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• Developed homomorphic encryption 
framework to share wastewater data 

• Illustrated encrypted mass balance cal
culations between municipalities 

• Execution time, communication costs, 
and calculation precision are scalable. 

• Framework enables data sharing at 
neighborhood-level for public health 
surveillance. 

• System designed for data security and 
responsible data sharing with user 
flexibility  

A R T I C L E  I N F O   

Editor: Damià Barceló  
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A B S T R A C T   

The rapidly expanding use of wastewater for public health surveillance requires new strategies to protect privacy 
rights, while data are collected at increasingly discrete geospatial scales, i.e., city, neighborhood, campus, and 
building-level. Data collected at high geospatial resolution can inform on labile, short-lived biomarkers, thereby 
making wastewater-derived data both more actionable and more likely to cause privacy concerns and stigma
tization of subpopulations. Additionally, data sharing restrictions among neighboring cities and communities can 
complicate efforts to balance public health protections with citizens’ privacy. Here, we have created an 
encrypted framework that facilitates the sharing of sensitive population health data among entities that lack trust 
for one another (e.g., between adjacent municipalities with different governance of health monitoring and data 
sharing). We demonstrate the utility of this approach with two real-world cases. Our results show the feasibility 
of sharing encrypted data between two municipalities and a laboratory, while performing secure private com
putations for wastewater-based epidemiology (WBE) with high precision, fast speeds, and low data costs. This 
framework is amenable to other computations used by WBE researchers including population normalized mass 
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loads, fecal indicator normalizations, and quality control measures. The Centers for Disease Control and Pre
vention’s National Wastewater Surveillance System shows ~8 % of the records attributed to collection before the 
wastewater treatment plant, illustrating an opportunity to further expand currently limited community-level 
sampling and public health surveillance through security and responsible data-sharing as outlined here.   

1. Introduction 

Wastewater-based epidemiology (WBE) has become a popular public 
health tool to supplement case-based surveillance at the population- 
level. Wastewater is typically collected at a centralized wastewater 
treatment plant (WWTP), where the health and behavior of an entire city 
population of thousands to millions of people are captured in a single 
sample. However, sampling at the WWTP scale provides only an average 
of the infection levels or drug use within the community. For public 
health surveillance, a more refined geospatial resolution is desirable to 
divide the city and its total population into sub-sewersheds or sub- 
populations, to identify hotspots of public health concern that can 
then be targeted with suitable interventions. This was rare prior to the 
COVID-19 pandemic, but has since become more common with the goal 
of identifying vulnerable and at-risk populations. 

This work at the sub-sewershed level predominantly includes 
monitoring at the building-scale including universities, hospitals, and 
long-term care facilities (Acosta et al., 2021; Davó et al., 2021; Gibas 
et al., 2021; Wright et al., 2022). Although building-scale sampling is 
useful, this sampling granularity is more prone to ethical concerns over 
privacy invasion (fewer people contributing to a sample), and pur
posefully excludes some locations and their respective subpopulations, 
creating a potential for inequality (Bowes et al., 2023a). To avoid these 
limitations, sampling at the neighborhood-level is an attractive alter
native. However, the inherent nature of wastewater collection systems 
often commingles wastewater across neighborhoods. Therefore, it may 
not be possible to collect a single sample that is representative of a 
neighborhood, but rather multiple samples must be collected upstream 
and downstream of areas of interest, and the measurements combined 
mathematically to account for area-specific impacts using mass balance 
approaches (Bowes et al., 2023b; Driver et al., 2023; Rainey et al., 
2022). Challenges arise when wastewater commingling occurs across 
different municipalities. This commingling requires cooperation and 
data-sharing to achieve public health goals. However, one or more 
municipalities may have reservations regarding data sharing for legal, 
political or cultural reasons. 

