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ARTICLE INFO ABSTRACT
Editor: Damia Barcel6 The rapidly expanding use of wastewater for public health surveillance requires new strategies to protect privacy

rights, while data are collected at increasingly discrete geospatial scales, i.e., city, neighborhood, campus, and
Keywords: building-level. Data collected at high geospatial resolution can inform on labile, short-lived biomarkers, thereby
W?Stewater‘based surveillance making wastewater-derived data both more actionable and more likely to cause privacy concerns and stigma-
Privacy _ . tization of subpopulations. Additionally, data sharing restrictions among neighboring cities and communities can
Homomorphic encryption . . . . is s .
Ethics complicate efforts to balance public health protections with citizens’ privacy. Here, we have created an

encrypted framework that facilitates the sharing of sensitive population health data among entities that lack trust
for one another (e.g., between adjacent municipalities with different governance of health monitoring and data
sharing). We demonstrate the utility of this approach with two real-world cases. Our results show the feasibility
of sharing encrypted data between two municipalities and a laboratory, while performing secure private com-
putations for wastewater-based epidemiology (WBE) with high precision, fast speeds, and low data costs. This
framework is amenable to other computations used by WBE researchers including population normalized mass
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loads, fecal indicator normalizations, and quality control measures. The Centers for Disease Control and Pre-
vention’s National Wastewater Surveillance System shows ~8 % of the records attributed to collection before the
wastewater treatment plant, illustrating an opportunity to further expand currently limited community-level
sampling and public health surveillance through security and responsible data-sharing as outlined here.

1. Introduction

Wastewater-based epidemiology (WBE) has become a popular public
health tool to supplement case-based surveillance at the population-
level. Wastewater is typically collected at a centralized wastewater
treatment plant (WWTP), where the health and behavior of an entire city
population of thousands to millions of people are captured in a single
sample. However, sampling at the WWTP scale provides only an average
of the infection levels or drug use within the community. For public
health surveillance, a more refined geospatial resolution is desirable to
divide the city and its total population into sub-sewersheds or sub-
populations, to identify hotspots of public health concern that can
then be targeted with suitable interventions. This was rare prior to the
COVID-19 pandemic, but has since become more common with the goal
of identifying vulnerable and at-risk populations.

This work at the sub-sewershed level predominantly includes
monitoring at the building-scale including universities, hospitals, and
long-term care facilities (Acosta et al., 2021; Davo et al., 2021; Gibas
et al., 2021; Wright et al., 2022). Although building-scale sampling is
useful, this sampling granularity is more prone to ethical concerns over
privacy invasion (fewer people contributing to a sample), and pur-
posefully excludes some locations and their respective subpopulations,
creating a potential for inequality (Bowes et al., 2023a). To avoid these
limitations, sampling at the neighborhood-level is an attractive alter-
native. However, the inherent nature of wastewater collection systems
often commingles wastewater across neighborhoods. Therefore, it may
not be possible to collect a single sample that is representative of a
neighborhood, but rather multiple samples must be collected upstream
and downstream of areas of interest, and the measurements combined
mathematically to account for area-specific impacts using mass balance
approaches (Bowes et al., 2023b; Driver et al., 2023; Rainey et al.,
2022). Challenges arise when wastewater commingling occurs across
different municipalities. This commingling requires cooperation and
data-sharing to achieve public health goals. However, one or more
municipalities may have reservations regarding data sharing for legal,
political or cultural reasons.

To effectively employ neighborhood-level monitoring, novel
methods for sharing WBE data are needed to address the concerns dis-
cussed above, particularly those related to data security and privacy
across multiple stakeholders within this rapidly developing field (Jacobs
et al., 2021). One way to facilitate cooperative data sharing in WBE
involves the use of data privacy techniques, including encryption.
Encryption converts plaintext (the original data) into ciphertext in such
a way that the ciphertext is unreadable without access to a secret key to
retrieve the original plaintext. Normally, encryption prevents compu-
tation on ciphertext, however homomorphic encryption (HE) supports
computation over the encrypted data, producing an encrypted output.
Homomorphic encryption has been used in healthcare for querying
protected patient electronic health records (EHRs) for relevant infor-
mation to answer pressing research and public health-related questions
(Domadiya and Rao, 2022). EHRs contain a wealth of information in
centralized databases that may be accessed by many types of institutions
with varying levels of security, posing a significant threat to data secu-
rity. HE has helped to alleviate that risk by allowing for cloud-based
computations that are safely shared among researchers and health
professionals (Kocabas et al., 2013; Munjal and Bhatia, 2023; Zhang
et al., 2023). This same framework could be used for wastewater-derived
data.

