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Abstract

The plane strain problem of an elastic matrix subjected to uniform far-field load and contain-

ing a Steigmann-Ogden material surface with circular arc cross-section is considered. The

governing equations and the boundary conditions for the problem are reviewed. Exact com-

plex integral representations for the elastic fields everywhere in the material are provided.

The problem is further reduced to the system of real variables hypersingular boundary inte-

gral equations in terms of the unknown strain component of the surface stress tensor and the

unknown linear combination involving the rotational component and its second derivative,

and various problem parameters. The two unknowns are then approximated by the series

of trigonometric functions that are multiplied by the square root weight functions to allow

for automatic incorporation of the tip conditions. The unknown coefficients in series are

found from the system of linear algebraic equations that is solved using standard collocation

method. The numerical examples are presented to illustrate the influence of dimensionless

parameters. The connection of the problem with that of rigid circular arc is discussed.
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1. Introduction

In this paper, we consider the plane strain problem of an infinite isotropic elastic matrix

that contains a Steigmann-Ogden material surface (see Steigmann and Ogden (1999, 1997))

with circular arc cross-section and subjected to uniform far-field load. The surface represents

a shell of vanishing thickness that is characterized by its own elastic and bending stiffnesses

and the residual surface tension. The problem has applications in the area of modeling

composite materials that use ultra-thin stiff reinforcements, e.g., Cao (2014), Güler and

Bağcı (2020), Papageorgiou et al. (2017, 2020), Suk et al. (2010), Mirzaei and Abbasi (2023).

In recent publications, several solutions were proposed for the two-dimensional prob-

lems involving Gurtin-Murdoch (Gurtin and Murdoch (1975, 1978)) and Steigmann-Ogden

material surfaces along a straight segment, see e.g. Baranova et al. (2020), Mogilevskaya

et al. (2021b), Zemlyanova et al. (2023), Zemlyanova (2023). The first numerical algorithm

for solving the plane-strain problem involving a Gurtin-Murdoch curve along a circular arc

was proposed in Han et al. (2023). In all above mentioned publications, the solutions were

obtained using the theories of elastic layer potentials and integral equations. In the solu-

tion process, the problems were reduced to the solutions of the systems of real variables

hypersingular boundary integral equations in terms of the strain and rotation components

of the surface stress tensor. The equations were decoupled for the case of a surface along

a straight segment, while the equations for the circular arc were coupled. In the case of a

material surface along a straight segment and zero surface tension, it was demonstrated in

Mogilevskaya et al. (2021b), Zemlyanova et al. (2023) that the case of rigid line inclusion, see

e.g. Ballarini (1987), Corso et al. (2008), Goudarzi et al. (2020), Markenscoff et al. (1994),

Wang et al. (1985), could be recovered by proper choice of surface elastic parameters. This

was not the case for the problem involving Gurtin-Murdoch’s circular arc surface, as in Han

et al. (2023) it was shown that the latter problem was not reducible to that of a rigid arc,

see Liu and Jiang (1994), even when the arc’s elastic parameters were chosen to be the same
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as for the corresponding straight line case.

In the present paper, we derive, for the first time, numerical solution of the two-dimensional

plane strain problem that involves a Steigmann-Ogden circular arc surface. Here too, we

employ the theories of elastic layer potentials and integral equations. However, unlike in

the case of Gurtin-Murdoch circular arc surface, the boundary integral equations for the

Steigmann-Ogden surface contain not only the strain and rotational components of surface

stress tensor but the linear combination of the latter component and its second derivative.

Depending on the parameters involved, three different options exist to find analytical ex-

pression for the rotational component via that combination. After that is done, the problem

is reduced to the solution of the systems of coupled real variables hypersingular boundary

integral equations in terms of the surface stress (that is expressed via the strain component)

and the above mentioned combination for the rotational component. The combination and

the surface stress are approximated by the truncated series of trigonometric functions mul-

tiplied by the square root weight functions. The system of linear algebraic equations for the

unknown series coefficients is obtained by using standard collocation method. The elastic

fields in the matrix are then found using appropriate complex integral representations. The

obtained solution is used to illustrate the influence of governing dimensionless parameters.

As in Han et al. (2023), we study the connection of our solution with that for the rigid arc

case.

The paper is structured as follows. In Section 2, we formulate the problem under study

and review the governing equations of the Steigmann-Ogden theory. In Section 3, we list

the exact complex variables integral representations for the fields, and present the governing

complex variable boundary integral equation. In Section 4, we reduce the latter equation

to the system of real variables boundary integral equations and, after introducing the di-

mensionless parameters, reformulate the system in dimensionless settings. In Section 5, we

describe major steps of the proposed numerical algorithm. In Section 6, we discuss the con-
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nection of our solution with that for the rigid arc case. Section 7 contains several examples

of numerical simulations. Concluding remarks are presented in Section 8.

2. Problem formulation and governing equations of the Steigmann-Ogden theory
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Figure 1: Problem configuration: a Steigmann-Ogden circular arc in an elastic matrix

Consider the plane strain problem of an infinite isotropic elastic matrix that contains a

cross-section of a Steigmann-Ogden material surface that represents the circular arc L of

radius R with the tips at the points ξ = a, ξ = b, see Fig. 1. The matrix, characterized by

the shear modulus µ and Poisson’s ratio ν, is subjected to the uniform far-field load σ∞11, σ∞22,

σ∞12, where σ∞12 = σ∞21. The origin of the global Cartesian coordinate system is chosen to be

located at the center of the circle on which arc is located. Additionally, the local coordinate

system with the mutually orthogonal unit vectors n, ` is introduced and the notations “+”

(“−”) identify the regions located from the left (right) of n, as shown on Fig. 1.

According to the Steigmann-Ogden theory, it is assumed that L is characterized by its

own elastic stiffness parameters µS, λS, bending stiffness parameters χS, ζS, and by the

residual surface tension σ0. The governing equations for the theory include the standard



2 PROBLEM FORMULATION ANDGOVERNING EQUATIONS OF THE STEIGMANN-OGDEN THEORY5

Navier equation for the displacements inside the matrix supplemented by the conditions

across L and at its tips. The supplemental conditions for the problem under study can be

deduced from the corresponding conditions for a curve of an arbitrary sufficiently smooth

shape reported in Mogilevskaya et al. (2021b), Zemlyanova et al. (2023), Han et al. (2023), see

also a review in Mogilevskaya et al. (2021a), by assuming that the local radius of curvature

R = R(s) on L is constant.

