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Abstract
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and various problem parameters. The two unknowns are then approximated by the series
of trigonometric functions that are multiplied by the square root weight functions to allow
for automatic incorporation of the tip conditions. The unknown coefficients in series are
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method. The numerical examples are presented to illustrate the influence of dimensionless
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1. Introduction

In this paper, we consider the plane strain problem of an infinite isotropic elastic matrix
that contains a Steigmann-Ogden material surface (see Steigmann and Ogden (1999, 1997))
with circular arc cross-section and subjected to uniform far-field load. The surface represents
a shell of vanishing thickness that is characterized by its own elastic and bending stiffnesses
and the residual surface tension. The problem has applications in the area of modeling
composite materials that use ultra-thin stiff reinforcements, e.g., Cao (2014), Giiler and
Bagc1 (2020), Papageorgiou et al. (2017, 2020), Suk et al. (2010), Mirzaei and Abbasi (2023).

In recent publications, several solutions were proposed for the two-dimensional prob-
lems involving Gurtin-Murdoch (Gurtin and Murdoch (1975, 1978)) and Steigmann-Ogden
material surfaces along a straight segment, see e.g. Baranova et al. (2020), Mogilevskaya
et al. (2021b), Zemlyanova et al. (2023), Zemlyanova (2023). The first numerical algorithm
for solving the plane-strain problem involving a Gurtin-Murdoch curve along a circular arc
was proposed in Han et al. (2023). In all above mentioned publications, the solutions were
obtained using the theories of elastic layer potentials and integral equations. In the solu-
tion process, the problems were reduced to the solutions of the systems of real variables
hypersingular boundary integral equations in terms of the strain and rotation components
of the surface stress tensor. The equations were decoupled for the case of a surface along
a straight segment, while the equations for the circular arc were coupled. In the case of a
material surface along a straight segment and zero surface tension, it was demonstrated in
Mogilevskaya et al. (2021b), Zemlyanova et al. (2023) that the case of rigid line inclusion, see
e.g. Ballarini (1987), Corso et al. (2008), Goudarzi et al. (2020), Markenscoff et al. (1994),
Wang et al. (1985), could be recovered by proper choice of surface elastic parameters. This
was not the case for the problem involving Gurtin-Murdoch’s circular arc surface, as in Han
et al. (2023) it was shown that the latter problem was not reducible to that of a rigid arc,

see Liu and Jiang (1994), even when the arc’s elastic parameters were chosen to be the same
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as for the corresponding straight line case.

In the present paper, we derive, for the first time, numerical solution of the two-dimensional
plane strain problem that involves a Steigmann-Ogden circular arc surface. Here too, we
employ the theories of elastic layer potentials and integral equations. However, unlike in
the case of Gurtin-Murdoch circular arc surface, the boundary integral equations for the
Steigmann-Ogden surface contain not only the strain and rotational components of surface
stress tensor but the linear combination of the latter component and its second derivative.
Depending on the parameters involved, three different options exist to find analytical ex-
pression for the rotational component via that combination. After that is done, the problem
is reduced to the solution of the systems of coupled real variables hypersingular boundary
integral equations in terms of the surface stress (that is expressed via the strain component)
and the above mentioned combination for the rotational component. The combination and
the surface stress are approximated by the truncated series of trigonometric functions mul-
tiplied by the square root weight functions. The system of linear algebraic equations for the
unknown series coefficients is obtained by using standard collocation method. The elastic
fields in the matrix are then found using appropriate complex integral representations. The
obtained solution is used to illustrate the influence of governing dimensionless parameters.
As in Han et al. (2023), we study the connection of our solution with that for the rigid arc
case.

The paper is structured as follows. In Section 2, we formulate the problem under study
and review the governing equations of the Steigmann-Ogden theory. In Section 3, we list
the exact complex variables integral representations for the fields, and present the governing
complex variable boundary integral equation. In Section 4, we reduce the latter equation
to the system of real variables boundary integral equations and, after introducing the di-
mensionless parameters, reformulate the system in dimensionless settings. In Section 5, we

describe major steps of the proposed numerical algorithm. In Section 6, we discuss the con-
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nection of our solution with that for the rigid arc case. Section 7 contains several examples

of numerical simulations. Concluding remarks are presented in Section 8.

2. Problem formulation and governing equations of the Steigmann-Ogden theory
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Figure 1: Problem configuration: a Steigmann-Ogden circular arc in an elastic matrix

Consider the plane strain problem of an infinite isotropic elastic matrix that contains a
cross-section of a Steigmann-Ogden material surface that represents the circular arc L of
radius R with the tips at the points & = a, & = b, see Fig. 1. The matrix, characterized by
the shear modulus p and Poisson’s ratio v, is subjected to the uniform far-field load ofY, 055,
075, where 005 = 037. The origin of the global Cartesian coordinate system is chosen to be
located at the center of the circle on which arc is located. Additionally, the local coordinate
system with the mutually orthogonal unit vectors n, £ is introduced and the notations “+”
(“—=") identify the regions located from the left (right) of n, as shown on Fig. 1.