To effectively employ neighborhood-level monitoring, novel 
methods for sharing WBE data are needed to address the concerns dis
cussed above, particularly those related to data security and privacy 
across multiple stakeholders within this rapidly developing field (Jacobs 
et al., 2021). One way to facilitate cooperative data sharing in WBE 
involves the use of data privacy techniques, including encryption. 
Encryption converts plaintext (the original data) into ciphertext in such 
a way that the ciphertext is unreadable without access to a secret key to 
retrieve the original plaintext. Normally, encryption prevents compu
tation on ciphertext, however homomorphic encryption (HE) supports 
computation over the encrypted data, producing an encrypted output. 
Homomorphic encryption has been used in healthcare for querying 
protected patient electronic health records (EHRs) for relevant infor
mation to answer pressing research and public health-related questions 
(Domadiya and Rao, 2022). EHRs contain a wealth of information in 
centralized databases that may be accessed by many types of institutions 
with varying levels of security, posing a significant threat to data secu
rity. HE has helped to alleviate that risk by allowing for cloud-based 
computations that are safely shared among researchers and health 
professionals (Kocabas et al., 2013; Munjal and Bhatia, 2023; Zhang 
et al., 2023). This same framework could be used for wastewater-derived 
data. 

In this study, HE techniques are used to facilitate data sharing 

between two municipalities and one analytical laboratory involved in 
neighborhood-level WBE public health assessments. The objectives of 
this work were to create a framework that met minimum requirements 
for execution time, communication costs, and precision in calculations 
of WBE metrics. This work illustrates how computer science techniques 
can help WBE mature into a secure and widely accepted public health 
service that is practical, informative, and safe for its participating 
stakeholders and entities. 

2. Materials and methods 

We developed the cryptWWDB (encrypted wastewater database) 
framework to facilitate secure and private data sharing while addressing 
the following concerns: (1) data availability for legitimate public health 
surveillance purposes and/or scientific research; (2) support for joint 
queries and analyses across multiple databases to provide answers to 
public health questions; (3) supporting the need to combine WBE data 
securely with other kinds of data, e.g., from Health Departments or 
health-care providers; and (4) protection from adverse uses including 
repeated queries used to build an overall picture of a database (illegit
imate data mining) when the data are not available for download. In this 
section, we first define two use case scenarios taken from real-world 
situations encountered by our team during their 15 years of 
wastewater-based monitoring. 

2.1. Use cases 

Use Case 1. In this scenario, an entity who is not interested in 
obtaining wastewater monitoring data must share information with 
another entity in order to allow the latter to collect health data of in
terest. Specifically, Municipality A (Muni A) is collecting a wastewater 
sample from a single location to learn about health priorities (e.g., 
presence and daily loads of heroin and its human metabolite in city 
sewers). Due to the nature of the municipal wastewater system, Muni A’s 
sample also contains wastewater from an upstream community that 
resides in Municipality B (Muni B), which is not interested nor autho
rized by its residents to obtain and share such information. To remove 
the contribution of Muni B from the comingled wastewater of both cit
ies, an additional sample has to be taken upstream of Muni A, within 
their community, and analyzed to enable subtraction from the com
mingled sample. The resultant mass in Muni A can be calculated using 
Eq. (1). 

MassLoad1 = (Q1*C1) − (Q2*C2) (1) 

Here, MassLoad1 is the mass load of Muni A, Q1 is the total daily 
volumetric wastewater flow in Muni A, Q2 is the total daily volumetric 
flow of wastewater in Muni B, C1 is the concentration of the target 
chemical of interest in the Muni A sample, and C2 is the concentration of 
the target chemical of interest in the Muni B sample. 

Use Case 2. This is a more advanced scenario involving the addition 
of a temporal component to scenario 1, specifically, the sample collec
tion time is predetermined, and coincides with changes in population 
composition or behavior (e.g., a major sporting event or a music 
festival). Each sample from both municipalities must be collected in the 
morning on the same day, and the corresponding flow data from each 
municipality must also be representative of that day. Eq. (2) illustrates 
the addition of this temporal component where a subscript t denotes a 
specific predetermined time. 

E.M. Driver et al.                                                                                                                                                                                                                               



Science of the Total Environment 940 (2024) 173315

3

MassLoad1t = (Q1t*C1t) − (Q2t*C2t) (2) 

In addition to the specifications discussed in the use cases outlined 
above, other general relationship details between the entities are as 
follows: (1) the upstream municipality (Muni B) does not want Muni A to 
know their wastewater test results (and vice versa); (2) Muni B also does 
not want the third-party laboratory to have access to mass load results 
and does not want the laboratory to perform any unencrypted data 
analyses. 

