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Abstract—This paper studies spatial smoothing using sparse
arrays in single-snapshot Direction of Arrival (DOA) estima-
tion. We consider the application of automotive MIMO radar,
which traditionally synthesizes a large uniform virtual array by
appropriate waveform and physical array design. We explore
deliberately introducing holes into this virtual array to lever-
age resolution gains provided by the increased aperture. The
presence of these holes requires re-thinking DOA estimation,
as conventional algorithms may no longer be easily applicable
and alternative techniques, such as array interpolation, may
be computationally expensive. Consequently, we study sparse
array geometries that permit the direct application of spatial
smoothing. We show that a sparse array geometry is amenable
to spatial smoothing if it can be decomposed into the sum set of
two subsets of suitable cardinality. Furthermore, we demonstrate
that many such decompositions may exist—not all of them
yielding equal identifiability or aperture. We derive necessary
and sufficient conditions to guarantee identifiability of a given
number of targets, which gives insight into choosing desirable
decompositions for spatial smoothing. This provides uniform
recovery guarantees and enables estimating DOAs at increased
resolution and reduced computational complexity.'

I. INTRODUCTION

Active sensing provides several advantages compared to
passive sensing by virtue of the flexibility of designing
the transmitted waveforms for probing the environment. A
prominent example of an active sensing system is multiple-
input multiple-output (MIMO) radar, which is capable of
achieving high angular resolution using only a limited number
of physical sensors. By combining transmission of orthogonal
waveforms and design of structured sparse array geometries,
MIMO radar can synthesize a virtual array (also known as the
sum co-array) with M;M, elements using M; transmit and
M, receive antennas. Sparse array geometries, such as the
minimum-redundancy array [1] and nested array [2], yield a
large virtual uniform linear array (ULA) which naturally leads
to enhanced resolution. Hence, sparse array-based MIMO
radar has become extremely lucrative for deployment in do-
mains with high resolution requirements, such as advanced
driver assistant systems (ADAS) and autonomous vehicles.
However, a key challenge imposed by automotive applications
is that the environment is highly dynamic with rich multipath
[3], [4]. As a result, the number of snapshots in a given
coherence interval is small; in the worst case, only a single
snapshot is available. This raises a fundamental question “How
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can super-resolution direction of arrival (DOA) estimation be
achieved using a single snapshot?”

A common practice in the MIMO radar literature [5] is to
synthesize a virtual array with a large contiguous ULA seg-
ment of up to O(M?) virtual sensors, when M;ocM,.ocM. The
inherent ‘“‘shift invariant” structure of the (virtual) ULA can
be leveraged to identify the “signal subspace” of interest from
the single-snapshot measurement model. In particular, spatial
smoothing [6], [7] can be used to accumulate multiple partial
measurement vectors (corresponding to appropriate sub-arrays
of the ULA) to build a spatially smoothed measurement
matrix that is no longer rank-deficient. High-resolution DOA
estimation can then be achieved by applying subspace-based
methods, such as MUSIC [8] and ESPRIT [9], on the spatially
smoothed measurement matrix. The aperture of the virtual
array can be further extended by making it a sparse array,
which inevitably leads to the introduction of holes (given the
same sensor budget). This requires re-thinking the application
of conventional algorithms leveraging the structure of the
ULA. One way to tackle these holes is the recently proposed
interpolation techniques based on low-rank Toeplitz or Hankel
matrix completion [10], [4], [11] to obtain an interpolated vir-
tual ULA. Upon successful interpolation, standard ULA-based
spatial smoothing is applicable. However, there are two ma-
jor challenges associated with such interpolation techniques.
Firstly, obtaining theoretical guarantees even in absence of
noise for successful virtual array interpolation is difficult for
arbitrary array geometries; secondly, the computational cost of
interpolation via rank-minimization (or corresponding convex
relaxations) can be prohibitively high. A natural question
is therefore: How can interpolation-free methods, such as
spatial smoothing, be applied on sparse (virtual) arrays while
guaranteeing the identifiability of a desired number of targets?

