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ABSTRACT

This paper further investigates the role of the array geometry
and redundancy in active sensing. We are interested in the
fundamental question of how many point scatterers can be
identified (in the angular domain) by a given array geometry
using a certain number of linearly independent transmit wave-
forms. We consider redundant array configurations (with re-
peated virtual transmit-receive sensors), which we have re-
cently shown to be able to achieve their maximal identifia-
bility while transmitting fewer independent waveforms than
transmitters. Reducing waveform rank in this manner can be
beneficial in various ways. For example, it may free up spa-
tial resources for transmit beamforming. In this paper, we
show that two array geometries with identical sum co-arrays,
and the same number of physical and virtual sensors, need
not achieve equal identifiability—regardless of the choice of
waveform of a fixed reduced rank. This surprising result es-
tablishes the important role the pattern (not just the number)
of repeated virtual sensors has in governing identifiability, and
reveals the limits of compensating for unfavorable array ge-
ometries via waveform design.

Index Terms— Sparse arrays, redundancy, active sens-
ing, MIMO radar, waveform design, identifiability

1. INTRODUCTION

Active sensing and sparse arrays play a key role in numerous
applications including autonomous sensing [1], automotive
radar [2], and emerging wireless systems for joint communi-
cations and sensing (JCS) [3,4]. The performance of such sys-
tems critically depends on the transmitted waveforms [5-7]
as well as the employed transmit (Tx) and receive (Rx) ar-
ray geometries [8—13]. In particular, multiple-input multiple-
output (MIMO) systems can adjust the number of linearly in-
dependent waveforms or so-called waveform rank (WR) to,
e.g., trade off between Tx beamforming gain and field-of-
view. In colocated MIMO radar [14], full WR in the form
of orthogonal waveforms is conventionally employed to max-
imize the number of identifiable scatterers. However, since

This work was supported in part by grants ONR N00014-19-1-2256, ONR
NO00014-19-1-2227, NSF 2124929 and DE-SC0022165, as well as the Ulla
Tuominen foundation and the Finnish Defence Research Agency.

identifiability is upper bounded by the size of the sum co-
array [15]—consisting of the pairwise sums of the Tx-Rx
sensor positions—a redundant array, which has repeated vir-
tual sensors, may actually achieve its maximal identifiability
using a reduced WR [16]. This enables redirecting spatial re-
sources towards beamforming or, communications in the case
of dual-function JCS systems. Additional advantages of re-
dundant arrays include robustness to sensor failure [17] and
resilience to noise due to spatial averaging over repeated vir-
tual sensors.

Until recently, relatively little was known about the im-
pact of array redundancy and WR on identifiability. In our
recent work, we showed that maximizing identifiability at a
reduced WR requires the Tx waveform to be matched to the
array geometry [16]. Indeed, even two waveforms giving rise
to identical Tx beampatterns can yield different identifiabil-
ity when employed by the same array. Hence, constraining
the Tx beampattern without considering the joint Tx-Rx ar-
ray geometry may result in suboptimal sensing performance.
This perspective gives rise to yet unaddressed questions such
as: Is proper waveform design sufficient for maximizing iden-
tifiability? Can all array geometries of a given size and with
identical sum co-arrays achieve the same identifiability sim-
ply by choosing the waveforms (of fixed WR) suitably?

This paper answers these questions in the negative.
Specifically, we demonstrate that two redundant array ge-
ometries can have the same number of physical sensors and
identical uniform sum co-arrays, yet different identifiability
properties. Surprisingly, no choice of waveforms can improve
identifiability when employing an unfavorable redundant ar-
ray geometry and a reduced WR. This novel insight reveals
the impact that the configuration of redundant virtual sen-
sors has on identifiability, and highlights the importance of
judicious sparse array design, which is especially important
in future resource-efficient active sensing systems, such as
autonomous sensing and JCS.