2.2. cryptWWDB development 

Here, we use HE as a cryptographic building block to implement 
cryptWWDB. While various HE schemes, such as ElGamal (ElGamal, 
1986) or Paillier encryptions (Paillier, 1999), are available, we devel
oped cryptWWDB using an HE scheme based on the Ring-learning with 
error (RLWE) assumption (Brakerski and Vaikuntanathan, 2011; Stehlé 
et al., 2009) which offers improved speed and quantum resistance 
(protection from classical and quantum computers). Execution time, 
communication cost, and precision related to the results of the encrypted 
calculations were all factors considered in the development of this 
framework. Computational costs are defined as the lump sum of costs 
incurred from (1) encrypting the data elements; (2) transmitting them to 
the server; (3) computing a mathematical function without decrypting 
the data; (4) returning the answer in encrypted form; and (5) decrypting 
the data by the user. These costs are dominated by the time it takes to 
compute the encrypted data (step iii), with the other steps being insig
nificant by comparison. Computational precision was determined by 
comparing the analytical chemistry result (true value) to the output of 
the encryption algorithm to be acceptable if the error imparted by the 
encryption computation was much less than the error imparted by lab
oratory processing and analysis, which is typically on the order of ±30 
%, as frequently determined by spike recovery experiments conducted in 
multiple replicates by analytical labs. We conducted our experiments on 
a machine equipped with an Intel(R) Core(TM) i7-11700F 2.50GHz 
processor and 32GB of RAM. The implementation is written in Python 
and uses the Tenseal library (Ayoub et al., 2021) for HE. 

3. Results 

Homomorphic encryption (HE) was used to facilitate data sharing 
between two municipalities involved in neighborhood-level WBE, 
including a third-party analytical laboratory generating chemical ana
lyte data (e.g., heroin and 6-acetylmorphine) from wastewater for each 

city. The protocol uses HE to securely transfer encrypted data (cipher
text), enabling computation on the encrypted data while preserving the 
privacy of the sensitive information. Basic HE components are outlined 
in Fig. 1. 

3.1. Overview of the cryptWWDB framework 

The cryptWWDB workflow is outlined in Fig. 2. For Use Case 1, the 
follow framework satisfies the requirements of each of the participants 
and the goals of data sharing and security. Muni A is the entity interested 
in having mass load information generated to support public health 
decision-making. Muni A contributes their wastewater flow data (Q1) to 
Eqs. (1) and (2) and generates a private key (secret key [sk] unique to 
Muni A) to encrypt their data (plaintext converted to ciphertext) using 
the query interface. This ciphertext is sent to the computation coordi
nator (a policy checker), which checks whether the query satisfies a 
system security policy (access controls, repeated queries, etc.). If yes, the 
coordinator forwards the encrypted query to the third-party lab. Muni A 
also generates a public (pk), which Muni B uses to encrypt its waste
water flow data (Q2) and the third-party laboratory uses to encrypt the 
wastewater measurements (e.g., heroin and 6-actylmorphine [metabo
lite]) for both Muni A (C1) and Muni B (C2). The laboratory then pro
vides the encrypted concentration data (as ciphertexts) to cryptWWDB, 
which uses homomorphic encryption (HE) to complete the computation 
with the resulting output remaining encrypted. This is accomplished 
through an evaluation (evk) key also generated by Muni A. The result is 
then transferred back to Muni A by the laboratory through the system 
coordinator, and using its private key, Muni A decrypts the result to 
finish the query without knowledge of Muni B’s private data. 

In use case 2 with the addition of a time component, cryptWWDB was 
adapted to manage queries involving multiple data fields. Encrypted 
query time was added to the computation, specifically, each munici
pality encrypted the time component related to their flow data, as well 
as their wastewater flow data, and sent to the laboratory for further 
computation. The laboratory through the cryptWWDB framework per
forms an equality check (ciphertext-ciphertext comparison) that com
pares the times from each of the two municipalities and records a 1 if the 
times are equivalent or 0 if they are not. HE mass loads are calculated 
when the encrypted values conform to equivalent time intervals. Addi
tional details are included in the supplemental information. 

