
ar
X

iv
:2

40
1.

01
27

6v
1 

 [g
r-

qc
]  

2 
Ja

n 
20

24

Building Three-Dimensional Differentiable Manifolds

Numerically II: Limitations
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1. Summary

Methods were developed in Ref. [1] for constructing reference metrics (and from them differ-
entiable structures) on three-dimensional manifolds with topologies specified by suitable trian-
gulations. This note generalizes those methods by expanding the class of suitable triangulations,
significantly increasing the number of manifolds to which these methods apply. These new re-
sults show that this expanded class of triangulations is still a small subset of all possible triangula-
tions. This demonstrates that fundamental changes to these methods are needed to further expand
the collection of manifolds on which differentiable structures can be constructed numerically.

2. Fixing the Dihedral Angles

The method for constructing reference metrics in Ref. [1] begins with the construction of a
flat metric in the neighborhood of each vertex of a multicube structure, which can be obtained
from a triangulation of that manifold. These flat metrics are then combined using partition of
unity functions to produce a global C0 metric, and then smoothed to C1 by a sequence of ad-
ditional steps described in Ref. [1]. These flat metrics are constructed by fixing the dihedral
angles of each cube edge. The simple method used in Ref. [1] fixes those dihedral angles to be
2π/K, where K is the number of cube edges that intersect along a particular edge. This choice
ensures the sum of the dihedral angles around each edge is 2π, the condition needed to avoid a
conical singularity there. This uniform dihedral angle condition severely limits the class of mul-
ticube structures on which it can be applied. This simple condition is replaced here with more
complicated but less restrictive conditions.

The basic adjustable parameters that determine these flat metrics are the dihedral angles,
ψA{αβ}, where the index A ∈ ⟨1, ...,Ncubes⟩ labels the cubes in the multicube structure and {αβ} ∈
〈

{−x−y}, {−x+y}, {−x−z}, {−x+z}, {+x−y}, {+x+y}, {+x−z}, {+x+z}, {−y−z}, {−y+z}, {+y−z}, {+y+

z}
〉

labels the edge formed by the intersection of the {α} and {β} ∈
〈

{−x}, {+x}, {−y}, {+y}, {−z}, {+z}
〉
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faces of that cube. Each cube has 12 edges so there are a total of 12Ncubes dihedral angle param-
eters needed to determine the vertex centered flat metrics.

The sum of the dihedral angles, ψA{αβ}, from the cubes that intersect along an edge must equal
2π to avoid a conical singularity along that edge. This constraint can be written explicitly:

0 = CA{αβ} ≡ 2π −
∑

A′{α′β′}

ψA′{α′β′} , (1)

where the sum is over all the edges that intersect along edge A{αβ}. Many of these 12Ncubes

constraints are redundant, but for simplicity all are enforced in the numerical analysis here.
Another set of important angles are the vertex angles between the edges of the cube, see Fig. 1.

The notation θA{γ}{αβ} is used for these angles, where the A index labels the cube, {γ} one of the
cube faces, and {αβ} the edge that intersects {γ} at the {αβγ} vertex. These θA{γ}{αβ} are the angles
between vectors tangent to the {αγ} and the {βγ} edges. There are three vertex angles θA{γ}{αβ}

associated with each vertex, so 24 for each cube and 24Ncubes total for the multicube structure.
The law of cosines from spherical trigonometry gives the relationship between a vertex angle
θA{γ}{αβ} and the dihedral angles ψA{αβ} associated with the cube edges that intersect at that vertex:

cos θ{γ}{αβ} =
cosψ{αβ} − cosψ{αγ} cosψ{βγ}

sinψ{αγ} sinψ{βγ}
. (2)

The θA{γ}{αβ} can therefore be considered functions of the ψA{αβ}.

{βγ}
ψ
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ψ
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ψ

θ
}{
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θ
}{{β αγ}

θ{α}{βγ
}

Figure 1: Figure shows the intersection between the corner of a cubic region and a small sphere centered on one of the
vertices of that cube. This sphere is depicted as the dashed (blue) curve; the intersection of this cubic region with the
sphere is a spherical triangle shown as solid (red) curves; the solid (black) straight lines are the edges of the cube. The
dihedral angles ψ{αβ} between the cube faces are also the angles of this spherical triangle. The vertex angles, θ{α}{βγ}, are
the angles between the edges of the cube, and are also the arc lengths of the sides of this spherical triangle.