According to the Steigmann-Ogden theory, it is assumed that L is characterized by its
own elastic stiffness parameters pug, Ag, bending stiffness parameters yg, (s, and by the

residual surface tension oy. The governing equations for the theory include the standard
1
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Navier equation for the displacements inside the matrix supplemented by the conditions
across L and at its tips. The supplemental conditions for the problem under study can be
deduced from the corresponding conditions for a curve of an arbitrary sufficiently smooth
shape reported in Mogilevskaya et al. (2021b), Zemlyanova et al. (2023), Han et al. (2023), see
also a review in Mogilevskaya et al. (2021a), by assuming that the local radius of curvature
R = R(s) on L is constant.
Thus, the conditions for the fields across L at the point & € L (here and below we omitted

the argument & for brevity) are

ul =uy =ug, ug =uy; = u, (1)
S o S 83 S
_ 4 _-__0 w d
Ao, =0, —0, = —E—Faog_(QXS"‘CS)ﬁa (2)
N do® w¥ 2xg + (g 0%w®

Aoe=o0p —op = 5=t o0 R 0s2’ )

where u; and us are the displacement components of the bulk material in the global coordi-
nate system, o, and o, are the corresponding normal and shear tractions, and s is the arc
length. The superscripts “+”, “—” here and below describe the limit values of the fields

when L is approached from the direction of that of the normal vector or from the opposite

direction, respectively. The expressions for the surface stress o, surface strain €, and
surface rotation w® involved in Eqgs. (2)-(3) are
5 _ S
0” = 0o+ (As +2us)e”, (4a)
g Up  Ouy
& = — -, 4b
R 0Os (4b)
S uy  Ouy,
w = — — + y 40
R 0Os (4c)

in which u,, and u, are the normal and shear components of the displacements. Note that
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for the case of vanishing bending parameters, the jump conditions of Egs. (2)-(3) reduce to
those for the Gurtin-Murdoch model.

The conditions at the tips & = a and & = b of L for the Steigmann-Ogden model are

given by the following equations:

s
(2xs + Cs)éa% =0, (5b)

9%*w®

0s?

oow” — (2xs + Cs) =0. (5¢)

For comparison, we also list the tip conditions for the Gurtin-Murdoch model (Mogilevskaya

et al. (2021b), Zemlyanova et al. (2023), Han et al. (2023)). They are

0% =0, (6a)

oow = 0. (6b)

Compared with Egs. (6), the tip conditions for the Steigmann-Ogden model of Egs. (5) have
extra terms that involve the combination of the bending parameters and the derivatives of
function w®. Here too, Egs. (5) formally reduces to Eqgs. (6) if 2xs + (s = 0. However, we
emphasize that, when the surface tension vanishes, the two models represent two different
interface regimes, with Gurtin-Murdoch model representing the limiting case of the so-
called membrane interphase, while the Steigmann-Ogden model that of the inextensible

shell interphase, see Benveniste and Miloh (2001).

3. Governing integral representations

The integral representations for the elastic fields in the material system under study can

be deduced from the representations for more general case of a curve of an arbitrary shape,
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see Linkov and Mogilevskaya (1998), Mogilevskaya and Linkov (1998), Mogilevskaya et al.
(2021a,b), Zemlyanova et al. (2023), Han et al. (2023).

The representation for the complex displacements u = u; + ius outside of L is

1

(@) = () - T D

/ Ao (7) 26T (= — 7) — KK, (7, 2)] dr
" (7)
+/Aa (1)Ko (7,2)dT ¢,

while the derivative of Eq. (7) on the curve on which the point z is located, as in Mogilevskaya

et al. (2021b), Zemlyanova et al. (2023), Han et al. (2023), is given by

PN 100\ 1 1 0
) =l + i [0 () 2ot K () ar

9
- / Ro (7)o Ko (r,2)d7 b
L

in which v () = du/0z + (0u/0z) (0z/0z).

In Eq. (7) and Eq. (8), i is imaginary unit with i = —1, 2 = x; + iz, is the complex
combination of the Cartesian coordinates of the point z ¢ L, 7 = 7 +in € L, Ao =
Ao, + iAoy k=3 —4v, Ky (1,2) = In[(1 — 2) /(T — 2)], Ky (1,2) = (1 — 2)/(T — Z), and
a bar over a symbol denotes complex conjugation. The expressions for the displacements

u™ (z) and their derivatives [u™(z)] caused by the remote loading are

u® (2) = ﬂ {(H_ 1) o1 ZazzZ 02 01; 1‘712—] 7 (9a)
/ 1 oYy + 055 055 — o7y — 2035 dz

o0 = — —1 - — 9b

G = 5 |- ) 7 2o (90)

The representation for the complex tractions o = o, + ioy on some line outside of L on
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which z is located is given by

- 1 0
o(z) =0 (z) — 27?1/4;—1—1 /AJ |:/€—1)T_Z+K&K1(TZ) dr

(10)
/AJ K2 T,2)dT |
L
in which 0 (z) can be expressed as
- oYy + 055 055 — oy — 2o dz
= —. 11
o> (2) 5 5 P (11)

Using the limiting procedure in which the field point is allowed to reach some boundary
point 70 = 70 +ir) € L from the direction normal to the boundary at that point, one can
obtain the following boundary integral equation, see Mogilevskaya et al. (2021b), Zemlyanova
et al. (2023), Han et al. (2023):

() = WO ) { ][ Aolr) {2,@7 L Tﬂﬂ ar

Amip(k + 1
—/LAJ( )aaOKQ(T T )dT}.

