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Abstract— Achieving optimal blood glucose control is a 

complex challenge for individuals with diabetes, necessitating a 

delicate balance among insulin dosage, food consumption, physical 

activity, and stress management. This paper introduces an 

innovative approach utilizing reinforcement learning (RL) to 

develop personalized and effective strategies for blood glucose 

regulation. Specifically, we employ the state-of-the-art soft actor-

critic (SAC) RL algorithm, which concurrently maximizes 

anticipated rewards and policy entropy. We devise an entropy-

driven reward function to incentivize diverse action exploration 

while ensuring a secure and consistent blood glucose profile. This 

reward function considers both the policy's entropy and the 

deviation of the blood glucose level from the target range, thus 

optimizing blood glucose control and minimizing the risk of 

complications. Our methodology is applied, trained, and assessed 

using a sophisticated blood glucose dynamics simulator based on 

the UVA/Padova model. The results demonstrate that our 

proposed method, SAC with entropy-based reward shaping 

(SAC+RS), outperforms a comparative approach, SAC with 

Magni's risk-based reward function (SAC+MRS), in terms of risk 

scores, glucose levels, insulin levels, and reward values. 
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I. INTRODUCTION 

Diabetes has risen to the forefront as a significant and 
widespread health challenge in modern times. Its increasing 
prevalence has prompted heightened awareness and research 
efforts to better understand and manage this complex condition. 
Among the many critical facets of diabetes management, 
achieving effective blood glucose control stands out as a pivotal 
objective [1]. Maintaining optimal blood glucose levels is 
paramount due to its direct impact on overall health and well-
being. Proper glucose regulation not only mitigates immediate 
health risks, such as hypoglycemia or hyperglycemia, but also 
plays a substantial role in preventing long-term complications 
[2]. The intricacies of diabetes management are further 
underscored by the intricate interplay of various factors, 
including dietary choices, insulin dosing, physical activity, 
stress management, and individual responses to treatment. 

In the face of these multifaceted considerations, the 
significance of accurate blood glucose control cannot be 
overstated. It is the linchpin that connects various aspects of 
diabetes care and significantly contributes to the quality of life 
for individuals living with diabetes. As a result, innovative 

approaches to enhancing blood glucose regulation hold 
immense promise for not only improving day-to-day 
management but also for positively influencing the long-term 
health outcomes of those affected by diabetes. However, 
mastering the intricate task of blood glucose regulation poses a 
formidable challenge due to the intricate interplay of various 
influential factors. The equilibrium required to strike the ideal 
balance in blood glucose levels involves a complex dance 
among elements like precise insulin dosing, mindful dietary 
choices, varying degrees of physical activity, and adept stress 
management. This intricate interplay underscores the 
multifaceted nature of diabetes management. In response to this 
challenge, a surge of dedicated research initiatives has emerged, 
driven by the collective goal of empowering individuals to 
navigate and control their glucose levels effectively. These 
endeavors span a broad spectrum of innovative approaches, each 
striving to address a distinct aspect of the complex glucose 
regulation puzzle. Predictive modeling initiatives [3, 4], for 
instance, seek to anticipate and forecast blood glucose trends 
based on historical data, enabling proactive interventions and 
informed decision-making. These models leverage advanced 
algorithms and machine learning techniques to extrapolate 
future glucose levels, thereby providing individuals with 
actionable insights to fine-tune their diabetes management 
strategies. Closed-loop control systems [5, 6], another 
pioneering avenue of research, embody the concept of real-time 
automated glucose regulation. These systems utilize continuous 
glucose monitoring technology to feed data to an automated 
insulin delivery system, dynamically adjusting insulin dosages 
to maintain optimal blood glucose levels. This technological 
advancement promises to relieve individuals from constant 
vigilance while ensuring stable glucose control.  Further 
enriching this landscape are personalized interventions [7], 
which recognize and respond to the inherent variability among 
individuals. Tailored approaches acknowledge that each 
person's response to insulin, food, activity, and stress is unique. 
By customizing treatment plans based on an individual's specific 
physiological characteristics and lifestyle choices, personalized 
interventions enhance the precision and efficacy of blood 
glucose management. 

