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enhance the safety, efficiency, and effectiveness of assistive robotic

systems in delivering support and care to individuals with SCI.

This paper begins by reviewing existing research in assistive

robotics, physiological sensors, and cognitive fatigue assessments

(section: 2). Subsequently, a comprehensive exploration of the sys-

tem’s design is provided, explaining each module’s functionality:

the mobile robot assistant, physiological sensor setup, facial expres-

sions recording, and speech recognition (section: 3). The method-

ology employed in the study is then detailed, encompassing data

collection and labeling processes (sections: 4 & 5). A preliminary

analysis of the acquired sample data is conducted, centering on

the cognitive fatigue detection system (section: 6). The findings

are presented alongside a comparative assessment against prior

methods (section: 7). The paper concludes by outlining potential

applications and suggesting future directions for research (section:

8).

2 RELATED WORK

The convergence of assistive robots, physiological sensors, facial

emotion analysis, and human activity recognition technologies is

reshaping our comprehension of cognitive states, particularly in

the context of individuals with disabilities. Feelings of frustration,

isolation, anxiety, and even depression can emerge, often stemming

from the loss of mobility and autonomy. This emotional landscape

can further interact with cognitive states, highlighting the intricate

relationship between mental and physical well-being [21]. Assistive

robots, defined as "machines designed to restore or enhance physical

abilities", offer a ray of hope in healthcare. Research, exemplified by

the work of Krebs et al. [16], underscores their potential to not only

improve physical well-being but also restore a sense of autonomy,

alleviating feelings of dependency.

On the other hand, physiological sensors in the domain of human-

computer interaction such as EEG hold promise for gauging cog-

nitive states in people [25]. For instance, Schirrmeister et al. [26]

utilize deep learning with convolutional neural networks to assess

cognitive state of human subjects from EEG signals, enabling the

rise of user-centric systems. Similarly, Bashivan et al. [2] further

extended on the work the verify the potential of neural networks

in decoding physiological signals. However, the intrusive nature

of some sensors pose challenges to continuous monitoring feasi-

bility. To mitigate the intrusive issue with physiological sensors,

Baltrusaitis et al. [1] developed a deep learning algorithm to decode

facial micro-expressions to provide insights into an individual’s

emotional state. The non-intrusive nature of cameras make them a

valuable and viable option to monitor a person’s cognitive state.

Similarly, to understand human emotion, natural language has

been extensively research to understand the underlying emotion

behind text and speech from a person. For instance, [10] utilizes

speech between pilots and air traffic controllers to detect fatigue

early and prevent accidents, while [11] explores the relationship

between speech and illness severity. Thus, speech has demonstrated

a close connection with fatigue levels, making it crucial to detect

fatigue early in certain occupations to avert potential dangers or

accidents.

Hence, while numerous studies have explored the different do-

mains above, a palpable research gap exists, particularly in their

combined application for people with disabilities and spinal cord

injuries. Our system aims to bridge that gap by combining multi-

ple modalities to understand human emotion and cognitive state.

By interweaving assistive robots, physiological sensors, and facial

analysis, our aim is to gain a holistic understanding of the daily cog-

nitive experiences of individuals with SCIs, moving beyong mere

assistance to craft a deeply empathetic and responsive system.

3 SYSTEM DESIGN

This section outlines the specifics of the experimental setup. We

devise a system wherein participants engage in two Human-Robot

Collaboration (HRC) scenarios featuring robotic assistance, simu-

lating real-world situations. The designated tasks include Cooking

a Pasta Sauce and Getting Ready for Work. The objective of

the robotic assistant is to aid wheelchair-bound participants in

carrying out everyday activities. To ensure the successful comple-

tion of these tasks, a robotic manipulator, as illustrated in Fig. 2, is

employed to fetch objects for participants as needed. The robotic

system seamlessly integrates with a multi-sensory system to col-

lect physiological data, facilitating the evaluation of participants’

cognitive fatigue states. Additionally, a speech assistant module

is implemented to assist participants in interacting with the robot

using natural language. The entire participant activity, including

facial expressions, is recorded using RGB cameras.

