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Abstract
Two-sample tests are widely used in hydrologic and climate studies to investigate whether two samples of a variable of interest 
could be considered drawn from different populations. Despite this, the information on the power (i.e., the probability of 
correctly rejecting the null hypothesis) of these tests applied to hydroclimatic variables is limited. Here, this need is addressed 
considering four popular two-sample tests applied to daily and extreme precipitation, and annual peak flow series. The chosen 
tests assess differences in location (t-Student and Wilcoxon) and distribution (Kolmogorov–Smirnov and likelihood-ratio). The 
power was quantified through Monte Carlo simulations relying on pairs of realistic samples of the three variables with equal 
size, generated with a procedure based on suitable parametric distributions and copulas. After showing that differences in sample 
skewness are monotonically related to differences in spread, power surfaces were built as a function of the relative changes 
in location and spread of the samples and utilized to interpret three case studies comparing samples of observed precipitation 
and discharge series in the U.S. It was found that (1) the t-Student applied to the log-transformed samples has the same power 
as the Wilcoxon test; (2) location (distribution) tests perform better than distribution (location) tests for small (moderate-to-
large) differences in spread and skewness; (3) the power is relatively lower (higher) if the differences in location and spread or 
skewness have concordant (discordant) sign; and (4) the power increases with the sample size but could be quite low for tests 
applied to extreme precipitation and discharge records that are commonly short. This work provides useful recommendations 
for selecting and interpreting two-sample tests in a broad range of hydroclimatic applications.
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1  Introduction

Two-sample tests are used to investigate whether there is 
sufficient statistical evidence to claim that two samples of 
a variable could be considered random and independent 
realizations of the same population or if they might have been 
drawn from different populations. To address this general 
question, several tests have been designed that quantify 
differences in either location (e.g., Student 1908; Kruskal 
1957), spread (e.g., Bartlett 1937), or the entire distribution 
(e.g., Massey 1951) of the two analyzed samples. Two-sample 
tests could be parametric, thus relying on specific assumptions 

on the underlying populations, or non-parametric, thus being 
potentially distribution-free (Wilks 2011), although their 
performance might be affected by the specific form of the 
underlying population (Totaro et al. 2020).

Since the problem targeted by two-sample tests is quite 
general, these statistical tools have been utilized for a large 
variety of research and practical applications across most 
disciplines. In hydrologic and climate studies involving 
precipitation, two-sample tests have been used, for instance, 
to separate storm types and inform flood prediction (Knighton 
and Walter 2016); evaluate whether the distributions of daily 
precipitation from different gridded products (e.g., from 
interpolated ground observations, reanalysis, or climate 
model outputs at different resolutions) could be considered 
the same (e.g., Orskaug et al. 2011; Rauscher et al. 2016; 
Thober and Samaniego 2014); estimate the shortest duration 
that characterizes the internal climate variability of daily 
precipitation (Schindler et al. 2015); investigate changes in 
the distribution of daily and extreme precipitation associated 
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with different climate regimes or synoptic circulation 
patterns (e.g., Shen et al. 2016; Chu et al. 2010; Sýkorová 
and Huth 2020); detect trends in extreme precipitation due 
to climate change (Shao et al. 2015; Chu et al. 2010; Xu 
et al. 2003; Park et al. 2011; Roth et al. 2012; Beguería et al. 
2011); identify spatial heterogeneities in the distribution of 
precipitation extremes (Chu et al. 2010); and quality control 
rain gage records (Sugahara et al. 2015), among other goals. 
Hydrologic studies have also applied two-sample tests to 
investigate changes in the distributions of variables related 
to discharge records (e.g., Angelina et al. 2015; Knoben et al. 
2018).

A key piece of information that is needed to select the 
right test and correctly interpret its results is the statistical 
power, which is the probability of correctly rejecting the 
null hypothesis H0 (e.g., the two samples belong to the same 
population or have the same location) when it is false. The 
power of two-sample tests has been investigated since the 
1970s by theoretical statisticians (e.g., Feltovich 2003; Freidlin 
and Gastwirth 2000; Baumgartner and Kolassa 2021; Lee 
et al. 1975; O’Gorman 1995) and for applications in medical 
research (e.g., Fagerland and Sandvik 2009; Fagerland 2012), 
psychology (e.g., van den Brink and van den Brink 1989), 
biology (e.g., Collings and Hamilton 1988), economics (e.g., 
Feltovich 2003), social sciences (e.g., Penfield 1994), and 
computer sciences (e.g., Gretton et al. 2012), among other 
disciplines. These efforts highlighted that the test performance 
depends on different factors related to the sample size and the 
shape (mainly, spread and skewness) of the population and null 
distributions. A good synthesis of what many of these studies 
suggested is provided by Fagerland and Sandvik (2009), who 
concluded that “simple rules about which test should be used 
in which situation cannot be accurately stated”. As a result, 
to properly quantify the performance of two-sample tests for a 
given application, it is desirable to carry out analyses that target 
specific variables and analyze the properties of the data at hand.

In applications to hydrologic and climate variables, a few 
studies have investigated the power of trend tests (e.g., Pros-
docimi et al. 2014; Vogel et al. 2013; Amorim and Villarini 
2023), while, somewhat surprisingly, the power of two-sam-
ple tests has received less attention. This work addresses 
such relatively straightforward and yet critical need by quan-
tifying the power of four popular two-sample tests applied to 
three hydroclimatic variables, including non-zero precipita-
tion (NZP), annual precipitation maxima (APM), and annual 
peak flows (APF). The analyzed tests are (1) the Student t 
(Student 1908) and (2) Wilcoxon rank-sum (Kruskal 1957) 
tests, which assess differences in location (hereafter, location 
tests); and (3) the Kolmogorov–Smirnov (Massey 1951) and 
(4) likelihood-ratio (Wilks 2011; LR) tests, which evaluate 
differences in the entire distribution (hereafter, distribution 
tests). The tests’ power was quantified through Monte Carlo 
simulations where realistic samples of NZP, APM, and APF 

series of equal size were generated as variates of paramet-
ric probability distributions that were shown to adequately 
model these variables across the world. Since the distribu-
tion parameters exhibit correlation, a novel method based on 
copulas, fitted on observed precipitation and discharge series 
in the United States (U.S.), was designed to generate sets of 
parameter values from realistic ranges that preserve such 
correlation. After showing that the differences in spread and 
skewness of the samples are monotonically related, the tests’ 
power computed through the Monte Carlo simulations was 
first summarized through surfaces as a function of the dif-
ferences in mean and spread for different sample sizes. The 
insights gained from the power surfaces were then used to 
interpret the tests’ outcomes in three case studies in the U.S. 
aimed to quantify differences in the observed seasonal distri-
butions of precipitation and discharge series and of precipi-
tation distributions before and after ~ 1980–1990 likely due 
to climate change. Finally, the analyses of the Monte Carlo 
simulations and the case studies were utilized to develop 
recommendations for selecting two-sample tests and inter-
preting their results in hydrologic and climate applications 
based on precipitation and discharge series.