In this study, HE techniques are used to facilitate data sharing

between two municipalities and one analytical laboratory involved in
neighborhood-level WBE public health assessments. The objectives of
this work were to create a framework that met minimum requirements
for execution time, communication costs, and precision in calculations
of WBE metrics. This work illustrates how computer science techniques
can help WBE mature into a secure and widely accepted public health
service that is practical, informative, and safe for its participating
stakeholders and entities.

2. Materials and methods

We developed the cryptWWDB (encrypted wastewater database)
framework to facilitate secure and private data sharing while addressing
the following concerns: (1) data availability for legitimate public health
surveillance purposes and/or scientific research; (2) support for joint
queries and analyses across multiple databases to provide answers to
public health questions; (3) supporting the need to combine WBE data
securely with other kinds of data, e.g., from Health Departments or
health-care providers; and (4) protection from adverse uses including
repeated queries used to build an overall picture of a database (illegit-
imate data mining) when the data are not available for download. In this
section, we first define two use case scenarios taken from real-world
situations encountered by our team during their 15 years of
wastewater-based monitoring.

2.1. Use cases

Use Case 1. In this scenario, an entity who is not interested in
obtaining wastewater monitoring data must share information with
another entity in order to allow the latter to collect health data of in-
terest. Specifically, Municipality A (Muni A) is collecting a wastewater
sample from a single location to learn about health priorities (e.g.,
presence and daily loads of heroin and its human metabolite in city
sewers). Due to the nature of the municipal wastewater system, Muni A’s
sample also contains wastewater from an upstream community that
resides in Municipality B (Muni B), which is not interested nor autho-
rized by its residents to obtain and share such information. To remove
the contribution of Muni B from the comingled wastewater of both cit-
ies, an additional sample has to be taken upstream of Muni A, within
their community, and analyzed to enable subtraction from the com-
mingled sample. The resultant mass in Muni A can be calculated using
Eq. (1).

MassLoadl = (Q1*C1) — (Q2*C2) )

Here, MassLoadl is the mass load of Muni A, Q1 is the total daily
volumetric wastewater flow in Muni A, Q2 is the total daily volumetric
flow of wastewater in Muni B, C1 is the concentration of the target
chemical of interest in the Muni A sample, and C2 is the concentration of
the target chemical of interest in the Muni B sample.

Use Case 2. This is a more advanced scenario involving the addition
of a temporal component to scenario 1, specifically, the sample collec-
tion time is predetermined, and coincides with changes in population
composition or behavior (e.g., a major sporting event or a music
festival). Each sample from both municipalities must be collected in the
morning on the same day, and the corresponding flow data from each
municipality must also be representative of that day. Eq. (2) illustrates
the addition of this temporal component where a subscript t denotes a
specific predetermined time.
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MassLoadlt = (Q1t*C1t) — (Q2t*C2t) 2)

In addition to the specifications discussed in the use cases outlined
above, other general relationship details between the entities are as
follows: (1) the upstream municipality (Muni B) does not want Muni A to
know their wastewater test results (and vice versa); (2) Muni B also does
not want the third-party laboratory to have access to mass load results
and does not want the laboratory to perform any unencrypted data
analyses.