Contributions: This paper explores synthesizing (virtual)
sparse arrays to enhance resolution compared to conventional
uniform (virtual) arrays. We characterize the set of sparse
array geometries amenable to spatial smoothing, establish-
ing that several decompositions may exist for a given array
geometry and spatial smoothing parameter values, but some
decompositions may be preferable to others. We derive nec-
essary and sufficient conditions for uniquely identifying K
targets (in absence of noise) using spatial smoothing on these
sparse arrays. We demonstrate that leveraging holes in spatial
smoothing using appropriately designed sparse (virtual) arrays
can improve resolution without introducing ambiguities.
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Notation: Given an array geometry S = {dy,ds, -+ ,dn},
matrix Ag(6) € CV*X denotes the array manifold for sensors
located at n\/2, where n € S. The (n, k)th entry of Ag(0)
is [As(0)]nrx = exp(jnd, sinfy), where 8 € [—7/2,7/2)K
denote the target DOAs. We use the first sensor as the reference
sensor (d; = 0). The Khatri-Rao (column-wise Kronecker)
product is denoted by ®. Moreover, R(-) and N (-) denote the
range (column space) and null space, respectively.

II. MEASUREMENT MODEL

Consider K narrowband sources impinging on a linear array
S = {di1,da, -+ ,dn} from distinct angular directions 8 =
[01,02,- - ,0k]T. A single temporal snapshot of the received
signal is of the following form:

y = As(0)x +n, (1)

where € CK is the source/target signal and n € CV is a
noise vector. The goal is to estimate {0}/ | given y and S.

Note that (1) is applicable to both passive and active
sensing—indeed, S can represent either a physical or virtual
array. In case of co-located MIMO radar using orthogonal
waveforms, which is the focus of this paper, S = S; + S,
is a sum co-array, where S; and S, are the transmitter and
receiver arrays, respectively. For ease of exposition, we restrict
ourselves to non-redundant arrays, resulting in |S| = M;M,.,
where M; = |S;| and M, = |S,|.

IITI. SPATIAL SMOOTHING WITH SPARSE ARRAYS

Spatial-smoothing using ULAs has been widely used for
DOA estimation in sample-starved regimes or to tackle co-
herent sources [12], [7]. While it has been recognized that
non-uniform arrays with a suitable shift-invariant structure
can be used for spatial smoothing [13], [14] (or directly in
algorithms such as ESPRIT [15]), the principled design of such
“spatial-smoothing-amenable” sparse linear arrays geometries
providing enhanced aperture with rigorous identifiability guar-
antees has not yet been fully explored. In this section, we
study spatial smoothing using sparse subarrays, developing
new results on source/target identification which show that
holes can be introduced in the array to increase aperture
without compromising identifiability.

An array S is said to have a shift-invariant structure if S
contains shifted copies of a so-called “basic sub-array” S, < S.
Mathematically: UiL:I (Sp + 8;) € S, where §;€ Z denotes the
i-th (unique integer-valued) shift, ¢ € {1,2,--- , L}. We define
the set of all N-sensor linear arrays that are amenable for
(forward) spatial smoothing with parameters Ny and L as:

Sn(Ny, L) = {S,|S| = N such that 3 S, S, with

2
|Sb‘ = Nsa |Sc‘ = L,Sb +S. € S} 2)

In other words, set Sy (Ng, L) represents all linear arrays S
that constitute of L sub-arrays {S;}2; = {Sy +d;}%,, which
may or may not be overlapping, that are integer-shifted copies
of a basic sub-array S;, with Ny sensors. Note that the same
array S may belong to both Sy (N, L1) and Sy (N2, Ls)
with N1 # Ns or L1 # Lo, i.e., there could exist multiple

decompositions for the same S. However, not all of them are
equivalent in terms of identifiability and resolution, as we will
show in Section III-B.

If S e Sy(Ns, L), we can construct a spatially smoothed
measurement matrix Y by rearranging measurement vector y
into an Ny x L matrix as follows:

Y:[ylay27"' ayL]7 (3)
where y; contains the elements of y corresponding to sub-
array S;. Specifically, in the absence of noise (n = 0),

y;, = As, (0)x = As,(0)D;(0)x, where D;(0) is a diagonal
matrix with [D;(0)],.m = exp(jmd; sin b,,). Due to the shift-
invariance property of the array, the spatially smoothed mea-
surement matrix permits the following decomposition (when
n = 0):

Y = As,(0)[D1(0)x, D2(0)x, - -- , D1 (0)x]
= Ag, (0)diag(x)As,(0)". 4

In the presence of noise, Y has an additive term, where noise
vector n is reshaped according to the shift structure.