Thus, the conditions for the fields across L at the point ξ ∈ L (here and below we omitted

the argument ξ for brevity) are

u+1 = u−1 = u1, u
+
2 = u−2 = u2, (1)

∆σn = σ+
n − σ−n = −σ

S

R
+ σ0

∂ωS

∂s
− (2χS + ζS)

∂3ωS

∂s3
, (2)

∆σ` = σ+
` − σ−` =

∂σS

∂s
+ σ0

ωS

R
− 2χS + ζS

R

∂2ωS

∂s2
, (3)

where u1 and u2 are the displacement components of the bulk material in the global coordi-

nate system, σn and σ` are the corresponding normal and shear tractions, and s is the arc

length. The superscripts “+”, “−” here and below describe the limit values of the fields

when L is approached from the direction of that of the normal vector or from the opposite

direction, respectively. The expressions for the surface stress σS, surface strain εS, and

surface rotation ωS involved in Eqs. (2)-(3) are

σS = σ0 + (λS + 2µS)εS, (4a)

εS =
un
R

+
∂u`
∂s

, (4b)

ωS = −u`
R

+
∂un
∂s

, (4c)

in which un and u` are the normal and shear components of the displacements. Note that
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for the case of vanishing bending parameters, the jump conditions of Eqs. (2)-(3) reduce to

those for the Gurtin-Murdoch model.

The conditions at the tips ξ = a and ξ = b of L for the Steigmann-Ogden model are

given by the following equations:

σS = 0, (5a)

(2χS + ζS)
∂ωS

∂s
= 0, (5b)

σ0ω
S − (2χS + ζS)

∂2ωS

∂s2
= 0. (5c)

For comparison, we also list the tip conditions for the Gurtin-Murdoch model (Mogilevskaya

et al. (2021b), Zemlyanova et al. (2023), Han et al. (2023)). They are

σS = 0, (6a)

σ0ω
S = 0. (6b)

Compared with Eqs. (6), the tip conditions for the Steigmann-Ogden model of Eqs. (5) have

extra terms that involve the combination of the bending parameters and the derivatives of

function ωS. Here too, Eqs. (5) formally reduces to Eqs. (6) if 2χS + ζS = 0. However, we

emphasize that, when the surface tension vanishes, the two models represent two different

interface regimes, with Gurtin-Murdoch model representing the limiting case of the so-

called membrane interphase, while the Steigmann-Ogden model that of the inextensible

shell interphase, see Benveniste and Miloh (2001).

3. Governing integral representations

The integral representations for the elastic fields in the material system under study can

be deduced from the representations for more general case of a curve of an arbitrary shape,
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see Linkov and Mogilevskaya (1998), Mogilevskaya and Linkov (1998), Mogilevskaya et al.

(2021a,b), Zemlyanova et al. (2023), Han et al. (2023).

The representation for the complex displacements u = u1 + iu2 outside of L is

u (z) = u∞ (z)− 1

4πiµ (κ+ 1)


∫
L

∆σ (τ) [2κ ln (z − τ)− κK1 (τ, z)] dτ

+

∫
L

∆σ (τ)K2 (τ, z) dτ

 ,

(7)

while the derivative of Eq. (7) on the curve on which the point z is located, as in Mogilevskaya

et al. (2021b), Zemlyanova et al. (2023), Han et al. (2023), is given by

u′ (z) = [u∞(z)]′ +
1

4πiµ (κ+ 1)


∫
L

∆σ (τ)

[
2κ

1

τ − z + κ
∂

∂z
K1 (τ, z)

]
dτ

−
∫
L

∆σ (τ)
∂

∂z
K2 (τ, z) dτ

 ,

(8)

in which u′ (z) = ∂u/∂z + (∂u/∂z) (∂z/∂z).

In Eq. (7) and Eq. (8), i is imaginary unit with i2 = −1, z = x1 + ix2 is the complex

combination of the Cartesian coordinates of the point z /∈ L, τ = τ1 + iτ2 ∈ L, ∆σ =

∆σn + i∆σ`. κ = 3 − 4ν, K1 (τ, z) = ln[(τ − z)/(τ − z)], K2 (τ, z) = (τ − z)/(τ − z), and

a bar over a symbol denotes complex conjugation. The expressions for the displacements

u∞ (z) and their derivatives [u∞(z)]′ caused by the remote loading are

u∞ (z) =
1

2µ

[
(κ− 1)

σ∞11 + σ∞22
4

z − σ∞22 − σ∞11 − 2iσ∞12
2

z

]
, (9a)

[u∞(z)]′ =
1

2µ

[
(κ− 1)

σ∞11 + σ∞22
4

− σ∞22 − σ∞11 − 2iσ∞12
2

dz

dz

]
. (9b)

The representation for the complex tractions σ = σn + iσ` on some line outside of L on
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which z is located is given by

σ (z) =σ∞ (z)− 1

2πi (κ+ 1)


∫
L

∆σ (τ)

[
(κ− 1)

1

τ − z + κ
∂

∂z
K1 (τ, z)

]
dτ

−
∫
L

∆σ (τ)
∂

∂z
K2 (τ, z) dτ

 ,

(10)

in which σ∞ (z) can be expressed as

σ∞ (z) =
σ∞11 + σ∞22

2
+
σ∞22 − σ∞11 − 2iσ∞12

2

dz

dz
. (11)

Using the limiting procedure in which the field point is allowed to reach some boundary

point τ 0 = τ 01 + iτ 02 ∈ L from the direction normal to the boundary at that point, one can

obtain the following boundary integral equation, see Mogilevskaya et al. (2021b), Zemlyanova

et al. (2023), Han et al. (2023):

u′(τ 0) = [u∞(τ 0)]′ +
1

4πiµ(κ+ 1)

{
−
∫

L

∆σ(τ)

[
2κ

1

τ − τ 0 + κ
∂

∂τ 0
K1(τ, τ

0)

]
dτ

−
∫
L

∆σ(τ)
∂

∂τ 0
K2(τ, τ

0)dτ̄

}
.