2.2. cryptWWDB development

Here, we use HE as a cryptographic building block to implement
cryptWWDB. While various HE schemes, such as ElGamal (ElGamal,
1986) or Paillier encryptions (Paillier, 1999), are available, we devel-
oped cryptWWDB using an HE scheme based on the Ring-learning with
error (RLWE) assumption (Brakerski and Vaikuntanathan, 2011; Stehlé
et al., 2009) which offers improved speed and quantum resistance
(protection from classical and quantum computers). Execution time,
communication cost, and precision related to the results of the encrypted
calculations were all factors considered in the development of this
framework. Computational costs are defined as the lump sum of costs
incurred from (1) encrypting the data elements; (2) transmitting them to
the server; (3) computing a mathematical function without decrypting
the data; (4) returning the answer in encrypted form; and (5) decrypting
the data by the user. These costs are dominated by the time it takes to
compute the encrypted data (step iii), with the other steps being insig-
nificant by comparison. Computational precision was determined by
comparing the analytical chemistry result (true value) to the output of
the encryption algorithm to be acceptable if the error imparted by the
encryption computation was much less than the error imparted by lab-
oratory processing and analysis, which is typically on the order of +30
%, as frequently determined by spike recovery experiments conducted in
multiple replicates by analytical labs. We conducted our experiments on
a machine equipped with an Intel(R) Core(TM) i7-11700F 2.50GHz
processor and 32GB of RAM. The implementation is written in Python
and uses the Tenseal library (Ayoub et al., 2021) for HE.

3. Results

Homomorphic encryption (HE) was used to facilitate data sharing
between two municipalities involved in neighborhood-level WBE,
including a third-party analytical laboratory generating chemical ana-

lyte data (e.g., heroin and 6-acetylmorphine) from wastewater for each
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city. The protocol uses HE to securely transfer encrypted data (cipher-
text), enabling computation on the encrypted data while preserving the
privacy of the sensitive information. Basic HE components are outlined
in Fig. 1.

3.1. Overview of the cryptWWDB framework

The cryptWWDB workflow is outlined in Fig. 2. For Use Case 1, the
follow framework satisfies the requirements of each of the participants
and the goals of data sharing and security. Muni A is the entity interested
in having mass load information generated to support public health
decision-making. Muni A contributes their wastewater flow data (Q1) to
Egs. (1) and (2) and generates a private key (secret key [sk] unique to
Muni A) to encrypt their data (plaintext converted to ciphertext) using
the query interface. This ciphertext is sent to the computation coordi-
nator (a policy checker), which checks whether the query satisfies a
system security policy (access controls, repeated queries, etc.). If yes, the
coordinator forwards the encrypted query to the third-party lab. Muni A
also generates a public (pk), which Muni B uses to encrypt its waste-
water flow data (Q2) and the third-party laboratory uses to encrypt the
wastewater measurements (e.g., heroin and 6-actylmorphine [metabo-
lite]) for both Muni A (C1) and Muni B (C2). The laboratory then pro-
vides the encrypted concentration data (as ciphertexts) to cryptWWDB,
which uses homomorphic encryption (HE) to complete the computation
with the resulting output remaining encrypted. This is accomplished
through an evaluation (evk) key also generated by Muni A. The result is
then transferred back to Muni A by the laboratory through the system
coordinator, and using its private key, Muni A decrypts the result to
finish the query without knowledge of Muni B’s private data.

In use case 2 with the addition of a time component, cryptWWDB was
adapted to manage queries involving multiple data fields. Encrypted
query time was added to the computation, specifically, each munici-
pality encrypted the time component related to their flow data, as well
as their wastewater flow data, and sent to the laboratory for further
computation. The laboratory through the cryptWWDB framework per-
forms an equality check (ciphertext-ciphertext comparison) that com-
pares the times from each of the two municipalities and records a 1 if the
times are equivalent or O if they are not. HE mass loads are calculated
when the encrypted values conform to equivalent time intervals. Addi-
tional details are included in the supplemental information.

