered malicious and cannot
contribute to the task. Moreover, there is no performance index to evaluate how the system is affected under failures or attacks.

Accurate localization is a crucial prerequisite for the control and coordination of multi-robot systems. Although decentral-
ized multi-agent coordination methods tend to alleviate the system-wide disruption caused by localization failures of individual
agents, the resulting control error eventually leads to sub-optimal performance across the entire network. In many applica-
tions, such as underwater robotics and indoor navigation, it is challenging or infeasible to provide constant global positioning
information to all agents in a network21,22,23. When computational resources allow and the environment is structured, persis-
tently reliable localization can be achieved through simultaneous localization and mapping24. Cooperative localization is often
applied to enable inter-agent observation and information fusion, thereby reducing the localization error propagation and max-
imizing the utilization of locally available global positioning information25,26. Nonetheless, it is often assumed that inter-agent
communication is available, making the system susceptible to communication failures and security complications.

In this paper, we study the time-varying formation control (TVFC) of a mobile robot network in the absence of inter-agent
communication, thereby mitigating potential vulnerabilities to global positioning information attacks or failures. The mobile
robot network is controlled to track prescribed formations by utilizing global positioning information and local inter-agent rela-
tive displacements obtained from proximity and/or bearing sensors. Although certain cyber-attacks can be avoided by adopting
a communication-free framework, attacks on global positioning systems could cause catastrophic failures in multi-agent for-
mation control. To retain the desired functionality of such systems under positioning attacks or failures, a fault detection and
isolation scheme based on Kullback-Leibler (KL) divergence is proposed for identifying positioning attacks. Subsequently, a
communication-free decentralized cooperative localization approach based on extended information filters (EIF) is proposed to
enhance the resilience of the mobile robot network in TVFC. The system is designed using a resilient gain-tuning formation-
control approach to enhance the resilience and robustness of the multi-agent systems in the presence of adverse effects.
Systematic studies and analyses on the proposed approach for multi-robot formation tracking were performed. To provide a
deeper understanding of the resilience of a mobile robot network in TVFC, the resilience triangle from the performance index
of TVFC is investigated. Results from numerical simulations and experimental implementations on a group of quadrotor flying
robots are presented to demonstrate system efficiency and performance in terms of improving the resilience of mobile robot
networks.

The main contributions of this paper are summarized as follows:

1. TVFC of mobile robot networks is studied under a hierarchical architecture, with the design of the performance index
representing the local and global tracking efficiency.
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2. The adversarial effects of three positioning information attacks, i.e. additive attack, hybrid attack, and unstable attack, on
the performance of formation control are investigated through Lyapunov stability analysis. Note that unstable attacks are
the most dangerous case for the system stability if the attacker has access to the system information.

3. A resilient localization system is presented that identifies positioning attacks based on the KL divergence in fusing global
positioning information with inertial navigation, and maintains consistent localization for the compromised agents using
a communication-free, decentralized cooperative localization method based on EIF.

4. Resilient operation utilizing the results of cooperative localization is demonstrated to mitigate adverse impacts on a
mobile robot network subjected to global positioning attacks. Compared to related works, the agent can return to the
system if the attack is gone. This feature plays an important role in keeping the system’s resilience.

5. Experimental validation using a group of quadrotor flying robots is presented to demonstrate the efficacy and efficiency of
the proposed resilient methods for TVFC of multi-robot systems. Moreover, the proposed performance index is effective
in showing the tracking result.

The remainder of this paper is organized as follows. Section 2 addresses the modeling, sensory graph, and problem formula-
tion of TVFC for a mobile robot network. Section 3 presents a theoretical analysis of the mobile robot network and the effects of
malicious attacks on the performance of the TVFC. Cooperative localization, attack detection, position recovery, and resilient
operation are discussed in Section 4. Section 5 presents an experimental validation of the proposed networked robot system.
Section 6 provides a discussion of the proposed resilient robotic systems and summarizes possible future directions on TVFC
for mobile robot networks.

2 PRELIMINARIES AND PROBLEM FORMULATION

2.1 Robot Modeling and Sensory Graph
In this subsection, the definition of modeling of robots and the sensory graph in this work is provided as preliminaries. Consider
a mobile robot network composed of N g 3 dynamically controlled and fully-actuated mobile agents described as

áx
i
= u

i
, i = 1,… ,N , (1)

where x
i
À Q and u

i
À U

i
with Q œ Rn as the compact set of the state space and U

i
œ Rn as the admissible control set of u

i
.

The time-varying formation tracking for mobile robot network is studied in this paper in the absence of inter-robot
communication so that we have the next assumption.

Assumption 1. The mobile agents in the robot network are equipped with range and bearing sensors that can obtain a reliable
relative position with respect to their neighbors. This so-called local displacement measurement is mutual; that is, the i

th robot
can obtain the measurement from the j

th robot and vice versa.

The graph theory27 is utilized to describe the displacement measurement topologies (sensory graph) among N agents in
the network. For an interconnected graph G(W), the set of vertices is given as V(G), the set of edges is denoted by E(G) ÀV(G) ù V(G), and the weight matrix W = {w

ij
} denotes the weighting for each of the edges in E(G). With Assumption 1 and

the graph describing the sensory topology, G(W) is undirected such that w
ij
= w

ji
. The interconnection between the N mobile

robots in the network can be described by the weighted Laplacian matrix L(G) À RNùN 28,17 defined as L(G) = D(G) * A(G),
where D(G) is the degree matrix of G, and A(G) is the corresponding adjacency matrix with entries a

ij
= w

ij
. The diagonal

terms of the Laplacian matrix are given as [L(G)]
ii
= ≥N

j=1 wij
, and the off-diagonal elements of the Laplacain matrx are given

as [L(G)]
ij
= *w

ij
for i ë j.

To achieve formation tracking for the mobile robot network, the graph G should be connected so that the robots can obtain
the inter-robot displacement. The Laplacian matrix of an undirected graph G exhibits the following property:

Property 1. For an undirected graph G, the eigenvalues of its Laplacian matrix, �
i
(i = 1,… ,N), are real and can be ordered

such that 0 = �1 f �2 f … f �
N

. Additionally, if G is connected, then �2 is positive and called the algebraic connectivity of
the graph.

Given a graph G(W), let us denote N
i

as the set of the neighbors of the i
th robot, which has a direct edge to the j

th robot for
j À N

i
. Thus, the i

th robot is able to obtain the displacement to j À N
i

by using the proximity sensors on the i
th robot. By
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denoting the displacement vector r
ji
(t) = x

i
(t)* x

j
(t), the distance between the i

th and j
th robots are given as d

ji
(t) = Òr

ji
(t)Ò,

where Ò �Ò denotes the Euclidean norm of the enclosed vector. Since the local displacement measurement is mutual, the sensory
topology G(W) being undirected leads to r

ji
(t) = *r

ij
(t) and d

ji
(t) = d

ij
(t). The formation of the mobile robot network is

constructed by utilizing r
ji

according to the inter-agent measurement topologies without data exchangea Thus, we have the next
assumption for the proposed networked system:

Assumption 2. There is no inter-agent communication or data exchange in the robot network.

