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ABSTRACT

We introduce an innovative assistive robotic setup tailored for as-
sessing the cognitive state of individuals with spinal cord injuries
(SCI) during their daily activities. Utilizing physiological sensors
such as ECG, EEG, and EDA, along with cameras for facial ex-
pression, our system is designed to detect and evaluate cognitive
fatigue in participants as they engage with a collaborative robot.
Specifically, two tasks, Cooking Pasta Sauce and Getting Ready
for Work-have been crafted to gather data on cognitive states.
Participants interact with the robot using natural language (Eng-
lish) to perform tasks, while their physiological responses, facial
expressions, and activities are recorded. The study comprises three
phases of cognitive fatigue: baseline, moderate, and severe. Cog-
nitive fatigue is induced through the N-back task paradigm, and
its severity is assessed using the Visual Analogue Scale for Fatigue
(VAS-F) questionnaire. Our system is designed to intervenes dur-
ing the tasks based on the detected cognitive fatigue levels. In this
paper, we concentrate on validating the cognitive fatigue detection
system using only physiological sensors during task performance,
achieving an accuracy of 85.7% and a recall of 0.87. We provide
detailed insights into the system design and present a preliminary
analysis of the gathered data.
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1 INTRODUCTION

This paper introduces the design and development of an end-to-end
personalized assistive robotic system, named iRCSA (Intelligent
Robotic Cooperation for Safe Assistance), with the primary goal of
recognizing, assessing, and responding to the Cognitive Fatigue (CF)
levels in individuals with Spinal Cord Injury (SCI) during Human-
Robot Cooperation (HRC) tasks. In light of the growing prevalence
of robotics and Artificial Intelligence (AI), assistive robots hold
great promise for improving the independence and quality of life for
individuals with disabilities. While existing research predominantly
focuses on ensuring safe HRC in industrial settings, there remains
a notable gap in understanding the cognitive states of individuals
engaging with robots in their daily lives.

To bridge this gap, our project endeavors to design and develop
the iRCSA system, integrating a multi-sensory system to detect
participants’ CF levels and an assistive robot capable of providing
corresponding support. Physiological data (ECG, EDA, EEG) along
with audio and video is collected from individuals with SCI during
HRC tasks. Utilizing advanced machine learning algorithms, perti-
nent features are extracted from the collected data, automatically
assessing the individual’s CF level. Based on this assessment, the
iRCSA system is planned to dynamically adjust the robot’s behavior
to offer personalized support. However, in this paper, we mainly
focus on understanding the cognitive state of the participants while
performing the task.

The development and evaluation of iRCSA adheres to the Partic-
ipatory Action Research (PAR) approach, involving SCI subjects at
every stage of the project. Their invaluable insights and feedback
is taken to ensure the acceptability and usability of the proposed
system. HRC scenarios, encompassing daily tasks such as cooking
and preparing for work, are orchestrated to facilitate cooperative
interactions between individuals with SCI and the assistive robot.
The potential outcomes of this research are significant, promising to
elevate the quality of life for individuals with SCI by enabling assis-
tive robots to comprehend and respond to their cognitive state. By
addressing the cognitive aspect of HRC, the iRCSA system stands to
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enhance the safety, efficiency, and effectiveness of assistive robotic
systems in delivering support and care to individuals with SCL

This paper begins by reviewing existing research in assistive
robotics, physiological sensors, and cognitive fatigue assessments
(section: 2). Subsequently, a comprehensive exploration of the sys-
tem’s design is provided, explaining each module’s functionality:
the mobile robot assistant, physiological sensor setup, facial expres-
sions recording, and speech recognition (section: 3). The method-
ology employed in the study is then detailed, encompassing data
collection and labeling processes (sections: 4 & 5). A preliminary
analysis of the acquired sample data is conducted, centering on
the cognitive fatigue detection system (section: 6). The findings
are presented alongside a comparative assessment against prior
methods (section: 7). The paper concludes by outlining potential
applications and suggesting future directions for research (section:
8).