2 � Methods

2.1 � Overview of two‑sample statistical tests

We first provide some basic definitions of hypothesis test-
ing that are useful to properly understand the meaning and 
utility of the test power. Hypothesis testing is the process 
of statistical inference where limited data samples are ana-
lyzed to draw conclusions about the properties of the under-
lying population/s (Wilks 2011). This process is performed 
through statistical tests, which are all based on the definition 
of (1) the test statistic: a metric considered appropriate for 
the analyzed inferential problem; (2) the null hypothesis, H0: 
a logical statement used as a reference for the test statistic; 
(3) the alternative hypothesis, HA: another logical statement 
alternative to H0; and (4) the null distribution: the sampling 
distribution for the test statistic if H0 is true. Once the test 
statistic is computed from the available samples, its value 
is used to calculate the p-value from the null distribution, 
i.e., the probability that the test statistic assumes values that 
are against H0. To draw a binary conclusion about the test 
outcome, the significance level, α, is defined (e.g., α = 0.01 
or 0.05) and compared with the p-value: if p ≤ α (p > α), then 
there is (there is not) enough statistical evidence to reject H0.

The significance level also represents the Type I error of 
the test, i.e., the probability of rejecting H0 when it is actu-
ally true. Another type of error is Type II, denoted with β, 
which is the probability of not rejecting H0 when it is false; 
its complement to 1, (1-β), is defined as test power, i.e., the 
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probability of correctly rejecting H0 when it is false. Type II 
errors depend on the definition of HA and the value of α. To 
better explain these concepts and statistics, Fig. 1 shows two 
illustrative examples of tests with different power. In both 
panels, the null distribution (labeled H0) of the test statistic 
is shown in black, while the distributions of two alternative 
hypotheses are plotted in red (HA,1) and blue (HA,2). The gray 
area, α, denotes the region of the null distribution where H0 is 
rejected, which is also the assumed Type I error, while the red 
and blue areas, β1 and β2, are the Type II errors under the two 
alternative hypotheses. In both panels, β1 < β2 since the sam-
pling distribution of HA,1 is farther from the corresponding 
null distribution. The test in Fig. 1a is more powerful (i.e., the 
values of β are smaller and of (1-β) are larger) than the test in 
Fig. 1b because the spread of its null distribution is smaller.

Here, we assessed the power of four popular two-
sample tests applied to series of NZP, APM, and APF, 
which are widely analyzed in hydroclimatic studies. Let 
x1 =

{
x1,1, x1,2,… , x1,n1

}
 and  x2 =

{
x2,1, x2,2,… , x2,n2

}
 

be two independent samples with size n1 and n2, respec-
tively. Broadly speaking, two-sample tests assess the null 

hypothesis H0 that x1 and x2 are random and independ-
ent realizations of the same population. There are several 
parametric and non-parametric statistical tests that can be 
applied to achieve this goal, some of which are designed 
to assess differences in the entire distribution and others in 
specific population statistics, with the most popular targeting 
location and spread. Here, we considered (1) the parametric 
Student t (t-S) and (2) non-parametric Wilcoxon rank-sum 
(Wi) location tests, and (3) the non-parametric Kolmogo-
rov–Smirnov (KS) and (4) parametric likelihood-ratio (LR) 
distribution tests. The definition of the statistics and null 
distributions of these tests are summarized in Appendix 1. 
As well known, the t-S test is based on the assumption of 
normality of the samples, which is hardly met with precipi-
tation and discharge series that are quite often positively 
skewed. To investigate the impact of this assumption on the 
test power, the t-S test was applied to the original and the 
log-transformed samples, with the latter aimed at reducing 
the skewness and meeting the normality condition. Results 
for the t-S test were here shown for the case of equal vari-
ance, although it was verified that they did not substantially 
change when the test was applied for unequal variances. 
Finally, to apply the LR test, we used the parametric distri-
butions described in Section. 2.3.

2.2 � Estimation of tests’ power with Monte Carlo 
simulations

The power of the tests applied to NZP, APM, and APF 
series was quantified through Monte Carlo simulations as 
a function of metrics accounting for differences in location 
and spread, and skewness of the samples. Preliminary tasks 
involved identifying parametric probability distributions 
that were shown in the literature to well model observed 
NZP, APM, and APF series; fitting these distributions to 
observed precipitation and discharge series; and using copu-
las to model the multivariate distributions of their param-
eters (see Section. 2.3 for details). For each series type, the 
Monte Carlo experiments consisted of the following steps:

1.	 Nens variates with sample size n were generated from the 
corresponding probability distribution with parameters 
randomly extracted from the associated copulas. This 
implies that the power was evaluated for samples with 
equal size, n1 = n2 = n.

2.	 The L-moments (Hosking 1990) of each variate, λr, with 
r = 1, 2, 3, were computed and, from these, the L-CV, 
τ = λ2/λ1, and L-skewness, τ3 = λ3/λ2. The statistics 
λ1 (the sample mean), τ, and τ3 were used to quantify 
the location, spread, and skewness of the samples, 
respectively.