Eq. (4) illustrates that the shift-invariant structure of the
array S can be leveraged to potentially build the rank of Y
on which subspace methods can be applied to identify 8. The
following theorem provides necessary and sufficient conditions
for identifying the desired subspace corresponding to the true
DOAs 0 by applying MUSIC on Y using a sparse subarray S
with holes. When these conditions are satisfied, the MUSIC
pseudo-spectrum yields exactly K peaks, and no false peaks.

Theorem 1. Consider the measurement model (1) with n =
0, suppose S € Sn(Ng, L). Applying MUSIC on Y in (4)
can resolve any K < min(Ny, L + 1) distinct angles {05 }5_,
unambiguously if and only if both of the following conditions
hold:

(a) As, (@) € CN>*E+Y) satisfies rank(As, (d))

all possible sets of K + 1 distinct ¢; in [—5,5);

(b) As, (9) € CL*E satisfies rank(As, (9)) = K for all

possible sets of K distinct ¥; in [-F, T).

= K+1 for

jus
2

Proof. Let the singular value decomposition of Y be Y =
USV# where T is a diagonal matrix containing the singular
values of Y in descending order. The singular vectors are
partitioned according to the number of non-zero singular
values (also equal to rank(Y)) K <K as U = [U,,U,],
where U, € CV+*K and U,, e CN+*(Ns=K) MUSIC applied
on Y is said to unambiguously identify any set of K <
min(Ng, L + 1) distinct sources {0} | if the following two
conditions are satisfied: (M1) ag, (6;)7 U, U ag, (6;) = 0
for all 1 < k < K, and (M2) ag, (¢)7 U, U ag, (¢) # 0 for
any ¢ ¢ {0}

We begin by proving the sufficiency of (a) and (b) for
identifiability. Suppose (a) and (b) hold. From (4) we have
R(Y) = R(As,(0)diag(x)AL (6)). Due to assumption
(b), diag(x)AZ () has full row-rank and hence R(Y) =
R(Ag,(0)). Due to assumption (a) rank(As,(8)) = K
and hence K = K. Now, for every {Ok}ﬁl, we have
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ag, (0r) € R(U,) and therefore ag, (0;)7 U, U ag, (6;) = 0.
The fact that {0;}X , are the only solutions follows by
contradiction: Suppose there exists ¢ ¢ {Hk}szl such that
ag, (0)1U, Ul ag, (¢) = 0. This implies that U ag, (¢) =
0= ag,(¢) € R(Us) = R(As, (0)). However, this leads to a
contradiction since [Ag, (0), as, (¢)] cannot be rank deficient
due to assumption (a). Thus, if (a) and (b) hold, MUSIC
applied on Y can identify any set of K distinct sources
unambiguously.

Next we prove the necessity of (a) and (b) for identifiability.
We consider an arbitrary set of K source angles {0 }5_,. We
always have R(Y) € R(As, (0)). However, we establish that
if conditions (M1) and (M2) hold, then it is necessary to have
R(Y) = R(Ag,(0)) and K = K. The proof proceeds via
contradiction. Suppose R(Y) = R(As,(0)), i.e., there exists
some source direction 0y, such that ag, (0x) ¢ R(Y) = R(Us).
This implies that the projection of ag, () onto R(U,)—
the orthogonal complement of R(Y )—is non-zero. Hence, we
have ag, (0x)U, U ag, (0;) # 0 which contradicts (M1).
Thus, R(Y) = R(As, (0)).