2.2 Global and Local Formation Tracking
Before entering the problem formulation, we first give the definitions of formation tracking to develop our resilient control
scheme. The time-varying global trajectory of the desired formation with respect to ⌃

W
, the world coordinates, is predefined

and denoted by h
d(t) : [0,ÿ) ô Q, which is a twice differentiable continuous function of time. As illustrated in Fig. 1 , the

desired formation of mobile robots are described by Ñh
d

i
(t) : [0,ÿ) ô Q, which are time-varying continuous vectors, with

respect to h
d(t). Subsequently, the time-varying desired trajectories for each of the mobile robots, hd

i
(t) À Q, are given as

h
d

i
(t) = h

d(t) + Ñh
d

i
(t), i = 1,… ,N . For the mobile agents to achieve time-varying formation, the desired relative displacement

between the i
th robot and its neighbors, j À N

i
, are expressed by h

d

ji
(t) = Ñh

d

i
(t) * Ñh

d

j
(t), which further leads to h

d

ji
(t) =

h
d

i
(t) * h

d

j
(t) and h

d

ij
(t) = *hd

ji
(t).

Let X0 be a subset of the compact set Q such that X0 ” Q is closed and bounded. Time-varying formation tracking can be
defined for local formation tracking and global formation tracking, respectively.

Definition 1. (Local Formation Tracking) The networked robot system (1) is said to achieve local formation tracking if for any
given initial states x

i
(0) À X0, i = 1,… ,N , the states satisfy that lim

tôÿ

⌧

(x
i
(t) * x

j
(t)) * (Ñhd

i
(t) * Ñh

d

j
(t))

�

= 0, for all j À N
i
,

which implies that lim
tôÿ r

ji
(t) = lim

tôÿ h
d

ji
(t).

Definition 2. (Global Formation Tracking) The networked robot system (1) is said to achieve global formation tracking if for
any given initial states x

i
(0) À X0, i = 1,… ,N , the states satisfy that lim

tôÿ
�

x
i
(t) * h

d

i
(t)
�

= 0.

The problem can be considered as a hierarchical framework consisting of local and global formation tracking systems.
Therefore, in the proposed mobile robot network, global formation tracking (Definition 2) is the sufficient condition for local
formation tracking, and local formation tracking (Definition 1) is necessary for global formation tracking.

2.3 Problem Formulation
The time-varying formation tracking for a mobile robot network is studied in this paper, as illustrated in Figure 1 . Based on
the dynamics (1), the N mobile agents are controlled to maintain a time-varying formation based on the global positioning
and local relative displacement measurements. The global positioning measurements can be obtained from the GPS (global
positioning system) outdoors or other indoor/outdoor positioning and tracking systems. It is noted that we use the term ‘GPS’
generally to refer to any global positioning systems, e.g. location based service in mobile devices, WiFi positioning system,
or optical localization system. In the proposed system, each robot can obtain global positioning data for the global formation
tracking as addressed in Definition 2.

The local measurement is implemented by extrinsic sensors on each of the mobile agents to obtain the relative displacement
to all its neighbors. Moreover, the relative velocity between two adjacent robots can also be obtained accordingly. The local
positioning information is utilized to control the robot network for achieving local formation tracking as stated in Definition 1.
Since there is no communication between the mobile agents, the desired trajectories of an agent’s neighbors are important in
achieving the time-varying formation tracking. Thus, we have the next assumption:

Assumption 3. The desired formation trajectories hd(t), hd

i
(t), and h

d

j
(t) for j À N

i
are available to the i

th robot.

We consider the situation that the signals transmitted from the global positioning systems to the mobile robots may go under
deception attacks29,30,31. Let us define the position of the i

th robot from the global positioning system as x
g

i
(t), which might

be different from the actual position x
i
(t) depending on condition of the positioning system. If the global positioning signal is

aThe argument of time dependent signals is omitted, for example r
ji
í r

ji
(t), unless otherwise required for the sake of clarity.
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accurate, we have xg
i
(t) = x

i
(t). However, if the global positioning signal is under deception attacks, then the erroneous position

data Çx
g

i
(t) is described as

Çx
g

i
(t) = �

xi
(t)x

i
(t) + �

xi
(t), (2)

where �
xi
(t) À R is a time-varying function, and �

xi
(t) À Rn is a continuous function.

3 TIME-VARYING FORMATION TRACKING AND DECEPTION ATTACKS

In this section, we propose our controller to achieve formation tracking for mobile robot network and address the influence of
deception attack on global positioning signal. According to the definitions given in Section 2, the purpose of our controller is to
deal with the global and local formation tracking problem. By doing so, the redundancy of controller is improved for the design
of a resilient algorithm. This feature is one of the main contributions in this work. Furthermore, the impact of deception attack
is theoretically analyzed and illustrated by numerical examples. To evaluate the influence of attack, the performance index is
provided to quantify the tracking performance of the systems.

3.1 Formation Tracking Control Design and Analysis
For dynamically controlled mobile agents, let us consider the time-varying formation tracking control

u
i
(t) = áh

d

i
* �

fi
( Üx

i
* Üh

d

i
) * 

gi
f
g

i
(t) * 

f
f
l

i
(t), (3)

where �
fi
À Rnùn is a positive-definite matrix, 

f
, 

gi
À R are positive gains for local and global formation tracking,

respectively, and

f
l

i
(t) =

…

jÀN
i

w
ji
( Ür

ji
* Üh

d

ji
) + �

fi

…

jÀN
i

w
ji

⇠

r
ji
* h

d

ji

⇡

, (4)

f
g

i
(t) = ( Üx

i
* Üh

d

i
) + �

fi

�

x
g

i
* h

d

i

�

(5)

are the formation tracking control commands. In the control input (3), the relative displacement r
ji

and velocity Ür
ji

are obtained
by the sensors mounted on each of the mobile robots as mentioned in Section 2. The velocity of the mobile robot Üx

i
with respect

to ⌃
W

can be obtained from inertial navigation systems, e.g. an inertial measurement unit (IMU), or an odometry system such
as visual odometry. It is noted that the global positioning data, xg

i
(t), are required in formation tracking because the absolute

position obtained from the integration of the velocity data are not reliable or accurate enough to be implemented in the formation
control due to the accumulative drifting errors.

Assumption 4. All robots start from initial positions that are known or measurable by its neighbors.

By denoting Éx
i
:= x

i
* h

d

i
as the global tracking error and e

i
= ≥

jÀN
i

w
ji
( Éx

i
* Éx

j
) as the accumulated inter-agent errors

with respect to the weighted Laplacian L(G), we have r
ji
* h

d

ji
=

�

x
i
* x

j

�

* (hd

i
* h

d

j
) = Éx

i
* Éx

j
. If the position of the

mobile agents in the robot network can be obtained accurately such that xg
i
(t) = x

i
(t), the closed-loop dynamics is given as

áÉx
i
+ 

gi
ÜÉx
i
+ 

f
Üe
i
= *�

fi
ÜÉx
i
* �

fi

gi
Éx
i
* �

fi

f
e
i
. Given ⇠

i
= ÜÉx

i
+ 

gi
Éx
i
+ 

f
e
i
, the above equation becomes Ü⇠

i
= *�

fi
⇠
i
. Hence,

under Assumptions 1 through 4, we have the following result for the mobile robot network with perfect global positioning
information.

Theorem 1. For the mobile robot network described by (1) under a connected and undirected displacement sensory graph G
with weighted Laplacian matrix L(G), if the global positioning data are accurate such that xg

i
(t) = x

i
(t) for i = 1,… ,N , then

the control input (3) guarantees that the mobile robot network achieves global formation tracking.