Using the equation for the circular arc 77 = R? and the expressions for K; and K,
described previously, we obtain,

T—TO TTO TTO 7'7'0
Kl(T, ’7'0) = IH% =1In (_ﬁ) s KQ(T, TO) = _ﬁ7 (13&)

B R2 (9[(1 1 8[(2 T
=5l 50 =% 9p ~ 2 (13b)

Substituting the expressions of Eq. (13) into Eq. (12), we obtain the following boundary
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integral equation:

W (%) = u®(r°) + m [][ Aa(r) (zmT _170 + n%) dr — /L W%df} . (14)

4. The system of hypersingular boundary integral equations

4.1. Reduction of Eq. (14) to the system of real variables equations

Using the following representations for the points on L:

~ i : dr° d R? .
T = Relﬁ, 70— Relﬂo7 dr = iRe®d . — = e _6_21507
b dr®  dr9 70

(15)

and substituting Eq. (15) into Eq. (14), we get (here and below, arguments 7° and 7 are

omitted for brevity, unless they are necessary)

i8
Y L iAo
s 2mp(k + 1)][L(Aan " IAUZ)eiﬁ e
m i i(8—Bo) 16
+ prp— 1)][L(Aan +1Aoy)e ds (16)
1 .
— m /L(AO'n - 1A0'5)dﬁ.

In the following, we will take into account that the kernels of Eq. (16) can be expressed as

e? 1 sin(B— ) {(B—fo) .
Pt Rl ey L R G

One can rewrite Eqs. (4a)-(4c), in complex variables notations as

0% =0+ (A + 2ps5)e® = 09 + (Mg + 2ug) Re !, (18a)

s Up  Ouy ,
=—+—=R 18b
€ 7 + s e, (18b)



4 THE SYSTEM OF HYPERSINGULAR BOUNDARY INTEGRAL EQUATIONS 10

du,
wsz—%—i— 5; = —Imd/, (18c)

where, as before, ' = du/dr + du/d7 - d7/dT.
Using Egs. (2), (3) and Egs. (18a) - (18¢), boundary integral equation Eq. (16) can be
rewritten in terms of o and w®. After using integration by parts and implementing the tip

conditions of Eq. (5), the final system of boundary integral equations takes the following

form:
s v K(As+2us) [P 0% cos(B — Bo)
0° =09 + (A\s + 2us) Re (u™) + TR+ 1) /1 T~ cos( = 5o)dﬁ+
k(s +2us) [P 9%w5]  sin(8 - Bo)
—47TRN(/{ n 1) /1 [UOW - <2XS + CS) 952 :| 1— COS(/B _ ﬂo)dﬁ—i_ (19)
As +2us g
ATrRu(k + 1) /51 o-dp,
B2 2,8
5 _ cy ko 5 O"w cos(8 — f)
—w” =Im (u™) — AnRu(r + 1) /61 [Uow (2xs + Cs) 052 ] 1 —cos(ﬂ—ﬁo)dﬁJr

K P2 S gin(f — 0
( /ﬁ (8= o) dg+ (20)

drRu(k +1) Jg, 1 —cos(B — Bo)
1 B2 S 820)5
R ), [ @G| 0

where ) and (5 are the angles associated with the tips of L and Re u®’, Im >’ are obtained

from Egs. (9b), (15) as

Reu™' — 1 l("& B 1)Uf‘f + 0% 2075 sin(26) + cos(26) (o] — 055)
21 4 2 ’ (21)
oo/ 1 Uﬁ _ Ogg . 00
Imu™' = w2 sin(26y) — o5 cos(26p)
4.2. Dimensionless integral equations
We introduce the following dimensionless parameters:
. o RO 20° 200 = 8(2xs+
9:/32_6170-%0: j7’7:lu—70-s:_70-0: 075: (X533C5>a
1 2us + As wRo uwRo wR30 (22)

Y1 = 2Re(u™ (7)), ¥y = Im(u™ (7)),
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and the new function z°(f) as

5-0(4}5(6) o (92_582005(,8)

4 9p2 = 25(5), 25(51) = Zs(ﬂg) =0. (23)

Substituting Eq. (23) and the parameters of Eq. (22) into Eq. (19) and Eq. (20) , one

can rewrite those equations in the dimensionless forms as

.5 k0 /2 P2 55 cos(B — Bo) + 2% sin(f — fo)

707 =700+ Xt 2m(k + 1) /51 1 — cos(8 — Bo) a5 (24)
+ _02 /ﬁz &3dg
2m(k +1) Jg, ’

s_ k02 P2 2% cos(f — fBy) — % sin(B — Boy)
e T M e R T )
9/2 B2 s

Tt D) /B1 z7(8)ds,

where the unknowns are the functions o°, 2% and w¥. Using Eq. (23) one can obtain the
exact relations between z° and w® for the three possible non-trivial cases of 6 # 0 using the

procedure described below.

4.2.1. 09 >0, 2xs+ (s >0

In this case, the general solution of Eq. (23) is
5 2 (&4 (2 [5,
w”(B) = C1(B) cosh i §ﬁ + C5(p) sinh g §ﬁ ) (26)

in which the unknown coefficients C(f) and Cs(5) can be found from standard method of

variation of parameters for solving ordinary linear differential equations of the second order.
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Using this method, we obtain the following relations:

/ 2 [0y
C,(B) cosh <5 7 ﬁ) +C, 5(B) sinh ( 5)

(27)
p 2 oy 2 Jog fom 2[00
- —— h - —— - =~ h —
LB 5 cos (9 ; ﬁ) +03(8) 5/ sin ( 5)
from which, we get
/ 2 1 _ 2 /o
CL(8) = = ——==%(8) sinh (5 ﬁﬁ) ,
0'0(5 0
(28)
, 2 Jog
Cy(B) = B) cosh < TB> :
0 \ /00 0
Integrating the above equations, we arrive at the following expressions:
* 2 1 g S
C\(B) = 5 —F= z7(B) sinh 5 dj + M,
0 \/546 /s
(29)
2

N I 2 [59
CaB7) = —3 3 / *(B) cosh (5\/;6> df + My,

in which * is an argument of C(5*) and Cy(8*) that belong to the interval [5y, ().