Next, we establish that for unambiguous identification of
any set of K < min(N, L+ 1) sources it is necessary
that rank(Y) = K. Suppose rank(Y) = K’ < K. Since
R(Y) = R(As, (0)), rank(Ag, (0)) = rank(Y) = K’ < K.
This implies that there exists {0;}5X , < {6z}, such
that {ag, (0))}, are linearly independent. Now consider a
different source configuration where the DOAs are given by
0 = [01,0,,...,0k/]" and the corresponding measurement
vector is § = Ag(@)Z for some & € CX (with Z; # 0 for all
1 < i < K') . The corresponding spatially smoothed matrix
is given below:

¥ = As, (6)diag(%)As, (6)”

Identifiability of all K < min(N,, L + 1) source configura-
tions implies that these K’ < K < min(Ng, L + 1) DOAs

0 should also be identifiable by applying MUSIC on Y.
However, since R(Y) = R(Y) = R(Ag, (0)) = R(Ag, (0))
MUSIC algorithm applied to Y will produce K > K’ peaks
and 61,0, - ,0x will not be identifiable. This contradicts
the fact that all K < min(Ng, L + 1) source configurations
can be unambiguously identified by applying MUSIC on Y.
Therefore, rank(Y) = rank(Ag,(6)) = K is necessary. This
implies condition (b) since rank(Y) < rank(Asg,(0)) < K.
By combining rank(Ag,(0)) = K and condition (M2), we
can establish that for any ¢ ¢ {0}, we must have
ag, (¢) ¢ R(As,(0)) establishing the necessity of (a). O

Remark. Theorem 1 reveals two potential ambiguities in
spatial smoothing using sparse arrays. First, when (a) does not
hold, we have rank(Asg, (6)) < K or there exists ¢ ¢ {6;}1,
such that rank([Asg, (0), as, (¢)]) < K, where ag, () is the
manifold vector of S;, for angle ¢. Second, when (b) does not
hold, we have R(Y) # R(As,(0)). In both cases, MUSIC
fails to yield exactly K peaks that corresponds to the true K
DOA:s.

A. Non-necessity of ULA segments

Using Theorem 1, it can be shown that S, with a ULA
segment of length /K +1 and S, with a ULA segment of length
K are sufficient for guaranteeing identifiability of K targets
due to the presence of a Vandermonde submatrix in Ag, (0)
and As_(0). Hence, choosing Sy, and S, as sparse arrays (such
as nested arrays [11]) containing contiguous segments of size
K +1 and K is sufficient for satisfying conditions (a) and (b),
respectively. However, the presence of an ULA segment is not
always necessary: it has been shown in [16] that an N’-sensor
array D need not contain a ULA segment of length K’ + 1 to
identify K’< N’ sources when N’ = 3 or 4.

These results can be leveraged in Theorem 1 to guarantee
identifiability of K = 2 targets when applying MUSIC on
the spatially smoothed matrix Y using sparse S, and S.—
neither containing ULA segments of appropriate length K.
Specifically, by [16, Theorem 2], manifold matrix Ap(0) €
C3*2 of array D = {0,d;,d2} = N has full column rank
for all distinct 61,0, € [—7, %) if and only if di,ds are
coprime. Hence, condition (b) in Theorem 1 is satisfied for
a given L > 3 by selecting d;,ds to be coprime and setting
Se = D uX; for any X; such that |D u Xy| = L. This
follows from the fact that Ag () € CL*2 contains a 3 x 2
block Ap(@) which by [16, Theorem 2] has full Kruskal rank
for the above choice of D. A similar, albeit slightly more
invloved argument can be made for satisfying condition (a) in
Theorem 1 by embedding manifold matrix Ag(#) € C**? of
array G = {0, g1, 92,93} into Ag,(8) € CN=*2 for gy, g, g3
satisfying certain coprimality properties—see [16, Theorem 3]
for details. For example, Theorem 1 combined with [16,
Theorems 2 and 3] suggests that spatial smoothing identifies
K = 2 targets using S, = {0,4,9} and S, = {0,3,5,7}—
neither containing ULA segments with unit spacing.

B. Harnessing holes in sparse arrays for spatial smoothing:
Decomposition considerations

It is well known that a length 2M — 1 ULA can resolve
M targets unambiguously via forward spatial smoothing in
absence of noise by choosing S, and S, to be length-M ULAs.
However, trading off identifiability for resolution may be of
interest for example in automotive radar, where the number
of targets in a given range-Doppler bin can be small, yet high
angular resolution is required [17]. A critical factor that affects
the spatial resolution of such a spatial-smoothing strategy (in
addition to SNR) is the aperture of S;, denoted by N, :=
max(Sp)—min(Sp). For a given number of virtual elements N,
if we desire a larger [V, the number of effective “snapshots” L
is limited and vice-versa. This trade-off between aperture and
identifiability continues to hold for spatial smoothing using
sparse arrays. For example, given S = {0, 1, 3,4, 5,6, 7,8}, we
have at least the following decomposition for Ny = 4, L = 2:

Sbl = {053,577}5801 = {071}7 (5)
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Figure 1.

and for Ny =4, L = 3:

Sh, = {0,1,3,4},S,, = {0,3,4};
Sk, = {0,3,4,5},S,, = {0,1,3}.

