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Abstract— Achieving optimal blood glucose control is a
complex challenge for individuals with diabetes, necessitating a
delicate balance among insulin dosage, food consumption, physical
activity, and stress management. This paper introduces an
innovative approach utilizing reinforcement learning (RL) to
develop personalized and effective strategies for blood glucose
regulation. Specifically, we employ the state-of-the-art soft actor-
critic (SAC) RL algorithm, which concurrently maximizes
anticipated rewards and policy entropy. We devise an entropy-
driven reward function to incentivize diverse action exploration
while ensuring a secure and consistent blood glucose profile. This
reward function considers both the policy's entropy and the
deviation of the blood glucose level from the target range, thus
optimizing blood glucose control and minimizing the risk of
complications. Our methodology is applied, trained, and assessed
using a sophisticated blood glucose dynamics simulator based on
the UVA/Padova model. The results demonstrate that our
proposed method, SAC with entropy-based reward shaping
(SAC+RS), outperforms a comparative approach, SAC with
Magni's risk-based reward function (SAC+MRS), in terms of risk
scores, glucose levels, insulin levels, and reward values.

Keywords—diabetes management, blood glucose control,
machine learning, reinforcement learning, reward shaping

I. INTRODUCTION

Diabetes has risen to the forefront as a significant and
widespread health challenge in modern times. Its increasing
prevalence has prompted heightened awareness and research
efforts to better understand and manage this complex condition.
Among the many critical facets of diabetes management,
achieving effective blood glucose control stands out as a pivotal
objective [1]. Maintaining optimal blood glucose levels is
paramount due to its direct impact on overall health and well-
being. Proper glucose regulation not only mitigates immediate
health risks, such as hypoglycemia or hyperglycemia, but also
plays a substantial role in preventing long-term complications
[2]. The intricacies of diabetes management are further
underscored by the intricate interplay of various factors,
including dietary choices, insulin dosing, physical activity,
stress management, and individual responses to treatment.

In the face of these multifaceted considerations, the
significance of accurate blood glucose control cannot be
overstated. It is the linchpin that connects various aspects of
diabetes care and significantly contributes to the quality of life
for individuals living with diabetes. As a result, innovative
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approaches to enhancing blood glucose regulation hold
immense promise for not only improving day-to-day
management but also for positively influencing the long-term
health outcomes of those affected by diabetes. However,
mastering the intricate task of blood glucose regulation poses a
formidable challenge due to the intricate interplay of various
influential factors. The equilibrium required to strike the ideal
balance in blood glucose levels involves a complex dance
among elements like precise insulin dosing, mindful dietary
choices, varying degrees of physical activity, and adept stress
management. This intricate interplay underscores the
multifaceted nature of diabetes management. In response to this
challenge, a surge of dedicated research initiatives has emerged,
driven by the collective goal of empowering individuals to
navigate and control their glucose levels effectively. These
endeavors span a broad spectrum of innovative approaches, each
striving to address a distinct aspect of the complex glucose
regulation puzzle. Predictive modeling initiatives [3, 4], for
instance, seek to anticipate and forecast blood glucose trends
based on historical data, enabling proactive interventions and
informed decision-making. These models leverage advanced
algorithms and machine learning techniques to extrapolate
future glucose levels, thereby providing individuals with
actionable insights to fine-tune their diabetes management
strategies. Closed-loop control systems [5, 6], another
pioneering avenue of research, embody the concept of real-time
automated glucose regulation. These systems utilize continuous
glucose monitoring technology to feed data to an automated
insulin delivery system, dynamically adjusting insulin dosages
to maintain optimal blood glucose levels. This technological
advancement promises to relieve individuals from constant
vigilance while ensuring stable glucose control.  Further
enriching this landscape are personalized interventions [7],
which recognize and respond to the inherent variability among
individuals. Tailored approaches acknowledge that each
person's response to insulin, food, activity, and stress is unique.
By customizing treatment plans based on an individual's specific
physiological characteristics and lifestyle choices, personalized
interventions enhance the precision and efficacy of blood
glucose management.

Despite these advancements, certain challenges persist. For
instance, achieving stable glucose levels across diverse
physiological contexts remains elusive. Managing the trade-off
between hyperglycemia and hypoglycemia episodes, ensuring
patient comfort, and optimizing insulin use further compound



the complexity. Moreover, the inherent variability in individual
responses to treatments calls for tailored solutions that adapt to
individual needs.