A proof of Theorem 1 is provided in AppendixA.1. This theorem demonstrates that the guarantee of global formation tracking
(Definition 2) can also ensure local formation tracking (Definition 1) as addressed in Section 2. The tracking performance of the
local and global formation is highly dependent on the values of 

f
and 

gi
in (A.1). Let us first consider the case where there is

only global formation tracking such that 
f
= 0, then the closed-loop dynamics becomes áÉx

i
+ 

gi
ÜÉx
i
= *�

fi
ÜÉx
i
* �

fi

gi
Éx
i
. By

denoting ⇠
g

i
= ÜÉx

i
+ 

gi
Éx
i
, the given closed-loop system becomes Ü⇠

g

i
= *�

fi
⇠
g

i
. It is noted that there is no inter-agent term in

the closed-loop dynamics because this case considers only global positioning signals; thus, the mobile robot network becomes
a decoupled system for trajectory tracking. Hence, by considering V

g

i
(⇠g

i
) = 1

2 (⇠
g

i
)T �*1

fi
⇠
g

i
, we have ÜV

g

i
= *(⇠g

i
)T ⇠g

i
, which is
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negative definite. Therefore, we conclude that lim
tôÿ ⇠

g

i
(t) = 0 by following the proof of Theorem 1. From the closed-loop

control system, we further have ÜÉx
i
= *

gi
Éx
i
+⇠

g

i
. As shown in32,33, if ⇠g

i
(t) is a signal that asymptotically converges to zero, and

Éx
i

is bounded, then lim
tôÿ Éx

i
(t) = 0, which implies that lim

tôÿ
�

x
i
(t) * h

d

i
(t)
�

= 0, i = 1,… ,N . Consequently, the mobile
robot network achieves global formation tracking, as stated in Definition 2.

Next, let us consider the case of formation tracking with only local measurements such that 
gi

= 0. For the mobile robot
network with an undirected and connected displacement sensory graph G, the closed-loop dynamics is described as áÉx

i
+ 

f
Üe
i
=

*�
fi
ÜÉx
i
* �

fi

f
e
i
. From ⇠

l

i
= ÜÉx

i
+ 

f
e
i
, the stacked dynamics Ü⇠

l

i
= *�

fi
⇠
l

i
can be proved to be asymptotically stable by

considering V
l(⇠l

i
) = 1

2 (⇠
l)T �*1

fi
⇠
l, where ⇠

l is the stacked vector of ⇠l
i
. With ÜV

l = *(⇠l)T ⇠l, we obtain that ⇠l À L2 „ Lÿ
and lim

tôÿ ⇠
l(t) = 0. By following (A.1) in the proof of Theorem 1, the stacked form is given as ÜÉx = *[(

f
L) ‰ I

n
] Éx + ⇠

l

with 
gi
= 0. For ⇠l(t) converging to the origin, the mobile robot network achieves consensus to the agreement set that is the

subspace of span{1} such that Éx
i
(t) = Éx

j
(t), i = 1,… ,N , j À N

i
when t ô ÿ28. Therefore, from the definition of Éx

i
(t), we

obtain lim
tôÿ r

ji
(t) = lim

tôÿ h
d

ji
(t) so that local formation tracking is guaranteed.

3.2 Malicious Attacks on Global Positioning Signal
By following the analysis in Section 3.1, we obtain that local formation tracking can be ensured with or without global posi-
tioning information. In the proposed system, the resilience of the networked robot system is guaranteed based on the inter-agent
position information. If formation tracking errors are abnormally large due to initial conditions, an erroneous judgement could
occur and significantly influence the resilient efficacy. Therefore, in this system, we consider the following assumption:

Assumption 5. The mobile robot network has achieved asymptotic stability before any agents are subject to adversarial attacks
on global positioning signals such that attacks occur at t = t

ai
g 0 and q

i
À Q

as
, ≈i = 1,… ,N , where Q

as
= {q

i
:=

( ÉxT
i
, ÜÉx

T

i
)T 

Ù

Ù

Éx
i
Ù

Ù2 ,
Ù

Ù

ÜÉx
i
Ù

Ù2 < ✏} with sufficiently small ✏, t
ai

is the time at which the attack on the ith agent starts.

The influence on the system due to malicious attacks depends on its features31. For a deep understanding of the deception
attack defined in (2), it is classified into three types, named additive attack, hybrid attack, and unstable attack, to investigate
the effect of each parameter in (2). The deception attack with �

xi
= 1 is an additive attack; otherwise it’s a hybrid attack.

Compared with additive attack, hybrid attack is more related to original data x
i
. Additionally, an unstable attack is defined as

Çx
g

i
(t) = x

i
(t) * c

ai
⇠
i
(t), where c

ai
is a coefficient of the attack model. By choosing the same Lyapunov function candidate in

Theorem 1, it is derived as ÜV
i
= (

gi
c
ai
* 1)⇠T

i
⇠
i
. Obviously, if 

gi
c
ai
> 1, ÜV

i
is positive definite, which means that the system

is unstable. So far, the influence of attacks is analyzed, but there is no evaluation as a standard to tell how serious the attack is
for comparison. How to quantify the influence of attack is an important issue for studying resilient methods.

3.3 Performance Index
In this section, we design a global performance index , one of main contributions in this work, to quantify the tracking per-
formance of the mobile robot network and evaluate the system’s performance under various global positioning attacks through
simulation. It is noted that, to the best of the authors’ knowledge, this is the first performance index proposed to mobile robot
network on time-varying formation tracking.

The design of the performance index depends on both the local and global formation tracking. Global formation tracking
errors for the i

th agent has been defined previously as Éx
i
= x

i
* h

d

i
. For local tracking, we define e

1
i
= ≥

jÀN
i

( Éx
i
* Éx

j
) as the

summation of local formation tracking error with a unity weightb. Furthermore, the average of local formation errors is given
as Ñe

1
i
= e

1
i
_n

i
, where n

i
is the number of neighbors of the i

th mobile agent. Hence, the performance index is defined as

Ig

f
=
H

# +
N
…

i=1
Ò Ñe

1
i
Ò

I

_
H

# +
N
…

i=1
Ò Ñe

1
i
Ò + ↵

g

f

N
…

i=1
Ò Éx

i
Ò

I

, (6)

where # and ↵
g

f
are positive constants. It is noted that Ig

f
is defined globally for formation tracking control.

Based on Ig

f
, if the mobile robot network achieves global formation tracking, then the local formation tracking is also

guaranteed; therefore, Éx
i

and Ñe
1
i

all converging to zero gives Ig

f
= 1. If the mobile robots only achieve local formation tracking

bThe design of e1
i

is similar to the inter-agent errors e
i

defined in Section 3 and multi-agent consensus, but this term, without the weights for the graph Laplacian, is
considered in the evaluation of the local tracking performance.
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FIGURE 2 Sensory topology of the mobile agents in the networked robotic system considered in the simulation analysis.

but fail to track the global formation, then Ñe
1
i

converges to zero but Éx
i
could be non-zero. Thus, Ig

f
is less than one, and its actual

value depends on the tracking errors of the global formation. If the system becomes unstable, then Éx
i
diverges so that Ig

f
goes to

zero. Hence, the index Ig

f
tells the possibility of the mobile robots being under deception attack on the global positioning data.

