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Abstract—Sparse arrays have emerged as a popular alternative
to the conventional uniform linear array (ULA) due to the
enhanced degrees of freedom (DOF) and superior resolution
offered by them. In the passive setting, these advantages are
realized by leveraging correlation between the received signals
at different sensors. This has led to the belief that sparse
arrays require a large number of temporal measurements to
reliably estimate parameters of interest from these correlations,
and therefore they may not be preferred in the sample-starved
regime. In this paper, we debunk this myth by performing a
rigorous non-asymptotic analysis of the Coarray ESPRIT algo-
rithm. This seemingly counter-intuitive result is a consequence
of the scaling of the singular value of the coarray manifold,
which compensates for the potentially large covariance estimation
error in the limited snapshot regime. Specifically, we show that
for a nested array operating in the regime of fewer sources
than sensors (S =O(1)), it is possible to bound the matching
distance error between the estimated and true directions of
arrival (DOAs) by an arbitrarily small quantity (ε) with high
probability, provided (i) the number of temporal snapshots (L)
scales only logarithmically with the number of sensors (P ),
i.e. L=Ω(ln(P )/ε2), and (ii) a suitable separation condition
is satisfied. Our results also formally prove the well-known
empirical resolution benefits of sparse arrays, by establishing that
the minimum separation between sources can be Ω(1/P 2), as
opposed to separation Ω(1/P ) required by a ULA with the same
number of sensors. In addition to the array geometry, our sample
complexity expression reveals the dependence on other key
model parameters such as Signal to Noise Ratio (SNR) and the
dynamic range of the source powers. This enables us to establish
the superior noise-resilience of nested arrays both theoretically
and empirically.

Index Terms—Sparse arrays, nested sampling, super-resolution,
Toeplitz covariance matrix, non-asymptotic guarantees.
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I. INTRODUCTION

T
HE problem of source localization arises in different con-
texts ranging from target detection in sonar and radar,

hybrid mmWave channel estimation, and DOA estimation in
array signal processing [1], [2], [3]. Traditionally, these ap-
plications consider ULAs, which are known to resolve up to
S =O(P ) sources with P sensors. However, deterministic
sparse array geometries, such as nested and coprime arrays
[1], [2], have recently gained significant attention primarily
due to two attractive properties. Firstly, sparse arrays are able
to identify up to S =O(P 2) uncorrelated sources using only
P sensors. Secondly, sparse arrays enjoy a performance gain
showcased by lower Cramér-Rao bound and higher angular
resolution [4], [5], [6], [7], [8]. Both of these properties can be
attributed to the enhanced spatial DOF enabled by the so-called
difference coarray, which can be as large as Θ(P 2).

The enhanced DOF of the coarray are realized by computing
temporal correlations between the spatial measurements and
constructing an augmented covariance matrix called the “coar-
ray covariance matrix”, whose size is determined by the size of
the difference coarray. Following the construction of the coarray
covariance matrix, it is possible to fully harness the power of the
difference coarray and identify the unknown source directions
using classical subspace techniques, such as MUSIC, ESPRIT
or the matrix pencil method [9], [10], [11]. Despite the success
of coarray-based algorithms, a common belief is that they re-
quire a large number of temporal snapshots to fully utilize the
number of DOFs provided by the coarray. The root of this belief
mainly lies in the inadequacy of existing performance analyses,
which are primarily based on characterizing the asymptotic
Mean Squared Error (MSE) of the Coarray MUSIC [5] and
Coarray ESPRIT algorithms [12]. In particular, such asymptotic
results primarily rely on the first-order perturbation analysis
framework proposed in [13], which leaves two key questions
unanswered regarding the performance of coarray algorithms.
Firstly, the perturbation framework fails to theoretically explain
the improvement in resolution offered by sparse arrays over
the ULA—a phenomenon that has been extensively observed
in numerical experiments [5], [14]. Secondly, the analysis does
not adequately reveal the dependence of temporal snapshots on
key model parameters such as the array geometry, number of
sensors, SNR and dynamic range of the source powers.
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The aforementioned shortcomings are partially addressed in
[15], which adapts recent advances in the theory of super-
resolution [16], [17] to the coarray setting. The analysis, which
is based on Total-Variational norm minimization, is indeed
non-asymptotic. However, it is possible to show that the snap-
shot requirement in this setting scales quadratically (rather than
linearly) with the number of sensors P , which is undesirable.
In a parallel line of work using a grid-based model, we re-
cently showed that Ω(P 2) snapshots are sufficient for ensuring
exact support recovery with high probability even for closely-
spaced sources, where the smallest source separation scales as
Ω(1/P 2) [18]. Although the analysis is applicable for scenarios
where S > P (more sources than sensors), the sample complex-
ity Ω(P 2) is still conservative when S ≤ P . In [19], an atomic
norm formulation is adopted to exploit the Toeplitz structure
of the coarray covariance matrix. The analysis provides a char-
acterization of the covariance matrix estimation error, but not
of the sample complexity required to achieve a desired DOA
estimation error, which is often the main quantity of interest.
Indeed, common folklore suggests that the benefits of sparse ar-
rays necessarily come at the cost of a large number of snapshots,
since the coarray covariance matrix, which typically needs to
be estimated, is of size Θ(P 2). Hence, one might be tempted
to falsely conclude that sparse arrays are at a disadvantage
compared to ULAs. In this paper, our goal is to dispel this belief
by providing new non-asymptotic results on the performance of
Coarray ESPRIT with a focus on nested arrays in the regime
S ≤ P . Our analysis is motivated by contemporary applications
such as autonomous sensing and mmWave channel estimation
[3], [14], where identifying more sources than sensors may not
be necessary, and the number snapshots may be restricted either
due to coherent multipaths or a rapidly varying environment.

While subspace-based algorithms have been around for sev-
eral decades and actively used in practice, performance guaran-
tees characterizing their precise resolution limit were obtained
only recently [20], [21], [22], [23], [24]. This analysis has also
been extended to multi-snapshot setting in [25]. The key factor
enabling these guarantees is the characterization of the smallest
singular value of Vandermonde matrices [24]. However, all
the aforementioned results are only applicable to the ULA.
Furthermore, no statistical assumptions are made on the source
signals, and hence, the coarray perspective is missing. The key
difference between deterministic and random sources is that in
the latter case, the perturbation to the subspace of interest is a
consequence of both noise as well as finite-snapshot covariance
estimation error. Therefore, extending the analysis in [20], [25]
to the stochastic case requires non-trivial modifications.

Contributions: Our first main contribution is to probabilis-
tically characterize the coarray covariance matrix estimation
error due to finite snapshots. Our second main contribution is
a non-asymptotic performance analysis for the Coarray ES-
PRIT algorithm in terms of the matching distance error metric.
Specifically, we characterize the number of temporal snapshots
(sample complexity) required to bound the matching distance
error by a specified parameter. To the best of our knowledge,
our sample complexity expression (in terms of snapshots) is
the first to explicitly bring out the dependence on key model
parameters such as the array geometry, SNR and dynamic

range of the source powers. Furthermore, we establish that
it is possible to bound the matching distance error with an
arbitrarily small quantity for both the nested array and ULA,
using the (order-wise) same number of snapshots L=Ω(lnP ).
However, a nested array can achieve this in a much smaller
separation regime ∆min =Ω(1/P 2) compared to the ULA, for
which ∆min =Ω(1/P ). Our analysis dispels the widely-held
belief that sparse arrays require significantly more snapshots
compared to ULAs when the number of sources is less than
the number of sensors, and at the same time establishes the
superior resolution capabilities of nested arrays. In addition
to advancing the theoretical understanding, this analysis could
also serve as a guiding principle for practitioners to determine
suitable operating conditions.

Notations: Symbol � represents the Khatri-Rao (column-
wise Kronecker) product, whereas ‖ · ‖2 and ‖ · ‖F denote the
spectral and Frobenius norm of a matrix. Moreover, σi(A)
is the i-th largest singular value of A. R(A) represents the
range space of a given matrix A. For a set real numbers
{p1, p2, . . . , pK}, pmin and pmax denote the minimum and
maximum numbers in the set, respectively. The symbol T :=
[0, 1) denotes the torus. For a sub-Gaussian random variable
X , ‖X‖ψ2

denotes its sub-Gaussian norm defined as ‖X‖ψ2
:=

inf{t > 0 | E[expX2/t2]≤ 2}.

II. BACKGROUND ON SPARSE ARRAYS

Consider a sparse linear array (SLA) with P sensors located
at {dpλ/2}Pp=1, where λ is the wavelength of the incoming far-
field narrow-band source signals and dp belongs to an integer
set S (|S|= P ). Suppose S sources with distinct DOAs θ =
{θ1, θ2, · · · , θS} impinge on the array where θi ∈ (−π/2, π/2]
for i= 1, . . . , S. The signal received at the P sensors at time
instance t is given by:

y(t) =AS(θ)x(t) + n(t), t= 1, . . . , L. (1)

The matrix AS(θ) = [aS(θ1),aS(θ2), . . . ,aS(θS)] ∈ C
P×S

is the array manifold matrix where: aS(θi) =
[ejπd1 sin(θi), ejπd2 sin(θi) . . . ejπdP sin(θi)]�, represents
the steering vector corresponding to the direction θi, L denotes
the total number of temporal snapshots, x(t) ∈ C

S is the tth

temporal snapshot of the source signal vector and n(t) ∈ C
P

is an additive noise term. We define the normalized spatial
frequencies (which we refer to as normalized DOAs) as
ωi = sin(θi)/2. Throughout this paper, we make the following
statistical assumptions on the source signals and noise:

[A1] Uncorrelated Gaussian Sources: The source
signals x(t) are assumed to be uncorrelated white
circularly symmetric Gaussian CN (0,P) where P=
diag(p1, p2, . . . , pS) represents a diagonal covariance ma-
trix of source powers.
[A2] Gaussian Noise: The noise n(t) follows a zero-
mean circularly symmetric complex Gaussian distribution
n(t)∼ CN (0, σ2I), and is uncorrelated with x(t).

Under assumptions [A1-A2], the measurements follow
y(t)∼ CN (0,Ry), where Ry is given by:

Ry =AS(θ)PA
H
S (θ) + σ2IP ∈ C

P×P . (2)
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By vectorizing Ry, we obtain the “virtual measure-
ments”: ry = (A∗

S
(θ)�AS(θ))p+ σ2i, where i= vec(IP )

and p= [p1, . . . , pS ]
T . The matrix A∗

S
(θ)�AS(θ) can be

viewed as a “virtual array” with sensor locations given by the
difference set of the SLA.