2 RELATED WORK

The convergence of assistive robots, physiological sensors, facial
emotion analysis, and human activity recognition technologies is
reshaping our comprehension of cognitive states, particularly in
the context of individuals with disabilities. Feelings of frustration,
isolation, anxiety, and even depression can emerge, often stemming
from the loss of mobility and autonomy. This emotional landscape
can further interact with cognitive states, highlighting the intricate
relationship between mental and physical well-being [21]. Assistive
robots, defined as "machines designed to restore or enhance physical
abilities”, offer a ray of hope in healthcare. Research, exemplified by
the work of Krebs et al. [16], underscores their potential to not only
improve physical well-being but also restore a sense of autonomy,
alleviating feelings of dependency.

On the other hand, physiological sensors in the domain of human-
computer interaction such as EEG hold promise for gauging cog-
nitive states in people [25]. For instance, Schirrmeister et al. [26]
utilize deep learning with convolutional neural networks to assess
cognitive state of human subjects from EEG signals, enabling the
rise of user-centric systems. Similarly, Bashivan et al. [2] further
extended on the work the verify the potential of neural networks
in decoding physiological signals. However, the intrusive nature
of some sensors pose challenges to continuous monitoring feasi-
bility. To mitigate the intrusive issue with physiological sensors,
Baltrusaitis et al. [1] developed a deep learning algorithm to decode
facial micro-expressions to provide insights into an individual’s
emotional state. The non-intrusive nature of cameras make them a
valuable and viable option to monitor a person’s cognitive state.

Similarly, to understand human emotion, natural language has
been extensively research to understand the underlying emotion
behind text and speech from a person. For instance, [10] utilizes
speech between pilots and air traffic controllers to detect fatigue
early and prevent accidents, while [11] explores the relationship
between speech and illness severity. Thus, speech has demonstrated
a close connection with fatigue levels, making it crucial to detect
fatigue early in certain occupations to avert potential dangers or
accidents.

Hence, while numerous studies have explored the different do-
mains above, a palpable research gap exists, particularly in their
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combined application for people with disabilities and spinal cord
injuries. Our system aims to bridge that gap by combining multi-
ple modalities to understand human emotion and cognitive state.
By interweaving assistive robots, physiological sensors, and facial
analysis, our aim is to gain a holistic understanding of the daily cog-
nitive experiences of individuals with SCIs, moving beyong mere
assistance to craft a deeply empathetic and responsive system.

3 SYSTEM DESIGN

This section outlines the specifics of the experimental setup. We
devise a system wherein participants engage in two Human-Robot
Collaboration (HRC) scenarios featuring robotic assistance, simu-
lating real-world situations. The designated tasks include Cooking
a Pasta Sauce and Getting Ready for Work. The objective of
the robotic assistant is to aid wheelchair-bound participants in
carrying out everyday activities. To ensure the successful comple-
tion of these tasks, a robotic manipulator, as illustrated in Fig. 2, is
employed to fetch objects for participants as needed. The robotic
system seamlessly integrates with a multi-sensory system to col-
lect physiological data, facilitating the evaluation of participants’
cognitive fatigue states. Additionally, a speech assistant module
is implemented to assist participants in interacting with the robot
using natural language. The entire participant activity, including
facial expressions, is recorded using RGB cameras.

The experimental setup is illustrated in Fig. 2, featuring two
tables: one designated for task performance by the subject and the
other for the placement of necessary items. The figure highlights
the ingredients essential for the Cooking Pasta Sauce task. In this
task, participants are presented with a list of cooking ingredients
(such as tomato sauce, mushrooms, salt, etc.) that they must memo-
rize before commencing the task. Subsequently, they instruct the
robot to retrieve each ingredient individually, initiating the pasta
sauce cooking process. The sequence and quantity of ingredients
procured by the robot are entirely dependent on the participant’s
instructions. Similarly, in the Getting Ready for Work task, the
robot aids the participant in obtaining six common items essential
for preparing to leave for work. These items encompass a cellphone,
laptop, headphone, keys, etc.

3.1 Mobile Robot Assistant

The mobile robotic assistant module of our system comprises two
primary components: the Summit XL omnidirectional mobile robot
and the 7-DOF Franka Emika Panda robotic manipulator, commonly
referred to as the Panda arm. The Summit XL robot facilitates free
movement in confined spaces, offering agility and versatility. On
top of its base, the Panda arm is equipped with a 2-finger gripper
capable of picking and fetching objects with dimensions of up to
80mm in width and weighing up to 3 kg.