Substituting Eq. (29) into Eq. (26) and using the tip condition of Eq. (5b), we get,

dw? (%) 4 [
dg* 620 B1

where dw®(3*)/df* = 0 when $* = 3; and f;. The unknown coefficients M; and M, are,
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therefore, obtained as,

cosh( \/751> . —2\/&_ -
M, = . 3o .
1= 91/005 smh( \/7) /51 (ﬂ) Cos -9 ; (B — 62)- 3
(3y/25) (31)
2 sinh 9 %61 B2 S —2\/5_7 .
e V b\ = dg.
2 0 505 sinh (2\/%) /1 27(B) cos _0 ; (8 — 52)_ 3
Finally, we obtain the exact relations between w® and z° as,
2 (" () sinn (2, /70—
S(pey _ S )
w(ﬁ)—e\/ﬁ/lz(ﬁ)smh<2 S )dﬁ—i—
255 32
)b (2y/375) /52 s ( m—ﬁz) e
NS 27(B) cosh | 24/ —= a8,
0V 606  sinh (2 %) L 50
W) 4 [T =
ag= 6% / Z(B)cosh | G4 [ = (8= 57) | A+
~ (33)

4.2.2. 05 <0, 2xs + (s >0

In this case, the general solution of Eq. (23) is given as,

WS (B) = C1(B) cos (; —%5) + Cy() sin (; —?5) | (34)
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The functions C1(8), Co(5) can be determined in similar manner as in subsection 4.2.1.

S

Here, we only list the resulting relations between 2°, w®, and its derivative. They are

2 ﬁ* . 60 = B
S %\ _ S __0 o
w(ﬁ)—em/l 2(6)Sm<2 LA )dﬂ

go B*=p1 (35)
2 <2 _?T) /52 2°(B) cos (2 _%0B- ﬁz) ds
0\ —God  sin (2,/—?) 1 5 0
and
dw®(5%) 4 7 go B — B
=—— z cos | 24/ ——=——— | df+
: o B*—p1 (36)
4 sm<21/—7 7 ) B2 5 5o 3 — Bo
T = z (ﬂ) cos | 2 —TT d/B
020 gin (2 —%) 1 0
4.2.3. 05 =0, 2xs + Cs > 0
In this case, by integrating Eq. (23), we get,
dw® (%) 4 7 s
=—— z dg + Ms. 37
B ML @7
For the tip condition of Eq. (5b) to be satisfied, we find that M3 = 0 and
B2 S
/ 22 (6)ds = 0. (38)
Therefore, w¥(3*) can be obtained by integrating Eq. (37) to arrive at,
S (% 4 - *\ S
w(B) = — [ (B—5")z7(B)dB + My, (39)
029 J s,

with an extra unknown constant My, to be determined by solving the system of Eqs. (24)

and (25).
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5. Numerical solution

Using the linear transformation

B ==+, (40)

in which 0/2 is the coefficient of linear transformation and b = (5 + 32)/2, the integrals
involved in Eqs. (24) and (25) can be transformed to those over the interval 8 € [—1,1]
in order to use established numerical quadratures. The transformed system of boundary
integral equations is not presented here for the sake of brevity, it is obtained similarly to

that for the Gurtin-Murdoch arc in Han et al. (2023).

5.1. Approximations of the unknown functions

On a circular arc, it is reasonable to approximate sufficiently smooth functions by trun-
cated series of trigonometric functions. To account for the tip conditions of Eq. (5), we sug-
gest to use the square root weight function, as in Mogilevskaya et al. (2021b), Zemlyanova

et al. (2023), Han et al. (2023). Thus, the approximations for 5°(3) and z%(j3) are taken as

N

5(B) = /1 — 2 Z {A,,[cos(2mt) cos(mg) — sin(2mt) sin(mg)]+ i)
By, [sin(2mt) cos(mg) + cos(2mt) sin(mg)]} ,
22(B) =1/1— B2 Z {D,,[cos(2mt) cos(mg) — sin(2mt) sin(mg)]+ i)

E,,[sin(2mt) cos(mg) + cos(2mt) sin(mg)]} ,
where A,,,, By, D,,, and E,, are unknown coefficients for the m-th terms in truncated series

and

t=t(8) =0/4(8 — Bo), 9= 9(Bo) = 050/2 +, (42)
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where [ is the angle that corresponds to some point at the arc that in the following will be
used as a collocation point, and f, is obtained from B, using Eq. (40).

It is clear that the use of Eq. (41) allows for automatic satisfactions of the two tip
conditions given by Egs. (5a) and (5c). The remaining tip condition, Eq. (5b), can be used
to determine the extra coefficients appearing in the relations between z° and w®, such as

e.g., constants M; and M, of Eq. (30).