3.4 Numerical Examples - Formation Tracking and Attacks
We consider a mobile robot network composed of six agents under the sensory topology illustrated in Fig. 2 . The control
algorithm (3) is utilized to control the mobile robot network to form a hexagon, rectangle, and triangle at t = 0 Ì 15 sec,
t = 15 Ì 30 sec, and after t = 45 sec, respectively. Moreover, the formation is considered to track a lemniscate time-varying
trajectory described by h

d(t) =
⌅

* 5 sin(2⇡t_15)_
�

2(cos(2⇡t_15)* 3)
�

,*12 cos(⇡t_15)_
�

5(cos(2⇡t_15)* 3)
�⇧T . The control

gains are selected as 
f
= 2, �

fi
= I2, gi = 2 with identical sensory weights of w

ji
= 1, where I

n
À Rnùn denotes an identity

matrix. The performance index (6) is utilized to evaluate formation tracking in the following simulation with # = 10 and ↵
g

f
= 5.

For the mobile robot network that is not under positioning attack, the agents’ trajectories and performance index are shown
in Fig. 3 a. With the unaffected global positioning signals and local displacement measurement, the mobile agents are able
to stably keep a time-varying formation while tracking a trajectory. The performance index converges to one if the system is
asymptotically stable with guaranteed local and global formation tracking. Next, we consider the case where Agent 1 is under
hybrid attack (�

x1 = 2 and �
x1 = [*2,*2]T ) starting at t

a1 = 15 sec, which is after the networked robotic system achieving
asymptotic stability as stated in Assumption 5. The results in Fig. 3 b show that the hybrid attack affected the motion of Agent
1, which is marked in blue, and the adjacent agents of Agent 1 also deviated from their positions in the desired local formation.
Due to malicious positioning attack, the performance index decreased far from one after t = t

a1, the starting time of attacks.
To compare the evolution of the performance index with respect to different types of attacks designed in Section 3.2, we

conducted various analyzes shown in Fig. 4 . If the additive attack is with a constant bias signal, then the performance index
decreases to a smaller value without time-dependent variation; however, under the hybrid attack, resulting from the multiplica-
tive type �

xi
, the variation of the performance index depends on the formation and desired trajectory. From the case where both

Agent 1 and Agent 4 were under attack, we can observed that multi-agent attacks would degrade the performance index. More-
over, an unstable attack, due to the unstable term *c

ai
⇠
i
, would cause oscillations in the performance index, which result from

constant switching between local and global formation tracking control.
Briefly, the results of the proposed formation tracking controller and the influence under deception attacks are investigated in

this section. The theoretical results show that an attacker with knowledge of the system can break its stability, as a contribution
of this work. Regarding the concern of attacks, the resilient method is necessary for the mobile robot network.

4 COOPERATIVE LOCALIZATION AND RESILIENT OPERATION

The main focus here is to improve the localization resilience toward potentially faulty global positioning information due to
system-originated errors or malicious attacks. For the rest of the paper, we generally refer to the external positioning system
that is subject to attacks as GPS. By default, the global tracking of the robot network relies on the localization information from
the GPS. Since inter-agent observations are available, we introduce a cooperative localization (CL) scheme as the secondary
localization approach in the case of GPS failures or attacks. In this section, we first present a communication-free cooperative
localization scheme based on the EIF and then discuss the self-identification and exclusion of GPS attacks.
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FIGURE 3 Performance index (Ig

f
) and trajectory snapshots of the mobile robot network (a) without (b) with global

positioning attack. The vertical dashed lines in the sub-figure for Ig

f
represent the time of snapshots in the other three

sub-figures.

4.1 Positioning Recovery
Localization resilience is achieved through redundancy, i.e., a sensor fusion mechanism consisting of proprioceptive sensor
measurements, GPS measurements, and inter-agent relative measurements with respect to neighboring agents. It is assumed
that only GPS measurements may be subject to attacks. The EIF was chosen as the information fusion method in favor of
its efficiency in incorporating multi-modal sensor measurements in multi-step filter updates. Here, we only include the details
necessary to understand the proposed positioning recovery method. For a comprehensive treatment of EIF, the readers are
referred to34.

We consider the state estimation problem in discrete time since motion sensors measure state changes at finite frequencies.
Let us denote discrete-time variables x(k) ç x(k�t), where k À Z0+ is the number of time steps, and �t denotes the sample time
step that is assumed uniform. For applications in a three-dimensional space where the agent’s velocity can be directly measured,
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FIGURE 4 Performance indices of mobile robot network subjected to different malicious attacks on global positioning. Left:
Only Agent 1 is under attack at t

a1 = 15 sec under either an hybrid attack (as in Fig. 3 b) or additive attack. Right: Agent 1
is under additive attack at t

a1 = 15 sec, and subsequently Agent 4 is under either hybrid or unstable attacks at t
a4 = 25 sec.

(�
x1 = �

x4 = 2, �
x1 = �

x4 = [*2,*2]T , and c
a4 = 5)

the state vector for the ith agent at time k consists of the location of the agent defined as x
i
(k) := [x(k); y(k); z(k)]T À R3. The

agent’s motion model can be approximated by the following piecewise constant-velocity kinematic relationship

x
i
(k) = x

i
(k * 1) + [ Üx

i
(k) + ⌫

i
(k)]�t, (7)

where Üx
i
(k) À R3 denotes the agent velocity that can be measured directly, and ⌫

i
(k) Ì N �

0,Q(k)
�

is the random process
noise that follows a zero-mean Gaussian distribution with covariance matrix Q(k) À R3ù3. The state vector prediction at time
k, Çx

i
(kk * 1), can be calculated as

Çx
i
(kk * 1) = Çx

i
(k * 1k * 1) + Üx

i
(k)�t. (8)

For applications where acceleration is directly measurable instead of velocity, the agent’s velocity can be included in the state
vector; (7) and (8) should be updated to full discrete-time kinematic formulas. The covariance of the location estimate for the
i
th agent, P

i
À R3ù3, is propagated accordingly as

P
i
(kk * 1) = F

i
(k)P

i
(k * 1k * 1)F

i
(k)T

+ G
i
(k)Q(k)G

i
(k)T , (9)

where F
i
(k) and G

i
(k) are the Jacobian matrices calculated based on the state estimate from (8). Here, F

i
(k) = I3 and G

i
(k) =

�t � I3. The information matrix, �
i
À R3ù3, and information vector, '

i
À R3, can be found as �

i
(kk* 1) = P

i
(kk* 1)*1 and

'
i
(kk * 1) = �

i
(kk * 1) Çx

i
(kk * 1), respectively.

During normal operations, each agent updates its location estimate with the GPS measurement. In the event that the GPS
measurement is deemed unreliable or faulty, the agent performs location update through cooperative localization instead. The
measurement models for these two types of updates are

s
GPS
i

(k) = x
i
(k) + !

