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Abstract

Two-sample tests are widely used in hydrologic and climate studies to investigate whether two samples of a variable of interest
could be considered drawn from different populations. Despite this, the information on the power (i.e., the probability of
correctly rejecting the null hypothesis) of these tests applied to hydroclimatic variables is limited. Here, this need is addressed
considering four popular two-sample tests applied to daily and extreme precipitation, and annual peak flow series. The chosen
tests assess differences in location (t-Student and Wilcoxon) and distribution (Kolmogorov—Smirnov and likelihood-ratio). The
power was quantified through Monte Carlo simulations relying on pairs of realistic samples of the three variables with equal
size, generated with a procedure based on suitable parametric distributions and copulas. After showing that differences in sample
skewness are monotonically related to differences in spread, power surfaces were built as a function of the relative changes
in location and spread of the samples and utilized to interpret three case studies comparing samples of observed precipitation
and discharge series in the U.S. It was found that (1) the t-Student applied to the log-transformed samples has the same power
as the Wilcoxon test; (2) location (distribution) tests perform better than distribution (location) tests for small (moderate-to-
large) differences in spread and skewness; (3) the power is relatively lower (higher) if the differences in location and spread or
skewness have concordant (discordant) sign; and (4) the power increases with the sample size but could be quite low for tests
applied to extreme precipitation and discharge records that are commonly short. This work provides useful recommendations
for selecting and interpreting two-sample tests in a broad range of hydroclimatic applications.
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1 Introduction

Two-sample tests are used to investigate whether there is
sufficient statistical evidence to claim that two samples of
a variable could be considered random and independent
realizations of the same population or if they might have been
drawn from different populations. To address this general
question, several tests have been designed that quantify
differences in either location (e.g., Student 1908; Kruskal
1957), spread (e.g., Bartlett 1937), or the entire distribution
(e.g., Massey 1951) of the two analyzed samples. Two-sample
tests could be parametric, thus relying on specific assumptions
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on the underlying populations, or non-parametric, thus being
potentially distribution-free (Wilks 2011), although their
performance might be affected by the specific form of the
underlying population (Totaro et al. 2020).

Since the problem targeted by two-sample tests is quite
general, these statistical tools have been utilized for a large
variety of research and practical applications across most
disciplines. In hydrologic and climate studies involving
precipitation, two-sample tests have been used, for instance,
to separate storm types and inform flood prediction (Knighton
and Walter 2016); evaluate whether the distributions of daily
precipitation from different gridded products (e.g., from
interpolated ground observations, reanalysis, or climate
model outputs at different resolutions) could be considered
the same (e.g., Orskaug et al. 2011; Rauscher et al. 2016;
Thober and Samaniego 2014); estimate the shortest duration
that characterizes the internal climate variability of daily
precipitation (Schindler et al. 2015); investigate changes in
the distribution of daily and extreme precipitation associated
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with different climate regimes or synoptic circulation
patterns (e.g., Shen et al. 2016; Chu et al. 2010; Sykorovi
and Huth 2020); detect trends in extreme precipitation due
to climate change (Shao et al. 2015; Chu et al. 2010; Xu
et al. 2003; Park et al. 2011; Roth et al. 2012; Begueria et al.
2011); identify spatial heterogeneities in the distribution of
precipitation extremes (Chu et al. 2010); and quality control
rain gage records (Sugahara et al. 2015), among other goals.
Hydrologic studies have also applied two-sample tests to
investigate changes in the distributions of variables related
to discharge records (e.g., Angelina et al. 2015; Knoben et al.
2018).

A key piece of information that is needed to select the
right test and correctly interpret its results is the statistical
power, which is the probability of correctly rejecting the
null hypothesis H,, (e.g., the two samples belong to the same
population or have the same location) when it is false. The
power of two-sample tests has been investigated since the
1970s by theoretical statisticians (e.g., Feltovich 2003; Freidlin
and Gastwirth 2000; Baumgartner and Kolassa 2021; Lee
et al. 1975; O’Gorman 1995) and for applications in medical
research (e.g., Fagerland and Sandvik 2009; Fagerland 2012),
psychology (e.g., van den Brink and van den Brink 1989),
biology (e.g., Collings and Hamilton 1988), economics (e.g.,
Feltovich 2003), social sciences (e.g., Penfield 1994), and
computer sciences (e.g., Gretton et al. 2012), among other
disciplines. These efforts highlighted that the test performance
depends on different factors related to the sample size and the
shape (mainly, spread and skewness) of the population and null
distributions. A good synthesis of what many of these studies
suggested is provided by Fagerland and Sandvik (2009), who
concluded that “simple rules about which test should be used
in which situation cannot be accurately stated”. As a result,
to properly quantify the performance of two-sample tests for a
given application, it is desirable to carry out analyses that target
specific variables and analyze the properties of the data at hand.

In applications to hydrologic and climate variables, a few
studies have investigated the power of trend tests (e.g., Pros-
docimi et al. 2014; Vogel et al. 2013; Amorim and Villarini
2023), while, somewhat surprisingly, the power of two-sam-
ple tests has received less attention. This work addresses
such relatively straightforward and yet critical need by quan-
tifying the power of four popular two-sample tests applied to
three hydroclimatic variables, including non-zero precipita-
tion (NZP), annual precipitation maxima (APM), and annual
peak flows (APF). The analyzed tests are (1) the Student ¢
(Student 1908) and (2) Wilcoxon rank-sum (Kruskal 1957)
tests, which assess differences in location (hereafter, location
tests); and (3) the Kolmogorov—Smirnov (Massey 1951) and
(4) likelihood-ratio (Wilks 2011; LR) tests, which evaluate
differences in the entire distribution (hereafter, distribution
tests). The tests” power was quantified through Monte Carlo
simulations where realistic samples of NZP, APM, and APF
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series of equal size were generated as variates of paramet-
ric probability distributions that were shown to adequately
model these variables across the world. Since the distribu-
tion parameters exhibit correlation, a novel method based on
copulas, fitted on observed precipitation and discharge series
in the United States (U.S.), was designed to generate sets of
parameter values from realistic ranges that preserve such
correlation. After showing that the differences in spread and
skewness of the samples are monotonically related, the tests’
power computed through the Monte Carlo simulations was
first summarized through surfaces as a function of the dif-
ferences in mean and spread for different sample sizes. The
insights gained from the power surfaces were then used to
interpret the tests’ outcomes in three case studies in the U.S.
aimed to quantify differences in the observed seasonal distri-
butions of precipitation and discharge series and of precipi-
tation distributions before and after ~ 1980—1990 likely due
to climate change. Finally, the analyses of the Monte Carlo
simulations and the case studies were utilized to develop
recommendations for selecting two-sample tests and inter-
preting their results in hydrologic and climate applications
based on precipitation and discharge series.