The Panda arm is equipped with torque sensors on each joint, en-
suring precise interactions with objects and providing a heightened
level of safety when operating in close proximity to humans. This
safety feature is crucial for collaborative tasks. Additionally, the
robotic arm is fitted with an RGBD camera, enhancing its capability
for grasping and picking objects by providing visual information.

To support navigation and interaction, the robot base is equipped
with LiDAR sensors and cameras. This sensor suite aids the robot
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Figure 2: a. Overview of the experimental setup. b. A subject with SCI performing the simulated Pasta Sauce cooking task.

in perceiving its surroundings and navigating through the environ-
ment effectively. Subjects have the flexibility to guide the robots

through predefined sequences of actions or make real-time adjust-

ments using spoken commands, allowing for intuitive and dynamic
interaction with the mobile robotic assistant module.
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3.2 Physiological Sensor Setup

Our human-centric framework incorporates a diverse array of phys-
iological sensors seamlessly integrated into a multi-sensory system.
This system is adept at collecting electroencephalogram (EEG), elec-
trocardiogram (ECG), and electrodermal activity (EDA). These phys-
iological sensors play a crucial role in evaluating cognitive fatigue
(CF) levels during Human-Robot Collaboration (HRC) scenarios.
The PLUX Biosignals sensor module [4] is utilized for gathering
ECG and EDA data, while the Muse S headset [19] is employed
for collecting EEG signals. These sensors actively monitor electri-
cal activity in the heart, skin, and the brain and are significant in
detecting the cognitive state of a person [14, 15, 17].

During various tasks performed by subjects, EEG signals are
captured using the Muse S headset, which features four electrodes
(AF7, AF8, TP9, TP10) strategically positioned on different areas
of the head. The EEG signals provide quantifiable data on brain
electrical activity, categorized into five frequency bands: alpha, beta,
delta, gamma, and theta, each corresponding to a distinct brain state.
As illustrated in Fig. 3, electrodes for ECG and EDA from the PLUX
Bluetooth module are attached to different points on the body, with
red and white dots denoting the front and the black dot denoting the
back. Both the Muse headset and the PLUX module are connected
to the ROS system via Bluetooth, ensuring a continuous stream of
data to their respective topics.

3.3 Facial Expressions

In addition to physiological sensors, our configuration includes two
types of camera sensors to intricately capture the physical activities
and facial responses of individuals with spinal cord injury (SCI)
during their daily tasks. These RGB-D cameras, equipped with both
color and depth capabilities, are designed to offer a comprehensive
view of the environment. One camera captures the overall activity
area (the table) where the participant performs tasks, while the
other camera provides a close-up, dynamic view of the participant
during the Cooking Pasta Sauce and Getting Ready for Work
tasks.

An ancillary objective of our system is to extract crucial features
such as human body position and facial landmarks by harnessing
cutting-edge libraries like OpenPose [6] and OpenFace [1]. Recog-
nizing human activity is pivotal, and our system strives to predict
and interpret captured behaviors using powerful computer vision
algorithms. These inferred actions can yield essential insights into
cognitive fatigue levels, especially during interactions with the ro-
bot. For instance, by monitoring eye motion, blink rate, and utilizing
facial landmarks, we can discern different eye movement patterns,
which serve as vital indicators of cognitive fatigue. However, it’s
important to note that the exploration of vision data is beyond the
scope of this paper.

3.4 Speech Recognition

To bridge the communication gap between humans and the robot,
we implement a speech recognition module for receiving commands
from participants and controlling the mobile robot. The speech
recognition pipeline, implemented through the Google Cloud Speech
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library for Python !, involves the following steps: i) adapting to am-
bient noise, ii) recognizing a trigger word and identifying the task
keyword, and iii) dispatching the pick-and-place command to the
robotic system. In the initial step, the speech recognizer acclimates
to the ambient environmental noise for 0.5 seconds to enhance the
recognition of speech commands in the subsequent step. During
the command recognition stage, the participant is required to:

e Begin by saying, "Hi/Hey Robot" to prompt the robot to
listen to the command,

o Subsequently, state, "I would like to get an item_name" as the
command to instruct the robot to fetch the specified item.