5.2. Evaluation of the integrals

Substituting the approximations of Eq. (41) into the system of Eqgs. (24), (25) and
implementing the linear transformation of Eq. (40), we find that the right-hand side of Egs.

(24) and (25) contain the same six types of integrals as in Han et al. (2023), which are

"= / /1 2 cos(2mt)d
L = / y/1 2sin(2mt)d,
sin(2mt) sin 2t sin( 2mt
= \/1— 2 d \/1—-p2——=
/ B 1 — cos(2t) b= / - tant

43
/ f1_ 3 cos(2mt) - (43)
1 — cos( 2t b,
o / / _ jpsim@mi) sin(2mt) -
5o 1 — cos( 2t b,
cos (2mt) sin 2t cos 2mt
I = /1 d /1
6 / 1 — cos(2t) p= / tant
where the superscript m in I'™ (i = 1,--- ,6) denotes the integral related to the m-th term

in the truncated series.

It can be easily seen that the integrals I7* and I3* of Eq. (43) are regular integrals, which
can be evaluated by using the Gaussian quadrature. It was shown in Han et al. (2023)
that I3" is also regular integral whose kernel reaches the limiting value of 2m\/1—752 when

t — 0.
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The singular integrals, I7*, I'" and IJ*, can be evaluated as in Han et al. (2023). For the
readers convenience we provide some details in Appendix.

The items on the left-hand side of Eqgs. (24), (25) are different from the ones appearing
in the corresponding problem for the Gurtin-Murdoch arc. This is especially true for w®
that can be expressed via of z° by one of Eqs. (32), (35), (39). However, those integrals
are regular ones and can be accurately evaluated by the Gaussian quadrature. As in Han

et al. (2023), we will use 800 Gaussian points to obtain accurate numerical results for regular

integrals.

5.3. Reduction to linear system equations and post-processing

Standard collocation method is used to generate the system of linear algebraic equations
from the governing integral equations of Eqs. (24), (25).

If the series in Eq. (41) are truncated at m = N, the total number of unknown coefficients
in the approximations for 6° and 2 is 4(INV + 1). To obtain these coefficients, 2(N + 1)
collocation points are required. They are chosen to be uniformly distributed on the circular
arc L away from its tips, since the approximations of Eq. (41) already satisfy the two tip
conditions of Eq. (5).

It has been mentioned that in the case of g = 0 and 2ygs + (s > 0, an extra unknown
coefficient My appears in Eq. (39). However, due to the fact that additional Eq. (38) for
2% is required for this case, the coefficient can be found together with all other coefficients
from the solution of the system of 4(N + 1) + 1 linear equations.

Substituting the approximations of Eq. (41) into the governing equations obtained from
Eq. (24) and Eq. (25) by implementing linear transformation, and evaluating all integrals of
Eq. (43) and those on left-hand side of Egs. (32), (35), (39), we obtain the linear algebraic
equations for each collocation point, similarly as Han et al. (2023).

After solving the system of such equations, one can obtain the coefficients A,,, B,,, D,

E,, and My, if the case of 69 = 0 is considered. Substitution of those coefficients into the
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approximations of Eq. (41) provides the values of 5° and z° on the arc L, while the w? is
evaluated via 2% using one of the three equations of Eqgs. (32), (35) and (39).

The jumps Ad = Ao/ = Ad, + iAdy, needed for calculating stresses in the domain,

can be then evaluated using Eqs. (2), (3). The corresponding dimensionless expressions are,

0 dw®  ~d3w?®
AG, = ——6° + 6p—= — 0———
B 45 (44)
Oy = —=0 — W = ==
‘T 4B 2 2 dp?

The tractions o(z) = 0,(z) + ioy(z) outside of L are evaluated using Eq. (10), while
the Cauchy stresses o;; are evaluated using Eq. (10) with the set of appropriately chosen
normal vectors. For example, to calculate o11(z) and 012(2), one can set z = izy and assume
that normal vector to the line on which z is located (axis Oxg) points in Ox; direction.
Thus, 0,(2) = 011(z) and 04(2) = 012(z) on that line. Similarly, to obtain sy, one can set
z = z; and assume that the normal to the line on which z is located (axis Ox;) points in

Oz, direction leading to o995 = o, on that line.

6. Comparison with the solution for the rigid circular arc problem

In Mogilevskaya et al. (2021b), it was shown that the problem of the Gurtin-Murdoch
material surface (in plane strain setting) can be reduced to that of a rigid line (stiffener), if
L is a straight segment and v = 0, 0p = 0. However, in Han et al. (2023), we demonstrated
that the plane strain problem of the Gurtin-Murdoch material surface is never reducible to
that of a rigid curve, if L is a circular arc. We explained this using the classification of
Benveniste and Miloh (2001) in which the Gurtin-Murdoch model with oy = 0 represents
different interface regime than that of rigid interface. The regime that corresponds to the
Steigmann-Ogden model with gy = 0 is also listed in Benveniste and Miloh (2001). So, we

would like to compare the traction jumps for the Steigmann-Ogden model for that case with



6 COMPARISON WITH THE SOLUTION FOR THE RIGID CIRCULAR ARC PROBLEM 19
the ones for the rigid arc that are reported in Liu and Jiang (1994).