2 Methods
2.1 Overview of two-sample statistical tests

We first provide some basic definitions of hypothesis test-
ing that are useful to properly understand the meaning and
utility of the test power. Hypothesis testing is the process
of statistical inference where limited data samples are ana-
lyzed to draw conclusions about the properties of the under-
lying population/s (Wilks 2011). This process is performed
through statistical tests, which are all based on the definition
of (1) the test statistic: a metric considered appropriate for
the analyzed inferential problem; (2) the null hypothesis, H:
a logical statement used as a reference for the test statistic;
(3) the alternative hypothesis, H,: another logical statement
alternative to H; and (4) the null distribution: the sampling
distribution for the test statistic if H is true. Once the test
statistic is computed from the available samples, its value
is used to calculate the p-value from the null distribution,
i.e., the probability that the test statistic assumes values that
are against H,. To draw a binary conclusion about the test
outcome, the significance level, a, is defined (e.g., a=0.01
or 0.05) and compared with the p-value: if p<a (p> ), then
there is (there is not) enough statistical evidence to reject H,.

The significance level also represents the Type I error of
the test, i.e., the probability of rejecting H,, when it is actu-
ally true. Another type of error is Type II, denoted with j,
which is the probability of not rejecting H,, when it is false;
its complement to 1, (1-f), is defined as test power, i.e., the
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probability of correctly rejecting H, when it is false. Type II
errors depend on the definition of H, and the value of a. To
better explain these concepts and statistics, Fig. 1 shows two
illustrative examples of tests with different power. In both
panels, the null distribution (labeled H,) of the test statistic
is shown in black, while the distributions of two alternative
hypotheses are plotted in red (H, ;) and blue (H,, ,). The gray
area, a, denotes the region of the null distribution where H, is
rejected, which is also the assumed Type I error, while the red
and blue areas, 3, and f3,, are the Type II errors under the two
alternative hypotheses. In both panels, f, <3, since the sam-
pling distribution of H, ; is farther from the corresponding
null distribution. The test in Fig. 1a is more powerful (i.e., the
values of f are smaller and of (1-§) are larger) than the test in
Fig. 1b because the spread of its null distribution is smaller.

Here, we assessed the power of four popular two-
sample tests applied to series of NZP, APM, and APF,
which are widely analyzed in hydroclimatic studies. Let
X, = {x1,19x1,2’ ,xl,nl} and x, = {xz,pxz,z, ,xz,nz}
be two independent samples with size n; and n,, respec-
tively. Broadly speaking, two-sample tests assess the null

(a)

v

g, B

rejection

Fig. 1 Illustration of Type I and II errors in hypothesis testing. The
panels show the probability distribution functions of the test statistic
under the null distribution (H,) and two alternative hypotheses in red
(Hy ) and blue (H, ,), along with the Type I (a) and II (8, and f,)
errors for (a) a more and (b) a less powerful test. The region of rejec-
tion of Hj is also shown

hypothesis H,, that x; and x, are random and independ-
ent realizations of the same population. There are several
parametric and non-parametric statistical tests that can be
applied to achieve this goal, some of which are designed
to assess differences in the entire distribution and others in
specific population statistics, with the most popular targeting
location and spread. Here, we considered (1) the parametric
Student ¢ (t-S) and (2) non-parametric Wilcoxon rank-sum
(W1i) location tests, and (3) the non-parametric Kolmogo-
rov—Smirnov (KS) and (4) parametric likelihood-ratio (LR)
distribution tests. The definition of the statistics and null
distributions of these tests are summarized in Appendix 1.
As well known, the t-S test is based on the assumption of
normality of the samples, which is hardly met with precipi-
tation and discharge series that are quite often positively
skewed. To investigate the impact of this assumption on the
test power, the t-S test was applied to the original and the
log-transformed samples, with the latter aimed at reducing
the skewness and meeting the normality condition. Results
for the t-S test were here shown for the case of equal vari-
ance, although it was verified that they did not substantially
change when the test was applied for unequal variances.
Finally, to apply the LR test, we used the parametric distri-
butions described in Section. 2.3.

2.2 Estimation of tests’ power with Monte Carlo
simulations

The power of the tests applied to NZP, APM, and APF
series was quantified through Monte Carlo simulations as
a function of metrics accounting for differences in location
and spread, and skewness of the samples. Preliminary tasks
involved identifying parametric probability distributions
that were shown in the literature to well model observed
NZP, APM, and APF series; fitting these distributions to
observed precipitation and discharge series; and using copu-
las to model the multivariate distributions of their param-
eters (see Section. 2.3 for details). For each series type, the
Monte Carlo experiments consisted of the following steps:

1. N, variates with sample size n were generated from the
corresponding probability distribution with parameters
randomly extracted from the associated copulas. This
implies that the power was evaluated for samples with
equal size, n;=n,=n.

2. The L-moments (Hosking 1990) of each variate, 1, with
r=1, 2, 3, were computed and, from these, the L-CV,
T=21,/A,, and L-skewness, 73 =45/1,. The statistics
A, (the sample mean), 7, and 75 were used to quantify
the location, spread, and skewness of the samples,
respectively.