The items are fetched one at a time, with the robot initiating the
task by responding with "Sure, fetching item_name for you." After
delivering the item to the designated location, the robot notifies the
user of task completion. The predetermined items for the "Cooking
Pasta Sauce" and "Getting Ready for Work" tasks are fixed and
include:

e Cooking Pasta Sauce: pasta, cheese, carrots, tomato sauce,
green beans, mushrooms, garlic, chili, butter, salt, bell pepper,
and corn

o Getting Ready for Work: cellphone, coffee, keys, calculator,
laptop, and headphones

Upon issuing the command, we capture both the speech audio
and transcribed text commands that can be used to facilitate the
downstream cognitive fatigue detection task in the future. The
speech audio is stored in WAV format, while the transcribed text is
obtained from the Google Cloud Speech library and saved in CSV
format. The rationale behind collecting speech data from partici-
pants stems from previous studies indicating that fatigue can lead
to potential dangers, accidents, or a decline in life quality [8, 10].

4 METHODOLOGY

4.1 N-Back Task Paradigm

The N-Back tasks employed in this study involves participants
to a series of stimuli, such as letters, by indicating whether the
current stimulus matched the one present N trials earlier as shown
in Fig. 4. The 2-Back task is chosen for its efficacy in inducing
cognitive fatigue without overwhelming the participants [12]. The
continuous performance nature of the task taxes working memory
and executive functions, leading to increased cognitive load and
fatigueness. Fig. 4 shows the GUI designed for the 2-Back task along
with the play screen (right) showing letters one at a time.

4.2 Visual Analogue Score of Fatigue (VAS-F)
Questionnaire

The VAS-F questionnaire is a simple and widely used question-
naire to assess fatigue [7]. It has been used in a variety of settings,
including clinical research and occupational health [3, 13]. It is
administered at key points during the experiment to subjectively
assess cognitive fatigue levels. The scale consists of 18 items relating
to the subjective experience of fatigue. Each item asks respondents
to place an “X,” representing how they currently feel, along a visual
analogue line that extends between two extremes (e.g., from “not at

!https://cloud.google.com/speech-to-text/docs/speech-to-text-client-libraries
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Figure 3: Illustration of the placement of sensors on the human body: (a) ECG sensors located on the right shoulder, left
hip, and right hip, forming Einthoven’s triangle [27]; (b) EDA/GSR electrodes positioned on the left shoulder to capture skin
conductivity; and (c) EEG sensor positions based on the 10-10 electrode system employed by MUSE. This system records data
from the TP9, AF7, AF8, and TP10 positions in the electrode configuration
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Figure 4: Graphical User Interface built for the N-Back tasks
with an example image of a letter during a game round on
the right.

all tired” to “extremely tired”). The participant is asked to select an
option to indicate their current level of fatigue. In this study, VAS-F
score between 40-70 has been considered Moderate CF and scores
over 70 as Severe CF.

4.3 Experimental Phases

The experimental study is designed to be conducted in three distinct
phases to systematically evaluate the impact of cognitive fatigue on
the performance. Each phase aims to capture the participant’s cog-
nitive state at different levels of cognitive fatigue. Participants start
the experiment in a rested state, free from any cognitive load. Dur-
ing this phase, baseline measurements are obtained from the physi-
ological sensors (ECG, EMG, and EEG) and the facial expressions
through the cameras. The baseline data enables us to normalize
the data signals for each participant. Following the baseline phase,
participants are asked to engage in N-Back tasks (2-Back). N-back
tasks have been widely recognized for inducing cognitive fatigue
and mental workload [22]. After every few rounds of the N-back
task, participants are required to fill a VAS-F questionnaire that de-
termines their level of cognitive fatigue. When moderate cognitive
fatigue is induced, the participants are asked to perform the daily
activity tasks (cooking pasta and getting ready for work). Finally,
when the VAS-F score is administered to cross the 70 mark, the
participant is considered in a severe CF phase where they perform
the daily activity tasks one last time.
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While performing the Cooking Pasta and Getting Ready for
Work tasks, physiological signals are constantly recorded along
with the facial expressions of the participants. The robotic system
assists the participants in completing the tasks. Speech commands
are issued by the participant in order to interact with the robot.
All the data modalities are recorded during the tasks, providing a
comprehensive dataset for analysis.