In response to these challenges, this paper introduces an
effective approach to blood glucose control by harnessing the
capabilities of reinforcement learning (RL), specifically the soft
actor-critic (SAC) algorithm [8]. SAC, a cutting-edge RL
algorithm, offers distinct advantages such as off-policy learning,
model independence, real-time adaptation, and robust
exploration-exploitation balance. This choice is rooted in the
belief that RL, particularly SAC, can serve as a potent tool for
the dynamic and personalized glucose regulation required in
diabetes management [9]. Central to our approach is the novel
formulation of a reward function based on reward shaping, an
innovative technique that modifies the reward structure to guide
the agent toward improved policies. This strategic entropy-
based shaping of rewards adds a layer of finesse to our method,
enhancing the fine-tuning of blood glucose control policies.

Our contribution introduces a multifaceted reward function
that addresses a spectrum of goals encompassing safety,
comfort, and efficiency. The reward function incorporates three
distinct terms: an exploration term based on policy entropy, an
exploitation term quantifying glucose level quality, and an
efficiency term associated with insulin infusion rate. These
terms align with diverse objectives, shaping an effective
framework for comprehensive glucose control. We emphasize
that the coefficients governing these terms are systematically
determined through a rigorous grid search process, optimizing
performance against a range of critical metrics. These metrics
include risk evaluation through the Clarke Error Grid Analysis
(CEGA) and Magni's Risk Analysis (MRA), average glucose
levels, insulin usage efficiency, and the percentage of time spent
within specific glucose level ranges.

II. RELATED WORK

The endeavor to enhance blood glucose control for
individuals with diabetes has spurred a diverse range of research
efforts, encompassing various methodologies and technological
advancements. In this section, we provide an overview of key
studies and initiatives that have contributed to the field,
highlighting their distinct approaches and contributions.

A. Predictive Modeling for Glucose Regulation

Predictive modeling has emerged as a prominent avenue to
anticipate and manage blood glucose levels. Researchers have
leveraged machine learning algorithms, statistical methods, and
physiological models to develop predictive models capable of
forecasting glucose trends. Striving to empower individuals with
timely information, these models enable proactive interventions
and informed decision-making. Notable contributions include
the work by Zaidi et al. [9], which introduces BG-Predict, a
novel deep learning model designed to forecast blood glucose
levels ahead in multiple time steps. The proposed tool aids Type-
1 diabetes patients in administering insulin and managing food
intake for optimal BG control. The model's effectiveness is
demonstrated through quantitative and qualitative evaluation on
real-world data from 97 patients. Another study [10] introduces
a personalized glucose prediction model, utilizing deep learning,
to aid medical staff in managing Type-2 diabetes patients in

hospitals. The model employs recurrent neural networks
(RNNSs), specifically testing simple RNN, gated recurrent unit
(GRU), and long-short term memory (LSTM) architectures for
optimal performance.

B. Closed-Loop Control Systems

Advances in technology have paved the way for closed-loop
control systems, which offer real-time automated glucose
regulation. These systems integrate continuous glucose
monitoring devices with automated insulin delivery mechanisms
to maintain glucose levels within target ranges. The research
conducted by O'Grady et al. [11] showcases the potential of
closed-loop systems in achieving stable glucose control while
minimizing the burden on individuals. The research involves
testing a fully automated portable system called the Medtronic
Portable Glucose Control System (PGCS), utilizing a
smartphone platform, subcutaneous glucose sensors, and an
insulin pump. Weaver and Hirsch [12] tested Medtronic's 670G
insulin pump with Guardian 3 sensor exemplifying progress,
maintaining glucose levels near targets. Initial studies show
improved HbAlc, safety, and reduced risk of ketoacidosis or
hypoglycemia. Yet, challenges remain in replicating natural islet
function for fully automated, multi-hormonal blood glucose
control.