GPS
i

(k), (10)

s
r
ij

i
(k) = x

j
(k) * x

i
(k) + !

r
ij

i
(k), (11)

where !
GPS
i

(k) and !
r
ij

i
(k) are the random noise signals associated with GPS or relative position measurements, both of which

are assumed to follow zero-mean Gaussian distributions with covariance matrices RGPS(k) and R
r
ij (k), respectively, and j À N

i

denotes the index of the neighboring agents. Note that (11) does not require information to be sent from the neighbors because
the neighbors’ desired trajectories are known to others. For either update mode, denoted by a superscript ∏ À {GPS, r

ij
}, the

updates of the information matrix and vector follow the same EIF procedure such that

�
i
(kk) = �

i
(kk * 1) +H

∏
i
(k)TR∏

i
(k)*1H∏

i
(k), (12)

'
i
(kk) = '

i
(kk * 1) +H

∏
i
(k)TR∏

i
(k)*1[s∏

i
(k) * Çs

∏
i
(k)

+H
∏
i
(k) Çx

i
(kk * 1)], (13)
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where H∏
i

is the Jacobian matrix calculated from either (10) or (11) with R
∏
i
(k) being the covariance matrix of the correspond-

ing measurement. Here, HGPS
i

= I3 and H
r
ij

i
= *I3. The measurement predication, Çs∏

i
(k), can be found based on either of the

measurement models (10) and (11) as

Çs
GPS
i

(k) = Çx
i
(kk * 1), (14)

Çs
r
ij

i
(k) = h

d

j
(k) * Çx

i
(kk * 1). (15)

Using the updated information matrix and vector, the state estimation vector and covariance matrix can be recovered as

Çx
i
(kk) = �

i
(kk)*1'

i
(kk), (16)

P
i
(kk) = �

i
(kk)*1. (17)

Theorem 2. If the control input (3) guarantees that the mobile robot network achieves global formation tracking as stated in
Definition 2, the expectation of the position estimation errors, Éx

i
(kk) := x

i
(k) * Çx

i
(kk), i = 1,5 ,N , strictly decreases after

the update with inter-agent measurements using measurement model (11).

A proof of Theorem 2 is provided in the AppendixA.2. This theorem provides a theoretical guarantee that, when global
tracking is achieved asymptotically, the positioning error will decrease through inter-agent measurement updates using only
the desired positions of the neighbors. When the robot network remains connected and at least one agent tracks its desired
trajectory faithfully, converging localization performance across the entire agent network can be achieved.

4.2 Attack Detection
With the communication-free cooperative localization as the secondary positioning approach in the event of GPS attacks, proper
detection and isolation of attacks are necessary. Various fault detection and isolation solutions have been proposed35. Generally
speaking, there are at least two main types of robust state estimator designs. The first type treats estimation as an optimization
problem. For instance, Pajic et al. 36 presented an l0-based state estimator that is resilient to sensor and actuator attacks on
cyberphysical systems. The authors formulated the resulting optimization problem into a mixed-integer linear program and
showed its convex relaxation based on the l1 norm. Jeong and Eun37 adopted the unknown input observer mechanism in
their resilient state estimator design for the purpose of estimating the true plant state under both sensor attacks and external
disturbances. Their attack resilient state estimation problem was then formulated as an l2 minimization problem to eliminate the
effect of attacks. The second type uses sensor fusion approaches and takes advantage of the redundancy in sensor measurements.
Bezzo and coauthors38 considered multiple velocity measurements for a ground mobile robot and used a recursive filtering
technique that estimates the state of the system while being resilient against sensor attacks by adding a shielding gain to amplify
the variance of noisy sensor inputs during fusion. Similarly, Mishra et al. 39 proposed a state estimator based on Kalman filters
operating over subsets of redundant sensors to search for a sensor subset that is reliable for state estimation.

For attack detection, a popular method is the Chi-squared detector that monitors the residue after fusing the sensor measure-
ment by comparing the sample variance against the inferred sensor variance.40,41 Recently, machine learning methods was also
adopted in navigation sensor attack detection. Dasgupta and coauthors42 proposed an approach that combines inertial sensors
and long short-term memory motion model to predict a vehicle’s travel distances in-between GNSS samples in order to check
whether GNSS samples are corrupted. In a separate work, Dasgupta et al. 42 demonstrated the use of reinforcement learning
and deep Q networks in detection spoofing attack to GNSS measurements for autonomous vehicles. We favor a residual-based
method that utilizes the results of EIF-based sensor fusion as introduced previously without the need for additional training.
More specifically, the detection of GPS attack is achieved by comparing the residual at the EIF update step with new GPS mea-
surements. This is realized through comparing the Kullback-Leibler (KL) divergence between the state estimate distributions
before and after the update against a predefined threshold. A similar approach was used in39 where the authors conduct a resid-
ual check to determine whether the sample average of residual variance within a finite time window is close to the expected
attack-free value. As we will explain in more detail later, KL divergence provides probability distribution level of comparison,
which is less susceptible to noises and outliers than the first moment based alternative.

The KL divergence is a non-symmetric measure that quantifies the distance between two probability distributions. For two
probability density functions, p(x) and q(x), defined in the same probability space, the KL divergence is defined as

D
KL

(p Ò q) =
+ÿ

 
*ÿ

p(x) log
0

p(x)
q(x)

1

dx. (18)
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In the case where both p and q are multivariate Gaussian with means �
p
, �

q
and covariance matrices ⌃

p
, ⌃

q
, respectively, the

KL divergence can be found as

D
KL

(N
p
ÒN

q
) = 1

2

L

(�
q
* �

p
)T⌃*1

q
(�

q
* �

p
)

+ tr(⌃*1
q
⌃
p
) * n + ln

0det(⌃
q
)

det(⌃
p
)

1

M

, (19)

where n is the dimension of x.
Before each GPS measurement is used in the update step, the KL divergence between the following two probability density

functions is calculated:

p1 = p
�

Çx
i
(kk * 1)  Çx

i
(k * 1k * 1), Üx

i
(k)

�

, (20)

p2 = p
�

Çx
i
(kk)  sGPS

i
(k), Üx

i
(k)

�

. (21)

Since both probability density functions are Gaussian distributions, the KL divergence at time k can be calculated as

D
k

KL
(p1 Ò p2) (22)

= 1
2

T

⌅

Çx(kk) * Çx(kk * 1)
⇧

�(kk)
⌅

Çx(kk) * Çx(kk * 1)
⇧T

+ tr
�

�(kk) ��
i
(kk * 1)*1

�

+ ln
0

det (�(kk * 1))
det (�(kk))

1

* n

U

.

A GPS measurement is detected as a faulty signal when the value of Dk

KL
(p1 Ò p2) is above a predefined threshold � . In addition,

a quality measure is defined for the global positioning information to inform the formation control:

�
i
(k) = 1 * sat

H

D
k

KL
(p1 Ò p2)
�

I

, (23)

where sat : R ô R is the standard saturation function defined as sat(x) := sign(x) min(1, x).
Algorithm 1 summarizes the resilient state estimator with GPS attack detection and isolation using the criterion based on

the KL divergence. By default, the agents prioritize the global positioning information for localization. In the event of a global
positioning failure or attack, the resilient state estimator switches to cooperative localization. This switch occurs instantaneously
such that the positioning of the i

th agent is not affected by the failure of the global positioning system even if one or multiple
neighbors are experiencing similar failures as long as their global tracking is faithful.

4.3 Resilient Operation: CL-Based Gain-Tuning Approach
In addition to positioning recovery from cooperative localization, the mobile robot network in time-varying formation tracking
is a redundant system with both the local and global formation tracking. As mentioned in Section 3.1, if there is no global
tracking for a portion of the mobile agents, the formation tracking can still be guaranteed. Therefore, in this section, we propose
an autonomous gain-tuning technique to strengthen the resilience of the mobile robot network by taking the advantage of
redundancy.