3. For each possible pair of variates (total of
N, (N,,,—1/2), the p-values of the two-

ens
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sample tests were computed, along with the per-
cent difference between the A,’s and 7’s as
ALy = (A = A1)/ (A1 + 412)/2] X 100 and
At = (1) — 1) /(7 + 7,)/2] X 100, respectively, and the
simple difference between the 73’s, Aty = (73| — 73,). In
these metrics, 4, and 4, , (7; and 7,; 73 | and 73 ,) are the
values of 4, (7; 73) of the two samples.
4. After showing that Az; is monotonically related to Az
(see Section. 3.1), surfaces of test power for a given
a were constructed as a function of A4, vs. Az. This
involved (a) creating a regular grid of A4, and At val-
ues; (b) finding the number of variate pairs N, falling in
each grid element (i, j); and (c) computing the fraction
of test rejections as #(p < a)/N; I3 with the constraint that
N; ;> 20 to have a sufficiently high number of pairs. The
resulting value provides an estimate of the power (1-5)
in the (i, j) grid point.

The surfaces of test power were also built for the differ-
ences in the population L-moments with the goals of quan-
tifying the theoretical power of the tests and how this power
decreases with the sample size, as well as to partially address
the issues related to the post-experiment power computation
(e.g., Hoenig and Heisey 2001).

2.3 Datasets and parametric distributions used
for the Monte Carlo simulations

To generate realistic variates for the Monte Carlo simula-
tions, we identified suitable parametric probability distribu-
tions for observed NZP, APM, and APF series. We used
daily precipitation observations from 1499 gages of the
Global Historical Climatology Network daily (GHCNd;
Menne et al. 2012) in the contiguous U.S. with more than

50 years of data. For each gage, we extracted the NZP and
APM series of each season (Winter: DJF; Spring: MAM;
Summer: JJA; and Fall: SON). To identify the dominant
seasons of NZP and APM required in the first case study
(see Section. 3.2), the gages were grouped based on the nine
climatic regions defined by the National Centers for Envi-
ronmental Information (NCEI; Fig. 2a) based on soil mois-
ture anomalies (Karl and Koss 1984) and used in several
prior studies on precipitation regimes in the U.S. (Kunkel
et al. 2012, 2020). For each region, the two seasons with the
largest differences between the gage-averaged 4,, 7, and 7,
were found (Fig. 2a). We also used daily discharge records
from 672 gages with 20 to 111 years of data representing
near-natural streamflow conditions that are part of the U.S.
Geological Survey (USGS) Hydro-Climatic Data Network
2009 (HCDN2009; Slack and Landwehr 1992). The gages
monitor basins with drainage areas ranging from 2.2 to
25,791 km?, covering a wide range of climatic conditions
in the U.S. To select the dominant seasons needed for the
second case study (see Section. 3.3), for each stream gage,
we extracted the APF series of the four seasons and, from
these, we obtained the two dominant seasons with the largest
A’s (displayed in Fig. 2b).

Following empirical evidence presented in the litera-
ture, we adopted the Burr Type XII (BVXII) distribution
to model the NZP series (Papalexiou and Koutsoyiannis
2016; Mascaro et al. 2023; Papalexiou and Koutsoyiannis
2012), the generalized extreme value distribution (GEV)
for the APM series (Papalexiou and Koutsoyiannis 2013;
Blanchet et al. 2016; Mascaro 2020; Deidda et al. 2021),
and Log-Person Type 3 (LP3) to characterize the APF
records (Vogel et al. 1993; Griffis and Stedinger 2007;
England et al. 2019). The cumulative distribution func-
tions (CDFs) of these three-parameter distributions are

Latitude (°)

-120 -110 -100 -90

Longitude (°)
e Winter & Summer e 4 Winter & Spring

Fig.2 (a) Map of daily rain gages (circles) from the Global Historical
Climatology Network daily (GHCNA) in the contiguous United States
(U.S.) color-coded based on the two dominant seasons in the NCEI
regions defined as NW: Northwest (106 gages); WNC: West North
Central (250 gages); ENC: East North Central (124 gages); C: Central
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e 4o Winter & Fall

-120 -110 -100 -90 -80 -70
Longitude (°)
Spring & Summer 4 Summer &Fall  a Spring & Fall

(188 gages); NE: Northeast (154 gages); SE: Southeast (181 gages);
S: South (272 gages); SW: Southwest (132 gages); and W: West (92
gages). (b) Stream gages (triangles) of the U.S. Geological Survey
(USGS) Hydro-Climatic Data Network 2009 (HCDN2009) with the
indication of the two dominant seasons
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provided in Appendix 2. As illustrated in the L-moment
ratio diagrams of Fig. 3, the empirical L-moment ratios
(7 and 75) of the observed NZP series of the four sea-
sons are largely included within the theoretical surface
of the BVXII, while those (73 and L-kurtosis, 7, =1,/4,,
with 4, being the fourth L-moment) of the APM and APF
series are scattered around the theoretical lines of the
GEV and LP3, respectively. This suggests that the selected
distributions are suitable for modeling the observed pre-
cipitation and discharge series. For each seasonal series,
we estimated the three parameters of the corresponding
parametric model (i.e., 1499 X 4 =5996 sets of BVXII
and GEV parameters, and 672 X 4 =2688 sets of LP3
parameters) and fit copulas to represent their multivari-
ate distribution as described in detail in Appendix 2 and
Figs. S1-S3 of the Supplementary Information. The cop-
ulas allowed sampling sets of parameters for each dis-
tribution whose values are within plausible ranges and
preserve their dependence structure; this, in turn, led to
realistic samples for the analyzed hydrologic series.