2. SIGNAL MODEL

Let the support of unknown K -sparse vector € CV encode
the angular directions of K far field scatterers, which lie on a
grid of V' > K candidate angles. For a single range-Doppler
cell, the Rx vector of a colocated active sensing MIMO sys-
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tem in absence of noise can be modeled as [16, 18, 19]
y=(8eN(A0A)x=(S®I)YAzx 2 Bx. (1)

Here, ® and ® denote the Kronecker and Khatri-Rao (colum-
nwise Kronecker) products, respectively, and I is the N, x NN,
indentity matrix, where N, is the number of Rx sensors.
Moreover, S € CT*N: is a known deterministic spatio-
temporal waveform matrix (or space-time code [20]) whose
columns represent signals of length 7' launched by the Ny
Tx sensors. The effective Tx-Rx manifold matrix Ay ® A, €
CNeNexV models the phase shifts incurred by the narrowband
radiation transmitted/received by the arrays. Since Ay © A,
can have repeated rows, we may write Ay ©® A, =Y A, where
A € CN=xV is the manifold matrix of a virtual array (inde-
pendent of .S) with Ny, < N; N, unique virtual sensors. This
so-called sum co-array [21], denoted by Dy, is defined as

Dy £ Dy +D; = {dy + dv | dy € D5 dr € Di},  (2)
where Dy 2 {d;[n]}, and D, £ {d,[m]}"_, are the set
of Tx and Rx sensor positions, respectively. Furthermore,
Y € {0, 1}NeNe XNz g the so-called redundancy pattern ma-
trix mapping the Ny 2 |Dyg| unique virtual sensors in Dy

(|Dx| denotes the cardinality of Dy) to the corresponding
physical Tx-Rx sensor pairs (dt, d,).

Definition 1 (Redundancy pattern). The (n, £)th entry of the
binary redundancy pattern matrix X € {0, 1}NeNex Nz g

,alh if dy[[ 3= 1] +de [n— ([ 1= DN, ] = ds (]
" 0, otherwise.

Here, ds[l] € Dy is the {th sum co-array element position,
and || denotes the ceiling function.

An array is redundant if Ny; < Ny N, and nonredundant if
Ny, = Ny N,. Furthermore, sum co-array Dy, is contiguous if
Dy ={0,1,..., Ny —1}, where Dy, D, O {0} are assumed to
be non-negative integer sets describing the normalized Tx/Rx
sensor positions in units of half the carrier wavelength. For a
contiguous sum co-array, the (¢, ¢)th entry of A is thus 4, ; =
exp(jm(¢ —1)sin6;), where 0; € [-5, 5).

We are interested in understanding the interplay between
the spatial sensing geometry (captured by Y A) and the wave-
form S that maximizes the number of identifiable scatterers
(i.e., the size of the support of x). It is well-known that
the sparsest solution to y = B is unique if and only if
K < 1k-rank(B) [22,23], where k-rank(B) denotes the
Kruskal rank! of matrix B. Due to the spatio-temporal struc-
ture of B, its Kruskal rank is determined by the (i) sum co-
array, which is modeled by virtual manifold matrix A, (ii)

I The Kruskal rank of matrix B, denoted k-rank(B), is the largest integer r
such that every r columns of B are linearly independent.
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redundancy pattern Y, and (iii) waveform matrix S. A key
quantity of interest is the waveform rank (WR), defined as

N, & rank(S). 3)

The case Ny = 1 corresponds to the phased array, whereas
a canonical example of Ny = NV is (orthogonal) MIMO
radar, which is known to achieve maximal Kruskal rank
k-rank(B) = Ny [15,16]. Advantages of a reduced wave-
form rank Ny < Ny include improved beamforming gain
on transmit, fewer costly RF chains at the transmitter, and
possibly decreased transmission time, since 7' > N,. It is
therefore important to understand (a) if maximal Kruskal
rank can be attained for a given array at a reduced Ny, and (b)
which choices of S enable this. To answer these questions,
we briefly review the key ideas of array-informed waveform
design introduced in [16].

3. ARRAY-INFORMED WAVEFORM DESIGN IN A
NUTSHELL

Fig. 1 illustrates the range of values that the Kruskal rank of
B may assume as a function of the WR given an arbitrary
array with Ny Tx sensors, IV, Rx sensors, and Ny, virtual sen-
sors [16].2 The design space (shaded area) is upper bounded
by the maximal Kruskal rank [16]

k-rank(B) < min(N,N;, Ng), “4)

which is a piecewise linear function in Ny tracing the set of
identifiability-maximizing operating points. Eq. (4) reveals
the existence of an optimal operating point Ny, = [Nx /N, ],
which is the minimum WR needed to attain maximal Kruskal
rank Ny. A key observation is that setting Ny > [Nx /N, ]
can be wasteful for redundant arrays, since Ny — [Nyx /N, |
Tx degrees of freedom could instead be used to, e.g., beam-
form, or serve users in dual-function JCS systems, without
sacrificing identifiability.