3.2. Performance of cryptWWDB 

Efficiency and accuracy considerations are critically important for 

Fig. 1. Homomorphic encryption. Ciphertext from two individuals is encrypted using a public key. An evaluation key then allows computations to be performed on 
the encrypted data to create an encrypted result. A private key is then used to decrypt the result to ciphertext. 
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data encryption, including execution time, communication cost, and 
precision related to the results of the encrypted calculations. Perfor
mance results for Use Cases 1 and 2 are shown in Table 1. Use Case 1 is 
less complex compared to Use Case 2, because it does not consider 
collection time, and as expected it exhibits faster running times and 
lower communication costs. Precision of the calculations can be affected 
by the encryption process resulting in fewer significant digit pre- versus 
post- encryption. In both use cases, precision is unaffected by the 
encrypt/decrypt process, with significant figures to the ten thousandth 
place (1e-5). This result is more than appropriate for wastewater- 
derived data. 

3.2.1. Enhanced performance for use case 2 
In Use Case 2, the primary computational bottleneck is the time 

required by the laboratory to handle the temporal data in encrypted 
form. That computation alone accounts for over 50 % of the total 
running time (Table 1). To enhance efficiency, a time-efficient protocol 
was designed that leverages computational resources from both Muni A 
and Muni B rather than relying solely on the laboratory. The use case is 
identical to the original, except that instead of the laboratory performing 
the ciphertext-ciphertext comparison of time points, the municipalities 
provide the equality check. Muni A sends its encrypted time to Muni B 
and Muni B performs the computation. This computation is a plaintext- 
ciphertext comparison which is considerably less resource-intensive 
than the ciphertext-ciphertext comparison. Therefore, the comparison 
step in this modified Use Case 2 not does not create increased execution 
times as in its previous iteration. Unfortunately, this time-efficient 
protocol requires higher communication costs due to the additional 
data exchanged (Table 1). Systems with high computational power but 
limited bandwidth may opt for the original protocol, whereas systems 
with slower processing capabilities and faster networks may favor the 
time-efficient protocol. In both cases, the additional overhead of 
cryptWWDB is unlikely to be an impediment to adoption, given today’s 
widely available computing resources. 

4. Discussion 

Unlike the ideal security setting in the cryptographic literature 
(Oded, 2009), which hides the entire statement, including the function 
to be computed, cryptWWDB hides only the sensitive parameters of the 
query predicate. In Use Case 1, cryptWWDB conceals only the waste
water flow data from the participants, while revealing the formula Eq. 

Fig. 2. Overview of cryptWWDB protocol. Each municipality has its own wastewater flow data and the third-party laboratory has heroin/6-acetylmorphine con
centration data for each of the two municipalities. Municipality A is requesting the computation of mass load and generates a secret (sk), public (pk), and evaluation 
(evk) keys (pk and evk available for others) [Step 0]. Muni A and the laboratory send encrypted flow data (time-dependent) and chemical analyte concentration data 
using the pk [Step 1]. The third-party laboratory computes time-dependent mass load directly on encrypted data and sends the result to Muni A [Step 2]. Finally, 
Muni A obtains the desired mass load by decrypting using the secret key without learning the data of other municipalities. 

Table 1 
Performance of cryptWWDB including execution time (milliseconds) and 
communication cost (megabytes) for the various components of Use Case 1, 2, 
and modified 2 (time-efficient).  

Characteristics Use case 1 Use case 2 Use case 2a 

Execution time (ms)    
Muni A, B 79.78 93.75  39.89 
Laboratory 36.90 53.86  31.91 
Total 116.68 147.61  71.80 

Communication cost (MB)    
Muni A → Muni B – –  0.36 
Muni B → Muni A – –  0.36 
Muni A → Laboratory 2.87 3.06  4.44 
Muni B → Laboratory 0.72 0.91  0.55 
Laboratory → Muni A 0.63 0.31  0.40 
Total 4.25 4.29  6.11 

Notes: ms - milliseconds; MB – megabytes. 
a Time-efficient. 
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(1) to the third-party laboratory. Although hiding all query information 
(e.g., including Eqs. (1) and (2)) provides better privacy guarantees for 
clients, there are two main disadvantages. First, the returned values 
from the laboratory to Muni A need to be padded with dummy values to 
hide the distribution of actual output and query type (Pinkas et al., 2015; 
Pinkas et al., 2018), which adds significant communication and 
computation cost, especially when the input data are large. Second, 
implementing a policy checker for a hidden query is challenging. 
Alternatively, if the query template is revealed, the coordinator can 
implement a separate policy checker that provides fine-grained control 
over the query types. For example, it can allow queries only for aggre
gation values of certain columns and reject all queries that retrieve in
dividual records. However, if the query is completely hidden, one would 
have to use more expensive techniques like zero-knowledge proofs 
(Boyle et al., 2021) to achieve the same functionality. These consider
ations motivated our decision to reveal the query template (Eqs. (1) and 
(2)) and hide only the sensitive query parameters. 