Definition II.1: (Difference Set). Given an SLA
S= {d1, d2, · · · , dP }, its difference set DS is defined as:
DS = {dm − dn|dm, dn ∈ S}.

The difference set DS of S is also called its virtual difference
coarray. Let Mca > 0 be the largest integer such that the set
US := {0, 1, . . . ,Mca} satisfies US ⊆ DS. This set US denotes
the largest contiguous non-negative segment of the difference
set and is essentially a ULA with Mca + 1 sensors. By harness-
ing the structure of US, sparse arrays enjoy enhanced degrees
of freedom over the physical SLA. An array is called hole-free
if its difference set is a ULA, i.e., DS = {−Mca, · · · ,Mca}.
We now introduce the notation for a “generalized nested array”,
which is a special hole-free array.

Definition II.2: (Nested array). A generalized nested ar-
ray S

(N1,N2)
nest with N1 ≥N2 > 0, is defined as: S

(N1,N2)
nest =

{n}N1
n=1 ∪ {m(N1 + 1)}N2

m=1.
It can be shown that any nested array S

(N1,N2)
nest is hole-free,

i.e., US = {0, 1, · · · ,Mca} with Mca =N2(N1 + 1)− 1. Fur-
thermore, Sula = S

(P−1,1)
nest , i.e., choosing N1 = P − 1 and N2 =

1, yields a ULA with P sensors. For a given P , if N1 = 
P
2 �,

N2 = �P
2 
, then Mca + 1 = �P

2 
(
P
2 �+ 1). It can be verified

that for P ≥ 3, we have1:

P 2/5≤Mca + 1≤ P 2. (3)

Therefore, Mca =Θ(P 2) is indeed achievable. Next, we in-
troduce an important quantity that is essential for describing
correlation-based processing.

Definition II.3: (Weight Function). Consider a hole-free array
S. For every i ∈ DS, its weight function is defined as |Ωi|:
Ωi = {(m,n)|dm − dn = i, 1≤m,n≤ P} where the set Ωi

essentially captures all pairs (dm, dn) of sensor locations that
generate the difference of i= dm − dn.

Due to symmetry, it can be verified that |Ωi|= |Ω−i|. Next,
we review the widely-used “redundancy averaging” technique
used for correlation-domain processing. Following [1], [5],
[26], the virtual ULA measurements are given by:

t= Favry, (4)

where t= [t−Mca , · · · , t−1, t0, t1, · · · , tMca ]
� and Fav is the

redundancy averaging matrix given by:

[Fav]i+Mca+1,m+P (n−1) =

{
1

|Ωi| If dm − dn = i

0 Otherwise,
(5)

with −Mca ≤ i≤Mca and 1≤m,n≤ P . The element ti
is obtained by averaging all entries [Ry]m,n whose indices
(m,n) generate a difference of i, i.e., dm − dn = i. Define
a Toeplitz operator TMca

: C2Mca+1 → C
Mca+1×Mca+1

as: [TMca
(z)]m,n = zMca+1+m−n, 1≤m,n≤Mca + 1.

If the vector z ∈ C
2Mca+1 is conjugate symmetric, i.e.,

1The upper bound in (3) can be tightened to P 2/2, however, this will only
change universal constants appearing in Theorem 5.

zMca+1+i = z∗Mca+1−i, i= 0, 1, . . . ,Mca, then TMca
(z)

is a Hermitian matrix. Using the virtual measurement
t, an augmented virtual co-array covariance matrix
Tca ∈ C

(Mca+1)×(Mca+1) is constructed as follows:

Tca := TMca
(t) =AUS

(θ)PAH
US
(θ) + σ2IMca+1. (6)

Once this virtual coarray covariance matrix has been obtained,
any subspace-based algorithm [9], [10] applied to Tca can ex-
actly recover the source DOAs provided Mca ≥ S. Hence, this
also reveals that by efficiently designing sparse arrays, we can
resolve up to Θ(P 2) sources with only P sensors. In the next
section, we describe how the correlation processing is modified
in the finite snapshot setting.

A. Finite-Snapshot Coarray Covariance Estimation

Let R̂y be the sample covariance matrix given by:

R̂y :=
1

L

L∑

t=1

y(t)yH(t). (7)

With a finite L, all the operations on the true covariance matrix
are replaced by operations on the sample covariance matrix.
First, we apply the redundancy averaging on r̂y:

t̂ := Favr̂y, where r̂y := vec(R̂y). (8)

Here t̂= [t̂−Mca , · · · , t̂−1, t̂0, t̂1, · · · , t̂Mca ]
� with t̂i =

1
|Ωi|∑

dm−dn=i[R̂y]m,n. Next, the estimated coarray covariance
matrix is obtained by constructing a Toeplitz Hermitian matrix
from t̂ as follows:

T̂ca = TMca
(̂t). (9)

For a hole-free sparse array S, from (4), the elements of the
matrix Ry are given by:

[Ry]m,n = tdm−dn
1≤m,n≤ P. (10)

Similarly, using the estimated coarray covariance matrix T̂ca,
we define matrix Rav ∈ C

P×P as

[Rav]m,n := t̂dm−dn
, 1≤m,n≤ P. (11)

This essentially maps the entries t̂i into a P × P matrix with the
assignments specified by the difference set of the array S. Since
the sample covariance matrix R̂y is imperfect, the estimate T̂ca

also incurs an error due to a finite number of snapshots. We
denote the covariance estimation error as:

EL =Tca − T̂ca. (12)

The error in estimating the coarray covariance matrix naturally
causes errors in DOA estimation as well. Since subspace based
algorithms are typically applied to this estimated covariance
matrix T̂ca, it becomes crucial to probabilistically characterize
the estimation error EL and how it affects the DOA estimation
error. This paper provides such a rigorous theoretical charac-
terization of the DOA estimation error with limited snapshots.
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B. Review of Existing Performance Analysis of Coarray-Based

Angle Estimation

The existing performance analyses for coarray-based algo-
rithms are largely asymptotic in nature. In particular, they
rely on the first-order perturbation analysis framework pro-
posed in [13], which has been used to obtain expressions
for the mean square error (MSE) of coarray MUSIC [5],
and coarray ESPRIT [12]. Consider the eigen decomposition
Tca =UΓsU+U⊥ΓnU

H
⊥ , whereU ∈ C

Mca+1×S andU⊥ ∈
C

Mca+1×Mca+1−S denote the eigenvectors corresponding to
the signal and noise subspaces, respectively. The corresponding
perturbed matrices are denoted as T̂ca =Tca +∆Tca, Û⊥ =
U⊥ +∆U⊥ and Γ̂n = Γn +∆Γn. The perturbed matrices
satisfy: (Tca +∆Tca)(U⊥ +∆U⊥) = (U⊥ +∆U⊥)(Γn +
∆Γn). The perturbation analysis in [5] hinges on (i) the per-
turbations being “small enough” and (ii) ignoring the higher
order perturbation terms such as ∆Tca∆U⊥ etc. One of the
key drawbacks of this analysis is that a rigorous character-
ization of an upper bound on the “small enough perturba-

tion”‖∆Tca‖2 ≤ ε1 has not been provided explicitly. Secondly,
[5, Theorem 1] makes a critical assumption that “the signal sub-
space and the noise subspace are well-separated”. This assump-
tion leaves open the possibility of problematic (unidentifiable)
source configurations, which have not been explicitly addressed
in their analysis. We address both of the aforementioned issues
by adopting a non-asymptotic analysis framework that is free
from any approximations. Our analysis also explicitly charac-
terizes source configurations that ensure separation between
the so-called signal and noise subspaces. In [18], the first rig-
orous non-asymptotic probabilistic guarantees were provided
for support recovery using a grid-based model. Although their
analysis is valid for S > P , the sample complexity L=Ω(P 2)
is conservative when S < P as our analysis in Section IV
will show.

III. PERFORMANCE ANALYSIS OF COARRAY ESPRIT
WITH FINITE SNAPSHOTS

The Coarray ESPRIT algorithm, an adaptation of ESPRIT in
the coarray domain, was introduced in [12]. It applies ESPRIT
on the estimated coarray covariance matrix T̂ca as opposed to
covariance matrix R̂y of the physical measurements. For a self-
contained exposition, we review the Coarray ESPRIT algorithm
and point out certain invariance properties of Coarray ESPRIT.
We describe Coarray ESPRIT for the ideal coarray covariance
matrix Tca. The extension to the sample covariance estimate is
straightforward.

A. The Coarray ESPRIT Algorithm

The coarray signal subspace is defined as the span
of the steering vectors: Sca :=R (AUS

(θ)) . Matrix
T0 :=AUS

(θ)PAH
US
(θ) is positive semi-definite and permits

the following eigendecompostion: T0 =BΓBH , where the
diagonal of Γ comprises of the eigenvalues ordered in non-
increasing fashion and B is a unitary matrix. We can partition
B as B= [U,U⊥], where the columns of U ∈ C

(Mca+1)×S

denote the eigenvectors of T0 corresponding to its non-zero
eigenvalues. Following this decomposition, we write Tca as:

Tca =T0 + σ2IMca+1 =B(Γ+ σ2IMca+1)B
H . (13)

If Mca ≥ S, the Vandermonde structure of AUS
(θ) allows us to

argue that rank(AUS
(θ)PAH

US
(θ)) = S, and hence:

Sca =R(AUS
(θ)) =R(AUS

(θ)PAH
US
(θ)) =R(U). (14)

As a result of (14), ∃ an invertible Q ∈ C
S×S such that

U=AUS
(θ)Q. (15)

Let U0 ∈ C
Mca×S and U1 ∈ C

Mca×S denote the submatrices
corresponding to the first and last Mca rows of U. Similarly,
let V0,V1 ∈ C

Mca×S be the submatrices corresponding to the
first and last Mca rows of AUS

(θ). Due to the Vandermonde
structure of AUS

(θ), the following holds: V1 =V0D, where
D= diag(ejπ sin(θ1), ejπ sin(θ2), . . . , ejπ sin(θS)). By (15), ma-
trices U0 and U1 satisfy:

U0 =V0Q, U1 =V0DQ. (16)

Now, consider the matrix

Ψ=U
†
0U1 ∈ C

S×S . (17)

Since U0 has full column rank (16) implies U
†
0 =Q−1V

†
0.