For the proposed networked robot system under global positioning attacks, the analyses in Section 3.2 demonstrate that the
tracking gain of global formation 

gi
plays an important role in tracking stability. Even though the networked system is under

unstable attack, it would keep stable with larger attack gains c
ai

wit very small 
gi

. Therefore, the manipulation of 
gi

with
respect to the attack identification is a useful resilient feature for the system.

The gain tuning can be designed as a function of �
i
À [0, 1], the quality measure of the global positioning signals defined in

Section 4.2. If �
i
= 1, there is a higher confidence on the quality of the global positioning signals; whereas for �

i
= 0, the i

th

agent is considered under attack while the value of Dk

KL
(p1 Ò p2) is above the threshold � . Therefore, we can set

Ü
gi
=
T

�
i
tanh

�

�
�
i

(�
i
* �

�
i

)
�

, 0 < 
gi
< Ñ

gi
.

0 , else

(24)
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Algorithm 1 Resilient State Estimator for the i
th Agent

Require: Çx
i
(k * 1k * 1), P

i
(k * 1  k * 1), Üx

i
(k * 1), sGPS

i
(k), {srij

i
(k)  j À N

i
}, �

1: Predict Çx
i
(kk * 1) and P

i
(k  k * 1) . (7)–(9)

2: Try Çx
i
(kk) and P

i
(k  k) with s

GPS
i

(k)
. (10), (12)–(13), (17)–(16)

3: Compute KL divergence D
i,k

DL
. (22)

4: Compute �
i
(k) . (23)

5: if Di,k

KL
< � then

6: Accept Çx
i
(kk) and P

i
(k  k)

7: else
8: Reject Çx

i
(kk) and P

i
(k  k)

9: for j in N
i

do
10: Compute Çx

i
(kk) and P

i
(k  k) with s

r
ij

i
(k)

. (11), (12)–(13)
11: end for
12: end if
13: Return: Çx

i
(kk), P

i
(k  k), �

i
(k)
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FIGURE 5 Performance indices under global positioning attacks with the proposed resilience operations. Agent 1 is under
additive attack at t

a1 = 15 Ì 30 sec, and Agent 4 is under U-hybrid attack at t
a4 = 25 Ì 40 sec with �

x1 = �
x4 = 2,

�
x1 = �

x4 = [*2,*2]T , and c
a4 = 5.
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FIGURE 6 KL divergence of the mobile agents under global positioning attacks with the threshold � = 5.

where Ñ
gi

is the upper bound of 
gi

, �
�
i

À (0, 1] is the triggering threshold, and �
�
i

is the tuning gain for �
i
. In this work, Ñ

gi

is chosen as the initial value of 
gi

according to Assumption 5. It is noted that �
i

encodes the confidence in global positioning
signals. This design of resilience operation utilizes the GPS quality measure �

i
from cooperative localization, and therefore is

called CL-based (cooperative-localization-based) gain-tuning approach.

4.4 Numerical Examples - Recovery and Resilient Operation
The effect of the proposed resilient operations is verified through numerical simulations. The sensory topology and control
gains in the following simulation are identical to those of Section 3.4. The attack scenarios are satisfied by Assumption 5 and
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FIGURE 7 Evolution of the GPS quality measure �
i

of the mobile robot network under malicious attacks.
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FIGURE 8 Evolution of the global tracking gains by using the proposed CL-based gain-tuning approach.

similar to the case with multiple attacks in Fig. 4 , including the unstable attack, but both attacks are removed after 15 sec to
show resilience and recovery during and after the attacks. It is noted that the resilient state estimator is active from the start of
the simulation, and CL-based gain-tuning starts to regulate global tracking gains 

gi
at t = 10 sec. The performance indices of

the resilient operations are illustrated in Fig. 5 .

4.4.1 CL Recovery Approach
The cooperative localization and the resilient state estimator are implemented in this section with � = 5 to recover global
positioning. From Fig. 5 , it can be seen that the CL recovery approach can maintain the performance index at a constant high
level during positioning attacks. It shows that the invulnerability of the mobile robot network with the resilient state estimator
is evident. The evolution of KL divergence is shown in Fig. 6 , where D

1
KL

and D
4
KL

increase drastically to a relatively higher
value when Agents 1 and 4 are under attack. Therefore, it is beneficial to use the state estimation results to inform the controller
about the presence of malicious attacks. Although the performance index is insensitive to attacks, it never closely approaches
one even when there are no attacks due to the inferior state estimation accuracy than external positioning systems.

4.4.2 CL-Based Gain-Tuning Approach
To enhance the resilience and recovery performance of the mobile robot network before, during, and after attacks, the CL
recovery and gain-tuning approaches are combined to form the CL-based gain-tuning approach. The GPS quality measure (23),
obtained from the KL divergence, is utilized to design a mechanism to regulate global tracking gains 

gi
in an adaptive fashion.

For �
�
i

= 3 and �
�
i

= 0.5 with �
i
= 1, the simulation results are illustrated in Figs. 5 , 7 , and 8 . It is noted that the CL-based

gain-tuning approach is applied for all agents starting at t = 10 sec after the system achieves asymptotic stability. Fig. 7 shows
that the GPS quality measure decreases when the agent becomes under attack. Therefore, the GPS quality measure can be used
to indicate the health condition of the global positioning information. For �

i
less than �

�
i

, 
gi

starts decreasing to zero so that
the global positioning information subjected to malicious attacks can be excluded from the control system. At t = 25 sec, 

g4
also decreases to zero because of the unstable attack on Agent 4 while other normal agents keep their own value. Moreover,
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FIGURE 9 Experimental setup of the multi-quadrotor system for the implementation of the resilient TVFC in the presence of
positioning attacks.

after the attacks are removed at t = 30 sec and t = 40 sec, respectively for Agent 1 and Agent 4, 
g1 and 

g24 can be recovered
to the original value before attacks.

To summarize, CL-based gain-tuning approach is verified as the most resilient to deception attacks through the simulation.
As one of the main contributions in this work, the influence of attacks can be isolated successfully, and the robot can join back
to the system after attacks disappear. The resilience of the systems is retained. To further investigate the effectiveness of the
CL-based gain-tuning approach, it is necessary to implement the proposed method on a hardware experiment.

5 EXPERIMENTAL RESULTS

In this section, we discuss the implementation of the proposed scheme on a group of six quadrotors that are subject to global
positioning attacks. It should be noted that our general approach is not limited to flying robots. The experimental setup of the
quadrotor network system is illustrated in Fig. 9 . Six Crazyflie 2.1, designed by Bitcraze, are used as mobile agents in the
mobile robot network, and the system is built upon the Robot Operating System (ROS) and its package “crazyswarm”43. The
motion of agents is captured by a motion capture (MOCAP) system consisting of IR cameras at 120 Hz, and then the commands
from the proposed design are sent to agents at 100 Hz asynchronously. Although our setup is centralized, the proposed control
scheme is implemented in a decentralized manner on the computer with limited information from each agent’s neighbor in
order to satisfy our assumptions.

5.1 Scenario 1: Time-Varying Formation with Stationary Global Trajectory
To demonstrate the capability of the proposed resilient operations under positioning attacks, the time-varying formation tracking
with stationary (time-invariant) global trajectory, hd = [0, 0, 0.9]T m, is considered as the first scenario. By considering a
stationary global trajectory, the influence from positioning attacks and recovery can be accessed separately with time-invariant
trajectories. Six mobile agents arrive in horizontal formations of hexagon, rectangle, and triangle at t = 10, 20, and 30 sec,
respectively, as shown in Fig. 10 . The sensory topology of local positioning measures is represented by the dashed lines in
each of the formations in Fig. 10 . Moreover, the vertical formations of mobile agents are formed by trajectories of Ñhd

i
that are

given as Ñh
d

iz
(t) = 0.15 sin(0.05⇡t + i⇡) m for i = {1,… , 6}.