(12)

Using the equation for the circular arc τ τ̄ = R2 and the expressions for K1 and K2

described previously, we obtain,

K1(τ, τ
0) = ln

(τ − τ 0)ττ 0
R2(τ 0 − τ)

= ln

(
−ττ

0

R2

)
, K2(τ, τ

0) = −ττ
0

R2
, (13a)

dτ̄ = −R
2

τ 2
dτ,

∂K1

∂τ 0
=

1

τ 0
,
∂K2

∂τ 0
= − τ

R2
. (13b)

Substituting the expressions of Eq. (13) into Eq. (12), we obtain the following boundary
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integral equation:

u′(τ 0) = u∞(τ 0)
′
+

1

4πiµ(κ+ 1)

[
−
∫

L

∆σ(τ)

(
2κ

1

τ − τ 0 + κ
1

τ 0

)
dτ −

∫
L

∆σ(τ)
1

τ
dτ

]
. (14)

4. The system of hypersingular boundary integral equations

4.1. Reduction of Eq. (14) to the system of real variables equations

Using the following representations for the points on L:

τ = Reiβ, τ 0 = Reiβ0 , dτ = iReiβdβ,
dτ̄ 0

dτ 0
=

d

dτ 0
R2

τ 0
= −e−2iβ0 , (15)

and substituting Eq. (15) into Eq. (14), we get (here and below, arguments τ 0 and τ are

omitted for brevity, unless they are necessary)

u′ = u∞′ +
κ

2πµ(κ+ 1)
−
∫

L

(∆σn + i∆σ`)
eiβ

eiβ − eiβ0 dβ

+
κ

4πµ(κ+ 1)
−
∫

L

(∆σn + i∆σ`)e
i(β−β0)dβ

− 1

4πµ(κ+ 1)

∫
L

(∆σn − i∆σ`)dβ.

(16)

In the following, we will take into account that the kernels of Eq. (16) can be expressed as

eiβ

eiβ − eiβ0 =
1

2
− i

sin(β − β0)
2[1− cos(β − β0)]

, ei(β−β0) = cos(β − β0) + i sin(β − β0). (17)

One can rewrite Eqs. (4a)-(4c), in complex variables notations as

σS = σ0 + (λS + 2µS)εS = σ0 + (λS + 2µS) Re u′, (18a)

εS =
un
R

+
∂u`
∂s

= Re u′, (18b)
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ωS = −u`
R

+
∂un
∂s

= − Imu′, (18c)

where, as before, u′ = du/dτ + du/dτ̄ · dτ̄ /dτ .

Using Eqs. (2), (3) and Eqs. (18a) - (18c), boundary integral equation Eq. (16) can be

rewritten in terms of σS and ωS. After using integration by parts and implementing the tip

conditions of Eq. (5), the final system of boundary integral equations takes the following

form:

σS =σ0 + (λS + 2µS) Re (u∞)′ +
κ(λS + 2µS)

4πRµ(κ+ 1)

∫ β2

β1

σS cos(β − β0)
1− cos(β − β0)

dβ+

κ(λS + 2µS)

4πRµ(κ+ 1)

∫ β2

β1

[
σ0ω

S − (2χS + ζS)
∂2ωS

∂s2

]
sin(β − β0)

1− cos(β − β0)
dβ+

λS + 2µS
4πRµ(κ+ 1)

∫ β2

β1

σSdβ,

(19)

−ωS = Im (u∞)′ − κ

4πRµ(κ+ 1)

∫ β2

β1

[
σ0ω

S − (2χS + ζS)
∂2ωS

∂s2

]
cos(β − β0)

1− cos(β − β0)
dβ+

κ

4πRµ(κ+ 1)

∫ β2

β1

σS sin(β − β0)
1− cos(β − β0)

dβ+

1

4πRµ(κ+ 1)

∫ β2

β1

[
σ0ω

S − (2χS + ζS)
∂2ωS

∂s2

]
dβ,

(20)

where β1 and β2 are the angles associated with the tips of L and Re u∞′, Imu∞′ are obtained

from Eqs. (9b), (15) as

Re u∞′ =
1

2µ

[
(κ− 1)

σ∞11 + σ∞22
4

− 2σ∞12 sin(2β0) + cos(2β0)(σ
∞
11 − σ∞22)

2

]
,

Imu∞′ =
1

2µ

[
σ∞11 − σ∞22

2
sin(2β0)− σ∞12 cos(2β0)

]
.

(21)

4.2. Dimensionless integral equations

We introduce the following dimensionless parameters:

θ = β2 − β1, σ̃∞ij =
σ∞ij
µ
, γ =

µRθ

2µS + λS
, σ̃S =

2σS

µRθ
, σ̃0 =

2σ0
µRθ

, δ̃ =
8(2χS + ζS)

µR3θ3
,

Σ1 = 2 Re(u∞(τ 0))′, Σ2 = Im(u∞(τ 0))′,

(22)
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and the new function zS(β) as

σ̃0ω
S(β)− θ2δ̃

4

∂2ωS(β)

∂β2
= zS(β), zS(β1) = zS(β2) = 0. (23)

Substituting Eq. (23) and the parameters of Eq. (22) into Eq. (19) and Eq. (20) , one

can rewrite those equations in the dimensionless forms as

γσ̃S = γσ̃0 + Σ1 +
κθ/2

2π(κ+ 1)

∫ β2

β1

σ̃S cos(β − β0) + zS sin(β − β0)
1− cos(β − β0)

dβ

+
θ/2

2π(κ+ 1)

∫ β2

β1

σ̃Sdβ,

(24)

ωS = −Σ2+
κθ/2

4π(κ+ 1)

∫ β2

β1

zS cos(β − β0)− σ̃S sin(β − β0)
1− cos(β − β0)

dβ

− θ/2

4π(κ+ 1)

∫ β2

β1

zS(β)dβ,

(25)

where the unknowns are the functions σS, zS and ωS. Using Eq. (23) one can obtain the

exact relations between zS and ωS for the three possible non-trivial cases of δ̃ 6= 0 using the

procedure described below.

4.2.1. σ0 > 0, 2χS + ζS > 0

In this case, the general solution of Eq. (23) is

ωS(β) = C1(β) cosh

(
2

θ

√
σ̃0

δ̃
β

)
+ C2(β) sinh

(
2

θ

√
σ̃0

δ̃
β

)
, (26)

in which the unknown coefficients C1(β) and C2(β) can be found from standard method of

variation of parameters for solving ordinary linear differential equations of the second order.
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Using this method, we obtain the following relations:

C
′

1(β) cosh

(
2

θ

√
σ̃0

δ̃
β

)
+ C

′

2(β) sinh

(
2

θ

√
σ̃0

δ̃
β

)
= 0,

C
′

1(β)
2

θ

√
σ̃0

δ̃
cosh

(
2

θ

√
σ̃0

δ̃
β

)
+ C

′

2(β)
2

θ

√
σ̃0

δ̃
sinh

(
2

θ

√
σ̃0

δ̃
β

)
= 0,

(27)

from which, we get

C
′

1(β) =
2

θ

1√
σ̃0δ̃

zS(β) sinh

(
2

θ

√
σ̃0

δ̃
β

)
,

C
′

2(β) = −2

θ

1√
σ̃0δ̃

zS(β) cosh

(
2

θ

√
σ̃0

δ̃
β

)
.