5 DATA COLLECTION AND LABELING

Participant recruitment was a collaborative initiative between the
Student Access & Resource (SAR) and the Office of Accessible Educa-
tion (OAE) at the university. We specifically reached out to members
of the UTA basketball team who use wheelchairs. For our initial
study, we invited eight participants, ensuring a balanced representa-
tion by sex. The primary goal was to gather feedback on the design
of two Human-Robot Collaboration (HRC) tasks: Cooking Pasta
Sauce and Getting Ready for Work. Participants, while assisted
by the mobile robot assistant, engaged in these daily activities and
interacted with the robot using natural language (English) through
speech. The study was designed to evaluate task performance at
three distinct phases of cognitive fatigue: baseline, moderate, and
severe.

Cognitive fatigue was induced through multiple rounds of N-
back tasks, with participants completing a minimum of six rounds.
Additional rounds were administered if the desired level of severe
fatigue was not reached. The VAS-F questionnaire gauged the level
of cognitive fatigue experienced by participants after each N-back
task. Physiological sensor data, collected using Muse EEG head-
bands, ECG sensors, and Bioplux EMG sensors, provided insights
into cognitive workload, heart rate variability, and skin sensitivity,
respectively. Facial expressions captured by a camera will be used to
analyze for signs of stress, fatigue, and changes in emotional state.
Speech commands were recorded and cane be used to assess varia-
tions in participants’ vocal characteristics, potentially correlating
with cognitive fatigue levels.

Sensor data were synchronized using timestamps from the robot
operating system (ROS). Preprocessing steps were applied to EEG,
ECG, and EDA data to eliminate noise, artifacts, and baseline shifts.
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Spectral analysis was conducted on EEG data to extract cognitive
load-related frequency bands. ECG data were processed to compute
heart rate variability parameters, and EDA data were filtered and
normalized for skin conductivity quantification.

The VAS-F questionnaire, yielding subjective cognitive fatigue
scores between 0-100, provided a general rating of overall fatigue
intensity perceived by participants. Scores falling below 40 were cat-
egorized as No Fatigue (< 40), those between 40 and 70 as Moderate
Fatigue (> 40 and < 70), and anything surpassing 70 as Severe/Extreme
Fatigue (> 70). The VAS-F scores served as a benchmark for evaluat-
ing the induced cognitive fatigue’s effectiveness and validating the
multi-modal data analysis.

6 COGNITIVE FATIGUE DETECTION SYSTEM:
PRELIMINARY ANALYSIS

This paper primarily centers on detecting the cognitive fatigue
state of participants during Human-Robot Collaboration (HRC)
tasks. While vision data, speech transcriptions, and robot state
are recorded during the experiments, their primary purpose is to
contribute to the development of an intervention system, which will
be further explored in future research. In this section, we explain the
pre-processing pipeline for physiological signal data and elaborate
on their significance in detecting the three pre-defined levels of
cognitive fatigue.

6.1 EEG

The acquisition of EEG signals during experimental tasks is con-
ducted utilizing the MUSE S headset. This device is equipped with
four electrodes positioned at AF7, AF8, TP9, and TP10, establish-
ing contact with specific regions of the head, as illustrated in Fig.
3(c). The EEG signals measure electrical activity in the brain, and
in this experiment, we analyze them by decomposing them into
five distinct frequency bands: alpha, beta, gamma, and theta, as
presented in Fig. 5. Each frequency band corresponds to a distinct
cerebral state. For instance, delta waves occur in the frequency
range of 0.5 Hz to 4 Hz and are present during sleep, while beta
waves occur between 13 Hz to 30 Hz and are associated with active
thinking. Similarly, other waves and their associated states include
alpha waves (8-12 Hz) denoting normal wakefulness, gamma waves
(30-80 Hz) signifying sensory perception integration, and theta
waves (4-7 Hz) indicating drowsiness and the early stages of sleep.
In addition, 50-60 Hz frequencies are pre-processed beforehand to
mitigate potential power line interference on the EEG signals.