3 Results

3.1 Power of two-sample tests applied
to precipitation and discharge series

We first present in Fig. 4 the relationships among A4, Ar,
and Ar; for all types of variables for a given samples size,
n, and the population (results are similar for other n’s). Due
to the positively skewed nature of the samples, for a fixed
AJ,, higher values of Ar; are associated with larger Az and
vice versa; in other words, if a sample has larger (smaller)

Population
(b) BrXll

Sample
(@) NZP-n=2810

100

At (%)
(a0 )

-100
100

50

00
-100-50 0 50 100
A2, (%)

Fig.4 Relationships among AA,;, Az, and Ar; shown as surfaces of
Aty as a function of AA; and Az for (a) pairs of NZP samples with
size n=_810 and (b) the corresponding BVXII population; (c¢) pairs of
APM samples with size n=>50 and (d) the corresponding GEV popu-
lation; and (e) pairs of APF samples with n=50. For the latter case,
the population is not shown because Al;, Az, and Az; for the LP3
distribution are referred to the log-transformed samples

0.6

0.6

S &
(b) APM
-0.2 r
0.5 0.6 0.7 0 0.2 0.4 0.6 -0.5 0 0.5
T3 73

Fig.3 The L-moment ratio diagrams (z vs. 73 and 73 vs. 7,) for (a)
observed NZP records in the four seasons and theoretical surface of
the Burr Type XII (BVXII) distribution, (b) observed APM series in
the four seasons and theoretical relation for the generalized extreme
value (GEV) distribution, and (c) the logarithm of the observed APF

series in the four seasons and theoretical relations for the Log-Person
Type 3 (LP3) distribution. In each panel, the mean of the sampling
L-moment ratios for each of the four seasons are plotted with different
markers to emphasize the suitability of the chosen distributions
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skewness than the other one, it has also higher (lower)
spread. From the practical standpoint, this implies that the
power surfaces could be visualized as a function of either At
or At;. Here, we used At in the figures but refer also to the
skewness for their interpretation. The surfaces of the power
(1-p) of the analyzed tests for the significance level a=0.05
as a function of A4, and Az are shown in Figs. 5, 6, and 7
for the NZP, APM, and APF series, respectively. Different
n’s were considered ranging from 270 to 1350 rainy days
(roughly, 10 to 50 years of seasonal records assuming 30
rainy days in a season) for the NZP series, and from 30 to
100 years for the annual maxima series, APM and APF. The
Monte Carlo simulations were based on N, =5000 variates.

ens
Some general considerations can be made:

(1) As expected, the power diminishes as n decreases.

(2) When the samples have very similar skewness and,
consequently, close spread (IAzl and |Az;l close to 0),
the power diminishes as IA4,| decreases. As differences
in skewness and spread become larger (smaller) than
0, the range of A4, for which the power decreases is
shifted towards positive (negative) values.

(3) The power of t-S applied to the original sample is not
significantly affected by Az (or Az;), while the power
surfaces of all other tests exhibit an ellipsoidal shape

t-S t-S-Log

with the major axis extending from southwest to north-
east in the A4;-Az plane. From the practical standpoint,
this means that, if sample 1 has a higher location than
sample 2, the test power is relatively smaller if sample
1 has also larger spread (and skewness), whereas the
power is relatively larger if sample 1 has lower spread
(and skewness) than sample 2 (and vice versa, since
the order of the samples is irrelevant). To explain the
reasons for this outcome, examples of GEV probability
density functions where Az and At; have the same sign
which is either discordant or concordant with the sign
of the A4, (assumed constant) are presented in Fig. S4.
When the signs are concordant, the modes of the two
populations are similar and most of their density is con-
centrated within similar ranges; as a result, samples
drawn from these populations tend to be similar leading
to a lower test power. In contrast, when the sign of Az
and Az; is discordant with that of A4, the density of
population 2 is distributed around a much larger range
of values than the density of population 1; this likely
results in samples with different statistics and, thus, in
higher test power.

(4) Applying t-S with the log-transformed sample (t-S—
Log) leads to power surfaces, plotted as a function of
A, and A7z computed for the original samples, which

LR

n=270

At (%)

n=810

U

30
20
10
0
-10
-20
-30

@ n=1350

-30

-100-50 0 50 100 -100-50 O

0005 025 0.50

Fig.5 Surfaces of test power (1-f) for the significance level a=0.05
as a function of A4, and Az of NZP series for the t-Student, Wilcoxon
(Wi), Kolmogorov—Smirnov (KS), and likelihood-ratio (LR) tests.
The t-Student test was applied to the original (t-S) and log-trans-
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formed (t-S-Log) samples. The rows refer to different sample sizes,
n. The surfaces were built through the Monte Carlo experiments
described in Section. 2.2 with N, ,=5,000 variates
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t-S t-S-Log LR

100

50

n=100

50 100 -100-50 O

-100

-100-50 0 50 100 -100-50 O 50 100 -100-50 O 50 100 -100-50 O

A2, (%)

50 100

1-p0

0005 0.25 0.50 075 0951

P
¢
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Fig.6 Same as in Fig. 5, but for the APM series

0
-200 -100 O 100 200 -200 -100 O 100 200 -200 -100 O 100 200 -200 -100 O 100 200 -200 -100 O 100 200
A%, (%)
] (-5 ()
0005 0.25 0.50 075 0951

Fig.7 Same as in Fig. 5, but for the APF series
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are remarkably similar to those obtained for the non-
parametric Wi test.

(5) The location tests are more powerful than the distri-
bution tests when A7l is relatively low (especially for
APM and APF series), while the opposite is true as |Azl
increases (the considerations made for |Azl hold also for
|Az;l). LR is in most cases the most powerful test, as
also depicted in Figs. S5-S7 that present the surfaces of
the difference between the power of each test and LR.
However, this result is in part biased because LR was
applied with the same parametric distributions used to
generate the variates in the Monte Carlo simulations,
i.e., the test is more “informed” about the underly-
ing populations. However, the case studies based on
observed data described in Sections 3.2-3.4 suggest
that the choice of the parametric distribution appears
appropriate because the outcomes of the LR test are
well in line with the test power and supported by physi-
cal evidence.