The experimental setup is illustrated in Fig. 2, featuring two

tables: one designated for task performance by the subject and the

other for the placement of necessary items. The figure highlights

the ingredients essential for the Cooking Pasta Sauce task. In this

task, participants are presented with a list of cooking ingredients

(such as tomato sauce, mushrooms, salt, etc.) that they must memo-

rize before commencing the task. Subsequently, they instruct the

robot to retrieve each ingredient individually, initiating the pasta

sauce cooking process. The sequence and quantity of ingredients

procured by the robot are entirely dependent on the participant’s

instructions. Similarly, in the Getting Ready for Work task, the

robot aids the participant in obtaining six common items essential

for preparing to leave for work. These items encompass a cellphone,

laptop, headphone, keys, etc.

3.1 Mobile Robot Assistant

The mobile robotic assistant module of our system comprises two

primary components: the Summit XL omnidirectional mobile robot

and the 7-DOF Franka Emika Panda robotic manipulator, commonly

referred to as the Panda arm. The Summit XL robot facilitates free

movement in confined spaces, offering agility and versatility. On

top of its base, the Panda arm is equipped with a 2-finger gripper

capable of picking and fetching objects with dimensions of up to

80mm in width and weighing up to 3 kg.

The Panda arm is equipped with torque sensors on each joint, en-

suring precise interactions with objects and providing a heightened

level of safety when operating in close proximity to humans. This

safety feature is crucial for collaborative tasks. Additionally, the

robotic arm is fitted with an RGBD camera, enhancing its capability

for grasping and picking objects by providing visual information.

To support navigation and interaction, the robot base is equipped

with LiDAR sensors and cameras. This sensor suite aids the robot
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3.2 Physiological Sensor Setup

Our human-centric framework incorporates a diverse array of phys-

iological sensors seamlessly integrated into a multi-sensory system.

This system is adept at collecting electroencephalogram (EEG), elec-

trocardiogram (ECG), and electrodermal activity (EDA). These phys-

iological sensors play a crucial role in evaluating cognitive fatigue

(CF) levels during Human-Robot Collaboration (HRC) scenarios.

The PLUX Biosignals sensor module [4] is utilized for gathering

ECG and EDA data, while the Muse S headset [19] is employed

for collecting EEG signals. These sensors actively monitor electri-

cal activity in the heart, skin, and the brain and are significant in

detecting the cognitive state of a person [14, 15, 17].

During various tasks performed by subjects, EEG signals are

captured using the Muse S headset, which features four electrodes

(AF7, AF8, TP9, TP10) strategically positioned on different areas

of the head. The EEG signals provide quantifiable data on brain

electrical activity, categorized into five frequency bands: alpha, beta,

delta, gamma, and theta, each corresponding to a distinct brain state.

As illustrated in Fig. 3, electrodes for ECG and EDA from the PLUX

Bluetooth module are attached to different points on the body, with

red and white dots denoting the front and the black dot denoting the

back. Both the Muse headset and the PLUX module are connected

to the ROS system via Bluetooth, ensuring a continuous stream of

data to their respective topics.

3.3 Facial Expressions

In addition to physiological sensors, our configuration includes two

types of camera sensors to intricately capture the physical activities

and facial responses of individuals with spinal cord injury (SCI)

during their daily tasks. These RGB-D cameras, equipped with both

color and depth capabilities, are designed to offer a comprehensive

view of the environment. One camera captures the overall activity

area (the table) where the participant performs tasks, while the

other camera provides a close-up, dynamic view of the participant

during the Cooking Pasta Sauce and Getting Ready for Work

tasks.

An ancillary objective of our system is to extract crucial features

such as human body position and facial landmarks by harnessing

cutting-edge libraries like OpenPose [6] and OpenFace [1]. Recog-

nizing human activity is pivotal, and our system strives to predict

and interpret captured behaviors using powerful computer vision

algorithms. These inferred actions can yield essential insights into

cognitive fatigue levels, especially during interactions with the ro-

bot. For instance, by monitoring eye motion, blink rate, and utilizing

facial landmarks, we can discern different eye movement patterns,

which serve as vital indicators of cognitive fatigue. However, it’s

important to note that the exploration of vision data is beyond the

scope of this paper.