3.	 For each possible pair of variates (total of 
Nens ⋅ (Nens − 1)∕2 ),  the p-values of the two-

Fig. 1   Illustration of Type I and II errors in hypothesis testing. The 
panels show the probability distribution functions of the test statistic 
under the null distribution (H0) and two alternative hypotheses in red 
(HA,1) and blue (HA,2), along with the Type I (α) and II (β1 and β2) 
errors for (a) a more and (b) a less powerful test. The region of rejec-
tion of H0 is also shown
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sample tests were computed, along with the per-
cent difference between the λ1’s and τ’s as 
Δ�1 = (�1,1 − �1,2)∕[(�1,1 + �1,2)∕2] × 100  a n d 
Δ� = (�1 − �2)∕[(�1 + �2)∕2] × 100 , respectively, and the 
simple difference between the τ3’s, Δ�3 = (�3,1 − �3,2) . In 
these metrics, λ1,1 and λ1,2 (τ1 and τ2; τ3,1 and τ3,2) are the 
values of λ1 (τ; τ3) of the two samples.

4.	 After showing that Δτ3 is monotonically related to Δτ 
(see Section. 3.1), surfaces of test power for a given 
α were constructed as a function of Δλ1 vs. Δτ. This 
involved (a) creating a regular grid of Δλ1 and Δτ val-
ues; (b) finding the number of variate pairs Ni,j falling in 
each grid element (i, j); and (c) computing the fraction 
of test rejections as #(p ≤ α)/Ni,j, with the constraint that 
Ni,j > 20 to have a sufficiently high number of pairs. The 
resulting value provides an estimate of the power (1-β) 
in the (i, j) grid point.

The surfaces of test power were also built for the differ-
ences in the population L-moments with the goals of quan-
tifying the theoretical power of the tests and how this power 
decreases with the sample size, as well as to partially address 
the issues related to the post-experiment power computation 
(e.g., Hoenig and Heisey 2001).

2.3 � Datasets and parametric distributions used 
for the Monte Carlo simulations

To generate realistic variates for the Monte Carlo simula-
tions, we identified suitable parametric probability distribu-
tions for observed NZP, APM, and APF series. We used 
daily precipitation observations from 1499 gages of the 
Global Historical Climatology Network daily (GHCNd; 
Menne et al. 2012) in the contiguous U.S. with more than 

50 years of data. For each gage, we extracted the NZP and 
APM series of each season (Winter: DJF; Spring: MAM; 
Summer: JJA; and Fall: SON). To identify the dominant 
seasons of NZP and APM required in the first case study 
(see Section. 3.2), the gages were grouped based on the nine 
climatic regions defined by the National Centers for Envi-
ronmental Information (NCEI; Fig. 2a) based on soil mois-
ture anomalies (Karl and Koss 1984) and used in several 
prior studies on precipitation regimes in the U.S. (Kunkel 
et al. 2012, 2020). For each region, the two seasons with the 
largest differences between the gage-averaged λ1, τ, and τ3 
were found (Fig. 2a). We also used daily discharge records 
from 672 gages with 20 to 111 years of data representing 
near-natural streamflow conditions that are part of the U.S. 
Geological Survey (USGS) Hydro-Climatic Data Network 
2009 (HCDN2009; Slack and Landwehr 1992). The gages 
monitor basins with drainage areas ranging from 2.2 to 
25,791 km2, covering a wide range of climatic conditions 
in the U.S. To select the dominant seasons needed for the 
second case study (see Section. 3.3), for each stream gage, 
we extracted the APF series of the four seasons and, from 
these, we obtained the two dominant seasons with the largest 
λ1’s (displayed in Fig. 2b).

Following empirical evidence presented in the litera-
ture, we adopted the Burr Type XII ( B∇XII ) distribution 
to model the NZP series (Papalexiou and Koutsoyiannis 
2016; Mascaro et al. 2023; Papalexiou and Koutsoyiannis 
2012), the generalized extreme value distribution ( GEV ) 
for the APM series (Papalexiou and Koutsoyiannis 2013; 
Blanchet et al. 2016; Mascaro 2020; Deidda et al. 2021), 
and Log-Person Type 3 ( LP3 ) to characterize the APF 
records (Vogel et al. 1993; Griffis and Stedinger 2007; 
England et al. 2019). The cumulative distribution func-
tions (CDFs) of these three-parameter distributions are 

Fig. 2   (a) Map of daily rain gages (circles) from the Global Historical 
Climatology Network daily (GHCNd) in the contiguous United States 
(U.S.) color-coded based on the two dominant seasons in the NCEI 
regions defined as NW: Northwest (106 gages); WNC: West North 
Central (250 gages); ENC: East North Central (124 gages); C: Central 

(188 gages); NE: Northeast (154 gages); SE: Southeast (181 gages); 
S: South (272 gages); SW: Southwest (132 gages); and W: West (92 
gages). (b) Stream gages (triangles) of the U.S. Geological Survey 
(USGS) Hydro-Climatic Data Network 2009 (HCDN2009) with the 
indication of the two dominant seasons
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provided in Appendix 2. As illustrated in the L-moment 
ratio diagrams of Fig. 3, the empirical L-moment ratios 
(τ and τ3) of the observed NZP series of the four sea-
sons are largely included within the theoretical surface 
of the B∇XII , while those (τ3 and L-kurtosis, τ4 = λ4/λ2, 
with λ4 being the fourth L-moment) of the APM and APF 
series are scattered around the theoretical lines of the 
GEV and LP3 , respectively. This suggests that the selected 
distributions are suitable for modeling the observed pre-
cipitation and discharge series. For each seasonal series, 
we estimated the three parameters of the corresponding 
parametric model (i.e., 1499 × 4 = 5996 sets of B∇XII 
and GEV  parameters, and 672 × 4 = 2688 sets of LP3 
parameters) and fit copulas to represent their multivari-
ate distribution as described in detail in Appendix 2 and 
Figs. S1-S3 of the Supplementary Information. The cop-
ulas allowed sampling sets of parameters for each dis-
tribution whose values are within plausible ranges and 
preserve their dependence structure; this, in turn, led to 
realistic samples for the analyzed hydrologic series.