(28)

Integrating the above equations, we arrive at the following expressions:

C1(β
∗) =

2

θ

1√
σ̃0δ̃

∫ β∗

β1

zS(β) sinh

(
2

θ

√
σ̃0

δ̃
β

)
dβ +M1,

C2(β
∗) = −2

θ

1√
σ̃0δ̃

∫ β∗

β1

zS(β) cosh

(
2

θ

√
σ̃0

δ̃
β

)
dβ +M2,

(29)

in which β∗ is an argument of C1(β
∗) and C2(β

∗) that belong to the interval [β1, β2].

Substituting Eq. (29) into Eq. (26) and using the tip condition of Eq. (5b), we get,

dωS(β∗)

dβ∗
= − 4

θ2δ̃

∫ β∗

β1

zS(β) cosh

[
2

θ

√
σ̃0

δ̃
(β − β∗)

]
dβ+

M1
2

θ

√
σ̃0

δ̃
sinh

(
2

θ

√
σ̃0

δ̃
β∗

)
+M2

2

θ

√
σ̃0

δ̃
cosh

(
2

θ

√
σ̃0

δ̃
β∗

)
,

(30)

where dωS(β∗)/dβ∗ = 0 when β∗ = β1 and β2. The unknown coefficients M1 and M2 are,
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therefore, obtained as,

M1 =
2

θ
√
σ̃0δ̃

cosh
(

2
θ

√
σ̃0
δ̃
β1

)
sinh

(
2
√

σ̃0
δ̃

) ∫ β2

β1

zS(β) cosh

[
2

θ

√
σ̃0

δ̃
(β − β2)

]
dβ,

M2 = − 2

θ
√
σ̃0δ̃

sinh
(

2
θ

√
σ̃0
δ̃
β1

)
sinh

(
2
√

σ̃0
δ̃

) ∫ β2

β1

zS(β) cosh

[
2

θ

√
σ̃0

δ̃
(β − β2)

]
dβ.

(31)

Finally, we obtain the exact relations between ωS and zS as,

ωS(β∗) =
2

θ
√
σ̃0δ̃

∫ β∗

β1

zS(β) sinh

(
2

√
σ̃0

δ̃

β − β∗
θ

)
dβ+

2

θ
√
σ̃0δ̃

cosh
(

2
√

σ̃0
δ̃

β∗−β1
θ

)
sinh

(
2
√

σ̃0
δ̃

) ∫ β2

β1

zS(β) cosh

(
2

√
σ̃0

δ̃

β − β2
θ

)
dβ,

(32)

dωS(β∗)

dβ∗
= − 4

θ2δ̃

∫ β∗

β1

zS(β) cosh

[
2

θ

√
σ̃0

δ̃
(β − β∗)

]
dβ+

4 sinh
[
2
θ

√
σ̃0
δ̃

(β∗ − β1)
]

θ2δ̃ sinh
(

2
√

σ̃0
δ̃

) ∫ β2

β1

zS(β) cosh

[
2

θ

√
σ̃0

δ̃
(β − β2)

]
dβ.

(33)

4.2.2. σ0 < 0, 2χS + ζS > 0

In this case, the general solution of Eq. (23) is given as,

ωS(β) = C1(β) cos

(
2

θ

√
− σ̃0
δ̃
β

)
+ C2(β) sin

(
2

θ

√
− σ̃0
δ̃
β

)
. (34)
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The functions C1(β), C2(β) can be determined in similar manner as in subsection 4.2.1.

Here, we only list the resulting relations between zS, ωS, and its derivative. They are

ωS(β∗) =
2

θ
√
−σ̃0δ̃

∫ β∗

β1

zS(β) sin

(
2

√
− σ̃0
δ̃

β − β∗
θ

)
dβ−

2

θ
√
−σ̃0δ̃

cos
(

2
√
− σ̃0

δ̃

β∗−β1
θ

)
sin
(

2
√
− σ̃0

δ̃

) ∫ β2

β1

zS(β) cos

(
2

√
− σ̃0
δ̃

β − β2
θ

)
dβ,

(35)

and
dωS(β∗)

dβ∗
=− 4

θ2δ̃

∫ β∗

β1

zS(β) cos

(
2

√
− σ̃0
δ̃

β − β∗
θ

)
dβ+

4

θ2δ̃

sin
(

2
√
− σ̃0

δ̃

β∗−β1
θ

)
sin
(

2
√
− σ̃0

δ̃

) ∫ β2

β1

zS(β) cos

(
2

√
− σ̃0
δ̃

β − β2
θ

)
dβ.

(36)

4.2.3. σ0 = 0, 2χS + ζS > 0

In this case, by integrating Eq. (23), we get,

dωS(β∗)

dβ∗
= − 4

θ2δ̃

∫ β∗

β1

zS(β)dβ +M3. (37)

For the tip condition of Eq. (5b) to be satisfied, we find that M3 = 0 and

∫ β2

β1

zS(β)dβ = 0. (38)

Therefore, ωS(β∗) can be obtained by integrating Eq. (37) to arrive at,

ωS(β∗) =
4

θ2δ̃

∫ β∗

β1

(β − β∗)zS(β)dβ +M4, (39)

with an extra unknown constant M4, to be determined by solving the system of Eqs. (24)

and (25).
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5. Numerical solution

Using the linear transformation

β =
θ

2
β̄ + b, (40)

in which θ/2 is the coefficient of linear transformation and b = (β1 + β2)/2, the integrals

involved in Eqs. (24) and (25) can be transformed to those over the interval β̄ ∈ [−1, 1]

in order to use established numerical quadratures. The transformed system of boundary

integral equations is not presented here for the sake of brevity, it is obtained similarly to

that for the Gurtin-Murdoch arc in Han et al. (2023).