As in Han et al. (2023), we consider the solutions of rigid arc for a special case of uniaxial
load o5y for which € = 0, see Eq. (62) in Liu and Jiang (1994), and take 6 = §y — 51 = 7.
In that case, the following expression for the complex traction jump across the rigid arc is

valid, see Han et al. (2023):

k+1 off : 262 — 2k — 1 .
A — _ 11 715,3/2 v /v - 1,3/2 ) 45
7 P \/m{e T ek ¢ (45)

Therefore, the jumps in traction components across the rigid arc are,

_ k+1 of bt 2K% — 2k — 1 I6]
Ao, = — PRV [cos (§5> + mcos (5)1 : (46a)

00 2 _ —
Aoy = I{;l;l \/20(;%5 [sin (gﬁ) - %sin (g)] : (46b)

We then take 653 = 1, v = 035 , R = 1, § € [-7/2,7/2] and compare the dimen-
sionless jumps Ao,/ and Ao,/p obtained using Eq. (46) with the ones obtained with the
Steigmann-Ogden model using Eq. (44). To do that, we assume oy = 0,7 = 0, and vary
the parameter 0 as 6 = 0.1, 1, 10, 100. Note, that with the increase of 8, the Steigmann-
Ogden model describes a stiffer shell. The results of the comparison are presented on Fig.
2 together with the corresponding results for the Gurtin-Murdoch model, obtained in Han
et al. (2023).

It can be seen from Fig. 2a that, for the case of 09 = 0,7 = 0, the normal traction
jumps obtained with the Gurtin-Murdoch model are quite different from those for the rigid
arc, while with the increase of & (and the same values oy = 0,7 = 0), the results with
the Steigmann-Ogden model are closer to the rigid arc solutions when 6 > 10. It is also
observed, see Fig. 2b, that the values of Ao,/ for all three models (rigid arc, Gurtin-

Murdoch, and Steigmann-Ogden) are very close and their magnitudes become very large
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Figure 2: Comparisons of traction jumps Ao, /u and Acy/p obtained using the Steigmann-Ogden model
with the ones by Liu and Jiang (1994) and by Han et al. (2023).

when (3 is approaching 3; and 5. Here too, with the increase of 5, the tangential traction
jumps by Steigmann-Ogden model are closer to the rigid arc solutions than the ones by the

Gurtin-Murdoch model.
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Figure 3: Comparisons of w® obtained using the Steigmann-Ogden and Gurtin-Murdoch models.

We also studied the variation of w® along the arc as the function of the parameter 5 , both
for the Gurtin-Murdoch and Steigmann-Ogden models with 0y = 0,v = 0. From Fig. 3, we
can see that the plots of w® satisfy the boundary condition of Eq. (5b) for the Steigmann-
Ogden model and the boundary condition of Eq. (6b) for the Gurtin-Murdoch model. From

Fig. 3a, we find that with the increase of § in Stegmann-Ogden, the absolute values of w®
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decrease. However, from Fig. 3b, we can observe that the values of w® for 6 = 50 and 100

are still not constants.

7. Numerical results

We reiterate that all the results of this section are obtained, as in Han et al. (2023),

using 800 Gaussian points to assure the accuracy. Also, the values of the kernels of all

regular integrals involved in Eq. (43) are evaluated using Taylor series expansions when

1B — Bo| < 0.1, in order to avoid near singularity.

7.1. Convergence analysis and influence of 6

Consider the following cases of arcs: (i) short arc (5, = 897/180, B = 917/180), (ii)

medium arc () = 7/4, f2 = 37/4), and (iii) long arc (8, = 0, B = 7), all with the radius

R = Inm. We investigate the behavior of the approximations of Eq. (41) as functions of

the truncation number m and study the influence of arc length 6 on the results.
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We set 655 = 0.05, 6 = 6% = 0, v = 0.33 and take 5o = 0, 6 = 0.01, v = 0.12,
which is within the range of the parameters described in Zemlyanova et al. (2023) and in
the references therein. The results of the convergence study are shown on Fig. 4 from which
we find that, in the cases of medium and long arcs, the results for both &° and w® converge
at m > 10.

However, for the short arc, ° and w® are convergent only when m > 20. Analyzing
behavior of 5° from Fig. 4, we find that all the results satisfy the tip condition of Eq. (5a).
Similarly, it can be seen that the results for w” satisfy the tip condition of Eq. (5b).

We also investigated the convergence behavior of the dimensionless traction jumps. From
Eq. (44), one can see that, if 6o = 0, Ag, is expressed via the combination of ° and
d3w®/d?, while Ag, via that of d6°/d3 and d?w®/d32. This explains dramatic variations
of Ad,, and Ad, near the tips, as can be seen from the plots of Fig. 5. From that figure,
it can be concluded that taking the truncation number to be m = 40 is sufficient for the
convergence of the results for the dimensionless traction jumps. Therefore, in the following
numerical examples, we will set truncation number m = 40 in order to ensure accuracy.

From the above figures, we could also see that the arc length 6 plays an important role
on the distributions of the fields at and across the arc. From Fig. 4a, b, we find that the
values of G at arcs (i) and (ii) are negative and, for both arcs, there exists a single minimum
of &% at B = 0. The corresponding results for arc (iii) on Fig. 4c include both negative
and positive values. In addition, the plot of ° has three local extrema: maximum values
of 75 = 0.011 are reached at 3 = £0.78 and its minimum value of ° = —0.0051 is reached
at f = 0. From Fig. 4d, e, it can be seen that, for the arcs (i) and (ii), the maximum
and minimum values of w® are reached at the tips and, with the increase of 6, the absolute
values of w® increase. However, for arc (iii), the variation of w® is more dramatic, and the
maximum absolute values of w®= 0.014 occur at new points of extrema 3 = +0.46.

