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Abstract—This paper studies spatial smoothing using sparse
arrays in single-snapshot Direction of Arrival (DOA) estima-
tion. We consider the application of automotive MIMO radar,
which traditionally synthesizes a large uniform virtual array by
appropriate waveform and physical array design. We explore
deliberately introducing holes into this virtual array to lever-
age resolution gains provided by the increased aperture. The
presence of these holes requires re-thinking DOA estimation,
as conventional algorithms may no longer be easily applicable
and alternative techniques, such as array interpolation, may
be computationally expensive. Consequently, we study sparse
array geometries that permit the direct application of spatial
smoothing. We show that a sparse array geometry is amenable
to spatial smoothing if it can be decomposed into the sum set of
two subsets of suitable cardinality. Furthermore, we demonstrate
that many such decompositions may exist—not all of them
yielding equal identifiability or aperture. We derive necessary
and sufficient conditions to guarantee identifiability of a given
number of targets, which gives insight into choosing desirable
decompositions for spatial smoothing. This provides uniform
recovery guarantees and enables estimating DOAs at increased
resolution and reduced computational complexity.1

I. INTRODUCTION

Active sensing provides several advantages compared to

passive sensing by virtue of the flexibility of designing

the transmitted waveforms for probing the environment. A

prominent example of an active sensing system is multiple-

input multiple-output (MIMO) radar, which is capable of

achieving high angular resolution using only a limited number

of physical sensors. By combining transmission of orthogonal

waveforms and design of structured sparse array geometries,

MIMO radar can synthesize a virtual array (also known as the

sum co-array) with MtMr elements using Mt transmit and

Mr receive antennas. Sparse array geometries, such as the

minimum-redundancy array [1] and nested array [2], yield a

large virtual uniform linear array (ULA) which naturally leads

to enhanced resolution. Hence, sparse array-based MIMO

radar has become extremely lucrative for deployment in do-

mains with high resolution requirements, such as advanced

driver assistant systems (ADAS) and autonomous vehicles.

However, a key challenge imposed by automotive applications

is that the environment is highly dynamic with rich multipath

[3], [4]. As a result, the number of snapshots in a given

coherence interval is small; in the worst case, only a single

snapshot is available. This raises a fundamental question “How

1This work was supported in part by Texas Instruments and grants ONR
N00014-19-1-2256, NSF 2124929, and DE-SC0022165.

can super-resolution direction of arrival (DOA) estimation be

achieved using a single snapshot?”

A common practice in the MIMO radar literature [5] is to

synthesize a virtual array with a large contiguous ULA seg-

ment of up to OpM2q virtual sensors, when Mt9Mr9M . The

inherent “shift invariant” structure of the (virtual) ULA can

be leveraged to identify the “signal subspace” of interest from

the single-snapshot measurement model. In particular, spatial

smoothing [6], [7] can be used to accumulate multiple partial

measurement vectors (corresponding to appropriate sub-arrays

of the ULA) to build a spatially smoothed measurement

matrix that is no longer rank-deficient. High-resolution DOA

estimation can then be achieved by applying subspace-based

methods, such as MUSIC [8] and ESPRIT [9], on the spatially

smoothed measurement matrix. The aperture of the virtual

array can be further extended by making it a sparse array,

which inevitably leads to the introduction of holes (given the

same sensor budget). This requires re-thinking the application

of conventional algorithms leveraging the structure of the

ULA. One way to tackle these holes is the recently proposed

interpolation techniques based on low-rank Toeplitz or Hankel

matrix completion [10], [4], [11] to obtain an interpolated vir-

tual ULA. Upon successful interpolation, standard ULA-based

spatial smoothing is applicable. However, there are two ma-

jor challenges associated with such interpolation techniques.

Firstly, obtaining theoretical guarantees even in absence of

noise for successful virtual array interpolation is difficult for

arbitrary array geometries; secondly, the computational cost of

interpolation via rank-minimization (or corresponding convex

relaxations) can be prohibitively high. A natural question

is therefore: How can interpolation-free methods, such as

spatial smoothing, be applied on sparse (virtual) arrays while

guaranteeing the identifiability of a desired number of targets?