5.1. Approximations of the unknown functions

On a circular arc, it is reasonable to approximate sufficiently smooth functions by trun-

cated series of trigonometric functions. To account for the tip conditions of Eq. (5), we sug-

gest to use the square root weight function, as in Mogilevskaya et al. (2021b), Zemlyanova

et al. (2023), Han et al. (2023). Thus, the approximations for σ̃S(β) and zS(β) are taken as

σ̃S(β̄) =

√
1− β̄2

N∑
m=0

{Am[cos(2mt) cos(mg)− sin(2mt) sin(mg)]+

Bm[sin(2mt) cos(mg) + cos(2mt) sin(mg)]} ,
(41a)

zS(β̄) =

√
1− β̄2

N∑
m=0

{Dm[cos(2mt) cos(mg)− sin(2mt) sin(mg)]+

Em[sin(2mt) cos(mg) + cos(2mt) sin(mg)]} ,
(41b)

where Am, Bm, Dm, and Em are unknown coefficients for the m-th terms in truncated series

and

t = t(β̄) = θ/4(β̄ − β̄0), g = g(β̄0) = θβ̄0/2 + b, (42)
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where β0 is the angle that corresponds to some point at the arc that in the following will be

used as a collocation point, and β̄0 is obtained from β0 using Eq. (40).

It is clear that the use of Eq. (41) allows for automatic satisfactions of the two tip

conditions given by Eqs. (5a) and (5c). The remaining tip condition, Eq. (5b), can be used

to determine the extra coefficients appearing in the relations between zS and ωS, such as

e.g., constants M1 and M2 of Eq. (30).

5.2. Evaluation of the integrals

Substituting the approximations of Eq. (41) into the system of Eqs. (24), (25) and

implementing the linear transformation of Eq. (40), we find that the right-hand side of Eqs.

(24) and (25) contain the same six types of integrals as in Han et al. (2023), which are

Im1 =

∫ 1

−1

√
1− β̄2 cos(2mt)dβ̄,

Im2 =

∫ 1

−1

√
1− β̄2 sin(2mt)dβ̄,

Im3 =

∫ 1

−1

√
1− β̄2

sin(2mt) sin 2t

1− cos(2t)
dβ̄ =

∫ 1

−1

√
1− β̄2

sin(2mt)

tan t
dβ̄,

Im4 =

∫ 1

−1

√
1− β̄2

cos(2mt)

1− cos(2t)
dβ̄,

Im5 =

∫ 1

−1

√
1− β̄2

sin(2mt)

1− cos(2t)
dβ̄,

Im6 =

∫ 1

−1

√
1− β̄2

cos(2mt) sin 2t

1− cos(2t)
dβ̄ =

∫ 1

−1

√
1− β̄2

cos(2mt)

tan t
dβ̄,

(43)

where the superscript m in Imi (i = 1, · · · , 6) denotes the integral related to the m-th term

in the truncated series.

It can be easily seen that the integrals Im1 and Im2 of Eq. (43) are regular integrals, which

can be evaluated by using the Gaussian quadrature. It was shown in Han et al. (2023)

that Im3 is also regular integral whose kernel reaches the limiting value of 2m
√

1− β̄2 when

t→ 0.
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The singular integrals, Im4 , Im5 and Im6 , can be evaluated as in Han et al. (2023). For the

readers convenience we provide some details in Appendix.

The items on the left-hand side of Eqs. (24), (25) are different from the ones appearing

in the corresponding problem for the Gurtin-Murdoch arc. This is especially true for ωS

that can be expressed via of zS by one of Eqs. (32), (35), (39). However, those integrals

are regular ones and can be accurately evaluated by the Gaussian quadrature. As in Han

et al. (2023), we will use 800 Gaussian points to obtain accurate numerical results for regular

integrals.

5.3. Reduction to linear system equations and post-processing

Standard collocation method is used to generate the system of linear algebraic equations

from the governing integral equations of Eqs. (24), (25).

If the series in Eq. (41) are truncated at m = N , the total number of unknown coefficients

in the approximations for σ̃S and zS is 4(N + 1). To obtain these coefficients, 2(N + 1)

collocation points are required. They are chosen to be uniformly distributed on the circular

arc L away from its tips, since the approximations of Eq. (41) already satisfy the two tip

conditions of Eq. (5).

It has been mentioned that in the case of σ0 = 0 and 2χS + ζS > 0, an extra unknown

coefficient M4 appears in Eq. (39). However, due to the fact that additional Eq. (38) for

zS is required for this case, the coefficient can be found together with all other coefficients

from the solution of the system of 4(N + 1) + 1 linear equations.

Substituting the approximations of Eq. (41) into the governing equations obtained from

Eq. (24) and Eq. (25) by implementing linear transformation, and evaluating all integrals of

Eq. (43) and those on left-hand side of Eqs. (32), (35), (39), we obtain the linear algebraic

equations for each collocation point, similarly as Han et al. (2023).

After solving the system of such equations, one can obtain the coefficients Am, Bm, Dm,

Em and M4, if the case of σ̃0 = 0 is considered. Substitution of those coefficients into the
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approximations of Eq. (41) provides the values of σ̃S and zS on the arc L, while the ωS is

evaluated via zS using one of the three equations of Eqs. (32), (35) and (39).

The jumps ∆σ̃ = ∆σ/µ = ∆σ̃n + i∆σ̃`, needed for calculating stresses in the domain,

can be then evaluated using Eqs. (2), (3). The corresponding dimensionless expressions are,

∆σ̃n = −θ
2
σ̃S + σ̃0

dωS

dβ̄
− δ̃d3ωS

dβ̄3
,

∆σ̃` =
d

dβ̄
σ̃S +

θσ̃0
2
ωS − θδ̃

2

d2ωS

dβ̄2
.

(44)

The tractions σ(z) = σn(z) + iσ`(z) outside of L are evaluated using Eq. (10), while

the Cauchy stresses σij are evaluated using Eq. (10) with the set of appropriately chosen

normal vectors. For example, to calculate σ11(z) and σ12(z), one can set z = ix2 and assume

that normal vector to the line on which z is located (axis Ox2) points in Ox1 direction.

Thus, σn(z) = σ11(z) and σ`(z) = σ12(z) on that line. Similarly, to obtain σ22, one can set

z = x1 and assume that the normal to the line on which z is located (axis Ox1) points in

Ox2 direction leading to σ22 = σn on that line.