From Fig. 5, it can be seen that the influence of # on Ag, and Ad, is even more
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Figure 5: Distributions of Ag,, and Ag, as functions of m for the three types of arcs.

pronounced than its influence on 6% and w®. We can see from Fig. 5a, b that, for the

cases of arcs (i) and (ii), the maximum absolute values of Ag,, significantly increase with

the increase of . However, the behavior of Ag, for the case of arc (iii), shown in Fig. 5c,

is completely reversed, as compared with that shown on Fig. 5a, b. From Fig. 5d, e, f, we

find that the interval of variation of Ag, first decreases as 6 increases from case (i) to case

(ii), but, for case (iii), this interval restores to the interval of variation for case (i) but the

behavior of the plot for the latter case is completely reversed as compared to that for arc

().

7.2. Influence of

We will study the influence of ~y for the case of arc (iii) by taking v = 0.1, 1, 10, 100, 1000.

The rest of the parameters are chosen as 35 = 0.05, 657 = 0

5 = 0.1. The truncation number is still taken to be m = 40.

=0, v =0.33, 5, = 0.025,

The distributions of &% and w® for different + are plotted on Fig. 6, from which we



7 NUMERICAL RESULTS 24

0.030 0.010

b
)°~°25’,/ ‘ ) v =0.1
=1
0.020 0.005 L \ 7= !
0.015 | v=10
: v =100
L e - \ ~ 1000
0.005 I = 0.1 | 0.000 - 5= 0.1 \ \ Y
' S v=1 ‘ _
0000} 6=0.1 ' V=10 Go=0025
~0.00s 00 =10.025 ~ =100 00051 55 =0.05
-0.010 03 =0.05 4 = 1000
~0.015 : : : ~0.010 ‘ ‘ ‘
210 05 0.0 0.5 1.0 1.0 0.5 0.0 05 1.0
B B

Figure 6: Distributions of % and w® along the long arc as functions of ~.

find that, with the increase of v, the maximum values of &° increase as they should, as
&% — 69 = 0.025 when v — oo, while the plots &° (apart from near tips regions) become
flatter. On the contrary, the maximum values of w® decrease with the increase of v and the
plots start to converge to one another for v > 100. From Fig. 6a, it is clear that 6 satisfies
the tip condition of Eq. (5a) while it is also clear from Fig. 6b that w” satisfies the tip
condition of Eq. (5b) at 3 = +1.
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Figure 7: Distributions of Ag,, and Ag, along the long arc as functions of ~.

We also investigated influence of v on the distributions of Ag, and Ag,. The results

are shown in Fig. 7. From that figure, we find that Ag, and Ag, are close to zero almost
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everywhere, except for the near-tip regions, where dramatic variations exist, due to the
derivatives involved in Eq. (44). Both Ag, and Ag, reach some limit values for v > 100.

From Fig. 6a, we find that, with increase of 7, the change in 6°

near the tips occur more
rapidly leading to larger values of derivative d&%/df in those regions. According to Eq.
(44), it is expected that the maximum absolute values of Ag, are increasing with increase

of v, which can be seen from Fig. 7b.

7.8. Influences of 6o and b

It was shown in Sections 4.2.1 - 4.2.2 that the solution of the problem under study might
depend on the relationships between surface tension &, and bending parameter §. From
Egs. (32) and (35), we find that those parameters come in combinations, such as \/+5,/0
and \/FOS, where 6 might be positive or negative. Only when 67 = 0, as in Eq. (39), 5
remains the only parameter influencing the numerical results.

We will consider case (i) of medium arc and take o = 0.1,0.3. To cover all three
cases discussed in Sections 4.2.1 - 4.2.3, we choose 69 = —0.025, 0, 0.025. The rest of the
parameters are set as 655 = 0.05, 07y = o35 = 0, v = 0.33,v = 0.12. The distributions of
7% and w® along the arc are shown on Fig. 8. Fig. 8a shows that, with the increase of &,
and constant 9, the absolute values of 55 decrease, while with the increase of 8, the absolute
values of 67 increase. Fig. 8b shows that, with the increase of both &, and 5, the absolute
values of w® decrease. Due to symmetry of the geometry and remote load, 5° is symmetric
in respect to xe-axis, while w® is anti-symmetric.

From Fig. 9a, we conclude that, for the various values of 6y and 5, the jump Ag, is close
to zero for most values of /3 , except near the tips, where the first and third order derivatives
of w® involved in Eq. (44); is the reason for the drastic variations. From Fig. 9b, we find
that the Ag, for g9 = 0.025 is of opposite sign than Ad, for 6o = —0.025 and 69 = 0. In

addition, Ag,, is symmetric and Ag, is anti-symmetric.
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Figure 9: Distributions of Ag,, and Ag, along the medium arc as functions of &y and 5.