C. Reinforcement Learning for Glucose Control

More recently, reinforcement learning (RL) has emerged as
a promising paradigm for blood glucose regulation. RL
algorithms, such as the soft actor-critic (SAC) algorithm
employed in this paper, hold the potential to learn effective
glucose control policies through interactions with the
environment. Numerous studies have proposed RL-based
algorithms for controlling blood glucose, often incorporating
model predictive control (MPC) [7, 13, 14] as a component.
MPC predicts future states and optimizes a cost function,
accommodating system uncertainties and constraints. However,
MPC's reliance on accurate models poses challenges. Tejedor et
al. [15] and Fox et al. [6] utilized MPC within RL-based actor-
critic methods. Tejedor et al. employed fixed parameters for
MPC, while Fox et al. introduced an adaptive model using
Gaussian processes. Both approaches improved glucose level
maintenance, reducing hypoglycemia and personalizing control.
Yet, both studies focused solely on blood glucose levels as
objectives, overlooking patient comfort, safety, energy usage,
insulin consumption, and preferences. Furthermore, their
evaluations relied on simulated data, potentially differing from
real-world complexities of blood glucose control.

[II. METHODOLOGY

Our proposed system revolves around the constructing an
insulin treatment framework by training a Soft Actor-Critic
(SAC) Reinforcement Learning (RL) agent on simulated data
from different patients with diabetes. The objective is to
establish a closed-loop insulin delivery system capable of
dynamically adjusting insulin dosages based on real-time
glucose readings, effectively optimizing diabetes management.
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A. Overview

Glucose control in closed-loop systems can be seen as a
problem of making decisions under uncertainty, which can be
formalized by a mathematical model called a partially
observable Markov decision process (POMDP). A POMDP
consists of a finite set of states, actions, observations, and
functions that describe the relationships between them. At each
time step, the agent faces a situation that represents the current
state of the environment and chooses an action that affects the
environment and produces a reward that indicates how good the
action was. Then, the agent moves to a new state with a certain
probability that depends on the previous state and action.
However, the agent cannot directly observe the new state but
only gets a clue that is related to the state with some probability
[16]. In the context of glucose control, the state and action are
defined by the blood glucose level of the patient and by the
amount of insulin that is delivered at that time. The uncertainty
of the state comes from the noise in the devices that measure the
blood glucose level and from the influence of past data, such as
the carbohydrates that were eaten, the insulin that was injected,
and the blood glucose levels that were recorded. Fig.1 illustrates
the conceptual architecture of our methodology process. The RL
agents are responsible for dynamically regulating insulin
dosages in response to real-time glucose readings, thereby
automating and optimizing the treatment process.

The architecture consists of three main components; the first
is a Reinforcement learning agent that learns a policy to control
the insulin infusion rate based on the glucose sensor readings
and the patient’s preferences. The agent uses a soft actor-critic
(SAC) algorithm, an actor-critic method that maximizes both the
expected reward and the entropy of the policy. Our reward
function is defined as a combination of the entropy of the policy,
the squared discrepancy between the blood glucose level and the
target value, and the insulin infusion rate. The reinforcement
learning agent consists of three neural networks: a policy
network, a Q-function network, and a value function network.
The policy network is a stochastic actor that outputs a Gaussian

distribution over actions given the current state. The Q-function
network is a critic that estimates the Q-value of a state-action
pair. The value function network is another critic that estimates
the value of a state. The reinforcement learning agent updates its
networks using gradient descent and experience replay. It
samples transitions from a replay buffer and computes the target
values for the Q-function and the value function. The second
component of the architecture is the UVA/Padova Simulator
which models the glucose-insulin dynamics of a person with
type 1 diabetes. It takes the insulin infusion rate as input and
outputs the blood glucose level. The last component of the
architecture is Continues Glucose Monitor (CGM)/Glucose
sensor, which measures the blood glucose level from the
UVA/Padova simulator and adds some noise and delay to
simulate real-world sensor errors.

B. Reinforcement Learning with Soft Actor-Critic (SAC)

RL provides a computational framework for learning
optimal decisions in uncertain environments. RL is well-suited
in blood glucose management due to its capability to handle
complex, high-dimensional state spaces and stochastic
dynamics. SAC, our chosen RL algorithm, bridges stochastic
policy optimization and Deep Deterministic Policy Gradient
(DDPG)-style methods. It emphasizes maximizing both
expected return and policy entropy, promoting exploration and
preventing premature convergence. SAC consists of three core
components: an actor, a critic, and an entropy temperature. The
actor employs a stochastic policy, the critic estimates state-
action value functions, and the entropy temperature controls
exploration-exploitation balance. We update the actor and critic
through well-defined objectives, optimizing policy and value
estimation.