Contributions: This paper explores synthesizing (virtual)

sparse arrays to enhance resolution compared to conventional

uniform (virtual) arrays. We characterize the set of sparse

array geometries amenable to spatial smoothing, establish-

ing that several decompositions may exist for a given array

geometry and spatial smoothing parameter values, but some

decompositions may be preferable to others. We derive nec-

essary and sufficient conditions for uniquely identifying K

targets (in absence of noise) using spatial smoothing on these

sparse arrays. We demonstrate that leveraging holes in spatial

smoothing using appropriately designed sparse (virtual) arrays

can improve resolution without introducing ambiguities.
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Notation: Given an array geometry S “ td1, d2, ¨ ¨ ¨ , dNu,

matrix ASpθq P C
NˆK denotes the array manifold for sensors

located at nλ{2, where n P S. The pn, kqth entry of ASpθq
is rASpθqsn,k “ exppjπdn sin θkq, where θ P r´π{2, π{2qK

denote the target DOAs. We use the first sensor as the reference

sensor (d1 “ 0). The Khatri-Rao (column-wise Kronecker)

product is denoted by d. Moreover, Rp¨q and N p¨q denote the

range (column space) and null space, respectively.

II. MEASUREMENT MODEL

Consider K narrowband sources impinging on a linear array

S “ td1, d2, ¨ ¨ ¨ , dNu from distinct angular directions θ “
rθ1, θ2, ¨ ¨ ¨ , θKsT . A single temporal snapshot of the received

signal is of the following form:

y “ ASpθqx ` n, (1)

where x P C
K is the source/target signal and n P C

N is a

noise vector. The goal is to estimate tθkuKk“1
given y and S.

Note that (1) is applicable to both passive and active

sensing—indeed, S can represent either a physical or virtual

array. In case of co-located MIMO radar using orthogonal

waveforms, which is the focus of this paper, S “ St ` Sr

is a sum co-array, where St and Sr are the transmitter and

receiver arrays, respectively. For ease of exposition, we restrict

ourselves to non-redundant arrays, resulting in |S| “ MtMr,

where Mt fi |St| and Mr fi |Sr|.

III. SPATIAL SMOOTHING WITH SPARSE ARRAYS

Spatial-smoothing using ULAs has been widely used for

DOA estimation in sample-starved regimes or to tackle co-

herent sources [12], [7]. While it has been recognized that

non-uniform arrays with a suitable shift-invariant structure

can be used for spatial smoothing [13], [14] (or directly in

algorithms such as ESPRIT [15]), the principled design of such

“spatial-smoothing-amenable” sparse linear arrays geometries

providing enhanced aperture with rigorous identifiability guar-

antees has not yet been fully explored. In this section, we

study spatial smoothing using sparse subarrays, developing

new results on source/target identification which show that

holes can be introduced in the array to increase aperture

without compromising identifiability.

An array S is said to have a shift-invariant structure if S

contains shifted copies of a so-called “basic sub-array” Sb Ă S.

Mathematically:
ŤL

i“1
pSb ` δiq Ď S, where δiP Z denotes the

i-th (unique integer-valued) shift, i P t1, 2, ¨ ¨ ¨ , Lu. We define

the set of all N -sensor linear arrays that are amenable for

(forward) spatial smoothing with parameters Ns and L as:

SN pNs, Lq fi tS, |S| “ N such that D Sb, Sc with

|Sb| “ Ns, |Sc| “ L, Sb ` Sc Ď Su.
(2)

In other words, set SN pNs, Lq represents all linear arrays S

that constitute of L sub-arrays tSiu
L
i“1

“ tSb ` δiu
L
i“1

, which

may or may not be overlapping, that are integer-shifted copies

of a basic sub-array Sb with Ns sensors. Note that the same

array S may belong to both SN pN1, L1q and SN pN2, L2q
with N1 ‰ N2 or L1 ‰ L2, i.e., there could exist multiple

decompositions for the same S. However, not all of them are

equivalent in terms of identifiability and resolution, as we will

show in Section III-B.

If S P SN pNs, Lq, we can construct a spatially smoothed

measurement matrix Y by rearranging measurement vector y

into an Ns ˆ L matrix as follows:

Y “ ry1,y2, ¨ ¨ ¨ ,yLs, (3)

where yi contains the elements of y corresponding to sub-

array Si. Specifically, in the absence of noise (n “ 0),

yi “ ASipθqx “ ASb
pθqDipθqx, where Dipθq is a diagonal

matrix with rDipθqsm,m “ exppjπδi sin θmq. Due to the shift-

invariance property of the array, the spatially smoothed mea-

surement matrix permits the following decomposition (when

n “ 0):

Y “ ASb
pθqrD1pθqx,D2pθqx, ¨ ¨ ¨ ,DLpθqxs

“ ASb
pθqdiagpxqAScpθqT . (4)

In the presence of noise, Y has an additive term, where noise

vector n is reshaped according to the shift structure.