6. Comparison with the solution for the rigid circular arc problem

In Mogilevskaya et al. (2021b), it was shown that the problem of the Gurtin-Murdoch

material surface (in plane strain setting) can be reduced to that of a rigid line (stiffener), if

L is a straight segment and γ = 0, σ0 = 0. However, in Han et al. (2023), we demonstrated

that the plane strain problem of the Gurtin-Murdoch material surface is never reducible to

that of a rigid curve, if L is a circular arc. We explained this using the classification of

Benveniste and Miloh (2001) in which the Gurtin-Murdoch model with σ0 = 0 represents

different interface regime than that of rigid interface. The regime that corresponds to the

Steigmann-Ogden model with σ0 = 0 is also listed in Benveniste and Miloh (2001). So, we

would like to compare the traction jumps for the Steigmann-Ogden model for that case with
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the ones for the rigid arc that are reported in Liu and Jiang (1994).

As in Han et al. (2023), we consider the solutions of rigid arc for a special case of uniaxial

load σ∞11 for which ε = 0, see Eq. (62) in Liu and Jiang (1994), and take θ = β2 − β1 = π.

In that case, the following expression for the complex traction jump across the rigid arc is

valid, see Han et al. (2023):

∆σ = −κ+ 1

2κ

σ∞11√
2 cos β

[
e−i5β/2 +

2κ2 − 2κ− 1

2(2κ− 1)
eiβ/2

]
. (45)

Therefore, the jumps in traction components across the rigid arc are,

∆σn = −κ+ 1

2κ

σ∞11√
2 cos β

[
cos

(
5

2
β

)
+

2κ2 − 2κ− 1

2(2κ− 1)
cos

(
β

2

)]
, (46a)

∆σ` =
κ+ 1

2κ

σ∞11√
2 cos β

[
sin

(
5

2
β

)
− 2κ2 − 2κ− 1

2(2κ− 1)
sin

(
β

2

)]
. (46b)

We then take σ̃∞11 = 1, ν = 0.35 , R = 1, β ∈ [−π/2, π/2] and compare the dimen-

sionless jumps ∆σn/µ and ∆σ`/µ obtained using Eq. (46) with the ones obtained with the

Steigmann-Ogden model using Eq. (44). To do that, we assume σ0 = 0, γ = 0, and vary

the parameter δ̃ as δ̃ = 0.1, 1, 10, 100. Note, that with the increase of δ̃, the Steigmann-

Ogden model describes a stiffer shell. The results of the comparison are presented on Fig.

2 together with the corresponding results for the Gurtin-Murdoch model, obtained in Han

et al. (2023).

It can be seen from Fig. 2a that, for the case of σ0 = 0, γ = 0, the normal traction

jumps obtained with the Gurtin-Murdoch model are quite different from those for the rigid

arc, while with the increase of δ̃ (and the same values σ0 = 0, γ = 0), the results with

the Steigmann-Ogden model are closer to the rigid arc solutions when δ̃ ≥ 10. It is also

observed, see Fig. 2b, that the values of ∆σ`/µ for all three models (rigid arc, Gurtin-

Murdoch, and Steigmann-Ogden) are very close and their magnitudes become very large
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Figure 2: Comparisons of traction jumps ∆σn/µ and ∆σ`/µ obtained using the Steigmann-Ogden model
with the ones by Liu and Jiang (1994) and by Han et al. (2023).

when β is approaching β1 and β2. Here too, with the increase of δ̃, the tangential traction

jumps by Steigmann-Ogden model are closer to the rigid arc solutions than the ones by the

Gurtin-Murdoch model.
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Figure 3: Comparisons of ωS obtained using the Steigmann-Ogden and Gurtin-Murdoch models.

We also studied the variation of ωS along the arc as the function of the parameter δ̃, both

for the Gurtin-Murdoch and Steigmann-Ogden models with σ0 = 0, γ = 0. From Fig. 3, we

can see that the plots of ωS satisfy the boundary condition of Eq. (5b) for the Steigmann-

Ogden model and the boundary condition of Eq. (6b) for the Gurtin-Murdoch model. From

Fig. 3a, we find that with the increase of δ̃ in Stegmann-Ogden, the absolute values of ωS
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decrease. However, from Fig. 3b, we can observe that the values of ωS for δ̃ = 50 and 100

are still not constants.

7. Numerical results

We reiterate that all the results of this section are obtained, as in Han et al. (2023),

using 800 Gaussian points to assure the accuracy. Also, the values of the kernels of all

regular integrals involved in Eq. (43) are evaluated using Taylor series expansions when

|β̄ − β̄0| ≤ 0.1, in order to avoid near singularity.

7.1. Convergence analysis and influence of θ

Consider the following cases of arcs: (i) short arc (β1 = 89π/180, β2 = 91π/180), (ii)

medium arc (β1 = π/4, β2 = 3π/4), and (iii) long arc (β1 = 0, β2 = π), all with the radius

R = 1nm. We investigate the behavior of the approximations of Eq. (41) as functions of

the truncation number m and study the influence of arc length θ on the results.
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Figure 4: Distributions of σ̃S and ωS as functions of m for the three types of arcs.
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We set σ̃∞22 = 0.05, σ̃∞11 = σ̃∞12 = 0, ν = 0.33 and take σ̃0 = 0, δ̃ = 0.01, γ = 0.12,

which is within the range of the parameters described in Zemlyanova et al. (2023) and in

the references therein. The results of the convergence study are shown on Fig. 4 from which

we find that, in the cases of medium and long arcs, the results for both σ̃S and ωS converge

at m ≥ 10.

However, for the short arc, σ̃S and ωS are convergent only when m ≥ 20. Analyzing

behavior of σ̃S from Fig. 4, we find that all the results satisfy the tip condition of Eq. (5a).

Similarly, it can be seen that the results for ωS satisfy the tip condition of Eq. (5b).

We also investigated the convergence behavior of the dimensionless traction jumps. From

Eq. (44), one can see that, if σ̃0 = 0, ∆σ̃n is expressed via the combination of σ̃S and

d3ωS/dβ̄3, while ∆σ̃` via that of dσ̃S/dβ̄ and d2ωS/dβ̄2. This explains dramatic variations

of ∆σ̃n and ∆σ̃` near the tips, as can be seen from the plots of Fig. 5. From that figure,

it can be concluded that taking the truncation number to be m = 40 is sufficient for the

convergence of the results for the dimensionless traction jumps. Therefore, in the following

numerical examples, we will set truncation number m = 40 in order to ensure accuracy.