Plugging this in (17) and combining with (16), we have: Ψ=
Q−1DQ. Hence, the DOAs can be inferred from the eigen-
values of Ψ. Since L is finite, we do not have access to Tca

and Coarray ESPRIT is instead applied on its estimate T̂ca

defined in (9). If we can ensure that the errorEL is small enough
(which we will rigorously specify using Weyl’s inequality), T̂ca

will be at least rank-S. Let Û be the matrix of eigenvectors
corresponding to the largest S eigenvalues of T̂ca (which is
well-defined). We can consider Û as a basis of the perturbed
coarray signal space Ŝca. From Û, we compute the matrices Û0,
Û1, Ψ̂ following the same construction as U0,U1 and Ψ. Let
λ̂i = rie

jφ̂i be the polar representation of the eigenvalues of the
matrix Ψ̂. The estimated normalized frequencies Ω̂ = {ω̂i}Si=1

are then given by ω̂i =
φ̂i

2π .

B. Basis Invariance Property of ESPRIT

In the previous section, ESPRIT is performed using the basis
given by the singular vectors Û (U) of T̂ca (Tca). However, the
following Lemma shows that the output of ESPRIT is invariant
to the choice of the basis for the subspace.

Lemma 1: Let Ũ ∈ C
(Mca+1)×S be another basis for R(Û).

Then, the matrix Ψ̃ := Ũ
†
0Ũ1 is similar to the matrix Ψ̂, i.e.,

Ψ̃ and Ψ̂ share the same eigenvalues.
Proof: Since R(Ũ) =R(Û), there exists an invertible ma-

trix W ∈ C
S×S such that Ũ := ÛW. Thus, the following

holds: Ũ0 = Û0W, Ũ1 = Û1W. Since W is an invertible
matrix, Ũ

†
0 =W−1Û

†
0 and Ψ̃= Ũ

†
0Ũ1 =W−1Û

†
0Û1W =

W−1Ψ̂W. This completes the proof.
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C. Covariance Estimation Error

In this section, we obtain tail bounds on ‖EL‖2 in terms
of array parameters in a finite snapshot setting. Such a bound
brings out the effect of the array geometry on the estimation
error. Our analysis leverages recent results derived in [27] which
we specialize for complex Toeplitz Hermitian matrices. Some
of our intermediate steps depart from [27] by invoking a result
on the bounding the supremum of a certain spectral function
from [28]. We first introduce the key quantities and intermediate
results on bounding the spectral norm of a Toeplitz Hermitian
matrix from [28], [29].

Let M ∈ C
N×N be any Hermitian symmetric Toeplitz

matrix. Such a matrix can be completely described by only
its first column. Consider the “spectral function” associated
with m= [m−(N−1), . . . ,m−1,m0,m1, . . . ,mN−1]

� [29]:
fm(θ) =

∑N−1
k=−(N−1) mk exp(−jkθ), where mk =Mk+1,1

and m−k =m∗
k as a result of the Hermitian Toeplitz structure.

Evidently, the spectral function is a trigonometric polynomial
of order N − 1 [28] whose coefficients are determined by
the vector m. This spectral function fm(θ) can be used to
bound ‖M‖2 as indicated by the following lemma from [27],
[28], [29]:

Lemma 2: Let M∈CN×N be a Hermitian symmetric
Toeplitz matrix and fm be the associated spectral function.
Then, ‖M‖2 ≤ supθ∈[−π,π] |fm(θ)|.

Lemma 2 indicates that the spectral norm of a Hermitian
symmetric Toeplitz matrix can be bounded by the
supremum of its associated spectral function. Note that
the covariance estimation error EL =Tca − T̂ca is a
Toeplitz Hermitian matrix, satisfying EL = T (e), where
e= [e−Mca

, . . . , e−1, e0, e1, . . . , eMca
]T is conjugate

symmetric and ei = ti − t̂i. Therefore, to bound ‖EL‖2
using Lemma 2, we need to investigate the spectral func-
tion fe(θ):

fe(θ) :=

Mca∑

k=−Mca

ek exp(−jθk). (18)

Towards this purpose, define Λ(θ), for 1≤m,n≤ P ,

[Λ(θ)]m,n =
1

|Ωdm−dn
| exp(j(dm − dn)θ), (19)

and Ey :=Ry −Rav, where Ry and Rav are defined in (10)
and (11), respectively. The elements of Ey are given by:

[Ey]m,n = tdm−dn − t̂dm−dn = edm−dn , 1≤m,n≤ P. (20)

Proposition 1 provides a compact representation of fe(θ).
Proposition 1: Let fe(θ) be the spectral function defined in

(18). Then, the following equality holds: fe(θ) = tr (EyΛ(θ))
where Λ(θ) and Ey are defined in (19) and (20), respectively.

Proof:

tr (EyΛ(θ)) =

P∑

m,n=1

[Ey]m,n[Λ(θ)]n,m =

P∑

m,n=1

edm−dn

e−j(dm−dn)θ

|Ωdm−dn |

=

Mca∑

s=−Mca

∑

m,n
dm−dn=s

es
exp(−jsθ)

|Ωs|
=

Mca∑

s=−Mca

es exp(−jsθ).

We introduce a quantity referred to as “Redundancy coeffi-

cient” that will play an important role in bounding ‖EL‖2.
Definition III.1: (Redundancy Coefficient). Given a hole-free

sparse array S, let Mca be the largest element in its differ-
ence set DS. The redundancy coefficient ∆(S) is defined as:
∆(S) :=

∑Mca

i=0
1

|Ωi| , where set Ωi is defined in Definition II.3.
The quantity ∆(S) is controlled by the redundancy pattern of

the sparse array S, i.e., the number of times an element repeats
in the difference set. We provide an illustrative example to show
how the quantity ∆(S) grows as a function of P .

Lemma 3: Given a generalized nested array
S
(N1,N2)
nest with P :=N1 +N2 ≥ 3 sensors, the following

holds: ln(P )≤∆(S
(N1,N2)
nest )≤ 2 ln(P ), if N2 = 1, and

P 2/16≤∆(S
(N1,N2)
nest )≤ P 2, if N1 = 
P/2� and N2 =

�P/2
 ≥ 2.
Proof: Case I (N2 = 1): The choice N2 = 1 corresponds

to a ULA, with P =N1 + 1 sensors and |Ωi|= P − i, i≥ 0.
Therefore, ∆(S

(P−1,1)
nest ) =

∑P−1
i=0

1
P−i . Such a harmonic sum

can be bounded as ln(P )≤∑P−1
i=0

1
P−i ≤ 1 + ln(P ) [30]. For

P ≥ 3, we get the desired bound since 1 + ln(P )≤ 2 ln(P ).
Case II (N2 = �P/2
 ≥ 2): The differences between

the elements of the outer and inner ULA which are
of the form k = i(
P/2�+ 1)− j, 2≤ i≤ �P/2
 and
1≤ j ≤ 
P/2�, satisfy |Ωk|= 1. Therefore, we have
∆(S

(N1,N2)
nest ) ≥ 
P/2��P/2
/2 ≥ (P 2/8− P/8) ≥ P 2/16,

where the first inequality follows from �P/2
 − 1≥ �P/2
/2
and the last inequality uses P ≤ P 2/2 for P ≥ 2. Since
S
(N1,N2)
nest is hole free, it implies 1/|Ωi| ≤ 1 for all 0≤ i≤Mca.

Therefore, we can bound ∆(S
(N1,N2)
nest )≤Mca + 1≤ P 2.

Lemma 3 reveals that for a nested array with N1 = 
P/2�
and N2 = �P/2
 ≥ 2, ∆(S

(N1,N2)
nest ) scales as Θ(P 2) due to its

non-redundant structure which results in numerous lags with
unit weights in its difference coarray. In contrast, for N2 = 1

(ULA), ∆(S
(N1,N2)
nest ) scales as Θ(lnP ), given the repetition of

many lags O(P ) times in the difference coarray.
As the following Theorem will show, ∆(S) determines the

sample complexity for controlling the covariance estimation
error. Therefore, with the same number of sensors, two differ-
ent array geometries could require drastically different sample
complexity for ensuring that the covariance estimation error is
bounded by the same quantity with high probability.

Theorem 1: Consider the measurement model (1) obeying
assumptions [A1-A2], where S is a hole-free sparse array with
redundancy coefficient ∆(S). Let Tca ∈ C

Mca+1×Mca+1 be the
coarray covariance matrix defined in (6) and T̂ca be its estimate
given by (9). For any ε≥ 0, we have

P
(
‖Tca − T̂ca‖2 ≥ ε

)

≤ 8Mca exp

[
−c1Lmin

(
c2ε

2

‖Ry‖22∆(S)
,

ε

‖Ry‖2
√
∆(S)

)]
,

where c1 and c2 are positive universal constants.
Proof: The proof is in Appendix B-B.
The theorem indicates that arrays with larger ∆(S

(N1,N2)
nest )

(N2 ≥ 2, nested array) incur larger covariance estimation er-
ror with higher probability compared to arrays with smaller
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∆(S
(N1,N2)
nest ) (N2 = 1, ULA). This aligns with the intuition

that estimating a larger matrix Tca of order O(P 2) using a
nested array would involve more error than estimating Tca of
order O(P ) using ULA with the same number of temporal and
physical samples. In the next sections, we demonstrate that the
larger aperture of the nested array compensates for its increased
covariance estimation error. Hence, it is possible to bound the
overall angle estimation error by an arbitrary small quantity
(with high probability) while using order-wise the same number
of snapshots as the ULA. Furthermore, we will show this con-
tinues to hold for the nested array even in the super-resolution
regime (∆∝ 1

P 2 ) thanks to the favorable scaling of the smallest
singular value of its coarray manifold.

D. Frequency/Angle Estimation Error of Coarray ESPRIT

We next bound the DOA estimation error in terms of the
covariance estimation error EL. Finally, we will combine this
bound with the probabilistic bounds on ‖EL‖2 in Theorem 1 to
obtain the main sample complexity result (in Theorem 3). We
will use the matching distance metric, defined as follows [20]:

md(θ, θ̂) := min
Π∈P

max
j

min
k∈Z

|ω̂Π(j) − ωj + k| (21)

where ωi (ω̂i) are the normalized DOAs and P denotes the set
of all possible permutations on {1, 2, · · · , S}.

In order to focus on resolution (rather than identifiability) and
to fairly compare the nested array and ULA, we will make the
following assumption, which will be invoked when necessary:

[A3] The number of sources S =O(1), i.e., S is held
constant and does not grow with P .

Eigen Gap condition: Define:

β := pminσ
2
S(AUS

(θ))− σ2. (22)

Henceforth, we will refer the condition β > 0 as the “eigen gap

condition” and it will play an important role in our analysis.
Recall, from the definition of Tca =AUS

(θ)PAH
US
(θ) + σ2,

β > 0 ensures that there is a margin between the smallest singu-
lar value of AUS

(θ)PAH
US
(θ) and the (S + 1)th singular value

of Tca (determined by the noise σ) as pminσ
2
S(AUS

(θ)) is a
lower bound on σS(Tca). The following theorem relates the
DOA estimation error in terms of matching distance to the
covariance estimation error EL, provided the latter is upper
bounded by a suitable quantity.