3.4 Speech Recognition

To bridge the communication gap between humans and the robot,

we implement a speech recognitionmodule for receiving commands

from participants and controlling the mobile robot. The speech

recognition pipeline, implemented through theGoogle Cloud Speech

library for Python 1, involves the following steps: i) adapting to am-

bient noise, ii) recognizing a trigger word and identifying the task

keyword, and iii) dispatching the pick-and-place command to the

robotic system. In the initial step, the speech recognizer acclimates

to the ambient environmental noise for 0.5 seconds to enhance the

recognition of speech commands in the subsequent step. During

the command recognition stage, the participant is required to:

• Begin by saying, "Hi/Hey Robot" to prompt the robot to

listen to the command,

• Subsequently, state, "I would like to get an item_name" as the

command to instruct the robot to fetch the specified item.

The items are fetched one at a time, with the robot initiating the

task by responding with "Sure, fetching item_name for you." After

delivering the item to the designated location, the robot notifies the

user of task completion. The predetermined items for the "Cooking

Pasta Sauce" and "Getting Ready for Work" tasks are fixed and

include:

• Cooking Pasta Sauce: pasta, cheese, carrots, tomato sauce,

green beans, mushrooms, garlic, chili, butter, salt, bell pepper,

and corn

• Getting Ready for Work: cellphone, coffee, keys, calculator,

laptop, and headphones

Upon issuing the command, we capture both the speech audio

and transcribed text commands that can be used to facilitate the

downstream cognitive fatigue detection task in the future. The

speech audio is stored in WAV format, while the transcribed text is

obtained from the Google Cloud Speech library and saved in CSV

format. The rationale behind collecting speech data from partici-

pants stems from previous studies indicating that fatigue can lead

to potential dangers, accidents, or a decline in life quality [8, 10].

4 METHODOLOGY

4.1 N-Back Task Paradigm

The N-Back tasks employed in this study involves participants

to a series of stimuli, such as letters, by indicating whether the

current stimulus matched the one present N trials earlier as shown

in Fig. 4. The 2-Back task is chosen for its efficacy in inducing

cognitive fatigue without overwhelming the participants [12]. The

continuous performance nature of the task taxes working memory

and executive functions, leading to increased cognitive load and

fatigueness. Fig. 4 shows the GUI designed for the 2-Back task along

with the play screen (right) showing letters one at a time.

4.2 Visual Analogue Score of Fatigue (VAS-F)
Questionnaire

The VAS-F questionnaire is a simple and widely used question-

naire to assess fatigue [7]. It has been used in a variety of settings,

including clinical research and occupational health [3, 13]. It is

administered at key points during the experiment to subjectively

assess cognitive fatigue levels. The scale consists of 18 items relating

to the subjective experience of fatigue. Each item asks respondents

to place an łX,ž representing how they currently feel, along a visual

analogue line that extends between two extremes (e.g., from łnot at

1https://cloud.google.com/speech-to-text/docs/speech-to-text-client-libraries
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Table 1: Detection of Cognitive Fatigue (CF) with EDA/GSR + EMG Features

Model
Accuracy (Window Size)

Avg. Recall
5s 10s 20s Full Block

Log Reg. 68.1% 68.7% 68.9% 71.8% 0.59

SVM 77.3% 79.7% 80.1% 82.1% 0.68

RF 71.1% 79.9% 76.4% 80.9% 0.73

LSTM 68.6% 79.2% 84.2% 84.5% 0.77

Table 2: Detection of Cognitive Fatigue (CF) with EEG + EDA/GSR + EMG Features

Model
Accuracy (Window Size)

Avg. Recall
5s 10s 20s Full Block

Log Reg. 64.2% 64.9% 66.7% 66.7% 0.69

SVM 77.1% 80.3% 80.3% 80.9% 0.77

RF 73.7% 77.8% 78.9% 78.8% 0.70

LSTM 68.8% 77.1% 84.4% 85.7% 0.87

Table 3: Comparison of different models with the state-of-the-art algorithms

Model Accuracy Avg. Recall Ref.

RF 64.69% 0.65 [17]

RF 66.20% 0.66 [17]

LSTM 84.1% 0.90 [14]

LSTM (Ours) 85.7% 0.87 Table 2

system that enables the robot to intervene during Human-Robot

Collaboration (HRC) tasks. This work lays the groundwork for fu-

ture endeavors in designing personalized and responsive robotic

assistance tailored to individuals with diverse cognitive states and

abilities.
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