Despite these advancements, certain challenges persist. For 
instance, achieving stable glucose levels across diverse 
physiological contexts remains elusive. Managing the trade-off 
between hyperglycemia and hypoglycemia episodes, ensuring 
patient comfort, and optimizing insulin use further compound 
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the complexity. Moreover, the inherent variability in individual 
responses to treatments calls for tailored solutions that adapt to 
individual needs. 

In response to these challenges, this paper introduces an 
effective approach to blood glucose control by harnessing the 
capabilities of reinforcement learning (RL), specifically the soft 
actor-critic (SAC) algorithm [8]. SAC, a cutting-edge RL 
algorithm, offers distinct advantages such as off-policy learning, 
model independence, real-time adaptation, and robust 
exploration-exploitation balance. This choice is rooted in the 
belief that RL, particularly SAC, can serve as a potent tool for 
the dynamic and personalized glucose regulation required in 
diabetes management [9]. Central to our approach is the novel 
formulation of a reward function based on reward shaping, an 
innovative technique that modifies the reward structure to guide 
the agent toward improved policies. This strategic entropy-
based shaping of rewards adds a layer of finesse to our method, 
enhancing the fine-tuning of blood glucose control policies. 

Our contribution introduces a multifaceted reward function 
that addresses a spectrum of goals encompassing safety, 
comfort, and efficiency. The reward function incorporates three 
distinct terms: an exploration term based on policy entropy, an 
exploitation term quantifying glucose level quality, and an 
efficiency term associated with insulin infusion rate. These 
terms align with diverse objectives, shaping an effective 
framework for comprehensive glucose control.  We emphasize 
that the coefficients governing these terms are systematically 
determined through a rigorous grid search process, optimizing 
performance against a range of critical metrics. These metrics 
include risk evaluation through the Clarke Error Grid Analysis 
(CEGA) and Magni's Risk Analysis (MRA), average glucose 
levels, insulin usage efficiency, and the percentage of time spent 
within specific glucose level ranges. 

II. RELATED WORK 

The endeavor to enhance blood glucose control for 
individuals with diabetes has spurred a diverse range of research 
efforts, encompassing various methodologies and technological 
advancements. In this section, we provide an overview of key 
studies and initiatives that have contributed to the field, 
highlighting their distinct approaches and contributions.  

A. Predictive Modeling for Glucose Regulation 

Predictive modeling has emerged as a prominent avenue to 
anticipate and manage blood glucose levels. Researchers have 
leveraged machine learning algorithms, statistical methods, and 
physiological models to develop predictive models capable of 
forecasting glucose trends. Striving to empower individuals with 
timely information, these models enable proactive interventions 
and informed decision-making. Notable contributions include 
the work by Zaidi et al. [9], which introduces BG-Predict, a 
novel deep learning model designed to forecast blood glucose  
levels ahead in multiple time steps. The proposed tool aids Type-
1 diabetes patients in administering insulin and managing food 
intake for optimal BG control. The model's effectiveness is 
demonstrated through quantitative and qualitative evaluation on 
real-world data from 97 patients. Another study [10] introduces 
a personalized glucose prediction model, utilizing deep learning, 
to aid medical staff in managing Type-2 diabetes patients in 

hospitals. The model employs recurrent neural networks 
(RNNs), specifically testing simple RNN, gated recurrent unit 
(GRU), and long-short term memory (LSTM) architectures for 
optimal performance. 