; (@) At=0%-n=810 (b) Ar=10%-n=810

(c) A%, =0%-n=810

To quantitively complement the visual inspection of
Figs. 5-7, Fig. 8 displays the relationships between test power
and one of A4, Az, and n for fixed values of the other two
metrics. The chosen fixed value of n is 30 for the APM and
APF series and 810 (~ 30 years) for the NZP records. If the
samples have the same spread (Az=0%, panels in the first
column on the left), the test power varies with changes in loca-
tion, A4,, according to a reversed bell-shaped function with
a minimum value close to « (here, 0.05) at AA;=0%. Two-
sample tests applied to NZP series reach a high power (>0.75)
for IAA1>25%, while this threshold for IA4,| increases to 75%
and 100% for the annual maxima of precipitation, APM, and
discharge, APF, respectively. For these two series of extremes,
location tests are more powerful than distribution tests when
there is no difference in spread (Az=0%). On the other hand,
if the spreads of the two samples are different (Az>0%;
panels in the second column), the impacts on the test power
depend on the series. For the NZP records and Az=10%, the
reversed bell-shaped functions of all tests except for t-S shift

(d) A, =20%-n=810 (e) A% =20%- Ar=10%

0.75
é 05
Z 025
o INzP NZP NZP NZP NZP
-50 -25 0 25 50 -50 -25 0 25 50 -30 -20 -10 0 10 20 30 -30 -20 -10 O 10 20 30 250 500 1000 2000
A, (%) A, (%) At (%) At (%) .
(AT=0%-n=30  (9Ar=10%-n=30 ()AL =0%-n=30  ()A% =20%-n=30 () Ai =20%-Ar=10%
tS
APM APM
0.75
— t-S-Log
& 05
D Wi
~0.25
o [APm APM APM KS
-100 -50 0 50 100 -100 -50 0 50 100 -100 -50 0 50 100 -100 -50 0 50 100 O 50 100 150 200 |——
AL, %) A%, (%) At (%) At (%) ") LR
(AT=0%-n=30  ()Ar=20%-7=30  (M)AL =0%-n=30 (n)AL =50%-n=30 (o)Al =20%- Ar=50%

1 =

0.75 \

0.5 /

1-pe

—

0.25
AP APF APF APF APF
-200 -100 0 100 200 -200-100 0 100 200 -100 -50 0 50 100 -100 -50 0 50 100 O 50 100 150 200

AL, (%) A%, (%)

Fig. 8 Relationships between the power (1 — f) of the analyzed tests
and (1) A4, for fixed At and n (panels in the first two columns on
the left), (2) Az for fixed A4, and n (panels in the third and fourth
columns), and (3) n for fixed A4, and Az (panels in the fifth column).
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At (%)

At (%) n(-)

Panels (a)-(e) show results for the NZP series, (f)-(j) for the APM
series, and (k)-(o) for the APF records. Note that different intervals
are used in the x-axes to better visualize the differences across the
tests
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towards positive A1, (the region with the same sign as Ar),
and their minimum power values increase for the distribution
tests, which are more powerful than the location tests. For the
APM (APF) series, differences in spread of 10% (20%) do
not substantially modify the outcomes reported for Az=0%.

The relations between test power and Az for samples with
the same location (A4, =0%; panels in the third column) are
symmetric. In these conditions, the tests assessing differ-
ences in the distribution (notably, LR) have the best ability to
correctly reject H,,. The t-S test applied to the original sam-
ple does not have any power (i.e., (1 - §) = @), while t-S-Log
and Wi exhibit a power that is relatively high for the NZP
series, moderate for the APF records, and extremely low
for the APM series. The presence of differences in location
(A4, >0%; panels in the fourth column) introduces asym-
metries and shifts in the relations between test power and
Az in ways that vary with the type of series and test. When
compared to the cases for A4, =0%, the distribution tests
become more powerful for most values of Az, while the
location tests gain power in the region where Az and Az,
have opposite sign (here, Az<0) and lose it where their sign
is concordant. Finally, the effect of the sample size, , on the
power for fixed A4, >0 and Az> 0 is presented in the panels
of the fifth column. For the cases shown in Fig. 8, the power
of the distribution tests (particularly, LR) increases faster
than the location tests, although it remains relatively low for
the APM series even for n =200 years. Interestingly, for this
variable, the t-S test applied to the original sample performs
similarly to K-S. It is important to emphasize again that the
considerations made for Az in the interpretation of Fig. 8 are
also qualitatively valid for Az; given the monotonic relation-
ship between these two metrics (Fig. 4).

To complete the assessment of the tests’ power, the
power surfaces were also computed as a function of A4,
and Az obtained from the population L-moments, i.e., the
L-moments of the BVXII, GEV, and LP3 distributions.
The differences between these power surfaces and those
derived as a function of the sample A4, and At are shown
in Figs. S8-S10. Note that, since the £P3 distribution is fit-
ted to the log-transformed samples, the metrics A4, and At
in Fig. S7 are referred to the log-transformed variables. The
differences in power are both positive and negative and do
not exceed 10.25! (10.11) for NZP and APM (APF). The larg-
est differences are found in regions of relatively low A4,
especially where A, and Az have discordant signs. As
expected, the differences in power decrease as the sample
size increases.

3.2 Case study 1: Two-sample tests applied
to observed seasonal precipitation series

The practical importance of the insights gained through
the Monte Carlo experiments is first demonstrated by

investigating the null hypothesis H,, that seasonal observa-
tions of NZP and APM series belong to the same popula-
tion. The rain gages and corresponding dominant seasons
are shown in Fig. 2. For each gage and series type, the
values of A4, and Az between the two seasonal samples
were calculated, along with the p-values of all tests. For
each test, the field significance was also accounted for by
applying the false discovery ratio test (Wilks 2006, 2016)
with a global significance level ayp, =0.10 as in Farris
et al. (2021) to account for the spatial dependence among
the gage records. Results for the NZP and APM records are
presented in Figs. 9 and 10, respectively. For each of the
climate zone shown in Fig. 2a, the power surfaces of the
Wi (Figs. 9a and 10a) and LR (Figs. 9b and 10b) tests are
displayed along with the empirical (A4,, A7) points, plotted
in black (green) if H, was rejected (not rejected). For sim-
plicity, the power surface was built assuming the same size
for both seasonal samples, which was set equal to the mean
record length across all gages of each region. This resulted
in n ranging from 810 to 1800 for the NZP series, depending
on record length and number of rainy days, and in a constant
n =150 years for the APM series.