The SAC RL model represents an advanced version of the
actor-critic algorithm, designed to learn a stochastic policy that
maximizes cumulative rewards. The policy, a function of the
current state, is learned through an iterative actor-critic process,
where the actor formulates the policy, and the critic evaluates
state-value functions. A key feature of the SAC RL model is its
maximum entropy formulation, which promotes exploration and
prevents premature convergence to suboptimal policies. The
SAC RL model's objective function involves maximizing both
expected reward and policy entropy, while the critic network
aims to minimize the mean squared error between predicted and
actual state-value functions [8]. Integrating the SAC RL model
into the metabolic model entails training the RL agent using real-
time simulated data. Subsequently, the trained model is
employed to automate insulin delivery within the simulator. The
RL agent's learning process involves adjusting bolus insulin
dosages based on real-time glucose readings, meal intake, and
past agent actions. This adaptation adheres to an optimal policy
m, designed to maximize the objective function J(m). Our
proposed MDI therapy framework combines cutting-edge
reinforcement learning with a robust metabolic model, offering
a promising avenue for enhancing blood glucose control and
diabetes management.

C. Reward Function and Reward Shaping

To foster effective blood glucose management, we
introduce a meticulously crafted reward function coupled with
a reward shaping technique. This section delineates the design



of our reward function, underscored by the application of
reward shaping to holistically address varied objectives in
blood glucose control.

1) Designing a Reward Function for Blood Glucose
Control

We harness reinforcement learning's potential by
constructing a reward function tailored to the intricacies of
blood glucose regulation. Our approach integrates reward
shaping, a potent technique that fine-tunes the reward function
to steer the RL agent toward optimal policies [17]. By
amalgamating prior knowledge, expediting learning, and
enhancing performance, reward shaping offers an adaptable
framework. This integration is performed with prudence to
circumvent potential disruptions to optimal policy attainment.

2) Proposing a Multi-Objective Reward Function for Blood
Glucose Control

We propose a versatile reward function calibrated to fulfill
multiple objectives, including the preservation of safe and
comfortable blood glucose levels, prevention of hypoglycemic
episodes, and judicious utilization of energy and insulin
resources. Our novel reward function is mathematically

described as:
u

—125)2
r(gum) = al(m) - 2 —y L (1
Where:

o 1.(g,u,m) denotes the reward shaping component
catering to blood glucose level (g), insulin infusion rate
(u), and policy (7).

e H(n) signifies the entropy of policy m, capturing its
randomness or uncertainty.

* 0, B, and vy are positive coefficients that control the trade-
off between exploration and exploitation.

The squared discrepancy between blood glucose level (g)
and the target value of 125 mg/dL is encapsulated by the term
(g—125)*
asTra
ameliorating health outcomes. This squared discrepancy term is

bolstered by the coefficient B. The insulin infusion rate (u), a
pivotal factor in efficiency and hypoglycemia risk, is embedded
within the term y%, fostering prudent insulin management. y

promoting meticulous glucose control and

regulates the weight assigned to the insulin infusion rate term.

D. Parameter Tuning and Performance Metrics

Employing an iterative grid search method, we ascertain
suitable values for coefficients o, B, and y. Rigorous evaluation
within our simulated environment involves diverse
performance metrics:

e Risk: The Clarke Error Grid Analysis (CEGA) [18]
calculated the average risk score, gauging the clinical
acceptability of glucose predictions. CEGA is a method to
assess the clinical accuracy and significance of glucose
predictions or measurements compared to a reference
value.

e MagniRisk: The average risk score computed using
Magni’s Risk Analysis (MRA) [19], quantifying
hypoglycemic and hyperglycemic risks.

e  Glucose: Average blood glucose level (mg/dL).

e Insulin: Average insulin infusion rate (U/h).

e FEuglycemic: Percentage of time within the euglycemic
range (70-180 mg/dL).

e Hypoglycemic: Percentage of
hypoglycemic threshold (70 mg/dL).

time below the

We adopt the iterative grid search method to fine-tune the
parameters of a model or algorithm by exhaustively exploring
a predefined range of values for each parameter. It involves
generating a grid or matrix of different parameter combinations
and evaluating the performance of the model for each
combination. This process is iterative, meaning that it involves
repeated cycles of adjusting the parameters, evaluating the
model's performance, and refining the parameter values based
on the evaluation results. This method is effective for
systematically exploring the parameter space of a model and
finding the best set of parameters that optimize its performance.
It helps avoid manual guesswork in parameter tuning and
provides a data-driven approach to finding optimal values.
However, it can be computationally expensive, especially when
dealing with many parameters or large parameter space. In such
cases, we employed Bayesian optimization [20] to improve its
efficiency. By harnessing reward shaping and a meticulously
engineered reward function, our methodology bridges the gap
between theoretical underpinnings and practical outcomes,
offering an innovative trajectory toward refined blood glucose
control in diabetes management.