Theorem 2: Let S be a hole-free sparse linear array with
P sensors. Let Tca ∈ C

Mca+1×Mca+1 be the coarray covari-
ance matrix defined in (6) and T̂ca be its estimate given by
(9). If assumption [A3] holds and the following conditions
are satisfied:

β > 0 and ‖EL‖2 ≤ CSβ (23)

then the matching distance error of ESPRIT algorithm satisfies

md(θ, θ̂)≤ q‖EL‖2 (24)

where EL, β are defined in (12), (22), q =
(C ′

S

√
Mca + 1)/(βσS(AUS

(θ))). Quantities CS , C
′
S are

dependent only on S which is assumed to be O(1).

Proof: See Appendix C.
The following Lemma obtains both lower and upper bounds

on the spectral norm ‖Ry‖2 that are valid regardless of the array
geometry.

Lemma 4: Consider the covariance matrix Ry given by (2),
where S is any (sparse) array. Given a fixed S, signal powers p
and noise power σ2, for all θ the following holds:

pminP ≤ ‖Ry‖2 ≤ pmaxPS + σ2. (25)

Proof: For any S, we can bound the spectral norm ‖Ry‖2 as:

‖Ry‖2 = σ1(AS(θ)PA
H
S (θ)) + σ2 ≤ pmaxσ

2
1(AS(θ)) + σ2

≤ pmaxPS + σ2

where the last inequality follows from the fact that
σ2
1(AS(θ))≤ ‖AS(θ)‖2F = PS. Similarly, we can lower bound

the norm ‖Ry‖2 ≥ σ1(AS(θ)PA
H
S
(θ))≥ pminσ

2
1(AS(θ))≥

pmin‖AS(θ)‖2F /S = pminP .
Combining Theorem 1 and 2, we next present a sufficient

condition on the number (L) of snapshots in terms of the model
parameters (array geometry, SNR and source configuration) that
allows us to bound the matching distance error by a prescribed
ε with probability at least 1− δ.

Theorem 3: Consider the measurement model (1), where S

is a hole-free sparse array. Suppose β > 0 and the statistical
assumptions [A1-A3] hold. Then for any 0< δ < 1 and ε > 0,
the matching distance error satisfies md(θ, θ̂)≤min(ε, CSβq)
with probability at least 1− δ, provided

L≥c3 ln

(
8Mca

δ

)
max

(
q21∆(S)

c2ε2
,
q1
√
∆(S)

ε
,
L2
0

c2
,L0

)
. (26)

Here q1 = q‖Ry‖2, L0 = ‖Ry‖2
√

∆(S)/(CSβ) and c2, c3 are
universal constants.

Proof: See Appendix D.
We have presented the most comprehensive form of our result

in Theorem 3. In the next corollary, we consider a setting of
practical interest where the angle estimation error, represented
by ε, is small. This assumption simplifies the requirements
on the minimum number of snapshot and provides valuable
insights into the performance limits of sparse arrays.

Corollary 1: Consider the measurement model (1), where
S is a hole-free sparse array. Suppose β > 0 and the sta-
tistical assumptions [A1-A3] hold. Then for any 0< δ < 1
and 0< ε≤ qmin(CSβ, pminP

√
∆(S)/c2), the matching dis-

tance error satisfies md(θ, θ̂)≤ ε with probability at least
1− δ provided

L≥ c3 ln (8Mca/δ) q
2
1∆(S)/(c2ε

2), (27)

where q1, L0,c2, c3 are given in Theorem 3.
Proof: Using the lower bound on ‖Ry‖2 from

Lemma 4, we can see ε≤min(CSβq, q1
√
∆(S)/c2).

Since β ≥ ε/(CSq), this implies L0 ≤ q1
√

∆(S)/ε.
This inequality also implies L2

0/c2 ≤ q21∆(S)/(c2ε
2).

Using ε≤ q1
√

∆(S)/c2, we can conclude that

L0 ≤ (q1
√

∆(S)/ε2)(q1
√

∆(S)/c2) =
q21∆(S)
c2ε2

. Therefore, (27)
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implies (26) since max(
q21∆(S)
c2ε2

,
q1
√

∆(S)

ε ,
L2

0

c2
, L0)=

q21∆(S)
c2ε2

,
and the proof is completed.

Role of redundancy coefficient in determining Temporal

Sample Complexity: Corollary 1 indicates that if the number
of snapshots grows proportional to the redundancy coefficient
∆(S), then it is possible to bound the matching distance er-
ror by an arbitrarily small ε. Recall that ∆(S) is a function
of the redundancy pattern of S and from Lemma 3 we have
∆(Sula) = Θ(ln(P )) and ∆(S

(N1,N2)
nest ) = Θ(P 2)for N1 = 
P

2 �
and N2 = �P

2 
. Based on this, at a cursory glance, one may
be tempted to conclude from (27) that for the same number of
sensors, the snapshot requirement for the nested array is signif-
icantly larger than for the ULA. This is also consistent with an
existing misconception that co-array based processing requires
a large number of snapshots. However, in reality the sample
complexity is also controlled by the interaction of ∆(S) with
other geometry dependent terms in (27) such as q1 = q‖Ry‖2,
which in turn depend on both the physical array and coarray
size. In the next section, we clarify this misconception regarding
the seemingly higher snapshot requirement of nested arrays in
the setting S =O(1).

Spatiotemporal trade-offs: The snapshot requirement in
Corollary 1 is inversely proportional to β (since q ∝ 1

β ). If the
array geometry and source configuration are kept fixed and we
increase the SNR (either by increasing pmin or decreasing noise
power σ), Corollary 1 suggests that it is possible to achieve the
same probability of error with fewer snapshots. Our simulations
also are consistent with this theoretical prediction. This SNR
and geometry dependent snapshot characterization is another
novel contribution of our work.

IV. A CLOSER LOOK AT THE SEPARATION CONDITION FOR

SUPER-RESOLUTION WITH SPARSE ARRAYS

In order to understand the behavior of the smallest non-zero
singular value σS(AUS

(θ)), we consider the notion of minimum
separation [20]:

∆min(θ) = min
i,j∈Ω
i�=j

min
k∈Z

∣∣∣ωi − ωj + k
∣∣∣ (28)

where ωi is the normalized spatial frequency corresponding to
direction θi. By definition, for all θ we have 0≤∆min(θ)≤
1/2. Instead of analyzing an arbitrary source configuration θ,
one can obtain a more interpretable condition by representing
(23) as a function of the minimum separation. The source
configurations where ∆min(θ) is larger than some threshold
inversely proportional to Mca + 1 (i.e. ∆min(θ)>

γ
Mca+1 , γ >

1) will be referred to as the “well-separated” regime. We will
inspect what this means for specific array geometries such as
the ULA and nested array, and obtain tight bounds on L.

A. The “Well-Separated” Case

In this section, we turn our attention to how the eigen gap
condition can be utilized to obtain sufficient conditions on
SNR for different array geometries in the “well-separated”
regime. Let V ∈ C

K×S be a Vandermonde matrix, with

[V]m,n = zm−1
n where {zn}Sn=1 are the so called “nodes” of

the matrix. We begin by summarizing results from [21], [24],
[31], [32] which characterize the minimum singular value of a
Vandermonde matrix in the well-separated regime. The follow-
ing Lemma follows from [32, Eq. (32)] which is an intermediate
result from [32, Theorem 1].

Lemma 5: Let V(α) ∈ C
K×S be a Vandermonde matrix

with zn = ej2παn for 1≤ n≤ S and S ≤K. If αi ∈ [0, 1) are
all distinct and satisfy:

min
i,j∈Ω
i�=j

min
k∈Z

∣∣∣αi − αj + k
∣∣∣≥ γ

K
(29)

for some constant γ > 1, then the following holds:

σ2
S(V(α))≥K/C ′, where C ′ := γ/(γ − 1). (30)

From Lemma 5, for S= Sula if the source configurations θ

satisfies ∆min(θ)≥ γ
P for some γ > 1 and S ≤ P then we have

the following lower bound:

σ2
S(AUS

(θ))≥ P/C ′ (31)

In the following Proposition, we apply Lemma 5 to characterize
lower bounds on σS(AUS

) for the nested array.
Proposition 2: (Well-Separated). Let S= S

(N1,N2)
nest be a

nested array with N1 = 
P/2� and N2 = �P/2
 with P ≥ 3.
Suppose ∆min(θ)≥ 5γ

P 2 for some γ > 1 and S ≤ P 2/5. Then,
the following lower bound holds:

σ2
S(AUS

(θ))≥ P 2/C ′
n, where C ′

n = 5γ/(γ − 1). (32)

Proof: For the nested array with N1 = 
P/2� and N2 =

�P/2
, from (3) we have Mca + 1≥ P 2

5 . Hence, ∆min(θ)≥
5γ
P 2 implies ∆min(θ)≥ γ

Mca+1 . Therefore, the condition on
∆min(θ) in Lemma 5 holds and we have the desired lower
bound: σ2

S(AUS
(θ))≥ Mca+1

C′
≥ (γ−1

γ )P
2

5 = P 2

C′

n
.

Proposition 2 shows that for a nested array, the sources
are well-separated if ∆min(θ)≥ 5γ/P 2 and in this case,
σS(AUS

(θ)) grows as Ω(P ), owing to the larger difference
coarray of a nested array.

In order to highlight the dependence of sample complexity
only on key model parameters, we define quantities to combine
parameters that are held fixed (such as S, pmin, pmax, σ):

Cula(S, σ, pmax) := 8C
′2
S C

′3 c3
c2

(
S +

σ2

pmax

)2

(33)

Cnest(S, σ, pmax) := 4C
′2
S C

′3
n

c3
c2

(
S +

σ2

pmax

)2

(34)

where C ′, C ′
n are universal constants and C

′

S defined in The-
orem 2 is dependent only on S. Using Proposition 2, we now
specialize Corollary 1 for the ULA and nested array.