7.4. Modeling of local fields in the bulk

26

We consider epoxy matrix with 4 = 2 GPa, v = 0.35 containing the material surface

MPa, which results in 055 =

with circular arc cross-section characterized by R = 5 nm and 8; = n/4, o = 3w/4. The
two-dimensional elastic properties of the arc are chosen to be equal to those reported in Suk
et al. (2010) for graphene oxide, which results in the following dimensionless parameters:
v = 0.12 and G, = 0.025. The bending parameter is set as 6 = 0.2. We assume, as in
Mogilevskaya et al. (2008), that the only non-zero component of the far-field is 055 = 100

055/ = 0.05. The contours of the dimensionless Cauchy
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stresses ¢;; in the domain 77 ® o € [—6.5,6.5] ® [—1.25,8.5] (nm) are plotted on Fig. 10

and compared with those for the Gurtin-Murdoch model obtained in Han et al. (2023). On

the figures, the same scale for each ¢;; is used to allow for comparison.
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Figure 10: Contour plots of the dimensionless Cauchy stresses for the Steigmann-Ogden and Gurtin-Murdoch

models.

It can be clearly seen from Fig. 10 that, for both models, all components &;; undergo

jumps across the arc. It is found that the symmetric properties of the plots due to the two

models are the same; the distributions of ;; and &99 on Figs. 10a, b, d, e are symmetric

with respect to x,-axis, while the distribution of 715 is anti-symmetric from Fig. 10c, f. It

also can be seen that the stress fields are not symmetric with respect to zi-axis, unlike in

the case of a straight segment, see Mogilevskaya et al. (2021Db) .

From Fig. 10a, d, it can be observed that, for both models, &1, is tensile above and below

the arc and it is compressive in the regions near the tips. The absolute values of &1; near

the tips are larger for the Steigmann-Ogden model than for the Gurtin-Murdoch one. From
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Fig. 10b, e, it can be concluded that, for both models, &9 is tensile everywhere in the region
of interest. The differences in contour plots for the two models are more pronounced (which
should be expected for the chosen far-field load) and here too G99 at the tips are larger in
the case of the Steigmann-Ogden model. It is seen from Fig. 10c, f that 715 along the arc is
anti-symmetric and again higher values of singular stresses at the tips are observed for the
Steigmann-Ogden model.

We also compared the distributions of 6° and w®, Aé,,, Ad, for the both models.
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Figure 11: Comparison of distributions of & and w® obtained with the Steigmann-Ogden and Gurtin-
Murdoch models.

From Fig. 11 we find that the maximum absolute values of 7° for the Gurtin-Murdoch
model are smaller than for the Steigmann-Ogden model, while it is opposite for w®. It can
clearly be seen from Fig. 11a that, for both Steigmann-Ogden and Gurtin-Murdoch models,
& satisfies the tip conditions of Eqs. (5a) and (6a), while w” satisfies the respective tip
conditions of Egs. (5b) and (6b).

Fig. 12 indicate that traction jumps for both models are mostly affected near tip regions.
The values A, for the Steigmann-Ogden model are significant larger than for the Gurtin-
Murdoch one, while the values of A, for the Gurtin-Murdoch model are slightly larger
than for the Steigmann-Ogden model. Retrospect the singularities shown on Fig. 10, we can

conclude that the Ag,, plays a more significant role than Ag, in determining tip singularities.
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Figure 12: Comparison of of distributions of Ag,, and Ag, obtained with the Steigmann-Ogden and Gurtin-
Murdoch models.

8. Conclusions

In this paper, we derived the solution for the plane strain problem of an infinite isotropic
elastic matrix subjected to uniform far-field load and containing a Steigmann-Ogden mate-
rial surface of circular cross-section. The solution allows for accurate evaluations of all elastic
fields everywhere in the material system. We demonstrated that, as in the corresponding
problem with a Gurtin-Murdoch material surface, the equations for the components of the
surface stress tensor are fully coupled for the case on nonzero surface tension (unlike for
the straight segment case considered in Mogilevskaya et al. (2021b)). We investigated the
influence of the dimensionless parameters that govern the problem. For the case of zero sur-
face tension, we compared our solution with that for the corresponding problem involving a
rigid arc, by choosing special values for the governing parameters and found that the results
obtained with the Steigmann-Ogden model with decreasing elastic and bending parameters
are closer to those for the rigid arc. However, we emphasize again that, when the surface
tension vanishes, the two models represent two different interface regimes of seven regimes
listed in Benveniste and Miloh (2001). The obtained solution can be used as a benchmark

example for the numerical solutions of the problems involving surfaces of arbitrary suffi-
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ciently smooth shapes, that is a subject of our future work, which will also include solving

more complex three-dimensional problems.
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Appendix
We will explain the technique of evaluation of singular integrals using I}* as an example.

This integral can be represented as follows:

" / — [ cos(2mt) \/ — BQ
I = / b {1 — cos(2t) 2t2} 7[ W (47)

As t — 0, the kernel of the first integral on the right hand-side of Eq. (47) reaches the value
of \/ﬁ m? 4+ 1/6). Therefore, this integral is a regular one and can be numerically
evaluated by using the Gaussian quadrature. The second integral on the right hand-side of
Eq. (47) is hypersingular integral, which can analytically be evaluated as, see Lin’kov and
Mogilevskaya (1990), Martin (1992),

\/1—52 V11— 32 4f - 16 [ /1 — /2 ——Ew 48
7[ 7[ [0/4(3 — Bo))’ - 7[(5 ﬁ())zﬁ )
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I7" and I" can be similarly evaluated by representing them as,

= [V [ i nf Y
g 0

The first integrals of Eqs. (49) are again regular integrals that can be evaluated by using

(49)

the Gaussian quadrature, while the second integral involved in both expressions of Eq. (49)

is the Cauchy principal value integral, which can be evaluated analytically as, see Martin

(1992),
Py [ T
][ =f e w e G g o)
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