The upper bound in (4) can be attained for any Ny, N;, N,
and suitable values of Ny, [16]. This requires both proper
array design and “matching” waveform matrix S to the ar-
ray geometry or redundancy pattern Y .We call this “array-
informed waveform design”. Intuitively, an S that maximizes
identifability should minimize the dimension of the intersec-
tion between the null space of § ® I and range space of Y. In
the redundancy-limited regime Ny > Ny, /N, where Kruskal
rank Ny could potentially be attained, the following neces-
sary and sufficient condition for k-rank(B) = Ny, holds.

Proposition 1 (Redundancy-limited waveform rank [16, The-
orem 2]). Ifrank(S) > Nx/N,, then

k-rank(B) = Ny, «<— (5)

rank((S®I)Y) = Nyx.

2There can be multiple arrays with the same Ny, but different redundancy
patterns Y for a given N¢, Ny.

{k—rank(A) = Ny and
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Fig. 1. Array-dependent trade-off between N and
k-rank(B). The set of optimal operating points—in terms
of identifiability—are given by the maximal Kruskal rank
in (4). Optimal point ((NT?-‘ , Nx.) represents the minimum
waveform rank achieving the maximum (redundancy-limited)
Kruskal rank. Here, N;, N, and Ny, denote the number of Tx,
Rx, and virtual sensors, respectively.

The utility of Proposition 1 stems from the fact that if the
sum co-array is contiguous, then A is a Vandermonde matrix
and k-rank(A) = Nx. Hence, verifying the computationally
challenging Kruskal rank condition k-rank(B) = Ny, reduces
to the simpler condition rank((S ® I)Y)= Nx.

This paper delves deeper into the question “what combi-
nation of array geometry and waveform can achieve maxi-
mal Kruskal rank in the redundancy-limited regime?” When
Ny = Ny, it can easily be verified that any array with a con-
tiguous sum co-array achieves k-rank(B) = Ny, regardless
of the choice of S (of rank IVy) [16]. However, the answer
is not so obvious when Ny, < N;. The optimal point Ny =
[Ns/N.] in Fig. 1 is of particular interest. Hence, the re-
mainder of the paper focuses on whether Kruskal rank Ny, is
always attainable with minimum WR. Specifically, given any
array geometry with a contiguous co-array of a fixed size Ny,
does there always exists a choice of S such that k-rank(B) =
Ny, when N; = [Ny /N, ]? Interestingly, the answer is no, as
we show next.

4. IMPORTANCE OF REDUNDANCY PATTERN FOR
MAXIMIZING IDENTIFIABILITY

This section demonstrates that the maximum achievable
Kruskal rank of a given array geometry depends on re-
dundancy pattern Y; not solely on tuple (N, Ny, N, Ny).
Hence, the solid black line in Fig. 1 may be attained for all
N, by one array geometry, but not another with the same
contiguous co-array, and number of physical/virtual sensors

158

Ny, N;, Ny—regardless of the choice of waveform matrix S.

Theorem 1. There exists two array geometries with con-
tiguous sum co-arrays and the same Ny, Ny, Ny, such that
the associated spatio-temporal sensing matrices By and
Byy obey k-rank(By) < Ny, and k-rank(By1) = Nx, when
Ng = [Ns/N;].

Remark 1. Theorem 1 shows the importance of proper ar-
ray design for maximizing identifiability, as two arrays with
the same (contiguous) sum co-array and number of physi-
calivirtual sensors need not achieve equal identifiablity. An
unfavorable redundancy pattern can thus limit identifiability.

To show existence in Theorem 1, it suffices to construct
two array configurations for specific values of Vi, /V;, and
Nyx. This conveys the essential idea of the proof technique.
A more general proof, including extensions to other values of
(N%, Ny, Nx3, Ny), is part of ongoing work.

4.1. Proof sketch of Theorem 1

Consider the following two array geometries:
I. D, ={0,1,2} and D, = {0,1,2,5}
. Dy ={0,1,2} and D, = {0, 1, 3,5}.

These configurations differ only in the position of a single
Rx sensor (highlighted in red), as illustrated in Fig. 2. The
corresponding redundancy patterns Yy and Yy are

1 1
1 1
1 1
1 1
1 1
Y= ! 1 ;Y= ! 1
1 1
1 1
1 1
1 1
1 1
) Array | ) ) Array 11

Both arrays have a contiguous sum co-array with Ny, = 8 vir-
tual sensors. Nevertheless, Array I cannot achieve maximal
Kruskal rank for Ny = Ny /N, = 2, unlike Array II. This is
shown next using Proposition 1, which reduces to analyzing
the rank of W; £ (S ® I)Y, i € {I,11}, since A is Vander-
monde and has full Kruskal rank both for Arrays I and II.