B. Closed-Loop Control Systems 

Advances in technology have paved the way for closed-loop 
control systems, which offer real-time automated glucose 
regulation. These systems integrate continuous glucose 
monitoring devices with automated insulin delivery mechanisms 
to maintain glucose levels within target ranges. The research 
conducted by O'Grady et al. [11] showcases the potential of 
closed-loop systems in achieving stable glucose control while 
minimizing the burden on individuals. The research involves 
testing a fully automated portable system called the Medtronic 
Portable Glucose Control System (PGCS), utilizing a 
smartphone platform, subcutaneous glucose sensors, and an 
insulin pump. Weaver and Hirsch [12] tested Medtronic's 670G 
insulin pump with Guardian 3 sensor exemplifying progress, 
maintaining glucose levels near targets. Initial studies show 
improved HbA1c, safety, and reduced risk of ketoacidosis or 
hypoglycemia. Yet, challenges remain in replicating natural islet 
function for fully automated, multi-hormonal blood glucose 
control. 

C. Reinforcement Learning for Glucose Control 

More recently, reinforcement learning (RL) has emerged as 
a promising paradigm for blood glucose regulation. RL 
algorithms, such as the soft actor-critic (SAC) algorithm 
employed in this paper, hold the potential to learn effective 
glucose control policies through interactions with the 
environment. Numerous studies have proposed RL-based 
algorithms for controlling blood glucose, often incorporating 
model predictive control (MPC) [7, 13, 14] as a component. 
MPC predicts future states and optimizes a cost function, 
accommodating system uncertainties and constraints. However, 
MPC's reliance on accurate models poses challenges. Tejedor et 
al. [15] and Fox et al. [6] utilized MPC within RL-based actor-
critic methods. Tejedor et al. employed fixed parameters for 
MPC, while Fox et al. introduced an adaptive model using 
Gaussian processes. Both approaches improved glucose level 
maintenance, reducing hypoglycemia and personalizing control. 
Yet, both studies focused solely on blood glucose levels as 
objectives, overlooking patient comfort, safety, energy usage, 
insulin consumption, and preferences. Furthermore, their 
evaluations relied on simulated data, potentially differing from 
real-world complexities of blood glucose control. 

III. METHODOLOGY 

Our proposed system revolves around the constructing an 
insulin treatment framework by training a Soft Actor-Critic 
(SAC) Reinforcement Learning (RL) agent on simulated data 
from different patients with diabetes. The objective is to 
establish a closed-loop insulin delivery system capable of 
dynamically adjusting insulin dosages based on real-time 
glucose readings, effectively optimizing diabetes management. 



A. Overview 

  Glucose control in closed-loop systems can be seen as a 
problem of making decisions under uncertainty, which can be 
formalized by a mathematical model called a partially 
observable Markov decision process (POMDP). A POMDP 
consists of a finite set of states, actions, observations, and 
functions that describe the relationships between them. At each 
time step, the agent faces a situation that represents the current 
state of the environment and chooses an action that affects the 
environment and produces a reward that indicates how good the 
action was. Then, the agent moves to a new state with a certain 
probability that depends on the previous state and action. 
However, the agent cannot directly observe the new state but 
only gets a clue that is related to the state with some probability 
[16]. In the context of glucose control, the state and action are 
defined by the blood glucose level of the patient and by the 
amount of insulin that is delivered at that time. The uncertainty 
of the state comes from the noise in the devices that measure the 
blood glucose level and from the influence of past data, such as 
the carbohydrates that were eaten, the insulin that was injected, 
and the blood glucose levels that were recorded.  Fig.1 illustrates 
the conceptual architecture of our methodology process. The RL 
agents are responsible for dynamically regulating insulin 
dosages in response to real-time glucose readings, thereby 
automating and optimizing the treatment process. 