Consider two cube faces, A{α} and A′{α′} that are identified in the multicube structure. The
intrinsic metrics associated with these cube faces can only be continuous across the interface
between cubes if the vertex angles θA{α}{βγ} are the same as the corresponding angles θA′{α′}{β′γ′}

on the identified face. These additional constraints on the dihedral angles ψA{αβ} can be written:

0 = CA{α}{βγ} ≡ cos θA{α}{βγ} − cos θA′{α′}{β′γ′} . (3)

Any interface with CA{α}{βγ} ! 0 has a metric discontinuity and consequently a curvature singu-
larity at that interface. Half of these vertex angle constrains are redundant, but for simplicity all
are enforced in the numerical analysis here.
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In any multicube structure the Nedges independent constraints in Eq. (1) (where Nedges are the
number of independent edges in the multicube structure) and the 12Ncubes independent constraints
in Eq. (3) must be satisfied by the 12Ncubes dihedral angle parameters. Since there are more
constraints than freely specifiable parameters, we expect that many (most) multicube structures
will not admit solutions to all the constraints. When solutions do exist we expect they are likely
to be unique in most cases. In Ref. [1] a relatively small collection of multicube structures were
found that admit uniform dihedral angle solutions to these constraints. Solutions that do not
satisfy the uniform dihedral angle condition are found here for a wider class of manifolds.

The vertex angle constraints, Eq. (3), are very nonlinear, and general analytic solutions are
not known. More general solutions can be found numerically, however, by finding the minima of
the combined constraint norm, ||C ||, defined by

||C ||2 =
∑

A{αβ}

C
2
A{αβ} +

∑

A{γ}{αβ}

C
2
A{γ}{αβ} , (4)

where the sums are over the 12Ncubes edge and the 24Ncubes vertex angle constraints defined in
Eqs. (1) and (3). This norm is a function of the dihedral angles, ||C ||2 = ||C (ψA{αβ})||

2 that is
bounded below by zero, so a minimum always exists. If min ||C ||2 = 0 then all the constraints
are satisfied. If min ||C ||2 ! 0 then the constraints are not satisfied and it is not possible to build
a non-singular C0 metric on that multicube structure in this way.

The numerical search for a minimum of ||C ||2 was started by setting initial guesses for ψA{αβ}

to their uniform dihedral angle values: ψA{αβ} = 2π/KA{αβ}, where KA{αβ} is the number of cube
edges that intersect edge A{αβ}. The numerical search for a minimum was carried out using
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [2, p. 136] in the Python library
scipy.optimize. Any numerical minimum with ||C || ≤ 10−12 was considered to be a good
numerical solution to all the constraints, while any minimum with ||C || > 10−12 was rejected. Our
interest is finding solutions to these constraints that can be used to construct reference metrics
on these manifolds. Our numerical searches for solutions were concentrated near the uniform
dihedral angle state, because only relatively undistorted multicube structures are useful to us as
computational domains for solving partial differential equations numerically.

Constraint-satisfying dihedral angles ψA{αβ} were searched for numerically on the 744 multi-
cube structures constructed from the triangulations having eight or fewer tetrahedra included in
the Regina [3] catalog of compact orientable three-dimensional manifolds. Table 1 lists the 23
manifolds from this search that satisfy all the constraints as well as the uniform dihedral angle
condition. Table 2 lists 80 additional manifolds that admit non-uniform dihedral angle solutions
with ||C || ≤ 10−12. The manifold names used in these tables are those from the Regina [3] cat-
alog. These tables also list the number of multicube regions, Ncubes, and the maximum number
of edges, Kmax = max KA{αβ}, that overlap in each multicube structure. Table 2 also includes two
parameters, minAA{αβγ} and min det g−1

A{αβγ}
, that measure how distorted the constraint-satisfying

dihedral angles make each multicube region. The quantity AA{αβγ} is the solid angle subtended
by the cube at the A{αβγ} vertex (i.e. the area of the spherical triangle in Fig. 1). This solid
angle would equal π

2
in an un-distorted cube, so 2

π
minAA{αβγ} is a good measure of the maxi-

mum distortion in a multicube structure. The quantity det g−1
A{αβγ}

represents the determinant of

the inverse C0 metric constructed in Ref. [1] from the dihedral angles, evaluated at the vertex
A{αβγ}. This determinant would equal one in an un-distorted cube, so min det g−1

A{αβγ}
is another

good measure of the maximum distortion in a multicube structure. Multicube structures with
2
π

minAA{αβγ} < 10−6 or min det g−1
A{αβγ}

< 10−6 were excluded from the list in Table 2.
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These results show that only a small fraction, (23 + 80)/744 ≈ 0.138, of the multicube
structures constructed from eight or fewer triangulations in the Regina [3] catalog allow dihedral
angles that satisfy all the constraints. These include only three manifolds constructed from eight
tetrahedra, and an even smaller fraction is expected for the manifolds based on triangulations
with more tetrahedra. These results reveal that the methods developed in Ref. [1], including
the generalizations presented here, are unfortunately quite limited in their ability to construct
reference metrics on all the manifolds based on the triangulations in the Regina [3] catalog.