To the best of our knowledge, there is no existing work in the 
cryptography literature that addresses the same set of challenges as 
cryptWWDB. Further, there is a notable absence of systems designed to 
handle secure three-party queries using HE. While there are solutions 
based on multi-party computation (MPC) (Poddar et al., 2020; Vol
gushev et al., 2019) that also process multiparty queries, they often 
involve multiple rounds of communication and may have limitations on 
input size. In contrast, the cryptWWDB framework is constructed on HE, 
which offers a straightforward conceptualization of this cryptographic 
tool. This accessibility extends to non-technical individuals, including 
non-expert users and professionals such as wastewater researchers. 

The cryptWWDB framework is not without its limitations. As 
designed, the query initiator (Muni A in our examples) is the only party 
with access to the decrypted values without ever directly accessing the 
data of other entities. One critical assumption is that the third-party (the 
laboratory in our examples) and the query initiator (Muni A) do not 
collude. If they do, Muni A could simply decrypt data using their secret 
key because Muni A is the key generator (private, public and encryp
tion). To overcome this limitation a different type of HE, known as 
Multi-key HE would be used in future iterations (López-Alt et al., 2012). 
In this method, each entity has its own secret key, and decrypting a 
message requires that all of the entities participate in a joint computa
tion, each using its own secret key. 

We take advantage of the fact that the HE encryption scheme allows 
direct computations on encrypted data without having to decrypt it first. 
While the present scenarios involve only a small number of entities, in 
more realistic scenarios, commingling may occur across sewers of more 
than two municipalities, and cryptWWDB can easily be adapted to these 
scenarios. Additional multilayered computations are also feasible, 
which can provide other types of data handling and data analysis rele
vant to WBE (Table 2). This can include incorporating other data 
streams into the analysis. Here we illustrated mass load calculations 
using a measured concentration and flow, however a common data 
source in WBE is population (the number of people contributing to a 
sewershed) (Gatidou et al., 2016; Ort et al., 2014). Population can be a 
constant (US census-derived), quasi-constant (weekday/weekend 
through use of employment data), and unique daily values (wastewater 
population biomarkers) (Choi et al., 2018). Other data streams to 
consider are fecal indicators (e.g., pepper mild mottle virus) for 
normalizing feces-derived biomarkers like SARS-CoV-2 (Feng et al., 
2021), inclusion of pharmacokinetic excretion values to estimate drug 
consumption versus excretion (Zuccato et al., 2008), and degradation 
factors to correct for in-sewer biomarker losses (Hart and Halden, 2020). 
Another type of analysis that may be performed using this framework is 
quality control measures. This may include performing no calculations 
when one of the participating municipalities does not collect a sample, 
or reporting method detection limits in lieu of zero for non-detect 
measurements or when mass balance subtractions between two com
munities result in negative values (Bowes et al., 2023b; Tempe, 2023a). 

Quality assurance factors may also constitute the addition of error es
timates on reported values imparted to the data via sampling, laboratory 
analysis, or population estimates (Banta-Green et al., 2016). Additional 
task-based assessments that could be performed using this framework 
are trigger point calculations. For example, if a minimum threshold 
population in a community is not met within a single wastewater 
catchment, then data area aggregated across adjacent catchments to 
protect privacy, or a specific day of the week triggers use of different 
population estimates (e.g., weekday versus weekend). Additionally, data 
are often presented to stakeholders in aggregate form with summary 
statistics, including weekly averages or percent increase (or decrease) 
changes from one sampling period to the next (Tempe, 2023b). 