(6)
)

Using Theorem 1 and [16, Theorem 3], both (5) and (7) can
guarantee the identifiability of K = 2 targets. However, Sy, =
{0, 3,5, 7} has larger aperture than Sp, = {0,3,4,5}. Hence,
Sy, may be preferable to Sy, in terms of resolution. Moreover,
even though (6) may not be desirable for spatial smoothing
due to the fact Sp, = {0, 1,3, 4} fails to satisfy condition (a)
in Theorem 1 for K = 2 according to [16, Theorem 3], S;,
can be good candidate for the physical transmit or receive
array if the aperture available for placing the sensors is tightly
constrained.

IV. SIMULATIONS

For the numerical experiments, we consider three different
array configurations with the constraint M; = 3 and M, = 9.
Fig. 1 visualizes the virtual sum co-array for each of these
arrays, denoted by S, S, and S3, respectively.

We generate the scattering coefficients {x;}5_ | with a
constant magnitude and phase drawn uniformly from the
interval (0, 27]. The noise is assumed to be complex Gaussian
with independent real and imaginary parts and a variance o
chosen to meet the desired signal-to-noise ratio (SNR) defined
as SNR = 20log;, ming (ox]), Fig. 2 shows a realization
of the MUSIC pseudospectrum in the case of two different
target configurations (with K = 2) after performing spatial
smoothing on S;,4 = 1,2,3. The corresponding physical
arrays S,,, S, and spatial smoothing arrays Sy, , S., (satisfying
Sy, +St, =Sy, +S.; =S;) are shown below:

St {3k}k 0 St; = {0, 1,2},
= {k}k 0’ C1 = {0,1,2};

S : S,.2 — {5k}3_0, Si, = {0,1,2},
6
S, = [ J{k +5n}i_o, Se, = {0,5,10};
n=0

Ss 1 Sy = {3k}ioo [ {21 + 9K} o, S, = {0,1,2},
3 T {k}llc2=0 U{21 + 9k}§:=07 SCB = {Oa 1> 2}'

Three examples of array geometry with M; = 3 antennas and M,- = 12 antennas: achieve larger aperture by introducing holes

The left column of Fig. 2 shows that S; cannot resolve
the DOAs with a separation of 2° due to its limited aperture,
whereas the enhanced aperture of sparse arrays S; and Sg
allows them to resolve the closely spaced targets despite the
presence of holes in these (virtual) array geometries. However,
the right column of Fig. 2 shows a target configuration that
corresponds to an ambiguity of S,, which leads to a degrada-
tion in its performance despite the increased angular separation
(A~ 67°) between the targets. In contrast, S3 provably does not
suffer from ambiguities when K = 2 by Theorem 1.

Array geometry 1

. _/
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Figure 2. Comparison of direct MUSIC on 3 examples of array geometry
with K = 2 targets located at (left) @ = [10°,12.00°] and (right) 8 =
[10°,76.82°] with SNR = 20 dB. Array S3 can not only achieve higher
resolution but is also free from ambiguities arising from spatial smoothing.

V. CONCLUSIONS

This paper considered leveraging the enhanced aperture of
sparse arrays in spatial smoothing towards improving angular
resolution in sample-starved applications, such as automotive
radar. We showed that sparse arrays with a suitable shift-
invariant structure are amenable to spatial smoothing. Fur-
thermore, we derived necessary and sufficient conditions for
spatial smoothing using sparse arrays to identify K targets.
We also demonstrated that a fixed sparse array geometry
can have multiple decompositions and not all of them are
equivalent in terms of resolution and identifiability. Simulation
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results indicate that appropriate sparse array configuration can
not only achieve higher resolution but can also be free of
ambiguities when using spatial smoothing.
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