Theorem 4: Let S= Sula be a ULA with P sensors. Suppose
the minimum angular separation between the sources, and the
SNR satisfy the following conditions for some γ > 1:

∆min(θ)≥ γ/P, pmin/σ
2 > 2C ′/P, where C ′ =

γ

γ − 1
.
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Under assumptions [A1-A3], for any 0< δ < 1 and 0< ε≤
C1(S) := CSC

′
S , md(θ, θ̂)≤ ε is satisfied with probability at

least 1− δ, provided P ≥ 3 and

L≥ Cula(S, σ, pmax)

ε2

(
pmax

pmin

)2 (
ln

(
8P

δ

))2

. (35)

Proof: From Lemma 5, if ∆min(θ)≥ γ/P , we have
σ2
S(AUS

(θ))≥ P
C′

. Under the assumption on the SNR, we
have pminσ

2
S(AUS

(θ))≥ pmin
P
C′

> 2σ2 which ensures β >
pminσ

2
S(AUS

(θ))/2> 0. Notice that for ULA Mca + 1 = P
and from the fact that σ2

S(AUS
(θ))≥ P

C′
, we can obtain the

following bound:

q =
C ′

S

√
P

βσS(AUS
(θ))

≤ 2C ′
S

√
P

pminσ3
S(AUS

(θ))
≤ C ′′

S

pminP
(36)

where C ′′
S = 2C ′

SC
′1.5. Notice that:

CSβq =
CSC

′
S

√
Mca + 1

σS(AUS
(θ))

≥ C1(S)

√
P√
P

= C1(S) (37)

where the inequality follows from σS(AUS
)≤‖AUS

‖F /
√
S=√

P . Using the fact that β ≤ pminσ
2
S(AUS

(θ)), and the above
lower bound on σS(AUS

(θ)), we obtain

q ≥ C ′
S

√
P

pminσ3
S(AUS

(θ))
≥ C ′

S

pminP
. (38)

Therefore, qpminP
√
∆(Sula)/c2≥C ′

S

√
∆(Sula)/c2≥

C ′
S

√
ln(P )/c2, where the last inequality follows from

the lower bound on ∆(Sula) in Lemma 3. Recall that c2 < 12,
and therefore for P ≥ 3,

√
lnP/c2 > 1. This implies that

min(C1(S), C
′
S

√
ln(P )/c2) = C1(S). Combining this with

(37), we have ε≤ C1(S) = min(C1(S), C
′
S

√
ln(P )/c2)≤

min(CSβq, qpminP
√
∆Sula/c2), which ensures that the

assumption on ε in Corollary 1 holds. From Lemma 4, we have
‖Ry‖2 ≤ pmaxPS + σ2. Using this bound and (36), we get:

q1
√
∆(Sula)≤

C ′′
S

pminP
(PSpmax + σ2)

√
2 ln(P )

= C ′′
S

(
S +

σ2

pmaxP

)(
pmax

pmin

)√
2 ln(P )

≤ C̃1(S, σ, pmax)

(
pmax

pmin

)√
ln(8P/δ) (39)

where C̃1(S, σ, pmax) := (S + σ2

pmax
)
√
2C ′′

S . The upper bound

follows from the observations that (S + σ2

pmaxP
)≤ (S + σ2

pmax
)

for all P ≥ 1 and ln(P )≤ ln(8P/δ) for any δ < 1. Notice from
(33), that Cula(S, σ, pmax) = c3/c2C̃

2
1 (S, σ, pmax). From (39),

we have

c3 ln
(8P

δ

)q21∆(Sula)

c2ε2
≤ c3
c2ε2

C̃2
1 (S, σ, pmax)

(
pmax

pmin
ln(8P/δ)

)2

=
Cula(S, σ, pmax)

ε2

(
pmax

pmin

)2

(ln(8P/δ))
2
.

2The constant c2 = 3/16
√
2 is specified in the proof of Theorem 1 in

Appendix A.

Therefore, (35) implies (27) and the proof is completed by
applying Corollary 1 since β > 0 and the conditions on ε and
L required for applying the corollary are satisfied.

Theorem 5: Let S= S
(N1,N2)
nest be a nested array with N1 =


P/2� and N2 = �P/2
. Suppose the minimum angular sepa-
ration between the sources, and the SNR satisfy the following
conditions for some γ > 1:

∆min(θ)≥
5γ

P 2
,

pmin

σ2
>

2C ′
n

P 2
, where C ′

n = 5γ/(γ − 1).

Under the assumptions [A1-A3], for any δ > 0 and 0< ε≤
C2(S) :=

√
1/5CSC

′
S , md(θ, θ̂)≤ ε is satisfied with probabil-

ity at least 1− δ provided P ≥ 3 and

L≥ Cnest(S, σ, pmax)

ε2

(
pmax

pmin

)2

ln

(
8P 2

δ

)
. (40)

Proof: From Proposition 2, if ∆min(θ)≥ 5γ/P 2, we have
σ2
S(AUS

(θ))≥ P 2

C′

n
. Following the same argument as Theo-

rem 4, this ensures that β > 0. Using the fact that Mca + 1≤ P 2

(from (3)) and the lower bound on σ2
S(AUS

(θ)), we obtain

q ≤ C ′
SP

βσS(AUS
(θ))

≤ 2C ′
SP

pminσ3
S(AUS

(θ))
≤ C̄ ′′

S

pminP 2
(41)

where C̄ ′′
S := 2C ′

SC
′1.5
n . Notice that σS(AUS

(θ))≤
‖AUS

‖F /
√
S =

√
Mca + 1≤ P . Hence, similar to

(37), we can establish that CSβq ≥ C2(S). Using
the fact P 2/5≤Mca + 1 from (3), similar to (38)
we obtain q ≥ C′

SP√
5pminσ3

S(AUS
(θ))

≥ C′

S√
5pminP 2

. From

Lemma 3, ∆(S
(N1,N2)
nest )≥ P 2/16. It follows that

qpminP

√
∆(S

(N1,N2)
nest )/c2 ≥ C′

S

4c2
√
5

. Since 4c2 < 1, it follows

that min(C2(S), C
′
S/(4c2

√
5)) = C2(S) and therefore

ε≤ C2(S) = min(C2(S), C
′
S/(4c2

√
5)) ensures that the

assumption on ε in Corollary 1 holds. Using ∆(S
(N1,N2)
nest )≤ P 2

(from Lemma 3), Lemma 4, and (41), we get:

q1

√
∆(S

(N1,N2)
nest )≤ Ĉ1(S, σ, pmax)(pmax/pmin), (42)

where Ĉ1(S, σ, pmax)=(S + σ2

pmax
)C̄ ′′

S . By (42), we have

ln

(
8Mca

δ

)
c3q21∆(S

(N1,N2)
nest )

c2ε2
≤ c3

c2ε2
Ĉ2

1 (S, σ, pmax) ln(8P
2/δ)

(
pmax

pmin

)2

=
Cnest(S, σ, pmax)

ε2

(
pmax

pmin

)2 (
ln(8P 2/δ)

)
.

Therefore (40) implies (27) and the proof is again completed
by applying Corollary 1 since β > 0 and the conditions on ε
and L required for applying the corollary are satisfied.

Note that the range of values for ε where Theorems 4 and
5 are applicable differ slightly. However in the regime ε≤
min(C1(S), C2(S)) = C2(S) and P ≥ 3, we can fairly com-
pare the two array geometries.

Towards higher resolution with same snapshots: Theo-
rem 4 states that for a ULA, the matching distance error for
Coarray ESPRIT can be bounded by ε provided (i) the snap-
shots scales only (poly)logarithmically in the dimension of the
coarray covariance matrix and (ii) the minimum separation is
∆min ≥ γ/P . On the other hand, Theorem 5 guarantees that
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for a nested array with P sensors, it is possible to bound the
matching distance error by the same ε with order wise the
same number of snapshots (L=Ω(ln(P 2)), but with a relaxed

separation condition that allows ∆min to be ∆min =Ω(1/P 2).
This validates the superior resolution properties of nested arrays
compared to ULA with the same budget of temporal snapshots.
This has been empirically observed in the literature, but never
theoretically established, until now.

Noise Resilience of Nested Arrays: If we consider the
separation regime ∆min =Ω(1/P ) that is applicable for both
the ULA and nested array, Theorems 4 and 5 indicate that the
SNR (pmin/σ

2) requirement for the nested array can be P
times smaller than that of the ULA, in order to achieve the
same DOA error bound with order-wise the same number of
snapshots (L=Ω(lnP )). This brings out another advantage of
nested arrays in terms of robustness against noise, especially in
the low-SNR regime [8].

Effect of Dynamic Range: Our analysis also reveals
the challenge posed by sources with higher dynamic range
pmax/pmin as also observed in [22]. Theorem 5 suggests that
at the same SNR (defined with respect to the weakest source
pmin), more snapshots maybe needed for resolving sources with
disproportionately varying powers (higher pmax compared to
the fixed pmin). As will be shown, the numerical results are
indeed consistent with the prediction made by our analysis.

Extension to More Sources than Sensors: The emphasis
of this paper is to rigorously establish the extent to which the
virtual coarray of sparse arrays can be harnessed with limited
snapshots for achieving superior resolution over a ULA in the
regime S =O(1). Note that only in the regime S < P , it makes
sense to compare sparse arrays and a ULA, since the latter
cannot operate in the regime S > P . Nevertheless, our results
for nested arrays can also be extended to the regime S > P by
replacing assumption [A3] with S ≤Mca and modifying the
subsequent proofs suitably, which we leave to future work.

B. The Myth of Large Snapshots: Correlation Error vs.

Angle Estimation Error

Since nested (and other) sparse arrays realize the virtual
difference coarray by correlation-processing, it is commonly
believed that one needs a large number (L=Ω(P 2)) of tem-
poral snapshots to estimate Θ(P 2) (cross) correlation values
between sensor pairs. This ‘myth’of large snapshots (that grows
quadratically in the number of sensors P ) is partially true, if our
goal is to estimate the coarray covariance matrix Tca. If we
only allow L to scale as L=Θ(logP ) (the so-called sample-
starved regime), then one may indeed incur large error in co-
variance estimation. However, Theorem 5 shows that the angle
estimation error can be made arbitrarily small (ε) with high
probability (1− δ) provided L scales only as Ω( 1

ε2 ln(8P
2/δ)),

despite the possibility of the coarray covariance error of a nested
array increasing with P in this snapshot-starved regime. This
surprising phenomenon is due to the fact that the potentially
large covariance estimation error (which can even grow with P
in this regime) can actually be mitigated/counterbalanced by the
enhanced aperture/difference set of the nested array that results
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Fig. 1. Comparison of ESPRIT applied to the sample covariance matrix
(7) (direct ESPRIT) and the estimated coarray covariance matrix (9) (coarray
ESPRIT). Coarray ESPRIT achieves lower angle estimation error than direct
ESPRIT at medium to low SNR.

in a large restricted smallest singular value σS(AUS
). As long

as ∆min(θ)≥ 5γ
P 2 , σ2

S(AUS
) scales as cP 2 (for some constant

c), and this helps us obtain reliable angle estimation, although
the covariance estimates may be unreliable.