The tracking gains for the proposed TVFC are chosen as 
gi
= 0.8, 

fi
= 0.4, �

fi
= 0.05I3, and w

ij
= 1. The performance

indices of the robot network under different attack settings are illustrated in Fig. 10 , where # = 20 and ↵
g

f
= 3 in Ig

f
. With

various positioning attacks, the quadrotors would deviate from their desired positions and cause degradation of the performance
indices. In the absence of malicious attack, the performance index Ig

f
stably stays around 0.985 providing satisfactory formation

tracking. When an additive attack is applied on Agent 1 with �
xi

= [*1.5,*2.5,*1.0]T m at t
a1 = 15 sec, the performance

index, Ig

f
, degrades significantly without resilient operation as the tracking error of the compromised agent propagates through

the network and causes its neighbors to drift away from their desired trajectories. We then consider the same attack situation
but now apply the proposed CL-based gain-tuning resilient operation (24) with �

i
= 1, �

�
i

= 3, and �
�
i

= 0.5. It can be seen
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TABLE 1 Modified restoration ( ÑRexp
s ) in experiments for the cases in Scenario 1 (î 40

15 Nor(Ig

f
(⌧))d⌧ = 24.61).

Cases in Scenario 1 Resilient Operation ÑR
exp
s

Normal (attack-free) - 0%

Additive attack at t
a1 = 15 s No 23.78%

Additive attack at t
a1 = 15 s Yes 8.48%

Additive attack at t
a1 = 15 s

Unstable attack at t
a4 = 20 s

Yes 8.99%

X

Z

X X
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Y
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FIGURE 10 Desired formation (top) and performance indices (bottom) for the time-varying formation tracking with stationary
global trajectory with/without global positioning attacks. For the cases with additive attack, Agent 1 is subject to attack for
t g t

a1 = 15 sec. For the case with additional unstable attack, Agent 4 is under attack for t g t
a4 = 20 sec.

from Fig. 10 that Ig

f
would gradually increase and the performance improves significantly compared to last case. Here, we

chose Q = 0.022I
n
, RGPS = (5 ù 10*4)2I

n
, Rr

ij = (5 ù 10*4)2I
n
, and � = 4000 based on the typical precision of the MOCAP

system. Furthermore, under an additional unstable attack on Agent 4 with �
x4 = 1 and c

a4 = 5 at t
a4 = 20 sec, the robot team

maintains a better performance, and Ig

f
is larger than 0.85 and keeps increasing for better formation tracking.

To quantitatively assess the performance of the system in experiments, we define a new measure modified from restoration
ÑR

exp
s

ÑR
exp
s

=
î t

s

t
a

�

Nor(Ig

f
) * Att(Ig

f
)
�

d⌧

î t
s

t
a

Nor(Ig

f
)d⌧

, (25)

where Ig

f
is the performance index defined in (6), t

a
is the time when an attack occurs, t

s
is the terminal time of the experiment,

Nor(Ig

f
(t)) is the reference of the performance index without attacks, and Att(Ig

f
(t)) is the performance index under attacks

with/without resilience. Since Nor(Ig

f
(t)) is not equal to one, the modified restoration, ÑR

exp
s , provides a way to compare the

resilience performance of the system in experiments to the cases without attacks. It can be seen as the degree of performance
degradation from the attack-free case, with 0% representing no degradation and 100% being full degradation. Table 1 summa-
rizes the modified restoration of different cases in Scenario 1. Obviously, the proposed resilient operation holds better better
performance even if there is unstable attack.
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FIGURE 11 Snapshots of the time-varying formation and global trajectory tracking in the absence of global positioning
attacks.
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FIGURE 12 Performance indices of the experiments with healthy global positioning, and under additive and unstable attacks
with resilient operation. For the case with attacks, Agent 1 is subject to additive attack for t g t

a1 = 15 sec, and Agent 4 is
under unstable attack for t g t

a4 = 20 sec.

5.2 Scenario 2: Time-Varying Formation and Global Trajectory
To further investigate the effect of the proposed TVFC for mobile robot networks and the resilient operation, two advanced
cases are presented where the mobile robot network tracks a predefined global trajectory. The quadrotor team reaches hexagon,
rectangle, and triangle horizontal formations at t = 5, 20, and 35 sec, respectively. The vertical formation is the same as in
the previous case. Additionally, the global trajectory of the mobile agents is defined as hd = [1.3 sin(2⇡t_15)_(cos(2⇡t_15) *
3),*1.2 cos(⇡t_15)_(cos(2⇡t_15) * 3), 0.2 cos(2⇡t_15) + 0.7]T m, which is a 3D lemniscate trajectory with a time-varying
Z-component. The control gains are chosen as 

gi
= 0.4, 

fi
= 0.4, and �

fi
= 0.1I3.

The snapshots of the formation tracking without attacks are shown in Fig. 11 , where the dashed lines represent the local
measurement network among the mobile agents. The performance indices of the proposed control algorithm tracking the global
and local trajectories with and without global positioning attacks are shown in Fig. 12 . In the absence of attacks, the perfor-
mance index varies around 0.9, indicating that the mobile robot network can closely track the global trajectory and time-varying
formation.

When Agent 1 and Agent 4 are under additive and unstable attacks, respectively, the performance index slightly degrades due
to the attacks but the tracking performance remains as satisfactory as the case without attack in Fig. 12 . The parameters used
in cooperative localization are identical to the previous section with the stationary global trajectory. This result implies that
the proposed control algorithm is capable of eliminating severe influence of malicious attacks on agents to protect the systems
from attacks and recovery to attack-free performance. The evolution of �

i
and 

gi
is shown in Fig. 13 , where the identification

of attacks is via �
i

and the corresponding global tracking gains decrease to eliminate the adversarial effect on the mobile robot
network.
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FIGURE 13 Evolution of � and 
g

in the experimental case with both additive attack on Agent 1 and unstable attack on Agent
4. Parameter projection44,45 is utilized in (24) such that 0 f 

gi
f 0.4.

6 CONCLUSION

The persistency of maintaining a time-varying formation to track the reference trajectory of a mobile robot network under global
positioning attacks is investigated in this paper. Based on the local and global positioning information, control algorithms are
presented and studied to ensure formation tracking performance. Subsequently, Lyapunov-based stability analyses are provided
in the presence of three types of malicious attacks on the global positioning signals that are additive attack, hybrid attack,
and unstable attack. Moreover, a performance index is presented to evaluate the efficiency of mobile robot networks under
time-varying formation tracking control with/without compromised agents subjected to adverse impacts. Simulation results
and experiments validate the control system and the influence of adversarial attacks on global positioning. Future work will
address the resilience in coordinating heterogeneous robotic systems, reaction to sensory/actuator faults, and handling unreliable
sensory topologies.

How to cite this article: Liu YC, Liu KY, and Song Z. Resilient Time-Varying Formation Tracking for Mobile Robot Networks
under Deception Attacks on Positioning, Int J Robust Nonlinear Control., 202x, .