1V. EVALUATION

We have conducted comprehensive experiments to assess
the effectiveness of our proposed approach. In this section, we
present and discuss the results of our experimental evaluations.

A. Patient Data Simulation

Acquiring real-world data for evaluating medical
interventions, especially in intricate and sensitive domains like
diabetes management, can be a formidable challenge due to
various ethical, logistical, and safety considerations. Therefore,
we turn to validated and widely accepted simulation models,
such as the FDA-approved UVA/Padova simulator [21] . These
simulators replicate the physiological processes and dynamics
of the human body, allowing us to create controlled and
repeatable experimental environments. Using such simulators,
we can simulate various scenarios, manipulate various
parameters, and generate realistic data that closely approximates
real patient responses without compromising patient privacy or
safety.

To generate synthetic data for 30 virtual patients, we
employed the open-source version of the UVA/Padova
simulator [22, 23]. The simulator is a validated tool to create
realistic and individualized data for blood glucose dynamics,
insulin delivery, and carbohydrate intake. The 30 patients were
divided into three groups: children, adolescents, and adults.
Each group had 10 patients with different characteristics. These
features are summarized in Table . We used 10 days of data for
each patient, which included blood glucose measurements taken
every five minutes by a continuous glucose monitor (CGM) and
insulin dosages delivered every five minutes by an insulin pump.



TABLE I SIMULATED PATIENTS’ FEATURES

Total Daily Insulin Dose

Person Age (TDI)-Mean (STD)
child (#001-#010) 7-12 22.84 (£8.09)
adolescent (#001-#010) 14-19 40.611 (x13.23)
adult (#001-#010) 26-68 54.469 (£11.19)

B. Model Setup

In this paper, we developed a patient-specific model for each
simulated individual using deep reinforcement learning (RL).
To assess the effectiveness of deep RL for blood glucose control,
we trained and tested the models with different random seeds on
30 different simulated individuals. We trained each model for
300 epochs, using a batch size of 256 and an epoch length of 10
days. The architecture of model networks consisted of two GRU
layers with 128 hidden units each, followed by a fully connected
layer that produced the action output. In this paper, we used a
discount factor of 0.99 for RL. Additionally, we employed a
learning rate of 3e-4 for the policy, Q-function, and value
function networks. Moreover, we incorporated domain
knowledge into RL by using a reward-shaping technique. For
model selection, we utilized 10 days of validation data to choose
the best epoch for each model based on its performance. To
avoid overfitting, we employed the model parameters from the
best epoch to evaluate the model on 10 days of test data.

C. Results and Discussions

In this paper, we propose a novel method for blood glucose
control using soft actor-critic (SAC) with entropy-based reward
shaping (SAC+RS). We compare our method with another
approach, SAC, with Magni's risk-based reward function
(SAC+MRS) [6]and show that our method can achieve better
performance regarding risk scores, glucose levels, insulin
levels, and reward values. We evaluate our method on different
person categories, including children, adolescents, and adults,
and demonstrate its adaptability and robustness to the dynamics
of blood glucose regulation. Our method is based on the idea of
maximizing the entropy of the policy, which encourages
exploration and diversity of actions. We design a reward
function that incorporates the policy's entropy and the deviation
of the blood glucose level from the target range. We show that
this reward function can effectively shape the policy to achieve
optimal blood glucose control and reduce the risk of
complications. We argue that this reward function has some
limitations, such as being sensitive to the choice of parameters
and ignoring the uncertainty of the policy. We conducted
experiments on simulated patients with mean values of each
metric based on 10 simulation runs for each method. We used
a validated model of blood glucose dynamics to evaluate the
performance of each method for each person category. We use
various metrics, such as risk scores, glucose levels, insulin
levels, and the occurrence of euglycemic, hypoglycemic, and
hyperglycemic states.