The architecture consists of three main components; the first 
is a Reinforcement learning agent that learns a policy to control 
the insulin infusion rate based on the glucose sensor readings 
and the patient’s preferences. The agent uses a soft actor-critic 
(SAC) algorithm, an actor-critic method that maximizes both the 
expected reward and the entropy of the policy. Our reward 
function is defined as a combination of the entropy of the policy, 
the squared discrepancy between the blood glucose level and the 
target value, and the insulin infusion rate. The reinforcement 
learning agent consists of three neural networks: a policy 
network, a Q-function network, and a value function network. 
The policy network is a stochastic actor that outputs a Gaussian 

distribution over actions given the current state. The Q-function 
network is a critic that estimates the Q-value of a state-action 
pair. The value function network is another critic that estimates 
the value of a state. The reinforcement learning agent updates its 
networks using gradient descent and experience replay. It 
samples transitions from a replay buffer and computes the target 
values for the Q-function and the value function. The second 
component of the architecture is the UVA/Padova Simulator 
which models the glucose-insulin dynamics of a person with 
type 1 diabetes. It takes the insulin infusion rate as input and 
outputs the blood glucose level. The last component of the 
architecture is Continues Glucose Monitor (CGM)/Glucose 
sensor, which measures the blood glucose level from the 
UVA/Padova simulator and adds some noise and delay to 
simulate real-world sensor errors. 

B. Reinforcement Learning with Soft Actor-Critic (SAC) 

RL provides a computational framework for learning 
optimal decisions in uncertain environments. RL is well-suited 
in blood glucose management due to its capability to handle 
complex, high-dimensional state spaces and stochastic 
dynamics.  SAC, our chosen RL algorithm, bridges stochastic 
policy optimization and Deep Deterministic Policy Gradient 
(DDPG)-style methods. It emphasizes maximizing both 
expected return and policy entropy, promoting exploration and 
preventing premature convergence. SAC consists of three core 
components: an actor, a critic, and an entropy temperature. The 
actor employs a stochastic policy, the critic estimates state-
action value functions, and the entropy temperature controls 
exploration-exploitation balance. We update the actor and critic 
through well-defined objectives, optimizing policy and value 
estimation. 

The SAC RL model represents an advanced version of the 
actor-critic algorithm, designed to learn a stochastic policy that 
maximizes cumulative rewards. The policy, a function of the 
current state, is learned through an iterative actor-critic process, 
where the actor formulates the policy, and the critic evaluates 
state-value functions. A key feature of the SAC RL model is its 
maximum entropy formulation, which promotes exploration and 
prevents premature convergence to suboptimal policies. The 
SAC RL model's objective function involves maximizing both 
expected reward and policy entropy, while the critic network 
aims to minimize the mean squared error between predicted and 
actual state-value functions [8]. Integrating the SAC RL model 
into the metabolic model entails training the RL agent using real-
time simulated data. Subsequently, the trained model is 
employed to automate insulin delivery within the simulator. The 
RL agent's learning process involves adjusting bolus insulin 
dosages based on real-time glucose readings, meal intake, and 
past agent actions. This adaptation adheres to an optimal policy 
π, designed to maximize the objective function J(π). Our 
proposed MDI therapy framework combines cutting-edge 
reinforcement learning with a robust metabolic model, offering 
a promising avenue for enhancing blood glucose control and 
diabetes management. 

C. Reward Function and Reward Shaping 

To foster effective blood glucose management, we 

introduce a meticulously crafted reward function coupled with 

a reward shaping technique. This section delineates the design 
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of our reward function, underscored by the application of 

reward shaping to holistically address varied objectives in 

blood glucose control. 

1) Designing a Reward Function for Blood Glucose 

Control 

We harness reinforcement learning's potential by 

constructing a reward function tailored to the intricacies of 

blood glucose regulation. Our approach integrates reward 

shaping, a potent technique that fine-tunes the reward function 

to steer the RL agent toward optimal policies [17]. By 

amalgamating prior knowledge, expediting learning, and 

enhancing performance, reward shaping offers an adaptable 

framework. This integration is performed with prudence to 

circumvent potential disruptions to optimal policy attainment. 