From the above figures, we could also see that the arc length θ plays an important role

on the distributions of the fields at and across the arc. From Fig. 4a, b, we find that the

values of σ̃S at arcs (i) and (ii) are negative and, for both arcs, there exists a single minimum

of σ̃S at β̄ = 0. The corresponding results for arc (iii) on Fig. 4c include both negative

and positive values. In addition, the plot of σ̃S has three local extrema: maximum values

of σ̃S = 0.011 are reached at β̄ = ±0.78 and its minimum value of σ̃S = −0.0051 is reached

at β̄ = 0. From Fig. 4d, e, it can be seen that, for the arcs (i) and (ii), the maximum

and minimum values of ωS are reached at the tips and, with the increase of θ, the absolute

values of ωS increase. However, for arc (iii), the variation of ωS is more dramatic, and the

maximum absolute values of ωS= 0.014 occur at new points of extrema β̄ = ±0.46.

From Fig. 5, it can be seen that the influence of θ on ∆σ̃n and ∆σ̃` is even more
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Figure 5: Distributions of ∆σ̃n and ∆σ̃` as functions of m for the three types of arcs.

pronounced than its influence on σ̃S and ωS. We can see from Fig. 5a, b that, for the

cases of arcs (i) and (ii), the maximum absolute values of ∆σ̃n significantly increase with

the increase of θ. However, the behavior of ∆σ̃n for the case of arc (iii), shown in Fig. 5c,

is completely reversed, as compared with that shown on Fig. 5a, b. From Fig. 5d, e, f, we

find that the interval of variation of ∆σ̃` first decreases as θ increases from case (i) to case

(ii), but, for case (iii), this interval restores to the interval of variation for case (i) but the

behavior of the plot for the latter case is completely reversed as compared to that for arc

(i).

7.2. Influence of γ

We will study the influence of γ for the case of arc (iii) by taking γ = 0.1, 1, 10, 100, 1000.

The rest of the parameters are chosen as σ̃∞22 = 0.05, σ̃∞11 = σ̃∞12 = 0, ν = 0.33, σ̃0 = 0.025,

δ̃ = 0.1. The truncation number is still taken to be m = 40.

The distributions of σ̃S and ωS for different γ are plotted on Fig. 6, from which we
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Figure 6: Distributions of σ̃S and ωS along the long arc as functions of γ.

find that, with the increase of γ, the maximum values of σ̃S increase as they should, as

σ̃S → σ̃0 = 0.025 when γ → ∞, while the plots σ̃S (apart from near tips regions) become

flatter. On the contrary, the maximum values of ωS decrease with the increase of γ and the

plots start to converge to one another for γ ≥ 100. From Fig. 6a, it is clear that σ̃S satisfies

the tip condition of Eq. (5a) while it is also clear from Fig. 6b that ωS satisfies the tip

condition of Eq. (5b) at β̄ = ±1.
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Figure 7: Distributions of ∆σ̃n and ∆σ̃` along the long arc as functions of γ.

We also investigated influence of γ on the distributions of ∆σ̃n and ∆σ̃`. The results

are shown in Fig. 7. From that figure, we find that ∆σ̃n and ∆σ̃` are close to zero almost



7 NUMERICAL RESULTS 25

everywhere, except for the near-tip regions, where dramatic variations exist, due to the

derivatives involved in Eq. (44). Both ∆σ̃n and ∆σ̃` reach some limit values for γ ≥ 100.

From Fig. 6a, we find that, with increase of γ, the change in σ̃S near the tips occur more

rapidly leading to larger values of derivative dσ̃S/dβ̄ in those regions. According to Eq.

(44), it is expected that the maximum absolute values of ∆σ̃` are increasing with increase

of γ, which can be seen from Fig. 7b.

7.3. Influences of σ̃0 and δ̃

It was shown in Sections 4.2.1 - 4.2.2 that the solution of the problem under study might

depend on the relationships between surface tension σ̃0 and bending parameter δ̃. From

Eqs. (32) and (35), we find that those parameters come in combinations, such as
√
±σ̃0/δ̃

and
√
±σ̃0δ̃, where σ̃0 might be positive or negative. Only when σ̃0 = 0, as in Eq. (39), δ̃

remains the only parameter influencing the numerical results.

We will consider case (ii) of medium arc and take δ̃ = 0.1, 0.3. To cover all three

cases discussed in Sections 4.2.1 - 4.2.3, we choose σ̃0 = −0.025, 0, 0.025. The rest of the

parameters are set as σ̃∞22 = 0.05, σ̃∞11 = σ̃∞12 = 0, ν = 0.33, γ = 0.12. The distributions of

σ̃S and ωS along the arc are shown on Fig. 8. Fig. 8a shows that, with the increase of σ̃0

and constant δ̃, the absolute values of σ̃S decrease, while with the increase of δ̃, the absolute

values of σ̃S increase. Fig. 8b shows that, with the increase of both σ̃0 and δ̃, the absolute

values of ωS decrease. Due to symmetry of the geometry and remote load, σ̃S is symmetric

in respect to x2-axis, while ωS is anti-symmetric.

From Fig. 9a, we conclude that, for the various values of σ̃0 and δ̃, the jump ∆σ̃n is close

to zero for most values of β̄ , except near the tips, where the first and third order derivatives

of ωS involved in Eq. (44)1 is the reason for the drastic variations. From Fig. 9b, we find

that the ∆σ̃` for σ̃0 = 0.025 is of opposite sign than ∆σ̃` for σ̃0 = −0.025 and σ̃0 = 0. In

addition, ∆σ̃n is symmetric and ∆σ̃` is anti-symmetric.
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Figure 8: Distributions of σ̃S and ωS along the medium arc as functions of σ̃0 and δ̃.
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Figure 9: Distributions of ∆σ̃n and ∆σ̃` along the medium arc as functions of σ̃0 and δ̃.

7.4. Modeling of local fields in the bulk

We consider epoxy matrix with µ = 2 GPa, ν = 0.35 containing the material surface

with circular arc cross-section characterized by R = 5 nm and β1 = π/4, β2 = 3π/4. The

two-dimensional elastic properties of the arc are chosen to be equal to those reported in Suk

et al. (2010) for graphene oxide, which results in the following dimensionless parameters:

γ = 0.12 and σ̃0 = 0.025. The bending parameter is set as δ̃ = 0.2. We assume, as in

Mogilevskaya et al. (2008), that the only non-zero component of the far-field is σ∞22 = 100

MPa, which results in σ̃∞22 = σ∞22/µ = 0.05. The contours of the dimensionless Cauchy
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stresses σ̃ij in the domain x1 ⊗ x2 ∈ [−6.5, 6.5] ⊗ [−1.25, 8.5] (nm) are plotted on Fig. 10

and compared with those for the Gurtin-Murdoch model obtained in Han et al. (2023). On

the figures, the same scale for each σ̃ij is used to allow for comparison.
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Figure 10: Contour plots of the dimensionless Cauchy stresses for the Steigmann-Ogden and Gurtin-Murdoch
models.