Eq. (4) illustrates that the shift-invariant structure of the

array S can be leveraged to potentially build the rank of Y

on which subspace methods can be applied to identify θ. The

following theorem provides necessary and sufficient conditions

for identifying the desired subspace corresponding to the true

DOAs θ by applying MUSIC on Y using a sparse subarray Sb

with holes. When these conditions are satisfied, the MUSIC

pseudo-spectrum yields exactly K peaks, and no false peaks.

Theorem 1. Consider the measurement model (1) with n “
0, suppose S P SN pNs, Lq. Applying MUSIC on Y in (4)

can resolve any K ă minpNs, L ` 1q distinct angles tθkuKk“1

unambiguously if and only if both of the following conditions

hold:

(a) ASb
pφq P C

NsˆpK`1q satisfies rankpASb
pφqq “ K`1 for

all possible sets of K ` 1 distinct φi in r´π
2
, π
2

q;

(b) AScpϑq P C
LˆK satisfies rankpAScpϑqq “ K for all

possible sets of K distinct ϑi in r´π
2
, π
2

q.

Proof. Let the singular value decomposition of Y be Y “
UΣVH where Σ is a diagonal matrix containing the singular

values of Y in descending order. The singular vectors are

partitioned according to the number of non-zero singular

values (also equal to rank(Y)) K̂ ď K as U “ rUs,Uns,

where Us P C
NsˆK̂ and Un P C

NsˆpNs´K̂q. MUSIC applied

on Y is said to unambiguously identify any set of K ă
minpNs, L ` 1q distinct sources tθkuKk“1

if the following two

conditions are satisfied: (M1) aSbpθkqHUnU
H
n aSbpθkq “ 0

for all 1 ď k ď K, and (M2) aSbpφqHUnU
H
n aSbpφq ‰ 0 for

any φ R tθkuKk“1
.

We begin by proving the sufficiency of (a) and (b) for

identifiability. Suppose (a) and (b) hold. From (4) we have

RpYq “ RpASb
pθqdiagpxqAT

Sc
pθqq. Due to assumption

(b), diagpxqAT
Sc

pθq has full row-rank and hence RpYq “
RpASb

pθqq. Due to assumption (a) rank(ASb
pθqq “ K

and hence K̂ “ K. Now, for every tθkuKk“1
, we have
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aSbpθkq P RpUsq and therefore aSbpθkqHUnU
H
n aSbpθkq “ 0.

The fact that tθkuKk“1
are the only solutions follows by

contradiction: Suppose there exists φ R tθkuKk“1
such that

aSbpφqHUnU
H
n aSbpφq “ 0. This implies that UH

n aSbpφq “
0 ñ aSbpφq P RpUsq “ RpASb

pθqq. However, this leads to a

contradiction since rASb
pθq,aSbpφqs cannot be rank deficient

due to assumption (a). Thus, if (a) and (b) hold, MUSIC

applied on Y can identify any set of K distinct sources

unambiguously.

Next we prove the necessity of (a) and (b) for identifiability.

We consider an arbitrary set of K source angles tθkuKk“1
. We

always have RpYq Ď RpASb
pθqq. However, we establish that

if conditions (M1) and (M2) hold, then it is necessary to have

RpYq “ RpASb
pθqq and K̂ “ K. The proof proceeds via

contradiction. Suppose RpYq Ă RpASb
pθqq, i.e., there exists

some source direction θk such that aSbpθkq R RpYq “ RpUsq.

This implies that the projection of aSbpθkq onto RpUnq—

the orthogonal complement of RpYq—is non-zero. Hence, we

have aSbpθkqHUnU
H
n aSbpθkq ‰ 0 which contradicts (M1).

Thus, RpYq “ RpASb
pθqq.

Next, we establish that for unambiguous identification of

any set of K ă minpNs, L ` 1q sources it is necessary

that rankpYq “ K. Suppose rankpYq “ K 1 ă K. Since

RpYq “ RpASb
pθqq, rankpASb

pθqq “ rankpYq “ K 1 ă K.

This implies that there exists tθ̄kuK
1

k“1
Ă tθkuKk“1

such

that taSbpθ̄kquK
1

k“1
are linearly independent. Now consider a

different source configuration where the DOAs are given by

θ̄ “ rθ̄1, θ̄2, . . . , θ̄K1 sT and the corresponding measurement

vector is ȳ “ ASpθ̄qx̄ for some x̄ P C
K1

(with x̄i ‰ 0 for all

1 ď i ď K 1) . The corresponding spatially smoothed matrix

is given below:

Ȳ “ ASb
pθ̄qdiagpx̄qAScpθ̄qT .