Table 1: Multicube Structures Admitting Uniform Dihedral Angles. The manifold names used here are those from the
Regina catalog. Those names are explained in detail in the documentation to the Regina cagalog [3] and also in Ref. [1].

Manifold Ncubes Kmax Manifold Ncubes Kmax

L(5,2) 4 4 SFS[RP2/n2:(2,1)(2,-1)] 24 6

L(8,3) 8 4 SFS[S2:(2,1)(2,1)(2,-1)] 8 4

L(10,3) 12 6 SFS[S2:(2,1)(2,1)(3,-2)] 12 6

L(12,5) 12 6 SFS[S2:(2,1)(2,1)(4,-3)] 16 8

L(16,7) 16 8 SFS[S2:(2,1)(2,1)(5,-4)] 20 10

L(20,9) 20 10 SFS[S2:(2,1)(2,1)(6,-5)] 24 12

L(24,11) 24 12 SFS[S2:(2,1)(2,1)(7,-6)] 28 14

L(28,13) 28 14 SFS[S2:(2,1)(2,1)(8,-7)] 32 16

L(32,15) 32 16 SFS[S2:(2,1)(3,1)(5,-4)] 20 5

T×S1 24 6 SFS[S2:(2,1)(3,2)(3,-1)] 20 5

KB/n2×∼S1 24 6 SFS[S2:(2,1)(4,1)(4,-3)] 24 6

SFS[S2:(3,1)(3,1)(3,-2)] 24 6

3. Discussion

Given a set of constraint-satisfying dihedral angles ψA{αβ}, a global C0 reference metric can
be constructed in a straightforward way using the methods developed in Ref. [1]. These C0

reference metrics determine a basic C1 differentiable structure on those manifolds. Smoother
differentiable structures are needed, however, to allow global solutions to second-order equations
like Einstein’s gravitational field equation. Methods for transforming the C0 reference metrics
to C1 (or smoother via Ricci flow) are also given in Ref. [1]. Those methods were used here
successfully to construct C1 reference metrics for the 23 manifolds listed in Table 1 and the
17 manifolds displayed in boldface in Table 2. The constraint-satisfying dihedral angles make
the remaining 63 non-boldface manifolds in Table 2 so distorted that non-singular C1 metrics
could not be constructed in this way. Considerable effort was expended in various attempts to
find improved methods that could produce non-singular C1 metrics in those cases, but all those
efforts failed. Only 23 + 17 of the 744 triangulations from the Regina [3] catalog produced
C1 reference metrics that could be used to solve Einstein’s equation on those manifolds. These
results demonstrate that the methods developed in Ref. [1], and generalized here, are very limited.
Expanding the class of manifolds on which useful C1 reference metrics can be constructed will
probably require new methods for transforming the triangulations on those manifolds into ones
that cover those manifolds more “uniformly” and so admit less distorted multicube structures.
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Table 2: Multicube Structures Admitting Non-uniform Dihedral Angles With ||C || ≤ 10−12. The quantities 2
π minA and

min det g−1 (defined in the text) measure distortion of the multicube structure, with 2
π minA = min det g−1 = 1 in an

undistorted structure. Bold face entries also admit non-singular C1 metrics.