APPENDIX

A PROOF

A.1 Proof for Theorem 1
Proof. Without loss of generality, let us consider the Lyapunov function candidate for the i

th robot in the the mobile robot
network as V

i
(⇠

i
) = 1

2⇠
T

i
�
*1
fi
⇠
i
. By taking the time-derivative of V

i
along the trajectories of (3.1), we obtain ÜV

i
= *⇠T

i
⇠
i
,

which is negative definite. Since V
i

is positive definite and ÜV
i

is negative definite, we obtain V
i
(⇠

i
(t)) f V

i
(⇠

i
(0)) so that

⇠
i
À Lÿ because �

fi
is a positive definite matrix. Next, by integrating ÜV

i
(t) with respect to time from 0 to ÿ, we have

V
i
(t) * V

i
(0) = * î t

0 ⇠
T

i
(⌧)⇠

i
(⌧)d(⌧), which results in î t

0 ⇠
T

i
(⌧)⇠

i
(⌧)d(⌧) + V

i
(t) = V

i
(0). Since V

i
(⇠

i
) is positive definite, we can

further obtain that î t

0 ⇠
T

i
(⌧)⇠

i
(⌧)d(⌧) f V

i
(0) < ÿ; consequently, we have ⇠

i
À L2. From the closed-loop dynamics (3.1), we

further obtain that Ü⇠
i
À Lÿ. Since ⇠

i
À L2„Lÿ and Ü⇠

i
À Lÿ, we get from Barbalat’s lemma46 that lim

tôÿ ⇠
i
(t) = 0. Therefore,

we conclude that ⇠
i

is asymptotically stable.
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Next, let us rewrite ⇠
i
= ÜÉx

i
+

gi
Éx
i
+

f
e
i
as ÜÉx

i
= *

gi
Éx
i
*

f
e
i
+⇠

i
, which can be considered as the state equation of Éx

i
with ⇠

i
as

the input. From the definition of e
i
with the weighted Laplacian matrix, we have e = [L‰I

n
] Éx, where e = [eT1 ,… , e

T

N
]T À RNn

and Éx = [ ÉxT1 ,… , Éx
T

N
]T À RNn. By considering ⇠ À RNn as the stacked vector of ⇠

i
such that ⇠ = [⇠T1 , ⇠

T

2 ,… , ⇠
T

N
]T , the

interconnected system becomes

ÜÉx = *D

g

‰ I
n
Éx * 

f
[L‰ I

n
] Éx + ⇠

= * [(D

g

+ 
f
L)‰ I

n
] Éx + ⇠, (A.1)

where D

g

À RNùN denotes a diagonal matrix with the i
th diagonal term as 

g
. Since 

f
, 

gi
are all positive, we can show

that *(D

g

+ 
f
L) is a Hurwitz matrix46 because L(G) has an isolated eigenvalue of zero and all others with a positive real

part (Property 1). As ⇠ converges to the origin as time goes to infinity, the linear time-invariant (LTI) system (A.1) with ⇠ as
the input is asymptotically stable. Consequently, Éx, ÜÉx À L2 „ Lÿ so that Éx ô 0 as t ô ÿ. Furthermore, by observing (A.1),
the convergence of Éx and ⇠ to the origin lead to ÜÉx ô 0 asymptotically. Consequently, lim

tôÿ Éx
i
(t) = 0 and lim

tôÿ ÜÉx
i
(t) = 0

demonstrate that lim
tôÿ

�

x
i
(t) * h

d

i
(t)
�

= 0 and lim
tôÿ Üx

i
(t) = lim

tôÿ Üh
d

i
(t). The mobile robot network achieves global

formation tracking.

A.2 Proof for Theorem 2
Proof. Based on measurement model (11), the measurement error, or innovation, of the i

th agent relative to the j
th agent can

be calculated as

És
r
ij

i
(k) =srij

i
(k) * Çs

r
ij

i
(k)

=x
j
(k) * x

i
(k) + !

r
ij

i
(k) *

⌧

h
d

j
(k) * Çx

i
(kk * 1)

�

= Éx
j
(k) * Éx

i
(kk * 1) + !

r
ij

i
(k). (A.1)

Recall that Éx
j
(k) denotes the global tracking error. Based on the definition for information vector, Hr

ij

i
= *I3, and (13), the

state estimation error after update with inter-agent measurement can be calculated as

Éx
i
(kk) =x

i
(k) * Çx

i
(kk)

=x
i
(k) * �

i
(kk)*1'

i
(kk)

=x
i
(k) * �

i
(kk)*1

$

'
i
(kk * 1)

* R
i
(k)*1

⌅

És
r

i
(k) * Çx

i
(kk * 1)

⇧

%

. (A.2)

In this proof, we use a simplified notation for the inter-agent measurement covariance matrix: R
i
(k) = R

r
ij

i
(k). Left multiplying

�
i
(kk) on both sides of (A.2) and rearranging yield

�
i
(kk) Éx

i
(kk)

= �
i
(kk * 1)

⌅

x
i
(k) * Çx
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+ R
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(kk * 1) Éx

i
(kk * 1) + R
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(k)*1
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i
(k) + Éx
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�

= �
i
(kk * 1) Éx

i
(kk * 1) + R

i
(k)*1

⌧

Éx
j
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r
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�

, (A.3)

which leads to Éx
i
(kk) = �

i
(kk)*1

$

�
i
(kk* 1) Éx

i
(kk* 1) +R

i
(k)*1

⌧

Éx
j
(k) + !

r
ij

i
(k)

�%

. Taking the expectation of both sides
and the limit when k ô ÿ leads to

E
⌅

Éx
i
(kk)

⇧

= �
i
(kk)*1�

i
(kk * 1)E

⌅

Éx
i
(kk * 1)

⇧

. (A.4)

Here we applied lim
kôÿ Éx

j
(k) = 0 and E[!r

ij

i
(k)] = 0.

To show that Éx
i
(kk) strictly decreases after the inter-agent measurement update, we show that the scalar-valued quadratic

function V (kk) := E[ Éx
i
(kk)]T�

i
(kk)E[ Éx

i
(kk)] decreases from V (kk * 1). Using the result from (A.4), we can find that

V (kk) =E[ Éx
i
(kk * 1)]T�

i
(kk * 1)T�

i
(kk)*1
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�
i
(kk * 1)E[ Éx

i
(kk * 1)]. (A.5)

By applying the Woodbury matrix identity, we can find that

�
i
(kk)*1 =[�

i
(kk * 1) + R

i
(k)*1]*1

=�
i
(kk * 1)*1 * [�

i
(kk * 1)

+�
i
(kk * 1)R

i
(k)�

i
(kk * 1)]*1. (A.6)

Substituting (A.6) into (A.5) and rearranging lead to

V (kk) =E[ Éx
i
(kk * 1)]T�

i
(kk * 1)TE[ Éx

i
(kk * 1)]

* E[ Éx
i
(kk * 1)]T�

i
(kk * 1)T [�

i
(kk * 1)

+�
i
(kk * 1)R

i
(k)�

i
(kk * 1)]*1

�
i
(kk * 1)E[ Éx

i
(kk * 1)]. (A.7)

Note that the first term on the right-hand side is V (kk * 1), and the second term is non-positive, i.e., V (kk) f V (kk * 1).
This proves that V (kk) decreases from V (kk * 1) after inter-agent measurement update.
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