3 � Results

3.1 � Power of two‑sample tests applied 
to precipitation and discharge series

We first present in Fig. 4 the relationships among Δλ1, Δτ, 
and Δτ3 for all types of variables for a given samples size, 
n, and the population (results are similar for other n’s). Due 
to the positively skewed nature of the samples, for a fixed 
Δλ1, higher values of Δτ3 are associated with larger Δτ and 
vice versa; in other words, if a sample has larger (smaller) 

Fig. 3   The L-moment ratio diagrams (τ vs. τ3 and τ3 vs. τ4) for (a) 
observed NZP records in the four seasons and theoretical surface of 
the Burr Type XII ( B∇XII ) distribution, (b) observed APM series in 
the four seasons and theoretical relation for the generalized extreme 
value ( GEV ) distribution, and (c) the logarithm of the observed APF 

series in the four seasons and theoretical relations for the Log-Person 
Type 3 ( LP3 ) distribution. In each panel, the mean of the sampling 
L-moment ratios for each of the four seasons are plotted with different 
markers to emphasize the suitability of the chosen distributions

Fig. 4   Relationships among Δλ1, Δτ, and Δτ3 shown as surfaces of 
Δτ3 as a function of Δλ1 and Δτ for (a) pairs of NZP samples with 
size n = 810 and (b) the corresponding B∇XII population; (c) pairs of 
APM samples with size n = 50 and (d) the corresponding GEV popu-
lation; and (e) pairs of APF samples with n = 50. For the latter case, 
the population is not shown because Δλ1, Δτ, and Δτ3 for the LP3 
distribution are referred to the log-transformed samples
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skewness than the other one, it has also higher (lower) 
spread. From the practical standpoint, this implies that the 
power surfaces could be visualized as a function of either Δτ 
or Δτ3. Here, we used Δτ in the figures but refer also to the 
skewness for their interpretation. The surfaces of the power 
(1-β) of the analyzed tests for the significance level α = 0.05 
as a function of Δλ1 and Δτ are shown in Figs. 5, 6, and 7 
for the NZP, APM, and APF series, respectively. Different 
n’s were considered ranging from 270 to 1350 rainy days 
(roughly, 10 to 50 years of seasonal records assuming 30 
rainy days in a season) for the NZP series, and from 30 to 
100 years for the annual maxima series, APM and APF. The 
Monte Carlo simulations were based on Nens = 5000 variates. 
Some general considerations can be made:

(1)	 As expected, the power diminishes as n decreases.
(2)	 When the samples have very similar skewness and, 

consequently, close spread (|Δτ| and |Δτ3| close to 0), 
the power diminishes as |Δλ1| decreases. As differences 
in skewness and spread become larger (smaller) than 
0, the range of Δλ1 for which the power decreases is 
shifted towards positive (negative) values.

(3)	 The power of t-S applied to the original sample is not 
significantly affected by Δτ (or Δτ3), while the power 
surfaces of all other tests exhibit an ellipsoidal shape 

with the major axis extending from southwest to north-
east in the Δλ1-Δτ plane. From the practical standpoint, 
this means that, if sample 1 has a higher location than 
sample 2, the test power is relatively smaller if sample 
1 has also larger spread (and skewness), whereas the 
power is relatively larger if sample 1 has lower spread 
(and skewness) than sample 2 (and vice versa, since 
the order of the samples is irrelevant). To explain the 
reasons for this outcome, examples of GEV probability 
density functions where Δτ and Δτ3 have the same sign 
which is either discordant or concordant with the sign 
of the Δλ1 (assumed constant) are presented in Fig. S4. 
When the signs are concordant, the modes of the two 
populations are similar and most of their density is con-
centrated within similar ranges; as a result, samples 
drawn from these populations tend to be similar leading 
to a lower test power. In contrast, when the sign of Δτ 
and Δτ3 is discordant with that of Δλ1, the density of 
population 2 is distributed around a much larger range 
of values than the density of population 1; this likely 
results in samples with different statistics and, thus, in 
higher test power.

(4)	 Applying t-S with the log-transformed sample (t-S–
Log) leads to power surfaces, plotted as a function of 
Δλ1 and Δτ computed for the original samples, which 

Fig. 5   Surfaces of test power (1-β) for the significance level α = 0.05 
as a function of Δλ1 and Δτ of NZP series for the t-Student, Wilcoxon 
(Wi), Kolmogorov–Smirnov (KS), and likelihood-ratio (LR) tests. 
The t-Student test was applied to the original (t-S) and log-trans-

formed (t-S–Log) samples. The rows refer to different sample sizes, 
n. The surfaces were built through the Monte Carlo experiments 
described in Section. 2.2 with Nens = 5,000 variates
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Fig. 6   Same as in Fig. 5, but for the APM series

Fig. 7   Same as in Fig. 5, but for the APF series



	 Stochastic Environmental Research and Risk Assessment

are remarkably similar to those obtained for the non-
parametric Wi test.

(5)	 The location tests are more powerful than the distri-
bution tests when |Δτ| is relatively low (especially for 
APM and APF series), while the opposite is true as |Δτ| 
increases (the considerations made for |Δτ| hold also for 
|Δτ3|). LR is in most cases the most powerful test, as 
also depicted in Figs. S5-S7 that present the surfaces of 
the difference between the power of each test and LR. 
However, this result is in part biased because LR was 
applied with the same parametric distributions used to 
generate the variates in the Monte Carlo simulations, 
i.e., the test is more “informed” about the underly-
ing populations. However, the case studies based on 
observed data described in Sections 3.2–3.4 suggest 
that the choice of the parametric distribution appears 
appropriate because the outcomes of the LR test are 
well in line with the test power and supported by physi-
cal evidence.

To quantitively complement the visual inspection of 
Figs. 5–7, Fig. 8 displays the relationships between test power 
and one of Δλ1, Δτ, and n for fixed values of the other two 
metrics. The chosen fixed value of n is 30 for the APM and 
APF series and 810 (~ 30 years) for the NZP records. If the 
samples have the same spread (Δτ = 0%, panels in the first 
column on the left), the test power varies with changes in loca-
tion, Δλ1, according to a reversed bell-shaped function with 
a minimum value close to α (here, 0.05) at Δλ1 = 0%. Two-
sample tests applied to NZP series reach a high power (> 0.75) 
for |Δλ1|> 25%, while this threshold for |Δλ1| increases to 75% 
and 100% for the annual maxima of precipitation, APM, and 
discharge, APF, respectively. For these two series of extremes, 
location tests are more powerful than distribution tests when 
there is no difference in spread (Δτ = 0%). On the other hand, 
if the spreads of the two samples are different (Δτ > 0%; 
panels in the second column), the impacts on the test power 
depend on the series. For the NZP records and Δτ = 10%, the 
reversed bell-shaped functions of all tests except for t-S shift 

Fig. 8   Relationships between the power (1 – β) of the analyzed tests 
and (1) Δλ1 for fixed Δτ and n (panels in the first two columns on 
the left), (2) Δτ for fixed Δλ1 and n (panels in the third and fourth 
columns), and (3) n for fixed Δλ1 and Δτ (panels in the fifth column). 