Manifold Ncubes Kmax
2
π

minA min det g−1 Manifold Ncubes Kmax
2
π

minA min det g−1

L(7,2) 8 5 0.652 0.380 L(50,19) 24 7 0.117 0.026

L(11,3) 12 6 0.424 0.202 L(55,21) 24 6 0.121 0.027

L(13,3) 16 8 0.169 0.036 SFS[S2:(2,1)(2,1)(2,1)] 16 5 0.332 0.495

L(13,5) 12 5 0.598 0.500 SFS[S2:(2,1)(2,1)(2,3)] 20 7 0.228 0.125

L(14,3) 16 8 0.122 0.016 SFS[S2:(2,1)(2,1)(2,5)] 24 9 0.198 0.125

L(15,4) 16 6 0.360 0.112 SFS[S2:(2,1)(2,1)(2,7)] 28 11 0.122 0.073

L(17,4) 20 8 0.188 0.021 SFS[S2:(2,1)(2,1)(3,-1)] 16 5 0.332 0.495

L(17,5) 16 7 0.358 0.198 SFS[S2:(2,1)(2,1)(3,1)] 20 7 0.218 0.216

L(18,5) 16 6 0.348 0.123 SFS[S2:(2,1)(2,1)(3,2)] 20 6 0.173 0.232

L(19,4) 20 8 0.101 0.007 SFS[S2:(2,1)(2,1)(3,4) 24 8 0.122 0.031

L(19,7) 16 7 0.384 0.361 SFS[S2:(2,1)(2,1)(3,5) 24 8 0.088 0.050

L(21,8) 16 6 0.344 0.379 SFS[S2:(2,1)(2,1)(3,7) 28 10 0.075 0.027

L(22,5) 20 8 0.132 0.010 SFS[S2:(2,1)(2,1)(4,-1)] 20 6 0.332 0.247

L(23,5) 20 8 0.104 0.006 SFS[S2:(2,1)(2,1)(4,1)] 24 9 0.095 0.012

L(23,7) 20 9 0.246 0.128 SFS[S2:(2,1)(2,1)(4,3)] 24 7 0.070 0.057

L(24,7) 20 8 0.270 0.093 SFS[S2:(2,1)(2,1)(5,-3)] 20 7 0.143 0.182

L(25,7) 20 6 0.252 0.055 SFS[S2:(2,1)(2,1)(5,-2)] 20 6 0.242 0.197

L(25,9) 20 9 0.268 0.204 SFS[S2:(2,1)(2,1)(5,2)] 24 8 0.055 0.043

L(26,7) 20 7 0.236 0.034 SFS[S2:(2,1)(2,1)(5,3)] 24 7 0.045 0.071

L(27,8) 20 8 0.234 0.075 SFS[S2:(2,1)(2,1)(5,4)] 28 9 0.025 0.005

L(29,8) 20 6 0.216 0.032 SFS[S2:(2,1)(2,1)(7,-5)] 24 9 0.079 0.092

L(29,9) 24 11 0.191 0.091 SFS[S2:(2,1)(2,1)(7,-4)] 24 8 0.138 0.095

L(29,12) 20 7 0.236 0.099 SFS[S2:(2,1)(2,1)(7,-3)] 24 7 0.135 0.012

L(30,7) 24 9 0.121 0.005 SFS[S2:(2,1)(2,1)(7,-2)] 24 8 0.151 0.046

L(30,11) 20 8 0.232 0.179 SFS[S2:(2,1)(2,1)(8,-5)] 24 8 0.112 0.095

L(31,11) 24 11 0.206 0.130 SFS[S2:(2,1)(2,1)(8,-3)] 24 7 0.132 0.035

L(31,12) 20 7 0.214 0.140 SFS[S2:(2,1)(2,1)(9,-7)] 28 11 0.049 0.056

L(33,7) 24 8 0.073 0.002 SFS[S2:(2,1)(2,1)(9,-5)] 28 9 0.065 0.0006

L(33,10) 24 10 0.196 0.063 SFS[S2:(2,1)(2,1)(10,-7)] 28 10 0.067 0.042

L(34,9) 24 9 0.179 0.128 SFS[S2:(2,1)(2,1)(12,-5)] 28 8 0.005 0.00002

L(34,13) 20 6 0.200 0.121 SFS[S2:(2,1)(3,1)(3,-2)] 16 5 0.334 0.500

L(35,11) 28 13 0.156 0.067 SFS[S2:(2,1)(3,1)(3,-1)] 20 6 0.170 0.138

L(36,11) 24 10 0.182 0.058 SFS[S2:(2,1)(3,1)(3,1)] 24 7 0.147 0.069

L(37,10) 24 8 0.155 0.020 SFS[S2:(2,1)(3,1)(3,2)] 24 7 0.104 0.055

L(39,14) 24 10 0.176 0.102 SFS[S2:(2,1)(3,1)(4,-3)] 20 6 0.167 0.250

L(41,12) 24 8 0.149 0.014 SFS[S2:(2,1)(3,1)(4,-1)] 24 7 0.193 0.74

L(42,13) 28 12 0.155 0.044 SFS[S2:(2,1)(3,1)(5,-3)] 24 7 0.164 0.228

L(43,15) 32 15 0.138 0.066 SFS[S2:(2,1)(3,2)(4,-3)] 24 6 0.091 0.022

L(44,13) 24 8 0.122 0.009 SFS[S2:(2,1)(3,2)(4,-1)] 24 7 0.151 0.029

L(48,17) 28 12 0.139 0.061 SFS[S2:(2,1)(3,2)(5,-2)] 24 6 0.067 0.082
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