By assumption, Ny, = 2. Let also T' = 2 such that

S11 812 S
S = 3. (6)
S21 S22 S23

We may consider (6) without loss of generality for the pur-
pose of applying Proposition 1, since for any S’ € CT >/
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(a) Array 1 (b) Array II

Fig. 2. Array geometries achieving different identifiability
despite having an equal number of physical sensors and iden-
tical contiguous sum co-arrays. Array II attains the maximal
Kruskal rank Ny; =8 when N, = Ny, /N, =2, but not Array L

such that rank(S’) = Nj, any rank-revealing decomposi-
tion 8’ = US, where U € CT *Ns and § € CN+*N¢ have
full column and row rank, respectively (the columns of U
span the range space of S’), implies rank((S' @ I)Y) =
rank(UI)(S@I)Y)=rank((S®I)Y).
In case of Array I, W7 reduces to
S11 S12 S13
S11 S12 513
S11 S12 813
Wi = S11 S12 513
521 S22 S23
§21 S22 S23
521 S22 S23
821 S22 523 |

The last three columns of W are clearly linearly dependent.
Hence, W7 is rank-deficient when N, = 2, i.e., rank(Wp) <
Ny, = k-rank(BI) < Ny, where By e WiA.
In case of Array II, Wiy evaluates to
S11 S12 S13
S11 S12 S13
S11 S12 S13
Wi = S11 S12 813
S21 S22 523
S21 S22 S23
S21 S22 S23
21 S22 523

There exists infinitely many choices of S yielding a full rank
Wiy. For example, setting s11, s13, S22 € C\ {0} and s12 =
S21 = $23 = 0 can be verified to ensure that rank(S) =2 and
rank(Wy) = Ny = k-rank(By1) = Ny (since Wy has
full column rank), where By = Wi A. [ |

5. NUMERICAL EXAMPLE

We illustrate the implication of Theorem 1 through a numeri-
cal example. Fig. 3 shows the singular values of B for Ar-
rays I and II given rank-2 waveform matrix S in (6) with
511 = S99 = s13 = 1/v/3 and 519 = 591 = s93 = 0.
The smallest singular value of Array I is zero, whereas that
of Array II is nonzero. Hence the Kruskal rank of Array I is
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Fig. 3. Singular values of sensing matrix B. This is rank-
deficient in case of Array [—implying reduced Kruskal rank.
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Fig. 4. Scatterer configuration that cannot be identified by
Array I, but can be identified by Array II.

no larger than Ny — 1 = 7, since k-rank(B) < rank(B).
Array I can thus unambiguously identify at most [7/2| = 3
scatterers. In contrast, Array II can identify 4 scatterers since
its Kruskal rank is Ny, = 8. This is demonstrated in Fig. 4,
which shows a configuration of K = 4 scatterers (grid size
V' = 16) identifiable by Array II but not Array I. This exam-
ple is representative of an autonomous sensing scenario where
identifying weak scatterers (pedestrians) close to strong ones
(vehicles) is critical. We identified the scatterers by solv-
ing the following optimization problem by exhaustive search:
minimize,ccv ||2||o subject to y; = B;z, where i € {I,1I}
refers to Arrays I and II, respectively. We note that infinitely
many unidentifiable scatterer configurations, such as the one
in Fig. 4, can be generated by straightforward linear algebraic
manipulations when k-rank(B) < 2K.

6. CONCLUSIONS

This paper investigated the role of the array redundancy
pattern in active sensing. We showed that identifying the
maximum number of scatterers requires carefully designing
the redundancy pattern when employing fewer independent
waveforms than transmitters. Specifically, an unfavorable
choice of array geometry may fundamentally hamper iden-
tifiability such that no waveform will improve identifiability
to the level of another array geometry employing the same
(reduced) waveform rank, number of physical/virtual sen-
sors, and identical (contiguous) sum co-array. Several open
questions for future work emerge from this insight. For ex-
ample, how severely can identifiability be affected by a poor
choice of array or waveform? Furthermore, what impact does
a reduced Kruskal rank have in practice when worst-case
performance is not of primary interest?
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