Panels (a)-(e) show results for the NZP series, (f)-(j) for the APM 
series, and (k)-(o) for the APF records. Note that different intervals 
are used in the x-axes to better visualize the differences across the 
tests
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towards positive Δλ1 (the region with the same sign as Δτ), 
and their minimum power values increase for the distribution 
tests, which are more powerful than the location tests. For the 
APM (APF) series, differences in spread of 10% (20%) do 
not substantially modify the outcomes reported for Δτ = 0%.

The relations between test power and Δτ for samples with 
the same location (Δλ1 = 0%; panels in the third column) are 
symmetric. In these conditions, the tests assessing differ-
ences in the distribution (notably, LR) have the best ability to 
correctly reject H0. The t-S test applied to the original sam-
ple does not have any power (i.e., (1 - β) ≅ α), while t-S–Log 
and Wi exhibit a power that is relatively high for the NZP 
series, moderate for the APF records, and extremely low 
for the APM series. The presence of differences in location 
(Δλ1 > 0%; panels in the fourth column) introduces asym-
metries and shifts in the relations between test power and 
Δτ in ways that vary with the type of series and test. When 
compared to the cases for Δλ1 = 0%, the distribution tests 
become more powerful for most values of Δτ, while the 
location tests gain power in the region where Δτ and Δτ1 
have opposite sign (here, Δτ < 0) and lose it where their sign 
is concordant. Finally, the effect of the sample size, n, on the 
power for fixed Δλ1 > 0 and Δτ > 0 is presented in the panels 
of the fifth column. For the cases shown in Fig. 8, the power 
of the distribution tests (particularly, LR) increases faster 
than the location tests, although it remains relatively low for 
the APM series even for n = 200 years. Interestingly, for this 
variable, the t-S test applied to the original sample performs 
similarly to K-S. It is important to emphasize again that the 
considerations made for Δτ in the interpretation of Fig. 8 are 
also qualitatively valid for Δτ3 given the monotonic relation-
ship between these two metrics (Fig. 4).

To complete the assessment of the tests’ power, the 
power surfaces were also computed as a function of Δλ1 
and Δτ obtained from the population L-moments, i.e., the 
L-moments of the B∇XII , GEV , and LP3 distributions. 
The differences between these power surfaces and those 
derived as a function of the sample Δλ1 and Δτ are shown 
in Figs. S8-S10. Note that, since the LP3 distribution is fit-
ted to the log-transformed samples, the metrics Δλ1 and Δτ 
in Fig. S7 are referred to the log-transformed variables. The 
differences in power are both positive and negative and do 
not exceed |0.25| (|0.1|) for NZP and APM (APF). The larg-
est differences are found in regions of relatively low Δλ1, 
especially where Δλ1 and Δτ have discordant signs. As 
expected, the differences in power decrease as the sample 
size increases.

3.2 � Case study 1: Two‑sample tests applied 
to observed seasonal precipitation series

The practical importance of the insights gained through 
the Monte Carlo experiments is first demonstrated by 

investigating the null hypothesis H0 that seasonal observa-
tions of NZP and APM series belong to the same popula-
tion. The rain gages and corresponding dominant seasons 
are shown in Fig. 2. For each gage and series type, the 
values of Δλ1 and Δτ between the two seasonal samples 
were calculated, along with the p-values of all tests. For 
each test, the field significance was also accounted for by 
applying the false discovery ratio test (Wilks 2006, 2016) 
with a global significance level αglobal = 0.10 as in Farris 
et al. (2021) to account for the spatial dependence among 
the gage records. Results for the NZP and APM records are 
presented in Figs. 9 and 10, respectively. For each of the 
climate zone shown in Fig. 2a, the power surfaces of the 
Wi (Figs. 9a and 10a) and LR (Figs. 9b and 10b) tests are 
displayed along with the empirical (Δλ1, Δτ) points, plotted 
in black (green) if H0 was rejected (not rejected). For sim-
plicity, the power surface was built assuming the same size 
for both seasonal samples, which was set equal to the mean 
record length across all gages of each region. This resulted 
in n ranging from 810 to 1800 for the NZP series, depending 
on record length and number of rainy days, and in a constant 
n = 50 years for the APM series.

First, we note that, for both series types in the NW, WNC, 
and ENC regions, H0 was rejected at practically all gages; 
this outcome is supported by large statistical evidence 
because the empirical (Δλ1, Δτ) estimates lie in an area of 
high power for both tests (i.e., the probability of correctly 
rejecting H0 is high). In the other climate regions, H0 is 
rejected only at some of the gages but the outcomes differ 
depending on the type of series and test. For example, in 
NE, the NZP series exhibit two clusters of gages where H0 
is rejected (not rejected) in a region of high (low) power for 
both the location and distribution tests (Fig. 9). Note that, in 
this region, the use of t-S applied to the original series would 
have failed to reject H0 at most gages (not shown); however, 
in this case, the use of t-S applied in this way should be 
avoided because almost all empirical (Δλ1, Δτ) points are 
in a region of very low power for this test. The two clusters 
do not instead emerge when analyzing the APM records, 
where H0 cannot be rejected at practically all gages by both 
tests (Fig. 10). This outcome should be interpreted consid-
ering that most empirical (Δλ1, Δτ) estimates lie along the 
southwest-northeast axis where the test power is lower, thus 
revealing the limited ability of both tests to investigate H0 
for samples of extreme P in the NE region.