3.2. Performance of cryptWWDB

Efficiency and accuracy considerations are critically important for

Private Key

- o

Decryption

Fig. 1. Homomorphic encryption. Ciphertext from two individuals is encrypted using a public key. An evaluation key then allows computations to be performed on
the encrypted data to create an encrypted result. A private key is then used to decrypt the result to ciphertext.
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Fig. 2. Overview of cryptWWDB protocol. Each municipality has its own wastewater flow data and the third-party laboratory has heroin/6-acetylmorphine con-
centration data for each of the two municipalities. Municipality A is requesting the computation of mass load and generates a secret (sk), public (pk), and evaluation
(evk) keys (pk and evk available for others) [Step 0]. Muni A and the laboratory send encrypted flow data (time-dependent) and chemical analyte concentration data
using the pk [Step 1]. The third-party laboratory computes time-dependent mass load directly on encrypted data and sends the result to Muni A [Step 2]. Finally,
Muni A obtains the desired mass load by decrypting using the secret key without learning the data of other municipalities.

data encryption, including execution time, communication cost, and
precision related to the results of the encrypted calculations. Perfor-
mance results for Use Cases 1 and 2 are shown in Table 1. Use Case 1 is
less complex compared to Use Case 2, because it does not consider
collection time, and as expected it exhibits faster running times and
lower communication costs. Precision of the calculations can be affected
by the encryption process resulting in fewer significant digit pre- versus
post- encryption. In both use cases, precision is unaffected by the
encrypt/decrypt process, with significant figures to the ten thousandth
place (le-5). This result is more than appropriate for wastewater-
derived data.

Table 1

Performance of cryptWWDB including execution time (milliseconds) and
communication cost (megabytes) for the various components of Use Case 1, 2,
and modified 2 (time-efficient).

Characteristics Use case 1 Use case 2 Use case 2"
Execution time (ms)
Muni A, B 79.78 93.75 39.89
Laboratory 36.90 53.86 31.91
Total 116.68 147.61 71.80
Communication cost (MB)
Muni A - Muni B - - 0.36
Muni B - Muni A - - 0.36
Muni A — Laboratory 2.87 3.06 4.44
Muni B — Laboratory 0.72 0.91 0.55
Laboratory — Muni A 0.63 0.31 0.40
Total 4.25 4.29 6.11

Notes: ms - milliseconds; MB — megabytes.
2 Time-efficient.

3.2.1. Enhanced performance for use case 2

In Use Case 2, the primary computational bottleneck is the time
required by the laboratory to handle the temporal data in encrypted
form. That computation alone accounts for over 50 % of the total
running time (Table 1). To enhance efficiency, a time-efficient protocol
was designed that leverages computational resources from both Muni A
and Muni B rather than relying solely on the laboratory. The use case is
identical to the original, except that instead of the laboratory performing
the ciphertext-ciphertext comparison of time points, the municipalities
provide the equality check. Muni A sends its encrypted time to Muni B
and Muni B performs the computation. This computation is a plaintext-
ciphertext comparison which is considerably less resource-intensive
than the ciphertext-ciphertext comparison. Therefore, the comparison
step in this modified Use Case 2 not does not create increased execution
times as in its previous iteration. Unfortunately, this time-efficient
protocol requires higher communication costs due to the additional
data exchanged (Table 1). Systems with high computational power but
limited bandwidth may opt for the original protocol, whereas systems
with slower processing capabilities and faster networks may favor the
time-efficient protocol. In both cases, the additional overhead of
cryptWWDB is unlikely to be an impediment to adoption, given today’s
widely available computing resources.

4. Discussion

Unlike the ideal security setting in the cryptographic literature
(Oded, 2009), which hides the entire statement, including the function
to be computed, cryptWWDB hides only the sensitive parameters of the
query predicate. In Use Case 1, cryptWWDB conceals only the waste-
water flow data from the participants, while revealing the formula Eq.
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(1) to the third-party laboratory. Although hiding all query information
(e.g., including Egs. (1) and (2)) provides better privacy guarantees for
clients, there are two main disadvantages. First, the returned values
from the laboratory to Muni A need to be padded with dummy values to
hide the distribution of actual output and query type (Pinkas et al., 2015;
Pinkas et al, 2018), which adds significant communication and
computation cost, especially when the input data are large. Second,
implementing a policy checker for a hidden query is challenging.
Alternatively, if the query template is revealed, the coordinator can
implement a separate policy checker that provides fine-grained control
over the query types. For example, it can allow queries only for aggre-
gation values of certain columns and reject all queries that retrieve in-
dividual records. However, if the query is completely hidden, one would
have to use more expensive techniques like zero-knowledge proofs
(Boyle et al., 2021) to achieve the same functionality. These consider-
ations motivated our decision to reveal the query template (Egs. (1) and
(2)) and hide only the sensitive query parameters.