6.2 ECG and EDA/GSR

6.2.1 ECG. Electrocardiogram (ECG) signals provide insights into
changes in the cardiovascular system by reflecting the heart’s elec-
trical activity. These signals contain crucial information regarding
cardiac pathologies that impact the heart, characterized by five
peaks known as fiducial points labeled P, Q, R, S, and T [24]. Nu-
merous studies have established a correlation between fatigue and
alterations in the body’s cardiovascular response [20]. The ECG
signals are recorded using Einthoven’s triangle approach [9], an
imaginary formation of three limb leads in electrocardiography,
creating a triangle encompassing the two shoulders and the pubis
as shown in Fig. 3(a).
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Figure 6: Raw Amplitude plot of Frequency bands extracted
from the electrode at AF7 position (on MUSE) from a sample
raw EEG signal from one of the subjects. The readings were
collected during one of the 2-Back tasks undergoing for a
little under 3 minutes.

To eliminate undesired noise from the ECG signals, the Pan and
Tompkins QRS detection algorithm is employed [23]. Initially, the
signals are cleaned through a high-pass Butterworth filter with
a fixed cut-off frequency of 0.5 Hz. Subsequently, a notch filter
is applied to the cleaned signal to eliminate components with a
frequency of 50 Hz, thereby mitigating power line interference.
Following this, RR intervals are derived from the signal’s R_Peaks
and further refined by removing outliers as shown in Fig. 7. The
missing values are then imputed using the linear interpolation
method. Ultimately, a comprehensive set of 113 time-domain and
frequency-domain features, encompassing metrics such as heart
rate variability (HRV), are extracted for the purpose of training
machine learning models.

6.2.2 EDA/GSR. Conversely, Electrodermal Activity (EDA), com-
monly known as galvanic skin response (GSR), mirrors the sym-
pathetic nervous system’s activity. This system is influenced by
physiological and emotional stimuli, gauging the skin conductivity
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Figure 7: A 15-second ECG signal sample after noise removal
from one of the subjects recorded at 250 samples/second dur-
ing a recorded heart rate of 70 BPM. The R-peaks are used as
one of the ECG features for training machine learning mod-
els along with other Heart-Rate Variability (HRV) features.

of the body. EDA signals can additionally indicate the intensity of
one’s emotional state, enabling the identification of psychological
or emotional arousal episodes.

The EDA signals undergo initial processing by applying a low-
pass Butterworth filter with a cut-off frequency of 3 Hz. EDA signals
can be deconstructed into two distinct components: phasic and
tonic [5]. Given that the phasic component represents the more
rapidly changing aspect of the signal influenced by physiological
responses to stimuli, it was selectively extracted for further analysis.
Features, specifically Skin Conductance Response (SCR) peaks, were
then derived from the refined EDA signals. Similarly, both time-
domain and frequency-domain features were extracted from the
EMG signals. The majority of the feature extraction procedures
were conducted using the Neurokit2 package [18] for all three
signals.

7 EXPERIMENTATION AND RESULTS

For the detection of different levels of cognitive fatigue, 100 sta-
tistical features are extracted from EEG signals and 129 combined
features from ECG and EDA signals. These encompass diverse
features at different frequency levels such as peaks, rates, onsets,
offsets, and more. To train the machine learning models, rather than
processing the entire signal for a task as a single input, we partition
the temporal signals into multiple slices based on various window
sizes (5 seconds, 10 seconds, and 20 seconds). Each signal slice
inherits the same label as its parent signal, and features are then
extracted. This approach augments the volume of input data points
for ML model training. However, we also evaluate the models using
complete signal blocks as inputs. Likewise, during inference, the
input signal is subdivided into smaller slices based on the window
size established during training. Each slice is classified individually
by the model, and ultimately, the entire signal block is classified
based on the predominant class among the classified slices. This
technique enhances the model’s resilience to noise or outliers in
the signals, as noise within certain slices may have minimal impact
on the final classification result.
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Despite the limited sample size of eight participants in our cur-
rent preliminary study, we employ transfer learning to leverage
data acquired from previous studies for cognitive fatigue detec-
tion [14]. The dataset originates from a similar experimental setup
involving N-back tasks designed to induce cognitive fatigue. We
possess physiological sensor data (ECG, EEG, EDA, and EMG) from
32 healthy participants, who provided self-reported subjective VAS-
F scores after each round of N-back. The features extracted from
these samples are incorporated into the dataset from our prelimi-
nary study to facilitate the classification of the three intended levels
of cognitive fatigue.