The average risk score is inversely proportional to the
clinical accuracy and significance of the glucose predictions or
measurements [18]. The results shown in Table II indicate that
our proposed method (SAC+RS) achieved a lower average risk
(3.45) than the other two methods. Our method can reduce the
risk scores by more than 2 points compared to SAC and

SAC+MRS. This implies that our method can decrease the
likelihood of developing long-term complications such as
cardiovascular disease, kidney failure, nerve damage, and
blindness.

TABLE IT PERFORMANCE COMPARISON OF DIFFERENT METHODS FOR
RISK SCORES
Method Risk |
SAC 5.67
SAC+MRS 4.96
SAC+RS 345

We evaluated the performance of each method using three
criteria: blood glucose level, risk of hypoglycemia or
hyperglycemia, and time spent in the euglycemic range (70-180
mg/dL). The euglycemic range is the optimal range of blood
glucose that minimizes the complications of diabetes. Our result
demonstrated that SAC+RS outperformed SAC in blood glucose
control, as it had lower blood glucose levels (124.96) and risk
scores (3.4) than SAC. Moreover, for insulin infusion rate,
SAC+MRS was higher than SAC, but SAC+RS was the same
as SAC (0.0029). This indicates that our reward-shaping method
achieved better blood glucose control with less risk and more
time in the euglycemic range while using the same amount of
insulin as SAC. The results are presented in Table III.

PERFORMANCE COMPARISON OF DIFFERENT METHODS FOR
GLUCOSE AND INSULIN LEVEL AND STATE OCCURRENCE

TABLE III

Metric Method SAC SAC+MRS SAC+RS
Glucose 128.45 124.96 124.96
Insulin 0.0029 0.0050 0.0029
Euglycemic? 0.82 0.87 0.87
Hypoglycemic ¢ 0.04 0.03 0.03
Hyperglycemic | 0.14 0.10 0.10

Based on the results, our method can increase the reward
values by more than 20 points compared to SAC+MRS. This
means that our method can generate more diverse and
exploratory actions to cope with the uncertainty and variability
of blood glucose dynamics. Fig.2 shows the reward values
obtained by each reward function for each person category. As
can be seen from results, our method outperforms the other
methods regarding risk scores, glucose levels, insulin levels, and
reward values. This indicates that our method can achieve better
blood glucose control and reduce the risk of complications for
diabetic patients.

Across different person categories, including children,
adolescents, and adults, our method exhibits adaptability and
robustness, effectively addressing the varying physiological
characteristics and preferences of diabetic patients. Compared to
SAC and SAC+MRS, our approach significantly reduces risk
scores by more than 2 points, lowering the probability of long-
term complications. Additionally, it achieves better blood
glucose control and more time spent in the euglycemic range
with an equal amount of insulin infusion rate. The entropy-
driven reward function enables our method to generate more
diverse and exploratory actions, enhancing its ability to cope
with the uncertainty and variability of blood glucose dynamics.



Overall, our novel approach using SAC+RS presents a
promising solution for personalized and effective blood glucose
regulation, providing insights and implications for improved
diabetes management and patient outcomes.
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Fig.2  Average of Reward for all patient in different Epochs

V. CONCLUSIONS

In conclusion, this study introduces an effective approach to
blood glucose control by leveraging the power of reinforcement
learning, particularly the SAC algorithm, along with a novel
reward function based on entropy-driven reward shaping. Our
extensive evaluation highlights the effectiveness of this method
in achieving key goals within diabetes management,
underscoring its capacity to reshape glucose regulation and
elevate patient health. However, it's important to acknowledge
certain limitations. The proposed approach relies heavily on
simulated data from validated models, which may not fully
capture the complexities of real-world patient scenarios.
Moreover, the coefficients in the reward function require careful
tuning, and their generalizability to diverse patient populations
warrants further investigation.

In the realm of future work, efforts should be directed
towards the application and validation of the proposed approach
using real patient data, potentially obtained through
collaborations with medical institutions. Additionally, refining
the reward function's coefficients through advanced
optimization techniques could enhance the method's adaptability
and robustness across different patient profiles. Further
exploration of personalized and adaptive approaches within the
reinforcement learning framework holds promise for optimizing
blood glucose control tailored to individual patient needs..
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