It can be clearly seen from Fig. 10 that, for both models, all components σ̃ij undergo

jumps across the arc. It is found that the symmetric properties of the plots due to the two

models are the same; the distributions of σ̃11 and σ̃22 on Figs. 10a, b, d, e are symmetric

with respect to x2-axis, while the distribution of σ̃12 is anti-symmetric from Fig. 10c, f. It

also can be seen that the stress fields are not symmetric with respect to x1-axis, unlike in

the case of a straight segment, see Mogilevskaya et al. (2021b) .

From Fig. 10a, d, it can be observed that, for both models, σ̃11 is tensile above and below

the arc and it is compressive in the regions near the tips. The absolute values of σ̃11 near

the tips are larger for the Steigmann-Ogden model than for the Gurtin-Murdoch one. From
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Fig. 10b, e, it can be concluded that, for both models, σ̃22 is tensile everywhere in the region

of interest. The differences in contour plots for the two models are more pronounced (which

should be expected for the chosen far-field load) and here too σ̃22 at the tips are larger in

the case of the Steigmann-Ogden model. It is seen from Fig. 10c, f that σ̃12 along the arc is

anti-symmetric and again higher values of singular stresses at the tips are observed for the

Steigmann-Ogden model.

We also compared the distributions of σ̃S and ωS, ∆σ̃n, ∆σ̃` for the both models.
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Figure 11: Comparison of distributions of σ̃S and ωS obtained with the Steigmann-Ogden and Gurtin-
Murdoch models.

From Fig. 11 we find that the maximum absolute values of σ̃S for the Gurtin-Murdoch

model are smaller than for the Steigmann-Ogden model, while it is opposite for ωS. It can

clearly be seen from Fig. 11a that, for both Steigmann-Ogden and Gurtin-Murdoch models,

σ̃S satisfies the tip conditions of Eqs. (5a) and (6a), while ωS satisfies the respective tip

conditions of Eqs. (5b) and (6b).

Fig. 12 indicate that traction jumps for both models are mostly affected near tip regions.

The values ∆σ̃n for the Steigmann-Ogden model are significant larger than for the Gurtin-

Murdoch one, while the values of ∆σ̃` for the Gurtin-Murdoch model are slightly larger

than for the Steigmann-Ogden model. Retrospect the singularities shown on Fig. 10, we can

conclude that the ∆σ̃n plays a more significant role than ∆σ̃` in determining tip singularities.
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Figure 12: Comparison of of distributions of ∆σ̃n and ∆σ̃` obtained with the Steigmann-Ogden and Gurtin-
Murdoch models.

8. Conclusions

In this paper, we derived the solution for the plane strain problem of an infinite isotropic

elastic matrix subjected to uniform far-field load and containing a Steigmann-Ogden mate-

rial surface of circular cross-section. The solution allows for accurate evaluations of all elastic

fields everywhere in the material system. We demonstrated that, as in the corresponding

problem with a Gurtin-Murdoch material surface, the equations for the components of the

surface stress tensor are fully coupled for the case on nonzero surface tension (unlike for

the straight segment case considered in Mogilevskaya et al. (2021b)). We investigated the

influence of the dimensionless parameters that govern the problem. For the case of zero sur-

face tension, we compared our solution with that for the corresponding problem involving a

rigid arc, by choosing special values for the governing parameters and found that the results

obtained with the Steigmann-Ogden model with decreasing elastic and bending parameters

are closer to those for the rigid arc. However, we emphasize again that, when the surface

tension vanishes, the two models represent two different interface regimes of seven regimes

listed in Benveniste and Miloh (2001). The obtained solution can be used as a benchmark

example for the numerical solutions of the problems involving surfaces of arbitrary suffi-
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ciently smooth shapes, that is a subject of our future work, which will also include solving

more complex three-dimensional problems.
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Appendix

We will explain the technique of evaluation of singular integrals using Im4 as an example.

This integral can be represented as follows:

Im4 =

∫ 1

−1

√
1− β̄2

[
cos(2mt)

1− cos(2t)
− 1

2t2

]
dβ̄ +

1

2
=

∫ 1

−1

√
1− β̄2

t2
dβ̄, (47)

As t→ 0, the kernel of the first integral on the right hand-side of Eq. (47) reaches the value

of
√

1− β̄2 (−m2 + 1/6). Therefore, this integral is a regular one and can be numerically

evaluated by using the Gaussian quadrature. The second integral on the right hand-side of

Eq. (47) is hypersingular integral, which can analytically be evaluated as, see Lin’kov and

Mogilevskaya (1990), Martin (1992),

=

∫ 1

−1

√
1− β̄2

t2
dβ̄ = =

∫ 1

−1

√
1− β̄2[

θ/4(β̄ − β̄0)
]2dβ̄ =

16

θ2
=

∫ √
1− β̄2(

β̄ − β̄0
)2dβ̄ = −16

θ2
π. (48)
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Im5 and Im6 can be similarly evaluated by representing them as,

Im5 =

∫ 1

−1

√
1− β̄2

[
sin(2mt)

1− cos(2t)
− m

t

]
dβ̄ +m−

∫ 1

−1

√
1− β̄2

t
dβ̄,

Im6 =

∫ 1

−1

√
1− β̄2

[
cos(2mt)

tan t
− 1

t

]
dβ̄ +−

∫ 1

−1

√
1− β̄2

t
dβ̄.

(49)

The first integrals of Eqs. (49) are again regular integrals that can be evaluated by using

the Gaussian quadrature, while the second integral involved in both expressions of Eq. (49)

is the Cauchy principal value integral, which can be evaluated analytically as, see Martin

(1992),

−
∫ 1

−1

√
1− β̄2

t
dβ̄ = −

∫ 1

−1

√
1− β̄2

θ/4(β̄ − β̄0)
dβ̄ =

4

θ
−
∫ √

1− β̄2

β̄ − β̄0
dβ̄ = −4

θ
β̄0π. (50)
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