The entire aggregated dataset, comprising data from a total of
40 subjects, is randomly partitioned into training (70%, 28 sub-
jects), validation (15%, 6 subjects), and test (15%, 6 subjects) sets.
Stratified sampling is employed during the partitioning process to
address potential imbalances in the dataset. Additionally, 5-fold
cross-validation is performed for each of the models. Four distinct
machine learning models—Logistic Regression (Log Reg.), Support
Vector Machines (SVM), Random Forest (RF), and Long Short-Term
Memory (LSTM) recurrent neural network—are employed in the
analysis. Various combinations of features extracted from the sig-
nals are utilized to predict cognitive fatigue.

Logistic Regression, SVM, and RandomForest classifiers are trained
on the features extracted from the physiological signals. However,
the LSTM models (with 256 hidden layers) are trained on the raw
signal due to its ability to process time-series data. We use the sim-
ilar window-based method to train the LSTM models, where the
input size of the EEG signals provided is t x 20 x 1 (five frequency
bands from each of the electrodes). On the other hand, ECG and
EDA signals are combined to form inputs of size ¢ x 2 x 1. Finally,
the LSTM is trained on t x 23 x 1 inputs for all signals combined.
Here, "t" represents the number of timesteps in the signal, which
varies based on the window size.

The Avg. Recall presented in the tables is the average recall
for the Moderate Fatigue and Severe Fatigue conditions ob-
tained across 5-fold cross-validation for each ML model. The best-
performing value for each model among different window sizes is
considered. Notably, the LSTM model outperforms others with an
85.7% prediction accuracy in detecting cognitive fatigue states. The
recall value of 0.87 indicates that actual fatigue cases are correctly
identified 87% of the time, with only a 13% false positive rate.

8 CONCLUSION

This paper makes a significant contribution to the field of Human-
Computer Interaction (HCI) by presenting a comprehensive frame-
work that integrates multi-modal sensors for assessing cognitive
fatigue in individuals with Spinal Cord Injury (SCI). The proposed
system shows promise in enhancing our understanding of how
cognitive fatigue impacts task performance and overall well-being.
The study’s results illuminate the challenges and opportunities in
designing assistive systems that facilitate efficient task completion
while prioritizing the cognitive well-being of users. In future re-
search, we plan to explore the significance of acitivity videos, facial
expressions, robotic state, and speech data in detecting cognitive
fatigue, in addition to analyzing physiological signals. Furthermore,
our future goal is to develop a real-time cognitive state analysis
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Table 1: Detection of Cognitive Fatigue (CF) with EDA/GSR + EMG Features

Accuracy (Window Size)
Model 5s 10s 20s Full Block Avg. Recall
Log Reg. 68.1% 68.7% 68.9% 71.8% 0.59
SVM 77.3% 79.7% 80.1% 82.1% 0.68
RF 71.1% 79.9% 76.4% 80.9% 0.73
LSTM 68.6% 79.2% 84.2% 84.5% 0.77
Table 2: Detection of Cognitive Fatigue (CF) with EEG + EDA/GSR + EMG Features
Accuracy (Window Size)
Model 5s 10s 20s Full Block Avg. Recall
Log Reg. 64.2% 64.9% 66.7% 66.7% 0.69
SVM 77.1% 80.3% 80.3% 80.9% 0.77
RF 73.7% 77.8% 78.9% 78.8% 0.70
LSTM 68.8% 77.1% 84.4% 85.7% 0.87
Table 3: Comparison of different models with the state-of-the-art algorithms
Model Accuracy Avg. Recall Ref.
RF 64.69% 0.65 [17]
RF 66.20% 0.66 [17]
LSTM 34.1% 0.90 [14]
LSTM (Ours) 85.7% 0.87 Table 2

system that enables the robot to intervene during Human-Robot
Collaboration (HRC) tasks. This work lays the groundwork for fu-
ture endeavors in designing personalized and responsive robotic
assistance tailored to individuals with diverse cognitive states and
abilities.
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