Identifiability of all K ă minpNs, L ` 1q source configura-

tions implies that these K 1 ă K ă minpNs, L ` 1q DOAs

θ̄ should also be identifiable by applying MUSIC on Ȳ.

However, since RpYq “ RpȲq “ RpASb
pθqq “ RpASb

pθ̄qq
MUSIC algorithm applied to Ȳ will produce K ą K 1 peaks

and θ̄1, θ̄2, ¨ ¨ ¨ , θ̄K1 will not be identifiable. This contradicts

the fact that all K ă minpNs, L ` 1q source configurations

can be unambiguously identified by applying MUSIC on Y .

Therefore, rankpYq “ rankpASb
pθqq “ K is necessary. This

implies condition (b) since rankpYq ď rankpAScpθqq ď K.

By combining rankpASb
pθqq “ K and condition (M2), we

can establish that for any φ R tθkuKk“1
we must have

aSbpφq R RpASb
pθqq establishing the necessity of (a).

Remark. Theorem 1 reveals two potential ambiguities in

spatial smoothing using sparse arrays. First, when (a) does not

hold, we have rankpASb
pθqq ă K or there exists ϕ R tθiu

K
i“1

such that rankprASb
pθq,aSb

pϕqsq ď K, where aSb
pϕq is the

manifold vector of Sb for angle ϕ. Second, when (b) does not

hold, we have RpYq ‰ RpASb
pθqq. In both cases, MUSIC

fails to yield exactly K peaks that corresponds to the true K

DOAs.

A. Non-necessity of ULA segments

Using Theorem 1, it can be shown that Sb with a ULA

segment of length K`1 and Sc with a ULA segment of length

K are sufficient for guaranteeing identifiability of K targets

due to the presence of a Vandermonde submatrix in ASb
pθq

and AScpθq. Hence, choosing Sb and Sc as sparse arrays (such

as nested arrays [11]) containing contiguous segments of size

K`1 and K is sufficient for satisfying conditions (a) and (b),

respectively. However, the presence of an ULA segment is not

always necessary: it has been shown in [16] that an N 1-sensor

array D need not contain a ULA segment of length K 1 ` 1 to

identify K 1ă N 1 sources when N 1 “ 3 or 4.

These results can be leveraged in Theorem 1 to guarantee

identifiability of K “ 2 targets when applying MUSIC on

the spatially smoothed matrix Y using sparse Sb and Sc—

neither containing ULA segments of appropriate length K.

Specifically, by [16, Theorem 2], manifold matrix ADpθq P
C

3ˆ2 of array D “ t0, d1, d2u Ă N has full column rank

for all distinct θ1, θ2 P r´π
2
, π
2

q if and only if d1, d2 are

coprime. Hence, condition (b) in Theorem 1 is satisfied for

a given L ě 3 by selecting d1, d2 to be coprime and setting

Sc “ D Y X1 for any X1 such that |D Y X1| “ L. This

follows from the fact that AScpθq P C
Lˆ2 contains a 3 ˆ 2

block ADpθq which by [16, Theorem 2] has full Kruskal rank

for the above choice of D. A similar, albeit slightly more

invloved argument can be made for satisfying condition (a) in

Theorem 1 by embedding manifold matrix AGpθq P C
4ˆ2 of

array G “ t0, g1, g2, g3u into ASb
pθq P C

Nsˆ2 for g1, g2, g3
satisfying certain coprimality properties—see [16, Theorem 3]

for details. For example, Theorem 1 combined with [16,

Theorems 2 and 3] suggests that spatial smoothing identifies

K “ 2 targets using Sc “ t0, 4, 9u and Sb “ t0, 3, 5, 7u—

neither containing ULA segments with unit spacing.

B. Harnessing holes in sparse arrays for spatial smoothing:

Decomposition considerations

It is well known that a length 2M ´ 1 ULA can resolve

M targets unambiguously via forward spatial smoothing in

absence of noise by choosing Sb and Sc to be length-M ULAs.