V. SIMULATIONS

We numerically investigate the useful SNR regime for coar-
ray processing (Section V-A), the impact of SNR and the num-
ber of snapshots on DOA estimation error (V-C and V-B),
the relationship between DOA and covariance estimation error
(V-D), and the effect of the dynamic range of source powers on
resolving two closely spaced sources (V-E).

A. When is Coarray-Based DOA Estimation Beneficial?

We begin by examining under which circumstances coarray-
based algorithms offer an advantage over more conventional
DOA estimation methods. Specifically, in case of the ULA,
we could apply MUSIC or ESPRIT directly to the sample
covariance matrix R̂y in (7) instead of the averaged coarray
covariance matrix T̂ca in (9). Fig. 1 shows the matching dis-
tance error of coarray ESPRIT and direct ESPRIT, averaged
over 103 Monte Carlo trials, in case of the ULA, and, for
comparison, coarray ESPRIT in case of the nested array with
the same number of sensors (P = 20). We consider L= 100
snapshots, and S = 4 equipower sources equally spaced by
∆= 2/P . At medium to low SNR, the advantage of coarray-
based processing is apparent. At high SNR, the situation is
reversed, as the error of direct ESPRIT continues decreasing
as a function of SNR, whereas the error of coarray ESPRIT
saturates3. However, coarray-based processing—including re-
dundancy averaging (8)—can clearly offer significant benefits
in SNR or snapshot-limited conditions. As mostly such chal-
lenging scenarios are of interest in many applications, we focus
on coarray ESPRIT herein.

B. Improving Resolution by Increasing SNR or Snapshots

Next, we compare the probability of resolution as a function
of the minimum separation for the nested array and ULA with

3This well-known and fundamental phenomenon is due to the finite-
snapshot error of the coarray covariance matrix, see [5], [6], [7].
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Fig. 2. Probability of resolution vs. source separation for different SNR
levels (top) and number of snapshots (bottom). Increasing either improves
resolution for both arrays.

the same number of sensors, P = 20. Coarray ESPRIT is em-
ployed for both array geometries. We consider two sources with
equal power (p1 = p2) and (normalized) angles ω = {0.1, 0.1 +
∆}. The sources are declared to be successfully resolved when
the estimated DOAs satisfy maxi |ω̂i − ωi| ≤∆/10. Fig. 2
shows the empirical probability of resolution (averaged over
1000 Monte-Carlo trials) for varying separation ∆ and a fixed
number of snapshots L= 55 and SNR = 0 and −16 dB. We
observe that both array geometries can operate at a smaller
separation at a higher SNR, i.e., smaller σ/pmin ratio. In-
deed, the transition from low to high probability of resolu-
tion occur around ∆∝ 1/P for the ULA and ∆∝ 1/P 2 for
the nested array, as predicted by Theorems 4 and 5. It is
also possible to enhance resolution by increasing the num-
ber of snapshots, as Fig. 2 demonstrates. Here, the SNR is
fixed at 0 dB and the number of snapshots is L= 55 and
L= 600, respectively.

C. Snapshot and SNR Trade-Off

Section V-B showed that SNR and the number of tempo-
ral snapshots can be exchanged for improved resolution. We
now study this trade-off in further detail. We consider S =
2 equipowered sources located at ω = {0.1, 0.1 + ∆}, where
∆ ∈ {2/P, 2/P 2} and P = 20. Fig. 3 shows the separation-
relative matching distance error md(θ, θ̂)/∆ (averaged over
103 Monte Carlo trials) as a function of both the number of
snapshots and SNR. Firstly, fewer snapshots are required at
higher SNR (and vice versa) to obtain the same recovery er-
ror, both in case of the ULA (left column) and nested array
(right column). This supports Theorem 3, where the match-
ing distance depends on the number of snapshots and SNR
through (22) and (26), respectively. Secondly, the nested array
displays a more advantageous trade-off between snapshots and
SNR compared to the ULA for both source separation 2/P
(top row) and 2/P 2 (bottom row). The benefit is especially
apparent for ∆= 2/P 2, where the nested array has a greatly

Fig. 3. Relative matching distance error md(θ, θ̂)/∆ as a function of
snapshots and SNR. The nested array (right column) achieves lower error
than the ULA (left column) for both source separation ∆= 2/P (top row)
and ∆= 2/P 2 (bottom row).

larger range of operating points where the relative matching
distance is low, as predicted by Theorem 5. To validate our
theoretical bounds, we overlay the curvesL= αnest(S + σ2

pmax
)2

and L= αula(S + σ2

pmax
)2 in red. For visualizing the trend, we

selected an appropriate constant αnest and suitably scaled it to
obtain αula by obeying the relation between these constants
as given by (33), (34) and (35), (40). This scaling law fol-
lows from the above equations since P, S,∆, σ are kept fixed
and SNR is varied by changing pmax = pmin = p. The theo-
retical curves capture the empirical phase transition bound-
ary, reaffirming the validity of our theoretical analysis. Note
that the gray pixels correspond to a relative error of approx-
imately 10% of the separation, whereas white corresponds
to ≤ 1% error.

D. DOA and Covariance Estimation Error

Next, we illustrate an intriguing benefit of coarray-based
DOA estimation in case of the nested array. We consider the
average DOA matching distance and average covariance esti-
mation error defined as ‖Tca − T̂ca‖2 for a varying number
of sensors P and S = 4 equipower sources equally spaced
by ∆ ∈ {1/P 1.5, 1/P 2}. The number of snapshots is L= 50
and SNR = 0 dB. Fig. 4 shows that the nested array incurs
a larger covariance estimation error compared to the ULA
with the same number of sensors. However, despite obtaining
a worse estimate of the covariance matrix T̂ca, the nested
array achieves superior DOA estimation performance when
coarray ESPRIT is applied to T̂ca. In fact, when the separa-
tion is ∆= 1/P 2, the average matching distance no longer
decays with P for the ULA, whereas it continues to do so
for the nested array. This is enabled by the larger coarray
aperture of the nested array, which offsets the effect of fi-
nite snapshot covariance estimation error as discussed in Sec-
tion IV-B. Note that for a fixed number of snapshots and a
growing number of sensors P , the entries of the coarray covari-
ance matrix Tca become increasingly challenging to estimate,
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Fig. 4. Average matching distance (top) and covariance estimation error
(bottom) as a function of the number of sensors P . The DOA estimation
error of the nested array decays despite the larger covariance estimation error
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Fig. 5. Effect of dynamic range of source powers on probability of reso-
lution. Coarray ESPRIT requires more snapshots to detect two sources with
larger dynamic range pmax/pmin.

since the size of Tca is proportional to the number of coarray
elements Mca, which is ∝ P for the ULA and ∝ P 2 for
the nested array.

E. Effect of Dynamic Range of Source Powers

In the final experiment, we investigate the ability of coar-
ray ESPRIT to resolve two sources with unequal powers. We
set the dynamic range to pmax/pmin ∈ {1, 10} by fixing the
power of the weaker source to pmin = 0.2 and varying pmax.
Fig. 5 shows that the number of snapshots required to dis-
tinguish two sources (separated by ∆= 1/P ) is significantly
larger when pmax/pmin = 10 compared to pmax/pmin = 1. This
is consistent with Theorems 4 and 5, which imply that the
sufficient number of snapshots for resolving two sources (with
high probability) grows with pmax if pmin and σ are held fixed,
irrespective of the array geometry. This brings out a non-trivial
dependence of the dynamic range pmax/pmin on the sample
complexity. Hence, distinguishing two sources with greatly dif-
ferent powers is more challenging and requires more snapshots
than when the powers are equal.

VI. CONCLUSION

This paper investigated angle estimation error of coarray
ESPRIT. We considered both additive noise and finite-snapshot

covariance estimation error, which we probabilistically charac-
terized in the case of Toeplitz covariance matrices. Our results
show that if the number temporal snapshots scales logarithmi-
cally with the number of sensors, coarray ESPRIT achieves
arbitrarily low estimation error with high probability. This also
shows that the DOA estimation error can be small even though
the covariance estimation error may be large. Finally, our theo-
retical and simulation results demonstrate that sparse arrays can
provide higher resolution and better noise resilience compared
to the ULA with the same number of sensors and snapshots.

APPENDIX A

Here, we provide a proof for the sub-Gaussian norm of a
Gaussian random with zero mean and arbitrary variance for
making the presentation self-contained.

Lemma 6: Suppose X ∼N (0, σ2) is a real Gaussian random

variable. Then its sub-Gaussian norm is ‖X‖ψ2
=
√

8
3σ.

Proof: We defined the sub-Gaussian norm in the Introduction
as ‖X‖ψ2

:= inf{t > 0 | E[expX2/t2]≤ 2}. For real Gaussian
random variable X ∼N (0, σ2), we can simply plug in this in
the definition of the sub-Gaussian norm and see

E[expX2/t2] =
1√
2πσ2

∫ ∞

−∞

ex
2/t2e−x2/2σ2

dx

=
1√
2πσ2

∫ ∞

−∞

e
−x2/2

(
1
σ2 − 2

t2

)

dx

=
1√
2πσ2

∫ ∞

−∞

e
− x2

2
t2−2σ2

σ2t2 dx=
σ1

σ

1
√

2πσ2
1

∫ ∞

−∞

e
−x2

2σ2
1 dx=

σ1

σ

where σ2
1 =

σ2t2

t2−2σ2 . The last equality is due to the fact that

1√
2πσ2

1

e
−x2

2σ2
1 is the density function of a Gaussian variable with

0 mean and variance σ2
1 . Now, notice

σ1

σ
=

t√
t2 − 2σ2

≤ 2 =⇒ t2 ≥ 8

3
σ2

Hence ‖X‖ψ2
:= inf{t > 0 | t2 ≥ 8

3σ
2}=

√
8
3σ.

APPENDIX B

A. Intermediate Results

We will first state the complex extension of Hanson-Wright
inequality [33], which is obtained by applying [34, Theo-
rem 1.1] with the strategy described on [34, Section 3.1, Page 9].

Lemma 7: Let A ∈ C
n×n be a fixed Hermitian matrix.

Consider the random vector x= [x1, x2, · · · , xn]
� ∈ C

n with
independent real and imaginary components Re(xi), Im(xi)
satisfying E(Re(xi)) = E(Im(xi)) = 0, and ‖Re(xi)‖ψ2

≤K,
‖Im(xi)‖ψ2

≤K. Then for any ε > 0, we have

P(|xH
Ax− E(xH

Ax)|>ε)≤ 2 exp

(
− cmin

(
ε2

2K4‖A‖2F
,

ε

K2‖A‖2

))

where c > 0 is a universal constant.
Proof: Let z= [Re(x)�, Im(x)�]� ∈ R

2n and define : Ã=[
Re(A) −Im(A)
Im(A) Re(A)

]
. It is easy to see that for any Hermitian A,

we have the following equality xHAx= zT Ãz. Further, it can
be verified that ‖Ã‖F =

√
2‖A‖F and ‖Ã‖2 = ‖A‖2. Now, we
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can apply [34, Theorem 1.1], to obtain the desired probability
bound.