2) Proposing a Multi-Objective Reward Function for Blood 

Glucose Control 

We propose a versatile reward function calibrated to fulfill 

multiple objectives, including the preservation of safe and 

comfortable blood glucose levels, prevention of hypoglycemic 

episodes, and judicious utilization of energy and insulin 

resources. Our novel reward function is mathematically 

described as: 

𝑟𝑠(𝑔, 𝑢, 𝜋) =  𝛼𝐻(𝜋) − 𝛽
(𝑔−125)2

100
− 𝛾

𝑢

10
  (1) 

Where: 

• 𝑟𝑠(𝑔, 𝑢, 𝜋) denotes the reward shaping component 
catering to blood glucose level (g), insulin infusion rate 
(u), and policy (π). 

• H(π) signifies the entropy of policy π, capturing its 
randomness or uncertainty. 

•  α, β, and γ are positive coefficients that control the trade-
off between exploration and exploitation. 

The squared discrepancy between blood glucose level (g) 

and the target value of 125 mg/dL is encapsulated by the term 

𝛽
(𝑔−125)2

100
, promoting meticulous glucose control and 

ameliorating health outcomes. This squared discrepancy term is 

bolstered by the coefficient β. The insulin infusion rate (u), a 

pivotal factor in efficiency and hypoglycemia risk, is embedded 

within the term 𝛾
𝑢

10
, fostering prudent insulin management. γ 

regulates the weight assigned to the insulin infusion rate term. 

D. Parameter Tuning and Performance Metrics 

Employing an iterative grid search method, we ascertain 

suitable values for coefficients α, β, and γ. Rigorous evaluation 

within our simulated environment involves diverse 

performance metrics: 

• Risk: The Clarke Error Grid Analysis (CEGA) [18] 

calculated the average risk score, gauging the clinical 

acceptability of glucose predictions. CEGA is a method to 

assess the clinical accuracy and significance of glucose 

predictions or measurements compared to a reference 

value.  

• MagniRisk: The average risk score computed using 

Magni’s Risk Analysis (MRA) [19], quantifying 

hypoglycemic and hyperglycemic risks. 

• Glucose: Average blood glucose level (mg/dL). 

• Insulin: Average insulin infusion rate (U/h). 

• Euglycemic: Percentage of time within the euglycemic 

range (70-180 mg/dL). 

• Hypoglycemic: Percentage of time below the 

hypoglycemic threshold (70 mg/dL). 

We adopt the iterative grid search method to fine-tune the 

parameters of a model or algorithm by exhaustively exploring 

a predefined range of values for each parameter. It involves 

generating a grid or matrix of different parameter combinations 

and evaluating the performance of the model for each 

combination. This process is iterative, meaning that it involves 

repeated cycles of adjusting the parameters, evaluating the 

model's performance, and refining the parameter values based 

on the evaluation results. This method is effective for 

systematically exploring the parameter space of a model and 

finding the best set of parameters that optimize its performance. 

It helps avoid manual guesswork in parameter tuning and 

provides a data-driven approach to finding optimal values. 

However, it can be computationally expensive, especially when 

dealing with many parameters or large parameter space. In such 

cases, we employed Bayesian optimization [20] to improve its 

efficiency. By harnessing reward shaping and a meticulously 

engineered reward function, our methodology bridges the gap 

between theoretical underpinnings and practical outcomes, 

offering an innovative trajectory toward refined blood glucose 

control in diabetes management. 

IV. EVALUATION 

We have conducted comprehensive experiments to assess 
the effectiveness of our proposed approach. In this section, we 
present and discuss the results of our experimental evaluations. 

A. Patient Data Simulation 

Acquiring real-world data for evaluating medical 
interventions, especially in intricate and sensitive domains like 
diabetes management, can be a formidable challenge due to 
various ethical, logistical, and safety considerations. Therefore, 
we turn to validated and widely accepted simulation models, 
such as the FDA-approved UVA/Padova simulator [21] . These 
simulators replicate the physiological processes and dynamics 
of the human body, allowing us to create controlled and 
repeatable experimental environments. Using such simulators, 
we can simulate various scenarios, manipulate various 
parameters, and generate realistic data that closely approximates 
real patient responses without compromising patient privacy or 
safety. 