First, we note that, for both series types in the NW, WNC,
and ENC regions, H,, was rejected at practically all gages;
this outcome is supported by large statistical evidence
because the empirical (A4, A7) estimates lie in an area of
high power for both tests (i.e., the probability of correctly
rejecting H,, is high). In the other climate regions, H, is
rejected only at some of the gages but the outcomes differ
depending on the type of series and test. For example, in
NE, the NZP series exhibit two clusters of gages where H,
is rejected (not rejected) in a region of high (low) power for
both the location and distribution tests (Fig. 9). Note that, in
this region, the use of t-S applied to the original series would
have failed to reject H, at most gages (not shown); however,
in this case, the use of t-S applied in this way should be
avoided because almost all empirical (A4,, A7) points are
in a region of very low power for this test. The two clusters
do not instead emerge when analyzing the APM records,
where H, cannot be rejected at practically all gages by both
tests (Fig. 10). This outcome should be interpreted consid-
ering that most empirical (A4,, Ar) estimates lie along the
southwest-northeast axis where the test power is lower, thus
revealing the limited ability of both tests to investigate H,,
for samples of extreme P in the NE region.

Results for the SE region are instead useful to demon-
strate two important issues: (1) depending on the location
of the (A4,, Ar) estimates, tests with different power can
lead to diverse outcomes; and (2) when a test is applied at
multiple sites, the inspection of the geographical patterns of
its outcomes provides a straightforward, yet critical, physical
support of the statistical analyses, provided that the spatial
correlation among the station records has been taken into
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Fig.9 Results of the (a) Wilcoxon (Wi) and (b) likelihood-ratio (LR) tests applied to the NZP series of the dominant seasons in the nine climate
regions, plotted in the (A4,, A7) space along with the power surface of each test
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Fig. 10 Same as in Fig. 9, but for the APM series

location test (results are similar for t-S—-Log) and for the K-S
and LR distribution tests. When applied to the NZP seasonal
samples (Fig. 11a), Wi indicates that H, cannot be rejected

account (here, via the significance level of the FDR test). To
prove these points, Fig. 11 displays the maps of the power
and rejections of H,, at the gages of the SE region for the Wi
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Fig. 11 Maps of power and outcomes of the Wilcoxon (Wi), Kolmog-
orov—Smirnov (K-S), and likelihood-ratio (LR) tests applied to the
(a) NZP and (b) APM records of the two dominant seasons observed

at most gages apart from some random locations. If these
conclusions are accepted without taking into account the low
power of this test, one could end up making wrong physical
interpretations, especially when attempting to explain the
patterns of the H,, rejections. On the other hand, the use of
distribution tests with higher power suggests that H, can
instead be rejected at a much larger number of sites; such
number of rejections is higher for LR which is also more
powerful than K-S. The spatial variability of the H,, rejec-
tions is consistent across the distribution tests and exhibit a
clear geographical pattern likely controlled by the distance
from the coast, thus providing physical support to the out-
comes of the statistical analyses. When the two-sample tests
are instead applied to the APM series (Fig. 11b), all tests
have similar power and lead to comparable spatial patterns
of the H, rejections which are quite close to those found for
the NZP records.

3.3 Case study 2: Two-sample tests applied
to observed seasonal discharge series

As a second case study, we tested H;, for the two dominant
seasons of the APF series observed at the stream gages of
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at the rain gages in the SE climate region. The number of H, rejec-
tions and mean test power (1 — f§) are reported in each panel. The total
number of gages is 181

Fig. 2b. Results are summarized in Fig. 12 which displays
the empirical (A4,, A7) estimates, color-coded based on
the rejection of H,,, on top of the power surfaces of the Wi
and LR tests built for the average sample size, n =50 years
(note that n < 50 for 35% of the gages). When applied to the
observed daily peak flow records, no test is clearly the most
powerful across all cases. There is not enough evidence to
reject H,, at a percentage of gages that ranges from 57 to 62%
across all tests and dominant seasons. However, since almost
all these cases occur in areas of low power (IA4,/<50% and
IA7I<30%), it should be also noted that the tests adopted
here have restricted capacity to investigate H,,. The rejections
of H, occur instead in regions of higher test power where
AA, is relatively large and its sign is discordant with that of
Az (see, e.g., cases in the fourth quadrant for Winter & Fall
and Spring & Summer).

To visualize the locations of the H, rejections,
Fig. 13 presents the maps of power and outcomes of
the two tests for Spring & Summer. For these seasons,
results are very similar across location and distribution
tests as shown by the close number of H,, rejections in
each climate zone. The gages where H|, is rejected are
clustered in space, which gives physical evidence that
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Fig. 12 Results of the (a) Wilcoxon (t-S) and (b) likelihood-ratio
(LR) tests applied to the APF series of the dominant seasons recorded
at the stream gages shown in Fig. 2b, plotted in the (A4,;, A7) space
along with the power surface of each test

supports the statistical outcomes since differences in the
seasonal peak flow regimes at close gages are expected
to be determined by local climatic and physiographic

features. The findings for Spring & Fall, reported in
Fig. 14, permit emphasizing that, when t-S is applied to
the original skewed sample, its power might be very low
(here, mean of 0.41) if [A4,l is small even if |A7l is not
negligible; as a result, t-S fails to reject H in a cluster
of stream gages located in the SE and S regions. If t-S is
instead applied to the log-transformed sample, its power
is much higher (mean of 0.69) because the test is now
sensitive to differences in spread, and comparable to that
of the distribution tests (mean of 0.73 for both K-S and
LR). For these two more powerful tests, H,, is rejected at
essentially the same sites.