The US federal government (Centers for Disease Control and Pre
vention) in response to successes tracking SARS-CoV-2 in wastewater 
created the National Wastewater Surveillance System (NWSS) in 2020 
(NWSS, 2023). As of December 17, 2023 there were over 730,000 in
dividual records (measurements) of SARS-CoV-2 in wastewater across 
the country. Of those records, ~8 % are defined as “before the waste
water treatment plant,” nomenclature used to signify that the sample 
was collected from within the collection system. Collection occurred in 
twelve states (Arizona [AZ], California, Illinois, Florida, Maine, Massa
chusetts, Michigan [MI], New York, Pennsylvania, Texas, Virginia, 
Wisconsin) including the District of Columbia, with two states, AZ and 
MI, accounting for ~65 % of the total number of records. These results 
suggest WBE is still in the early stages of transitioning from sample 
collection at wastewater treatment plants to upstream within the 
collection system due to logistical challenges, including data sharing 
between communities. Therefore, now is a critical time to begin creating 
computational infrastructure to securely facilitate community-level data 
sharing for public health surveillance. 

5. Conclusions 

The cryptWWDB (encrypted wastewater database) framework created 
here addresses data sharing and privacy concerns that the authors took 
directly from their wastewater monitoring experiences. The framework 

Table 2 
Additional parameters that could be included in the cryptWWDB framework.  

Parameter Details 

Data stream 
Population estimates WWTP population served (constant), employment data 

(weekday/weekend differences), chemical measurements 
or WIFI data (unique) to derive per capita estimates 

Fecal normalization Viral (PMMoV), Bacterial (Bacteroides HF183), Chemical 
(coprostanol) estimators for changing fecal quantities 

Excretion factors Urinary excretion values & molecular weights to estimate 
consumption 

Degradation factors Degradation coefficients to correct mass loads for in-sewer 
degradation  

Quality control 
Missing data & non- 

detects 
Upstream sample not collected; handling of non-detects (e. 
g., MDLs) 

Negative mass 
balances 

Identification/response to negative calculations (e.g., 
negative number changed to MDL or non-detect) 

Error estimate 
inclusion 

Error bars calculated from instrument, population, 
excretion, or other error  

Task 
Trigger point 

calculations 
Aggregating data when population thresholds are not met 
or a specific day of the week triggering different population 
estimates used 

Average calculations Weekly or rolling averages to assess long-term trends 
Percent increases Week-to-week or month-to-month changes for quick 

assessment of change (e.g., for public-facing dashboards) 

Notes: WWTP – wastewater treatment plant, PMMoV – pepper mild mottle virus, 
MDLs – method detection limits. 
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incorporated fast computing speeds and low data costs with a high 
precision in wastewater-derived estimates to solve data sharing chal
lenges between different municipalities and a laboratory. The study il
lustrates that municipalities with different data collection objectives and 
data sharing preferences can productively cooperate to protect their 
interests while promoting: (1) public health assessments; (2) identifi
cation of communities facing public health challenges; and (3) enabling 
an assessment of the impact of targeted health and educational in
terventions in vulnerable subpopulations (e.g., monitoring of schools, 
hospitals, neighborhoods dominated by demographic minorities, or 
temporary communities, such as crowds gathering for large events in 
sporting or entertainment). The principal significance and novelty of 
this work rest with providing a practical approach of how to use the 
established, proven encryption strategy of HE and apply it to the field of 
wastewater monitoring and public health surveillance, as conducted 
today by thousands of municipalities and communities around the 
world. Conventional HE cannot serve as a turn-key application to WBE 
data because the standard HE algorithms are computationally too inef
ficient to be applied directly to this setting of public health surveillance 
by cities and analytical labs. Significant innovations presented here 
include: (1) the reconfiguration of standard HE algorithms such that the 
computational burden is placed on the server while ensuring that the 
server gains no knowledge of the sensitive input data; (2) an analysis of 
the unique data privacy needs and concerns inherent to the use of WBE 
data by municipalities and public health stakeholders; and (3) a 
computation framework that is specifically applicable to currently 
unanswered questions of the wastewater surveillance sector, (i.e., how 
to share sensitive information that protects the privacy of stakeholders 
while also maximizing the public health benefit of WBE data, which are 
acquired post-COVID-19 at a massive scale, at costs exceeding hundreds 
of millions of US$ per annum). To maximize the visibility, acknowl
edgment and future use of the provided framework, this analytical 
approach is published in the general scientific literature rather than in a 
specialized computer science journal. The cryptWWDB framework and 
associated source code is available to all practitioners by request. It does 
not require any special computational tools or equipment, and therefore 
can potentially be used widely across the U.S. and other countries where 
wastewater monitoring for public health protection is already in use or 
may be implemented in the future. 
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