To generate synthetic data for 30 virtual patients, we 
employed the open-source version of the UVA/Padova 
simulator [22, 23]. The simulator is a validated tool to create 
realistic and individualized data for blood glucose dynamics, 
insulin delivery, and carbohydrate intake. The 30 patients were 
divided into three groups: children, adolescents, and adults. 
Each group had 10 patients with different characteristics. These 
features are summarized in Table . We used 10 days of data for 
each patient, which included blood glucose measurements taken 
every five minutes by a continuous glucose monitor (CGM) and 
insulin dosages delivered every five minutes by an insulin pump. 



TABLE I SIMULATED PATIENTS’ FEATURES 

Person Age 
Total Daily Insulin Dose 

(TDI)-Mean (STD) 

child (#001-#010) 7-12 22.84 (±8.09) 

adolescent (#001-#010) 14-19 40.611 (±13.23) 

adult (#001-#010) 26-68 54.469 (±11.19) 

B. Model Setup 

In this paper, we developed a patient-specific model for each 
simulated individual using deep reinforcement learning (RL). 
To assess the effectiveness of deep RL for blood glucose control, 
we trained and tested the models with different random seeds on 
30 different simulated individuals. We trained each model for 
300 epochs, using a batch size of 256 and an epoch length of 10 
days. The architecture of model networks consisted of two GRU 
layers with 128 hidden units each, followed by a fully connected 
layer that produced the action output. In this paper, we used a 
discount factor of 0.99 for RL. Additionally, we employed a 
learning rate of 3e-4 for the policy, Q-function, and value 
function networks. Moreover, we incorporated domain 
knowledge into RL by using a reward-shaping technique. For 
model selection, we utilized 10 days of validation data to choose 
the best epoch for each model based on its performance. To 
avoid overfitting, we employed the model parameters from the 
best epoch to evaluate the model on 10 days of test data. 

C. Results and Discussions 

In this paper, we propose a novel method for blood glucose 

control using soft actor-critic (SAC) with entropy-based reward 

shaping (SAC+RS). We compare our method with another 

approach, SAC, with Magni's risk-based reward function 

(SAC+MRS) [6]and show that our method can achieve better 

performance regarding risk scores, glucose levels, insulin 

levels, and reward values. We evaluate our method on different 

person categories, including children, adolescents, and adults, 

and demonstrate its adaptability and robustness to the dynamics 

of blood glucose regulation. Our method is based on the idea of 

maximizing the entropy of the policy, which encourages 

exploration and diversity of actions. We design a reward 

function that incorporates the policy's entropy and the deviation 

of the blood glucose level from the target range. We show that 

this reward function can effectively shape the policy to achieve 

optimal blood glucose control and reduce the risk of 

complications. We argue that this reward function has some 

limitations, such as being sensitive to the choice of parameters 

and ignoring the uncertainty of the policy. We conducted 

experiments on simulated patients with mean values of each 

metric based on 10 simulation runs for each method. We used 

a validated model of blood glucose dynamics to evaluate the 

performance of each method for each person category. We use 

various metrics, such as risk scores, glucose levels, insulin 

levels, and the occurrence of euglycemic, hypoglycemic, and 

hyperglycemic states. 
The average risk score is inversely proportional to the 

clinical accuracy and significance of the glucose predictions or 
measurements [18]. The results shown in Table II indicate that 
our proposed method (SAC+RS) achieved a lower average risk 
(3.45) than the other two methods. Our method can reduce the 
risk scores by more than 2 points compared to SAC and 

SAC+MRS. This implies that our method can decrease the 
likelihood of developing long-term complications such as 
cardiovascular disease, kidney failure, nerve damage, and 
blindness. 