However, trading off identifiability for resolution may be of

interest for example in automotive radar, where the number

of targets in a given range-Doppler bin can be small, yet high

angular resolution is required [17]. A critical factor that affects

the spatial resolution of such a spatial-smoothing strategy (in

addition to SNR) is the aperture of Sb, denoted by Nb :“
maxpSbq´minpSbq. For a given number of virtual elements N ,

if we desire a larger Nb, the number of effective “snapshots” L

is limited and vice-versa. This trade-off between aperture and

identifiability continues to hold for spatial smoothing using

sparse arrays. For example, given S “ t0, 1, 3, 4, 5, 6, 7, 8u, we

have at least the following decomposition for Ns “ 4, L “ 2:

Sb1 “ t0, 3, 5, 7u, Sc1 “ t0, 1u; (5)
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0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950

S1

Array geometry 1

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950

S2

Array geometry 2

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950

S3

Array geometry 3

Figure 1. Three examples of array geometry with Mt “ 3 antennas and Mr “ 12 antennas: achieve larger aperture by introducing holes

and for Ns “ 4, L “ 3:

Sb2 “ t0, 1, 3, 4u, Sc2 “ t0, 3, 4u; (6)

Sb3 “ t0, 3, 4, 5u, Sc3 “ t0, 1, 3u. (7)

Using Theorem 1 and [16, Theorem 3], both (5) and (7) can

guarantee the identifiability of K “ 2 targets. However, Sb1 “
t0, 3, 5, 7u has larger aperture than Sb3 “ t0, 3, 4, 5u. Hence,

Sb1 may be preferable to Sb3 in terms of resolution. Moreover,

even though (6) may not be desirable for spatial smoothing

due to the fact Sb2 “ t0, 1, 3, 4u fails to satisfy condition (a)

in Theorem 1 for K “ 2 according to [16, Theorem 3], Sb2
can be good candidate for the physical transmit or receive

array if the aperture available for placing the sensors is tightly

constrained.

IV. SIMULATIONS

For the numerical experiments, we consider three different

array configurations with the constraint Mt “ 3 and Mr “ 9.

Fig. 1 visualizes the virtual sum co-array for each of these

arrays, denoted by S1, S2, and S3, respectively.

We generate the scattering coefficients txkuKk“1
with a

constant magnitude and phase drawn uniformly from the

interval p0, 2πs. The noise is assumed to be complex Gaussian

with independent real and imaginary parts and a variance σ2

chosen to meet the desired signal-to-noise ratio (SNR) defined

as SNR “ 20 log
10

minkp|xk|q
σ

. Fig. 2 shows a realization

of the MUSIC pseudospectrum in the case of two different

target configurations (with K “ 2) after performing spatial

smoothing on Si, i “ 1, 2, 3. The corresponding physical

arrays Sri , Sti and spatial smoothing arrays Sbi , Sci (satisfying

Sri ` Sti “ Sbi ` Sci “ Si) are shown below:

S1 : Sr1 “ t3ku8k“0
, St1 “ t0, 1, 2u,

Sb1 “ tku24k“0
, Sc1 “ t0, 1, 2u;

S2 : Sr2 “ t5ku8k“0
, St2 “ t0, 1, 2u,

Sb2 “
6

ď

n“0

tk ` 5nu2k“0
, Sc2 “ t0, 5, 10u;

S3 : Sr3 “ t3ku4k“0

ď

t21 ` 9ku3k“0
, St3 “ t0, 1, 2u,

Sb3 “ tku12k“0

ď

t21 ` 9ku3k“0
, Sc3 “ t0, 1, 2u.

The left column of Fig. 2 shows that S1 cannot resolve

the DOAs with a separation of 2˝ due to its limited aperture,

whereas the enhanced aperture of sparse arrays S2 and S3

allows them to resolve the closely spaced targets despite the

presence of holes in these (virtual) array geometries. However,

the right column of Fig. 2 shows a target configuration that

corresponds to an ambiguity of S2, which leads to a degrada-

tion in its performance despite the increased angular separation

(« 67˝) between the targets. In contrast, S3 provably does not

suffer from ambiguities when K “ 2 by Theorem 1.
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Figure 2. Comparison of direct MUSIC on 3 examples of array geometry
with K “ 2 targets located at (left) θ “ r10˝, 12.00˝s and (right) θ “
r10˝, 76.82˝s with SNR “ 20 dB. Array S3 can not only achieve higher
resolution but is also free from ambiguities arising from spatial smoothing.

V. CONCLUSIONS

This paper considered leveraging the enhanced aperture of

sparse arrays in spatial smoothing towards improving angular

resolution in sample-starved applications, such as automotive

radar. We showed that sparse arrays with a suitable shift-

invariant structure are amenable to spatial smoothing. Fur-

thermore, we derived necessary and sufficient conditions for

spatial smoothing using sparse arrays to identify K targets.

We also demonstrated that a fixed sparse array geometry

can have multiple decompositions and not all of them are

equivalent in terms of resolution and identifiability. Simulation
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results indicate that appropriate sparse array configuration can

not only achieve higher resolution but can also be free of

ambiguities when using spatial smoothing.
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