To the best of our knowledge, there is no existing work in the
cryptography literature that addresses the same set of challenges as
cryptWWDB. Further, there is a notable absence of systems designed to
handle secure three-party queries using HE. While there are solutions
based on multi-party computation (MPC) (Poddar et al., 2020; Vol-
gushev et al., 2019) that also process multiparty queries, they often
involve multiple rounds of communication and may have limitations on
input size. In contrast, the cryptWWDB framework is constructed on HE,
which offers a straightforward conceptualization of this cryptographic
tool. This accessibility extends to non-technical individuals, including
non-expert users and professionals such as wastewater researchers.

The cryptWWDB framework is not without its limitations. As
designed, the query initiator (Muni A in our examples) is the only party
with access to the decrypted values without ever directly accessing the
data of other entities. One critical assumption is that the third-party (the
laboratory in our examples) and the query initiator (Muni A) do not
collude. If they do, Muni A could simply decrypt data using their secret
key because Muni A is the key generator (private, public and encryp-
tion). To overcome this limitation a different type of HE, known as
Multi-key HE would be used in future iterations (Lopez-Alt et al., 2012).
In this method, each entity has its own secret key, and decrypting a
message requires that all of the entities participate in a joint computa-
tion, each using its own secret key.

We take advantage of the fact that the HE encryption scheme allows
direct computations on encrypted data without having to decrypt it first.
While the present scenarios involve only a small number of entities, in
more realistic scenarios, commingling may occur across sewers of more
than two municipalities, and cryptWWDB can easily be adapted to these
scenarios. Additional multilayered computations are also feasible,
which can provide other types of data handling and data analysis rele-
vant to WBE (Table 2). This can include incorporating other data
streams into the analysis. Here we illustrated mass load calculations
using a measured concentration and flow, however a common data
source in WBE is population (the number of people contributing to a
sewershed) (Gatidou et al., 2016; Ort et al., 2014). Population can be a
constant (US census-derived), quasi-constant (weekday/weekend
through use of employment data), and unique daily values (wastewater
population biomarkers) (Choi et al., 2018). Other data streams to
consider are fecal indicators (e.g., pepper mild mottle virus) for
normalizing feces-derived biomarkers like SARS-CoV-2 (Feng et al.,
2021), inclusion of pharmacokinetic excretion values to estimate drug
consumption versus excretion (Zuccato et al., 2008), and degradation
factors to correct for in-sewer biomarker losses (Hart and Halden, 2020).
Another type of analysis that may be performed using this framework is
quality control measures. This may include performing no calculations
when one of the participating municipalities does not collect a sample,
or reporting method detection limits in lieu of zero for non-detect
measurements or when mass balance subtractions between two com-
munities result in negative values (Bowes et al., 2023b; Tempe, 2023a).

Science of the Total Environment 940 (2024) 173315

Table 2
Additional parameters that could be included in the cryptWWDB framework.

Parameter Details

Data stream
Population estimates WWTP population served (constant), employment data
(weekday/weekend differences), chemical measurements
or WIFI data (unique) to derive per capita estimates

Viral (PMMoV), Bacterial (Bacteroides HF183), Chemical
(coprostanol) estimators for changing fecal quantities
Urinary excretion values & molecular weights to estimate
consumption

Degradation coefficients to correct mass loads for in-sewer
degradation

Fecal normalization
Excretion factors

Degradation factors

Quality control

Missing data & non- Upstream sample not collected; handling of non-detects (e.

detects 8., MDLs)

Negative mass Identification/response to negative calculations (e.g.,
balances negative number changed to MDL or non-detect)

Error estimate Error bars calculated from instrument, population,
inclusion excretion, or other error

Task

Trigger point Aggregating data when population thresholds are not met
calculations or a specific day of the week triggering different population

estimates used

Weekly or rolling averages to assess long-term trends
Week-to-week or month-to-month changes for quick
assessment of change (e.g., for public-facing dashboards)

Average calculations
Percent increases

Notes: WWTP — wastewater treatment plant, PMMoV — pepper mild mottle virus,
MDLs — method detection limits.