TABLE II PERFORMANCE COMPARISON OF DIFFERENT METHODS FOR 

RISK SCORES 

Method Risk↓ 

SAC 5.67 

SAC+MRS 4.96 

SAC+RS 3.45 

We evaluated the performance of each method using three 
criteria: blood glucose level, risk of hypoglycemia or 
hyperglycemia, and time spent in the euglycemic range (70-180 
mg/dL). The euglycemic range is the optimal range of blood 
glucose that minimizes the complications of diabetes. Our result 
demonstrated that SAC+RS outperformed SAC in blood glucose 
control, as it had lower blood glucose levels (124.96) and risk 
scores (3.4) than SAC. Moreover, for insulin infusion rate, 
SAC+MRS was higher than SAC, but SAC+RS was the same 
as SAC (0.0029). This indicates that our reward-shaping method 
achieved better blood glucose control with less risk and more 
time in the euglycemic range while using the same amount of 
insulin as SAC. The results are presented in Table III. 

TABLE III PERFORMANCE COMPARISON OF DIFFERENT METHODS FOR 

GLUCOSE AND INSULIN LEVEL AND STATE OCCURRENCE 

Metric                 
Method SAC SAC+MRS SAC+RS 

Glucose 128.45 124.96 124.96 

Insulin 0.0029 0.0050 0.0029 

Euglycemic↑ 0.82 0.87 0.87 

Hypoglycemic↓ 0.04 0.03 0.03 

Hyperglycemic↓ 0.14 0.10 0.10 

Based on the results, our method can increase the reward 
values by more than 20 points compared to SAC+MRS. This 
means that our method can generate more diverse and 
exploratory actions to cope with the uncertainty and variability 
of blood glucose dynamics. Fig.2 shows the reward values 
obtained by each reward function for each person category. As 
can be seen from results, our method outperforms the other 
methods regarding risk scores, glucose levels, insulin levels, and 
reward values. This indicates that our method can achieve better 
blood glucose control and reduce the risk of complications for 
diabetic patients. 

Across different person categories, including children, 
adolescents, and adults, our method exhibits adaptability and 
robustness, effectively addressing the varying physiological 
characteristics and preferences of diabetic patients. Compared to 
SAC and SAC+MRS, our approach significantly reduces risk 
scores by more than 2 points, lowering the probability of long-
term complications. Additionally, it achieves better blood 
glucose control and more time spent in the euglycemic range 
with an equal amount of insulin infusion rate. The entropy-
driven reward function enables our method to generate more 
diverse and exploratory actions, enhancing its ability to cope 
with the uncertainty and variability of blood glucose dynamics. 



Overall, our novel approach using SAC+RS presents a 
promising solution for personalized and effective blood glucose 
regulation, providing insights and implications for improved 
diabetes management and patient outcomes. 

 

Fig.2 Average of Reward for all patient in different Epochs 

V. CONCLUSIONS 

In conclusion, this study introduces an effective approach to 
blood glucose control by leveraging the power of reinforcement 
learning, particularly the SAC algorithm, along with a novel 
reward function based on entropy-driven reward shaping. Our 
extensive evaluation highlights the effectiveness of this method 
in achieving key goals within diabetes management, 
underscoring its capacity to reshape glucose regulation and 
elevate patient health. However, it's important to acknowledge 
certain limitations. The proposed approach relies heavily on 
simulated data from validated models, which may not fully 
capture the complexities of real-world patient scenarios. 
Moreover, the coefficients in the reward function require careful 
tuning, and their generalizability to diverse patient populations 
warrants further investigation. 

In the realm of future work, efforts should be directed 
towards the application and validation of the proposed approach 
using real patient data, potentially obtained through 
collaborations with medical institutions. Additionally, refining 
the reward function's coefficients through advanced 
optimization techniques could enhance the method's adaptability 
and robustness across different patient profiles. Further 
exploration of personalized and adaptive approaches within the 
reinforcement learning framework holds promise for optimizing 
blood glucose control tailored to individual patient needs.. 
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