Lemma 8: Let wi ∈ C
n, 1≤ i≤ T be i.i.d. complex

circularly symmetric Gaussian random variable with
distribution CN (0,Σ). Let A ∈ C

n×n be a fixed Hermitian
matrix, then for any ε > 0 and universal constant c,
we have P (| 1L

∑L
i=1 w

H
i Awi − E[wH

i Awi]| ≥ ε)≤
2 exp

(
−cLmin

(
ε2

2K4‖Σ‖2
2‖A‖2

F
, ε
K2‖Σ‖2‖A‖2

))
.

Proof: Since wi is a complex circularly symmetric Gaussian
random variable distributed according to CN (0,Σ), we
define a new transformed variable ui =Σ−1/2wi where
Σ1/2 is the square root of the covariance matrix Σ. It
can be verified that ui ∼ CN (0, In), i.e., it is also a
complex circularly symmetric Gaussian random variable
with independent real and imaginary components. Define
block-wise diagonal matrices Ã= diag(A, . . . ,A), Σ̃1/2 =
diag(Σ1/2, . . . ,Σ1/2) ∈ C

nL×nL and ũ= [uT
1 , . . . ,u

T
L ]

T ∈
C

nL. Next, we can observe that
∑L

i=1 w
H
i Awi =∑L

i=1 u
H
i Σ1/2AΣ1/2ui = ũHΣ̃1/2ÃΣ̃1/2ũ. We have

E(
∑L

i=1 w
H
i Awi) = LE

(
wH

i Aw
)
, since it is a sum of L i.i.d.

random variables. The desired probability can be re-written
as: P (| 1L

∑L
i=1 Re(wH

i Awi)− E[Re(wH
i Awi)]| ≥ ε) =

P (|Re(ũHΣ̃1/2ÃΣ̃1/2ũ)− E[Re(ũHΣ̃1/2ÃΣ̃1/2ũ)]| ≥ Lε).
Recall that Re(ũi), Im(ũi) are i.i.d. distributed as N (0, 1/2)
and hence sub-Gaussian with K = 2/

√
3 from Lemma 6.

Note that due to the block-diagonal structure we have
‖Σ̃1/2ÃΣ̃1/2‖2F = L‖Σ1/2AΣ1/2‖2F ≤ L‖A‖2F ‖Σ‖22 and
‖Σ̃1/2ÃΣ̃1/2‖2 = ‖Σ1/2AΣ1/2‖2 ≤ ‖A‖2‖Σ‖2. The proof
is completed by applying Lemma 7 with ε= εL.

B. Proof of Theorem 1

From Lemma 2, we have P (‖EL‖2 ≥ ε)≤P (sup |fe(θ)|≥
ε). In general, it is not straightforward to evaluate this supre-
mum, however, we exploit the following result from [28] that
bounds it by using the function value evaluated at a few
grid points.

Lemma 9: [28, Theorem 7.28, Chapter 10, Vol. 2, Pg. 33]
Let f(θ) be a trigonometric polynomial of order N . Then,
supθ∈[−π,π] |f(θ)| ≤ 2max1≤k≤4N |f(θk)|, θk = k−2N

4N π.
From Proposition 1, we have fe(θ) = tr(EyΛ(θ)). However,

we want to relate it to the sample covariance matrix R̂y. In order
to do this, we show that tr(RavΛ(θ)) = tr(R̂yΛ(θ)) where
recall from (7) that R̂y is the sample covariance matrix:

tr(RavΛ(θ)) =

P∑

m=1

P∑

n=1

[Rav]m,n[Λ(θ)]n,m

=

Mca∑

s=−Mca

∑

m,n:
dm−dn=s

t̂s
exp(−jsθ)

|Ωs|
=

Mca∑

s=−Mca

t̂s|Ωs|
exp(−jsθ)

|Ωs|

=
(a)

Mca∑

s=−Mca

∑

m,n:
dm−dn=s

[R̂y]m,n[Λ(θ)]n,m = Tr(R̂yΛ(θ)),

where (a) follows from the redundancy averaged estimator
where for all m,n such that dm − dn = s, we have

|Ωs|t̂s =
∑

dm−dn=s[R̂y]m,n. Therefore, we have the follow-
ing relation: fe(θ)=tr (EyΛ(θ))=tr ((Ry −Rav)Λ(θ)) =

tr((Ry − R̂y)Λ(θ)) = 1
L

∑L
t=1

(
E[yH(t)Λ(θ)y(t)]− yH(t)

Λ(θ)y(t)). Since the snapshots are i.i.d., we
can define i.i.d. random variables {Zt(θ)}Lt=1 as
Zt(θ)� yH(t)Λ(θ)y(t)− E(yH(t)Λ(θ)y(t)) with y(t)∼
CN (0,Ry). Note that Λ(θ) is Hermitian. Hence, we
can apply Lemma 8 with Σ=Ry and A=Λ(θ) to
obtain ∀ε > 0,

P

(
1

L
|

L∑

t=1

Zt(θ)| ≥ ε

)

≤ 2 exp

[

−cLmin

(
ε2

2K4‖Ry‖22‖Λ(θ)‖2F
,

ε

K2‖Ry‖2‖Λ(θ)‖2

)]

.

(43)

We want to obtain a universal upper bound that is similar
to (43) but not dependent on θ. Notice, ‖Λ(θ)‖2F = 1

|Ω0| +∑Mca

s=1
2

|Ωs| ≤ 2∆(S). Similarly, we can also bound ‖Λ(θ)‖2 ≤
‖Λ(θ)‖F ≤

√
2∆(S). This gives us the following bound:

P

(
1

L
|

L∑

t=1

Zt(θ)| ≥ ε

)

≤ 2 exp

[

−cLmin

(
ε2

4K4‖Ry‖22∆(S)
,

ε

K2‖Ry‖2
√

2∆(S)

)]

. (44)

Note fe is a trigonometric polynomial of order
Mca. Now, we will use Lemma 9 to bound the
spectral function |fe(θ)|. P(supθ∈[−π,π] |fe(θ)|≥ε)≤
P(2max1≤k≤4Mca

|fe(θk)|≥ε)≤∑4Mca

k=1 P
(
|fe(θk)| ≥ ε

2

)
≤

8Mca exp
[
− c1Lmin

(
c2ε

2

‖Ry‖2
2∆(S)

, ε

‖Ry‖2

√
∆(S)

)]
, where

c1 = c/(2
√
2K2) (c was given in Lemma 8) and

c2 = 1/(4
√
2K2) = 3/(16

√
2)< 1. The first inequality

follows due to Lemma 9, the second inequality follows from
union bound. The last inequality is a consequence of the bound
computed in (44).

APPENDIX C
PROOF OF THEOREM 2

The proof uses several results from [20]. However, unlike
[20] the underlying subspace of interest is the coarray subspace
and the perturbation is due to covariance estimation error and
noise. We provide key intermediate steps to make the results
self-contained.

Recall that columns of U and Û are orthonormal bases
for the subspaces R(U) and R(Û). Let the principal an-
gles between the subspaces R(U) and R(Û) be denoted
as Θ(R(U),R(Û)) := [ψ1, ψ2, · · · , ψS ]

T where 0≤ ψ1 ≤
ψ2 ≤ · · · ≤ ψS ≤ π/2. Then from [35], we have cos(ψi) =
σi(U

HÛ) i= 1, 2, · · · , S. Recall from Lemma 1, the output of
ESPRIT is invariant to the choice of the basis. For ease of anal-
ysis, we will choose a pair of basis for R(U) and R(Û), which
are also known as “canonical bases” [20]. Let the SVD of the
matrix UHÛ be of the form UHÛ:=LΣcR

H ,L,R ∈ C
S×S ,

where Σc = diag(σc
1, σ

c
2, · · · , σc

S) where σc
i = σi(U

HÛ) are
arranged in descending order. The canonical basis U(c) and
Û(c) are given by:

U(c) :=UL, Û(c) := ÛR (45)
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Using the canonical basis, we define the following
matrices: Ψ(c) :=U

(c)†
0 U

(c)
1 , Ψ̂(c) :=Û

(c)†
0 Û

(c)
1 . Since

R(U)=R(U(c)) and R(Û)=R(Û(c)), we have Θ(R(U(c)),
R(Û(c)))=Θ(R(U),R(Û)). Notice that the canonical
basis has the following property: cos(ψi) = σi(U

(c)HÛ(c)) =

u
(c)H
i û

(c)
i . We will use [20, Lemma 2] that relates the

matching distance error to the quantity ‖Ψ̂(c) −Ψ(c)‖2 and
holds universally:

md(θ, θ̂)≤ π
S3/2

√
Mca + 1

σS(AUS
(θ))

‖Ψ̂(c) −Ψ(c)‖2. (46)

A. Relating ‖Ψ̂(c) −Ψ(c)‖2 to ‖EL‖2
Let B=A+N ∈ C

M×N , where rank(A)≥ L. Suppose
ψL is the largest principal angle between the subspace spanned
by L principal singular vectors (corresponding to L largest
singular values) of A and B, respectively. If σL+1(A)≤ α
and σL(B)≥ α+ δ for some α≥ 0 and δ > 0 then, Wedin’s
Theorem [36] states that:

sin(ψL)≤ ‖N‖2/δ (47)

Lemma 10: Suppose σS(Tca)≥ 2‖EL‖2 and β =
pminσ

2
S(AUS

(θ))− σ2 > 0. Then

sin(ψS)≤ 2‖EL‖2/β (48)

Proof: Recall that T̂ca=Tca −EL. To apply Wedin’s
theorem, we need to characterize quantities α and δ such
that: σS(T̂ca)≥ δ + α, σS+1(Tca)≤ α. From (13), we
have σS+1(Tca)=σ2. We choose α=σ2. Using Weyl’s

inequality, σS(T̂ca)≥ σS(Tca)− ‖EL‖2
(a)

≥ σS(Tca)/2
(b)
=

(σS(AUS
(θ)PAH

US
(θ)) + σ2)/2, where (a) follows from

the assumption 2‖EL‖2 ≤ σS(Tca) and (b) follows from
(13). Combining with the preceding inequality, we obtain
σS(T̂ca)− σ2 ≥ (σS(AUS

(θ)PAH
US
(θ))− σ2)/2≥ β/2> 0,

where the last term is positive due to the given condition.
Then we can choose δ = σS(T̂ca)− σ2 which satisfies
σS(T̂ca) = α+ δ with δ > 0. The proof is completed by
using (47).