3.4 Case study 3: Two-sample tests applied
to assess climate change on observed
precipitation series

The third case study was inspired by the experiment pro-
posed by Wilks (2011; Example 5.6) where the LR test was
applied to evaluate whether the first and second half of a
precipitation record are drawn from different populations as
a possible consequence of climate change. Here, this experi-
ment was performed separately for the NZP and APM series
of the rain gages of Fig. 2. The resulting series were split in
the middle of their corresponding records, which largely falls
between 1980 and 1990, leading to two samples of about
30 years. Results for the LR test are displayed in Fig. 15 (the
outcomes are very similar for the other three tests). For the
NZP series, H, is rejected at about two-thirds of the sites
(Fig. 15a), a result supported by the corresponding empirical
(AZ,, A7) estimates being located in the region of high test
power in the second and fourth quadrants. Despite the high
test power, when such rejections are plotted spatially, no
organized pattern emerges (Fig. 15b), thus complicating the
physical interpretation of the test outcomes. While further
investigations that are out of the scope of this paper would
be required to better explain this finding via, e.g., trend or
change-point tests, here we can emphasize that failure to
reject H) at the sites where the power is low does not neces-
sarily imply that the distribution of NZP has not changed
over time, but it could also be a reflection of the relatively
small difference between the two samples that the LR test is
not able to detect because of its low power. Focusing on the
APM series, H, cannot be rejected at practically all gages
(Figs. 15¢,d). Again, although there is no significant statisti-
cal evidence to assume that the distribution of extreme pre-
cipitation has varied in time, the empirical (A4,, A7) points
are in a region of very low test power and very high type-II
error f3, i.e., the probability of not rejecting H, when it is
actually false is large. Therefore, it might still be possible
that the differences between the samples are too small to be
detected by the statistical tests considered here, especially
given the small sample size (n=30).
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Fig. 13 Maps of power and out-
comes of the (a) Wilcoxon (Wi;
mean power across all gages of
0.57) and (b) likelihood-ratio
(LR; mean power of 0.61) tests
applied to the APF records in
Spring & Summer observed at
the stream gages of Fig. 2b. The
rejection of H, after accounting
for field significance is indicated
with a triangle; their number is
also reported for each climate
region

Fig. 14 Same as in Fig. 13 but
for the Spring & Fall seasons.
The tests shown are the t-Stu-
dent applied to the (a) original
(t-S; mean power of 0.41) and
(b) log-transformed (t-S — Log;
mean power of 0.69) samples,
(¢) Kolmogorov—Smirnov (K-S;
mean power of 0.73), and (d)
likelihood-ratio (LR; mean
power of 0.73)
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4 Summary and discussion

In this work, the power of four popular two-sample tests
assessing differences in location and distribution was evalu-
ated, to our knowledge for the first time, for daily (NZP)
and extreme (APM) precipitation series, and for extreme
discharge records (APF). For this aim, Monte Carlo simu-
lations were performed with pairs of synthetic samples of
these three variables generated through a novel procedure
based on suitable parametric distributions and copulas that
leads to realistic variates (see Appendix 2). The power was
evaluated as a function of the relative changes in location
(A4,), spread (A7), and skewness (At;) of samples with the
same size, which was varied within ranges of commonly
available records. The most important results are as follows.

(1) Due to the positively skewed nature of the samples, dif-
ferences in skewness between the samples lead to dif-
ferences in spread according to a monotonical relation-
ship. Therefore, the test power is qualitatively related
to Azy and Az in a similar way.

(2) While based on the assumption of normality and homo-
scedasticity, the t-S applied to highly skewed precipita-
tion and discharge samples is rather robust since its power
is not affected by differences in spread and skewness
(Figs. 5 and 6), except for a slight influence found in the
APF series (Fig. 7). This is consistent with earlier work,
although it was reported that the robustness of t-S might
decrease in the case of samples with different sizes which
was not analyzed here (Cressie and Whitford 1986; Rasch
et al. 2007; Fagerland 2012). Our findings also revealed
that the t-S test has a very low ability to correctly detect
differences between samples that have similar locations
but diverse spreads (and skewness), as shown in the
example involving the APF series of Fig. 13.
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(3) If the parametric t-S test is applied to the log-transformed
samples (t-S—Log), which have reduced skewness, the
relationship between its power and A1, and A7 of the
original samples is very similar to that of the non-para-
metric Wi test (see Figs. 5-7). Therefore, any of these two
well-known tests could be chosen to assess differences
in location of precipitation and discharge series, as also
proved by the case studies.

(4) For a given value of the difference in location A4, all tests
(except for the original t-S) have lower power if the differ-
ence in spread Az (and skewness Azs;) has the same sign as
AA; and higher power if the sign is opposite. This is easily
visualized by the southwest-northeast orientation of the
major axis of the ellipsoids of the power surfaces. Interest-
ingly, the (A4;, A7) points of several observed APM sea-
sonal series lie in a region of lower power along such axis
(see results for the NE, SE, C, and S regions in Fig. 10).
The opposite is true for a number of observed APF sea-
sonal series whose empirical values of A4, and At have
discordant signs (see Fig. 12).

(5) Location tests perform slightly better than distribution
tests if the samples have a very close spread and skew-
ness, while distribution tests overperform location tests
when the difference in spread and skewness is moderate
to large.

(7) The Monte Carlo experiments indicate that, overall,
LR is the most powerful test, although this test is more
“informed” about the shape of the populations whose
parametric form is used for its application. However, the
case studies investigating differences in seasonal observed
precipitation and discharge samples support this conclu-
sion due to the good correspondence between low p-values
(here shown through H, rejections) and high test power, as
well as to the physical support provided by the presence of
geographical patterns of H; rejections, after accounting for
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field significance and the presence of spatial correlations
among the gage records.

(8) Asexpected, the power increases with the sample size. It
becomes high (>0.75) in most conditions for relatively
short samples of the NZP series (e.g., n=810, which
corresponds to about 30 years of seasonal samples and
8 years of annual samples). It is instead low for many
combinations of A4, and Az for the APM and APF series
even up to n=>50 or 100 years (see examples of Fig. 8).

(9) The case studies revealed that significant differences
between the samples (i.e., H) is rejected) are detected with
high statistical confidence (i.e., the power or the probabil-
ity of correctly rejecting H,, is high) more frequently when
considering observed NZP samples, and less frequently
with APM and APF samples. For these two variables
characterizing extreme events, the tests’ power is often
very low in part because of the small sample size, thus
suggesting that these statistical tools have limited ability
to investigate H,,. It was also found that the visual inspec-
tion of the geographical patterns of the H, rejections could
provide valuable information to physically support the
outcomes of the statistical analyses.