Results for the SE region are instead useful to demon-
strate two important issues: (1) depending on the location 
of the (Δλ1, Δτ) estimates, tests with different power can 
lead to diverse outcomes; and (2) when a test is applied at 
multiple sites, the inspection of the geographical patterns of 
its outcomes provides a straightforward, yet critical, physical 
support of the statistical analyses, provided that the spatial 
correlation among the station records has been taken into 
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Fig. 9   Results of the (a) Wilcoxon (Wi) and (b) likelihood-ratio (LR) tests applied to the NZP series of the dominant seasons in the nine climate 
regions, plotted in the (Δλ1, Δτ) space along with the power surface of each test
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account (here, via the significance level of the FDR test). To 
prove these points, Fig. 11 displays the maps of the power 
and rejections of H0 at the gages of the SE region for the Wi 

location test (results are similar for t-S–Log) and for the K-S 
and LR distribution tests. When applied to the NZP seasonal 
samples (Fig. 11a), Wi indicates that H0 cannot be rejected 

Fig. 10   Same as in Fig. 9, but for the APM series
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at most gages apart from some random locations. If these 
conclusions are accepted without taking into account the low 
power of this test, one could end up making wrong physical 
interpretations, especially when attempting to explain the 
patterns of the H0 rejections. On the other hand, the use of 
distribution tests with higher power suggests that H0 can 
instead be rejected at a much larger number of sites; such 
number of rejections is higher for LR which is also more 
powerful than K-S. The spatial variability of the H0 rejec-
tions is consistent across the distribution tests and exhibit a 
clear geographical pattern likely controlled by the distance 
from the coast, thus providing physical support to the out-
comes of the statistical analyses. When the two-sample tests 
are instead applied to the APM series (Fig. 11b), all tests 
have similar power and lead to comparable spatial patterns 
of the H0 rejections which are quite close to those found for 
the NZP records.

3.3 � Case study 2: Two‑sample tests applied 
to observed seasonal discharge series

As a second case study, we tested H0 for the two dominant 
seasons of the APF series observed at the stream gages of 

Fig. 2b. Results are summarized in Fig. 12 which displays 
the empirical (Δλ1, Δτ) estimates, color-coded based on 
the rejection of H0, on top of the power surfaces of the Wi 
and LR tests built for the average sample size, n = 50 years 
(note that n < 50 for 35% of the gages). When applied to the 
observed daily peak flow records, no test is clearly the most 
powerful across all cases. There is not enough evidence to 
reject H0 at a percentage of gages that ranges from 57 to 62% 
across all tests and dominant seasons. However, since almost 
all these cases occur in areas of low power (|Δλ1|≤ 50% and 
|Δτ|≤ 30%), it should be also noted that the tests adopted 
here have restricted capacity to investigate H0. The rejections 
of H0 occur instead in regions of higher test power where 
Δλ1 is relatively large and its sign is discordant with that of 
Δτ (see, e.g., cases in the fourth quadrant for Winter & Fall 
and Spring & Summer).

To visualize the locations of the H0 rejections, 
Fig.  13 presents the maps of power and outcomes of 
the two tests for Spring & Summer. For these seasons, 
results are very similar across location and distribution 
tests as shown by the close number of H0 rejections in 
each climate zone. The gages where H0 is rejected are 
clustered in space, which gives physical evidence that 

Fig. 11   Maps of power and outcomes of the Wilcoxon (Wi), Kolmog-
orov–Smirnov (K-S), and likelihood-ratio (LR) tests applied to the 
(a) NZP and (b) APM records of the two dominant seasons observed 

at the rain gages in the SE climate region. The number of H0 rejec-
tions and mean test power (1 – β) are reported in each panel. The total 
number of gages is 181
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supports the statistical outcomes since differences in the 
seasonal peak flow regimes at close gages are expected 
to be determined by local climatic and physiographic 

features. The findings for Spring & Fall, reported in 
Fig. 14, permit emphasizing that, when t-S is applied to 
the original skewed sample, its power might be very low 
(here, mean of 0.41) if |Δλ1| is small even if |Δτ| is not 
negligible; as a result, t-S fails to reject H0 in a cluster 
of stream gages located in the SE and S regions. If t-S is 
instead applied to the log-transformed sample, its power 
is much higher (mean of 0.69) because the test is now 
sensitive to differences in spread, and comparable to that 
of the distribution tests (mean of 0.73 for both K-S and 
LR). For these two more powerful tests, H0 is rejected at 
essentially the same sites.

3.4 � Case study 3: Two‑sample tests applied 
to assess climate change on observed 
precipitation series

The third case study was inspired by the experiment pro-
posed by Wilks (2011; Example 5.6) where the LR test was 
applied to evaluate whether the first and second half of a 
precipitation record are drawn from different populations as 
a possible consequence of climate change. Here, this experi-
ment was performed separately for the NZP and APM series 
of the rain gages of Fig. 2. The resulting series were split in 
the middle of their corresponding records, which largely falls 
between 1980 and 1990, leading to two samples of about 
30 years. Results for the LR test are displayed in Fig. 15 (the 
outcomes are very similar for the other three tests). For the 
NZP series, H0 is rejected at about two-thirds of the sites 
(Fig. 15a), a result supported by the corresponding empirical 
(Δλ1, Δτ) estimates being located in the region of high test 
power in the second and fourth quadrants. Despite the high 
test power, when such rejections are plotted spatially, no 
organized pattern emerges (Fig. 15b), thus complicating the 
physical interpretation of the test outcomes. While further 
investigations that are out of the scope of this paper would 
be required to better explain this finding via, e.g., trend or 
change-point tests, here we can emphasize that failure to 
reject H0 at the sites where the power is low does not neces-
sarily imply that the distribution of NZP has not changed 
over time, but it could also be a reflection of the relatively 
small difference between the two samples that the LR test is 
not able to detect because of its low power. Focusing on the 
APM series, H0 cannot be rejected at practically all gages 
(Figs. 15c,d). Again, although there is no significant statisti-
cal evidence to assume that the distribution of extreme pre-
cipitation has varied in time, the empirical (Δλ1, Δτ) points 
are in a region of very low test power and very high type-II 
error β, i.e., the probability of not rejecting H0 when it is 
actually false is large. Therefore, it might still be possible 
that the differences between the samples are too small to be 
detected by the statistical tests considered here, especially 
given the small sample size (n = 30).