Lemma 11: If pminσ
2
S(AUS

(θ))> σ2 and

‖EL‖2 ≤
σS(U

(c)
0 )(σS(AUS

(θ)PAH
US
(θ))− σ2)

4
√
2

(49)

then ‖Ψ(c) − Ψ̂(c)‖2 ≤ 14
√
2‖EL‖2

σ2
S(U

(c)
0 )(pminσ2

S(AUS
(θ))−σ2)

.

Proof: From the definition of U(c), Û(c) we have:

‖U(c) − Û(c)‖22 = ‖(U(c) − Û(c))H(U(c) − Û(c))‖2
= 2(1− cos(ψS))≤ 2(1− cos2(ψS)) = 2 sin2(ψS). (50)

By the assumption of this lemma, 2‖EL‖2 ≤
σS(U

(c)
0 )(σS(AUS

(θ)PAH
US
(θ))−σ2) and σS(U

(c)
0 )≤ 1,

we have 2‖EL‖2 ≤ σS(Tca)σS(U
(c)
0 )≤ σS(Tca). This

together with the assumption pminσ
2
S(AUS

(θ))> σ2 enables
us to apply Lemma 10. Combining (48) with (50) we obtain
the following bound:

‖Û(c) −U(c)‖2 ≤
2
√
2‖EL‖2

σS(AUS
(θ)PAH

US
(θ))− σ2

. (51)

Notice that

‖Ψ̂(c) −Ψ
(c)‖2 = ‖(Û(c)†

0 −U
(c)†
0 )Û

(c)
1 +U

(c)†
0 (Û

(c)
1 −U

(c)
1 )‖2

≤ ‖Û(c)†
0 −U

(c)†
0 ‖2‖Û(c)

1 ‖2
+ ‖U(c)†

0 ‖2‖Û(c)
1 −U

(c)
1 ‖2

≤ ‖Û(c)†
0 −U

(c)†
0 ‖2

+ ‖U(c)†
0 ‖2‖Û(c) −U

(c)‖2 (52)

where the last inequality follows from the fact that Û(c)
1 , Û

(c)
1 −

U
(c)
1 are submatrices of Û(c) and Û(c) −U(c), respectively.

Therefore, we have ‖Û(c)
1 ‖2 ≤ ‖Û(c)‖2 = 1, and ‖Û(c)

1 −
U

(c)
1 ‖2 ≤ ‖Û(c) −U(c)‖2. We use a result from [37, Theo-

rem 3.2] which states that a matrix F with rank S, and its
perturbed matrix F̃= F+ Ẽ satisfy the following inequal-
ity: ‖F† − F̃†‖2 ≤ 3‖Ẽ‖2/(σS(F)(σS(F)− ‖Ẽ‖2)) provided
‖Ẽ‖2 < σS(F). From (51), and using the assumption of the
lemma we have:

‖Û(c)
0 −U

(c)
0 ‖2 ≤ ‖Û(c) −U

(c)‖2 ≤ 2
√
2‖EL‖2

σS(AUS
(θ)PAH

US
(θ))− σ2

≤ σS(U
(c)
0 )/2. (53)

We can use the aforementioned result by substi-
tuting F with U

(c)
0 , and F̃ with Û

(c)
0 : ‖(Û(c)†

0 −
U

(c)†
0 )‖2 ≤ 3‖(Û(c)

0 −U
(c)
0 )‖2

σS(U
(c)
0 )(σS(U

(c)
0 )−‖Û(c)

0 −U
(c)
0 ‖2)

≤ 6‖Û(c)
0 −U

(c)
0 ‖2

σ2
S(U

(c)
0 )

≤
6‖Û(c)−U(c)‖2

σ2
S(U

(c)
0 )

, where the second inequality follows from

(53). Combining this with (52), we get the final bound:
‖Ψ(c)−Ψ̂(c)‖2≤ 6‖(Û(c)−U(c))‖2

σ2
S(U

(c)
0 )

+ 1

σS(U
(c)
0 )

‖(Û(c)−U(c))‖2≤
7‖(Û(c)−U(c))‖2

σ2
S(U

(c)
0 )

≤ 14
√
2‖EL‖2

σ2
S(U

(c)
0 )

(
σS(AUS

(θ)PAH
US

(θ))−σ2
) ≤ 14

√
2

‖EL‖2/σ2
S(βU

(c)
0 ).

Next, we state the following Lemma from [20] that can be
used to obtain a lower bound on σ2

S(U
(c)
0 ).

Lemma 12: (Lemma 3, [20]). Let U(a) be any orthonormal
basis for R(AUS

(θ)). Then the following holds: σ2
S(U

(a)
0 )≥

max(1− S
σ2
S(AUS

(θ))
, 4−S)

Proof of Theorem 2: Define CS = 2−S

4
√
2

and

C ′
S = 14π

√
2S3/24S . Under Assumption A3, these

quantities are constants since S is held fixed. If β > 0
and the assumption ‖EL‖2 ≤ CSβ ensures that condition
(49) holds since σS(U

(c)
0 )≥ 2−S from Lemma 12. Now,

we can apply Lemma 11 to bound ‖Ψ(c) − Ψ̂(c)‖2.
We plug this bound on ‖Ψ(c) − Ψ̂(c)‖2 in (46):

md(θ, θ̂)≤ 14
√
2π S3/2q‖EL‖2

σ2
S(U

(c)
0 )C′

S

≤ q‖EL‖2, where the last

inequality follows from the bound σ2
S(U

(c)
0 )≥ 4−S in

Lemma 12.

APPENDIX D
PROOF OF THEOREM 3

We will utilize Theorem 1 and Theorem 2 to prove Theo-
rem 3. One can see from Theorem 2 that under the assumptions
β > 0 and ‖EL‖2 ≤ CSβ we can bound md(θ, θ̂)≤ q‖EL‖2.
For a given ε > 0, two cases arise:

Case I (ε≤ CSβq): In this case, min(CSβ,
ε
q ) = ε/q. There-

fore, ‖EL‖2 ≤ ε
q ⇒‖EL‖2 ≤ CSβ, and from Theorem 2 the
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matching distance error is less than md(θ, θ̂)≤ ε. This means
P (md(θ, θ̂)≤ ε)≥ P

(
‖EL‖2 ≤ ε

q

)
. From Theorem 1, we can

obtain the following tail bound:

P (‖EL‖2 ≤ ε

q
)

≥ 1− 8Mca exp

[

−c1Lmin

(
c2ε2

q2‖Ry‖22∆(S)
,

ε

q‖Ry‖2
√

∆(S)

)]

.

(54)

Case II (ε > CSβq): For values of ε satisfying ε > Csβq,
we have min(CSβ, ε/q) = CSβ. Therefore, if ‖EL‖2 ≤ CSβ,
then from Theorem 2 we have md(θ, θ̂)≤ CSβq. We obtain
the following bound on the tail probability due to Theorem 1,

P (‖EL‖2 ≤ CSβ)

≥ 1− 8Mca exp

[
−c1Lmin

(
c2C

2
Sβ

2

‖Ry‖22∆(S)
,

CSβ

‖Ry‖2
√

∆(S)

)]
.

(55)

If the number of snapshots L satisfy the following bound:

L≥ c3 ln
(
8Mca

δ

)
max

( q21∆(S)
c2ε2

,
q1
√

∆(S)

ε ,
L2

0

c2
, L0

)
, where q1 =

q‖Ry‖2, c3 = 1/c1 and L0 =
‖Ry‖2

√
∆(S)

CSβ then combining

(54) and (55) we obtain the following bound P
(
md(θ, θ̂)≤

min(ε, CSβq))≥ 1− δ.
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Mehmet Can Hücümenoğlu (Graduate Student
Member, IEEE) was born in 1994. He received the
B.S. degree in electrical and electronics engineering
from Bilkent University, Ankara, Turkey, in 2016,
and the M.S. degree in electrical engineering from
the University of California, San Diego, San Diego,
CA, USA, in 2019. He is currently working toward
the Ph.D. degree with the University of California,
San Diego, under the supervision of Prof. Piya Pal.
His research interests include array signal process-
ing, super-resolution imaging, and tensor decompo-

sitions and Applications.

Robin Rajamäki (Member, IEEE) received the
D.Sc. degree in electrical engineering from Aalto
University, Finland, in 2021. He is currently a Post-
doctoral Scholar with the University of California
San Diego. His research interests lie in the inter-
section of theory and applications of sensing and
wireless communications using sparse multisensor
systems.

Piya Pal received the B.Tech. degree in electronics
and electrical communication engineering from the
Indian Institute of Technology, Kharagpur, India,
in 2007, and the Ph.D. degree in electrical en-
gineering from California Institute of Technology
(Caltech), Pasadena, CA, USA, in 2013. She is
an Associate Professor in electrical and computer
engineering with the University of California, San
Diego, La Jolla, CA, USA. Her research interests
include sensing and signal representation for high-
dimensional inference with applications in the next

generation of massive MIMO wireless communication and autonomous sys-
tems, active/passive sensing and imaging with sparse arrays, mathematical
and algorithmic aspects of super-resolution imaging, and machine learning
for inverse problems. She was awarded the 2020 IEEE Pierre-Simon Laplace
Early Career Technical Achievement Award, 2019 Presidential Early Career
Award for Scientists and Engineers (PECASE), 2019 Office of Naval Research
Young Investigator Program (ONR YIP) Award, 2016 National Science
Foundation (NSF) CAREER Award, and the 2014 Charles and Ellen Wilts
Prize for Outstanding Doctoral Thesis in electrical engineering with Caltech.
She and her student have received several best paper awards at conferences,
including the Best Student Paper Awards at the 2017 ICASSP and 2019
IEEE CAMSAP. She is serving as an Associate Editor for the IEEE SIGNAL

PROCESSING MAGAZINE. She has served as elected members of the IEEE
SAM and SPTM Technical Committees.

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on July 19,2024 at 00:51:29 UTC from IEEE Xplore.  Restrictions apply. 



<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
			]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
			]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
			]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
			]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
			]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
			]
			/Downsample16BitImages true
		>>
	]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
	]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
	]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
	]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
	]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
	]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
	]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <>
		/NOR <>
		/DEU <>
		/CZE <>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <>
		/JPN <>
		
		/SUO <>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		
		
		
		/PTB <>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <>
		/POL <>
		
		/SVE <>
		
		/ESP <>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
	]
	/HWResolution [
		600
		600
	]
>>
setpagedevice