5 Conclusions

This study provides one of the first quantifications of the
power of two-sample tests applied to precipitation and dis-
charge series. Analyses based on Monte Carlo simulations and
observed data allowed deriving a set of recommendations that
are useful for the selection of two-sample tests and the inter-
pretation of their results in a wide range of hydrologic and
climate studies. In particular, it is expected that this work will
support the increasing number of studies evaluating changes in
precipitation and discharge regimes due to global warming and
land cover modifications. The proposed methodology is quite
general and could be used to quantify the power of two-sample
tests for other applications involving different hydroclimatic
variables. Future work should investigate the effects on the test
power of samples with different sizes and serial correlation in
the analyzed variables, as well as the effect of the significance
level, a. We also highlight that the methodology for the gen-
eration of realistic precipitation and discharge variates based
on copulas could also be useful for other statistical analyses
that require multiple samples of these variables.

Appendix 1: Summary of two-sample
statistical tests

In the following, we provide a summary of null hypothesis
H,, test statistics, and null distribution used to derive the
p-value of the two-sample statistical tests used in the paper.
Let x; = {x, 1, X 2,..., %, } and X, = {x, 1,35, ..., Xy, }
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be two independent samples with size n; and n,, respec-
tively. The Student #-test (t-S) evaluates the null hypothesis
H, of equal mean between the two samples. The t-S test
statistic is z = %, where X, and X, are the sample
]
means, and s% and sg are the sample variances. The null
distribution for z is the ¢ distribution with degrees of free-
domyv = min(nl, n2) — 1 for small sample sizes while, for
moderately large sizes (as the case of our records), the null
distribution of z is well modeled by the standard Gaussian.
The t-S test is two-sided. The Wilcoxon (Wi) test is a non-
parametric test whose H,, is that both samples have equal
median. The statisticisU = R — n;‘(nl + 1), where R, is the
sum of the ranks of the first sample and #, is its size, while
the null distribution of U is Gaussian for sample sizes larger
than 10. The Kolmogorov—Smirnov (KS) test is also a non-
parametric test that investigates the null hypothesis H,, that
the samples come from the same distribution; its statistic is
D, = Inle|F1 (x) = Fy(x)|, where F(x) and F,(x) are the
empirical cumulative distribution functions of the first and
second samples, respectively; the p value is computed
through the Kolmogorov distribution or other approxima-
tions. The likelihood ratio (LR) test has the same H, as the
Kolmogorov—Smirnov test and requires assuming paramet-
ric forms for the distribution of samples 1 and 2 and the two
samples combined. Let G, ()c;@\1 ) G, <x;@2 ) and G (x;b\())
be such distributions with parameters ?)1, @2, and @0 esti-
mated on the corresponding samples x;, x,, and
xo={x.x,}. The test statistic is
AN =2[L, (Zal;xl) +L2<§2;xz> - L0<§0;x0>] , where
L, (é\k ;X ) 1s the log-likelihood of the corresponding distri-
bution G, (x;ék ) with k=0, 1, and 2. The null distribution

is the y° with degrees of freedom v =m, +m, — m;, where
my, is the number of parameters of the k-th distribution.

Appendix 2: Parametric probability
distributions and multivariate distributions
of their parameters

The cumulative distribution function (CDF) of the Burr Type
XII (BVXII), generalized extreme value (GEV) and Pearson
Type 3 (P3) distributions are:

1

71 i
FBVXII(xQ}’p]/z,Q) =1- [1 +y2(g> ] 172 )
_1
eXp{— 1+ k=2 k} k#0
Fgey(xsk, p, 0) = < p >
exP{_eXP(‘?)} k=0
2
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G(a, %f)/r(a) y >0

Fpoi(a, p,8) =
(6, B, &) G(a,%)/l—‘(a) <0

3

The BVXII distribution has two shape parameters,
71> 0 and y,> 0, and one scale parameter, > 0, and is
defined for x> 0. The GEV distribution has a shape param-
eter, k€ (-0, + ), a location parameter, u € (-0, + ),
and a scale parameter, ¢ > 0; it is defined in the sets

—0 <x< oo if k=0, u—%§x<oo if k>0, and
—0<x< u— % if k< 0. The P3 distribution has a shape
parameter, a > 0, a scale parameter, f € (-0, + 00), and
a location parameter, £ € (-0c0, + o0); it is defined in the
sets £ < x < oo if the skewness coefficient y > 0, and
—oo0 < x < & if y<0. In equation (A3), G(e, ) and ['(e) are
the incomplete and complete gamma functions, respec-
tively. The Log-Pearson Type 3 (LP3) is the P3 distribu-
tion where x is the log-transformed value of the original
sample (here, the APF series).

Parameters of the BVXII were estimated using the
numerical procedure proposed by Zaghloul et al. (2020)
based on the method of L-moments. Parameters of the
GEV and LP3 were also estimated with the method of
L-moments following Hosking and Wallis (1997). For the
GEV, a bias correction of the shape parameter was applied
to account for the short sample size using the empirical
relations proposed by Papalexiou and Koutsoyiannis
(2013) and recently applied by Ansh Srivastava and
Mascaro (2023). For each distribution, copulas were used
to model the multivariate distribution of the parameters.
For the BVXII distribution, we used a three-dimensional
Gaussian copula with marginal distributions given by
the Generalized Exponential Type 4 (G&E4; Papalexiou
2022) for y,, the Generalized Gamma (GG) for y,, and
the empirical CDF for g. For the GEV distribution, we
used a bidimensional Gaussian copula for ¢ and p with
their empirical CDFs adopted as marginal distributions.
No significant relationship was found between k and
the other two parameters; therefore, after generating a
correlated pair of ¢ and p, the synthetic value of k was
randomly drawn from the empirical CDF of the observed
estimates. Finally, for the £P3 distribution, a three-
dimensional Gaussian copula was used separately for the
cases of positive and negative skewness coefficients with
marginal distributions given by the BVXII for @ and g,
and the empirical CDF for &. For all three distributions,
the selected copulas captured quite well the dependence
structure among the parameters, as shown through the
scatterplots, histograms, and values of the Spearman rank
correlation coefficients reported in Figs. S1. S2, and S3.
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