Fig. 12   Results of the (a) Wilcoxon (t-S) and (b) likelihood-ratio 
(LR) tests applied to the APF series of the dominant seasons recorded 
at the stream gages shown in Fig. 2b, plotted in the (Δλ1, Δτ) space 
along with the power surface of each test
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Fig. 13   Maps of power and out-
comes of the (a) Wilcoxon (Wi; 
mean power across all gages of 
0.57) and (b) likelihood-ratio 
(LR; mean power of 0.61) tests 
applied to the APF records in 
Spring & Summer observed at 
the stream gages of Fig. 2b. The 
rejection of H0 after accounting 
for field significance is indicated 
with a triangle; their number is 
also reported for each climate 
region

Fig. 14   Same as in Fig. 13 but 
for the Spring & Fall seasons. 
The tests shown are the t-Stu-
dent applied to the (a) original 
(t-S; mean power of 0.41) and 
(b) log-transformed (t-S – Log; 
mean power of 0.69) samples, 
(c) Kolmogorov–Smirnov (K-S; 
mean power of 0.73), and (d) 
likelihood-ratio (LR; mean 
power of 0.73)
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4 � Summary and discussion

In this work, the power of four popular two-sample tests 
assessing differences in location and distribution was evalu-
ated, to our knowledge for the first time, for daily (NZP) 
and extreme (APM) precipitation series, and for extreme 
discharge records (APF). For this aim, Monte Carlo simu-
lations were performed with pairs of synthetic samples of 
these three variables generated through a novel procedure 
based on suitable parametric distributions and copulas that 
leads to realistic variates (see Appendix 2). The power was 
evaluated as a function of the relative changes in location 
(Δλ1), spread (Δτ), and skewness (Δτ3) of samples with the 
same size, which was varied within ranges of commonly 
available records. The most important results are as follows.

(1)	 Due to the positively skewed nature of the samples, dif-
ferences in skewness between the samples lead to dif-
ferences in spread according to a monotonical relation-
ship. Therefore, the test power is qualitatively related 
to Δτ3 and Δτ in a similar way.

(2)	 While based on the assumption of normality and homo-
scedasticity, the t-S applied to highly skewed precipita-
tion and discharge samples is rather robust since its power 
is not affected by differences in spread and skewness 
(Figs. 5 and 6), except for a slight influence found in the 
APF series (Fig. 7). This is consistent with earlier work, 
although it was reported that the robustness of t-S might 
decrease in the case of samples with different sizes which 
was not analyzed here (Cressie and Whitford 1986; Rasch 
et al. 2007; Fagerland 2012). Our findings also revealed 
that the t-S test has a very low ability to correctly detect 
differences between samples that have similar locations 
but diverse spreads (and skewness), as shown in the 
example involving the APF series of Fig. 13.

(3)	 If the parametric t-S test is applied to the log-transformed 
samples (t-S–Log), which have reduced skewness, the 
relationship between its power and Δλ1 and Δτ of the 
original samples is very similar to that of the non-para-
metric Wi test (see Figs. 5–7). Therefore, any of these two 
well-known tests could be chosen to assess differences 
in location of precipitation and discharge series, as also 
proved by the case studies.

(4)	 For a given value of the difference in location Δλ1, all tests 
(except for the original t-S) have lower power if the differ-
ence in spread Δτ (and skewness Δτ3) has the same sign as 
Δλ1 and higher power if the sign is opposite. This is easily 
visualized by the southwest-northeast orientation of the 
major axis of the ellipsoids of the power surfaces. Interest-
ingly, the (Δλ1, Δτ) points of several observed APM sea-
sonal series lie in a region of lower power along such axis 
(see results for the NE, SE, C, and S regions in Fig. 10). 
The opposite is true for a number of observed APF sea-
sonal series whose empirical values of Δλ1 and Δτ have 
discordant signs (see Fig. 12).

(5)	 Location tests perform slightly better than distribution 
tests if the samples have a very close spread and skew-
ness, while distribution tests overperform location tests 
when the difference in spread and skewness is moderate 
to large.

(7)	 The Monte Carlo experiments indicate that, overall, 
LR is the most powerful test, although this test is more 
“informed” about the shape of the populations whose 
parametric form is used for its application. However, the 
case studies investigating differences in seasonal observed 
precipitation and discharge samples support this conclu-
sion due to the good correspondence between low p-values 
(here shown through H0 rejections) and high test power, as 
well as to the physical support provided by the presence of 
geographical patterns of H0 rejections, after accounting for 

Fig. 15   Results of the likeli-
hood-ratio (LR) test applied 
to the first and second halves 
of the (a)-(b) NZP and (c)-(d) 
APF records observed at the 
rain gages shown in Fig. 2a. The 
rejections and non-rejection of 
H0 are plotted in the (Δλ1, Δτ) 
space along with the power sur-
face (left panels) and as maps 
(right panels)
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field significance and the presence of spatial correlations 
among the gage records.

(8)	 As expected, the power increases with the sample size. It 
becomes high (≥ 0.75) in most conditions for relatively 
short samples of the NZP series (e.g., n = 810, which 
corresponds to about 30 years of seasonal samples and 
8 years of annual samples). It is instead low for many 
combinations of Δλ1 and Δτ for the APM and APF series 
even up to n = 50 or 100 years (see examples of Fig. 8).

(9)	 The case studies revealed that significant differences 
between the samples (i.e., H0 is rejected) are detected with 
high statistical confidence (i.e., the power or the probabil-
ity of correctly rejecting H0 is high) more frequently when 
considering observed NZP samples, and less frequently 
with APM and APF samples. For these two variables 
characterizing extreme events, the tests’ power is often 
very low in part because of the small sample size, thus 
suggesting that these statistical tools have limited ability 
to investigate H0. It was also found that the visual inspec-
tion of the geographical patterns of the H0 rejections could 
provide valuable information to physically support the 
outcomes of the statistical analyses.

5 � Conclusions

This study provides one of the first quantifications of the 
power of two-sample tests applied to precipitation and dis-
charge series. Analyses based on Monte Carlo simulations and 
observed data allowed deriving a set of recommendations that 
are useful for the selection of two-sample tests and the inter-
pretation of their results in a wide range of hydrologic and 
climate studies. In particular, it is expected that this work will 
support the increasing number of studies evaluating changes in 
precipitation and discharge regimes due to global warming and 
land cover modifications. The proposed methodology is quite 
general and could be used to quantify the power of two-sample 
tests for other applications involving different hydroclimatic 
variables. Future work should investigate the effects on the test 
power of samples with different sizes and serial correlation in 
the analyzed variables, as well as the effect of the significance 
level, α. We also highlight that the methodology for the gen-
eration of realistic precipitation and discharge variates based 
on copulas could also be useful for other statistical analyses 
that require multiple samples of these variables.