Quality assurance factors may also constitute the addition of error es-
timates on reported values imparted to the data via sampling, laboratory
analysis, or population estimates (Banta-Green et al., 2016). Additional
task-based assessments that could be performed using this framework
are trigger point calculations. For example, if a minimum threshold
population in a community is not met within a single wastewater
catchment, then data area aggregated across adjacent catchments to
protect privacy, or a specific day of the week triggers use of different
population estimates (e.g., weekday versus weekend). Additionally, data
are often presented to stakeholders in aggregate form with summary
statistics, including weekly averages or percent increase (or decrease)
changes from one sampling period to the next (Tempe, 2023b).

The US federal government (Centers for Disease Control and Pre-
vention) in response to successes tracking SARS-CoV-2 in wastewater
created the National Wastewater Surveillance System (NWSS) in 2020
(NWSS, 2023). As of December 17, 2023 there were over 730,000 in-
dividual records (measurements) of SARS-CoV-2 in wastewater across
the country. Of those records, ~8 % are defined as “before the waste-
water treatment plant,” nomenclature used to signify that the sample
was collected from within the collection system. Collection occurred in
twelve states (Arizona [AZ], California, Illinois, Florida, Maine, Massa-
chusetts, Michigan [MI], New York, Pennsylvania, Texas, Virginia,
Wisconsin) including the District of Columbia, with two states, AZ and
ML, accounting for ~65 % of the total number of records. These results
suggest WBE is still in the early stages of transitioning from sample
collection at wastewater treatment plants to upstream within the
collection system due to logistical challenges, including data sharing
between communities. Therefore, now is a critical time to begin creating
computational infrastructure to securely facilitate community-level data
sharing for public health surveillance.

5. Conclusions
The cryptWWDB (encrypted wastewater database) framework created

here addresses data sharing and privacy concerns that the authors took
directly from their wastewater monitoring experiences. The framework
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incorporated fast computing speeds and low data costs with a high
precision in wastewater-derived estimates to solve data sharing chal-
lenges between different municipalities and a laboratory. The study il-
lustrates that municipalities with different data collection objectives and
data sharing preferences can productively cooperate to protect their
interests while promoting: (1) public health assessments; (2) identifi-
cation of communities facing public health challenges; and (3) enabling
an assessment of the impact of targeted health and educational in-
terventions in vulnerable subpopulations (e.g., monitoring of schools,
hospitals, neighborhoods dominated by demographic minorities, or
temporary communities, such as crowds gathering for large events in
sporting or entertainment). The principal significance and novelty of
this work rest with providing a practical approach of how to use the
established, proven encryption strategy of HE and apply it to the field of
wastewater monitoring and public health surveillance, as conducted
today by thousands of municipalities and communities around the
world. Conventional HE cannot serve as a turn-key application to WBE
data because the standard HE algorithms are computationally too inef-
ficient to be applied directly to this setting of public health surveillance
by cities and analytical labs. Significant innovations presented here
include: (1) the reconfiguration of standard HE algorithms such that the
computational burden is placed on the server while ensuring that the
server gains no knowledge of the sensitive input data; (2) an analysis of
the unique data privacy needs and concerns inherent to the use of WBE
data by municipalities and public health stakeholders; and (3) a
computation framework that is specifically applicable to currently
unanswered questions of the wastewater surveillance sector, (i.e., how
to share sensitive information that protects the privacy of stakeholders
while also maximizing the public health benefit of WBE data, which are
acquired post-COVID-19 at a massive scale, at costs exceeding hundreds
of millions of US$ per annum). To maximize the visibility, acknowl-
edgment and future use of the provided framework, this analytical
approach is published in the general scientific literature rather than in a
specialized computer science journal. The cryptWWDB framework and
associated source code is available to all practitioners by request. It does
not require any special computational tools or equipment, and therefore
can potentially be used widely across the U.S. and other countries where
wastewater monitoring for public health protection is already in use or
may be implemented in the future.
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