Appendix 1: Summary of two‑sample 
statistical tests

In the following, we provide a summary of null hypothesis 
H0, test statistics, and null distribution used to derive the 
p-value of the two-sample statistical tests used in the paper. 
Let x1 =

{
x1,1, x1,2,… , x1,n1

}
 and x2 =

{
x2,1, x2,2,… , x2,n2

}
 

be two independent samples with size n1 and n2, respec-
tively. The Student t-test (t-S) evaluates the null hypothesis 
H0 of equal mean between the two samples. The t-S test 
statistic is z = x1−x2[

s2
1

n1
+

s2
2

n2

]1∕2 , where x1 and x2 are the sample 

means, and s2
1
 and s2

2
 are the sample variances. The null 

distribution for z is the t distribution with degrees of free-
dom � = min

(
n1, n2

)
− 1 for small sample sizes while, for 

moderately large sizes (as the case of our records), the null 
distribution of z is well modeled by the standard Gaussian. 
The t-S test is two-sided. The Wilcoxon (Wi) test is a non-
parametric test whose H0 is that both samples have equal 
median. The statistic is U = R1 −

n1

2
(n1 + 1) , where R1 is the 

sum of the ranks of the first sample and n1 is its size, while 
the null distribution of U is Gaussian for sample sizes larger 
than 10. The Kolmogorov–Smirnov (KS) test is also a non-
parametric test that investigates the null hypothesis H0 that 
the samples come from the same distribution; its statistic is 
Ds = max

x

||F1(x) − F2(x)
|| , where F1(x) and F2(x) are the 

empirical cumulative distribution functions of the first and 
second samples, respectively; the p value is computed 
through the Kolmogorov distribution or other approxima-
tions. The likelihood ratio (LR) test has the same H0 as the 
Kolmogorov–Smirnov test and requires assuming paramet-
ric forms for the distribution of samples 1 and 2 and the two 
samples combined. Let G1

(
x;�̂1

)
 , G2

(
x;�̂2

)
 , and G0

(
x;�̂0

)
 

be such distributions with parameters �̂1 , �̂2 , and �̂0 esti-
mated on the corresponding samples x1 , x2 , and 
x0 =

{
x1, x2

}
.  T h e  t e s t  s t a t i s t i c  i s 

Λ∗ = 2[L1

(
�̂1;x1

)
+ L2

(
�̂2;x2

)
− L0

(
�̂0;x0

)
]  ,  w h e r e 

Lk

(
�̂
k
;x

k

)
 is the log-likelihood of the corresponding distri-

bution Gk

(
x;�̂

k

)
 , with k = 0, 1, and 2. The null distribution 

is the χ2 with degrees of freedom ν = m1 + m2 – m0, where 
mk is the number of parameters of the k-th distribution.

Appendix 2: Parametric probability 
distributions and multivariate distributions 
of their parameters

The cumulative distribution function (CDF) of the Burr Type 
XII ( B∇XII ), generalized extreme value ( GEV ) and Pearson 
Type 3 ( P3 ) distributions are:

(1)FB∇XII

(
x;�1, �2, �

)
= 1 −

[
1 + �2

(
x

�

)�1
]− 1

�1�2

(2)

FGEV(x;k,�, �) =

⎧
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�
−
�
1 + k

x−�

�

�−
1

k

�
k ≠ 0
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�
−exp

�
−

x−�

�

��
k = 0
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The B∇XII distribution has two shape parameters, 
γ1 > 0 and γ2 > 0, and one scale parameter, θ > 0, and is 
defined for x ≥ 0. The GEV distribution has a shape param-
eter, k ∈ (-∞, + ∞), a location parameter, μ ∈ (-∞, + ∞), 
and a scale parameter, σ > 0; it is defined in the sets 

−∞ < x < ∞ if k = 0, 𝜇 −
𝜎

k
≤ x < ∞ if k > 0, and 

−∞ < x ≤ 𝜇 −
𝜎

k
 if k < 0. The P3 distribution has a shape 

parameter, α > 0, a scale parameter, β ∈ (-∞, + ∞), and 
a location parameter, ξ ∈ (-∞, + ∞); it is defined in the 
sets 𝜉 ≤ x < ∞ if the skewness coefficient γ > 0, and 
−∞ < x ≤ 𝜉 if γ < 0. In equation (A3), G(∙, ∙) and Γ(∙) are 
the incomplete and complete gamma functions, respec-
tively. The Log-Pearson Type 3 ( LP3 ) is the P3 distribu-
tion where x is the log-transformed value of the original 
sample (here, the APF series).

Parameters of the B∇XII were estimated using the 
numerical procedure proposed by Zaghloul et al. (2020) 
based on the method of L-moments. Parameters of the 
GEV  and LP3 were also estimated with the method of 
L-moments following Hosking and Wallis (1997). For the 
GEV , a bias correction of the shape parameter was applied 
to account for the short sample size using the empirical 
relations proposed by Papalexiou and Koutsoyiannis 
(2013) and recently applied by Ansh Srivastava and 
Mascaro (2023). For each distribution, copulas were used 
to model the multivariate distribution of the parameters. 
For the B∇XII distribution, we used a three-dimensional 
Gaussian copula with marginal distributions given by 
the Generalized Exponential Type 4 ( GE4 ; Papalexiou 
2022) for γ1, the Generalized Gamma ( GG ) for γ2, and 
the empirical CDF for β. For the GEV  distribution, we 
used a bidimensional Gaussian copula for σ and μ with 
their empirical CDFs adopted as marginal distributions. 
No significant relationship was found between k and 
the other two parameters; therefore, after generating a 
correlated pair of σ and μ, the synthetic value of k was 
randomly drawn from the empirical CDF of the observed 
estimates. Finally, for the LP3 distribution, a three-
dimensional Gaussian copula was used separately for the 
cases of positive and negative skewness coefficients with 
marginal distributions given by the B∇XII for α and β, 
and the empirical CDF for ξ. For all three distributions, 
the selected copulas captured quite well the dependence 
structure among the parameters, as shown through the 
scatterplots, histograms, and values of the Spearman rank 
correlation coefficients reported in Figs. S1. S2, and S3.

(3)F
P3(x;𝛼, 𝛽, 𝜉) =

⎧
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