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ABSTRACT

We consider the communication complexity of some fundamen-
tal convex optimization problems in the point-to-point (coordina-
tor) and blackboard communication models. We strengthen known
bounds for approximately solving linear regression, p-norm regres-
sion (for 1 < p < 2), linear programming, minimizing the sum of
finitely many convex nonsmooth functions with varying supports,
and low rank approximation; for a number of these fundamental
problems our bounds are optimal, as proven by our lower bounds.

For example, for solving least squares regression in the coor-
dinator model with s servers, n examples, d dimensions, and co-
efficients specified using at most L bits, we improve the prior
communication bound of Vempala, Wang, and Woodruff (SODA,
2020) from O(sd’L) to O(sdL + d*¢~'L), which is optimal up to
logarithmic factors. We also study the problem of solving least
squares regression in the coordinator model to high accuracy, for
which we provide an algorithm with a communication complexity
of O(sd(L + log k) log(e™!) + d?L), matching our improved lower
bound for well-conditioned matrices up to a log(¢~!) factor. Among
our techniques, we use the notion of block leverage scores, which
have been relatively unexplored in this context, as well as drop-
ping all but the “middle" bits in Richardson-style algorithms. We
also introduce a new communication problem for accurately ap-
proximating inner products and establish a lower bound using the
spherical Radon transform. Our lower bound can be used to show
the first separation of linear programming and linear systems in the
distributed model when the number of constraints is polynomial,
addressing an open question in prior work.
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We also give an improved algorithm for high-accuracy linear
programming in the coordinator model that computes an approx-
imate solution on well-conditioned inputs using O(sd' L + d*L)
communication. This improves over the previous bound of sd?L.
Finally, we give an improved algorithm, in the blackboard model of
communication, for the problem mingpa >:3_; fi(6) where each
fi is convex, Lipschitz, and supported on d; < d (potentially over-
lapping) coordinates of  using O(Zle dizL) communication. Our
techniques yield improved rates for decomposable submodular
function minimization in the non-distributed setting as well.
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1 INTRODUCTION

The scale of modern optimization problems often necessitates work-
ing with datasets that are distributed across multiple machines,
which then communicate with each other to solve the optimization
problem at hand. A crucial performance metric for algorithms in
such distributed settings is the communication complexity. Tradi-
tionally, this has referred to the number of rounds of communication
needed between the machines to solve the problem, and there has
been a long line of work (which we shortly describe) optimizing this
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metric. However, as was highlighted in [31, 59, 76], in many core al-
gorithmic primitives underlying recent advances in continuous opti-
mization, the claimed (theoretical) runtimes are predicated on the as-
sumption of exact computations with infinite precision. When ana-
lyzed under the finite-precision model, the true runtimes can be sub-
stantially higher. Consequently, inferring the true cost of distributed
optimization algorithms built with these components requires a
careful analysis. To address this need, our focus in this paper is on
designing, for some fundamental optimization problems, distributed
algorithms efficient in the total number of bits communicated.

Before describing our setup and results, we first provide a brief
overview of prior work in the related area of distributed optimiza-
tion, a mature field encompassing problems spanning engineer-
ing, control theory, signal processing, and machine learning. For
instance, multi-agent coordination, distributed tracking and local-
ization, estimation problems in sensor networks, opinion dynam-
ics, and packet routing are all naturally cast as distributed convex
minimization [11, 45, 68]. Classically, the primary goal in these
problems was to design a communication strategy between the
computational agents so that they eventually arrive at the optimal
objective value [73]. A considerable body of work [33, 54, 72, 78]
has therefore been devoted to obtaining asymptotic convergence
guarantees for these problem classes. Going beyond asymptotic
analysis, recent years have witnessed extensive progress in ob-
taining non-asymptotic rates (typically in terms of the number of
rounds of communication) for problems in distributed machine
learning such as distributed PAC learning [9], distributed online
prediction [22], distributed estimation [26, 35, 54], and distributed
delayed stochastic optimization [2, 53].

A related paradigm that has recently emerged in distributed com-
puting is that of federated learning [37]. In this paradigm, the pro-
cesses of data acquisition, processing, and model training are largely
carried out on a network’s edge nodes such as smartphones [13],
wearables [32], location-based services [67], and IoT sensors [40, 52],
under the orchestration of a central coordinator. Similar to the
recent works on distributed machine learning mentioned in the
preceding paragraph, for the works in this setting as well, it is the
number of rounds of communication that is typically used as a
proxy for total communication cost. Additional important concerns
for works in federated learning include user privacy and robustness
to distribution shifts in users’ samples [63] and to heterogeneity
in the computational capabilities of the nodes [64]. Finally, while
our focus in this paper is the theory, we note that advances in the
practice of distributed computing have been tremendously spurred
by the development of programming models like MapReduce [21],
which enable parallelizing the computation, distributing the data,
and handling failures across thousands of machines.

Our setup. As mentioned earlier, only recently has there been
a surge of interest in studying the bit complexity of optimization
algorithms [31, 59, 76]. In this paper, we hope to continue pushing
efforts in this direction and study the number of bits communicated
to solve various distributed convex optimization problems under
two models of communication, defined next. Our goal is to compute
approximate solutions with efficient communication complexity.

Definition 1.1 (Coordinator Model). There are s machines (servers)
and a central coordinator. Each machine can send information to and
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receive information from the coordinator. Any bit communicated with
the coordinator counts toward the communication complexity of the
algorithm.

Definition 1.2 (Blackboard Model). There are s machines and a
coordinator (blackboard). Each machine can send information to and
receive information from the coordinator. Only bits sent to the coordi-
nator count toward the communication complexity of the algorithm.

The coordinator model is equivalent, up to a factor of two and
an additive log s bits per message, to the point-to-point model of
computation, in which machines directly interact with each other.
The blackboard model may be viewed as having a shared memory
between the machines, since it costs the machines only to write on
to the blackboard, while reading from the blackboard is free.

We consider several fundamental optimization problems that
have been studied extensively outside the distributed setting: least
squares regression, low rank approximation, linear programming,
and optimizing a sum of convex nonsmooth functions. We provide
improved communication upper and lower bounds for these prob-
lems in the aforementioned distributed settings. While we obtain
nearly tight upper and lower bounds for several of these prob-
lems in the “worst-case" settings, e.g., when matrices are arbitrarily
poorly conditioned, another important component of our work is in
improving bounds for well-behaved inputs, e.g., well-conditioned
matrices or decomposable functions.

1.1 Our Contributions

In this paper, we address the communication complexity of least
squares regression, low-rank approximation, and linear program-
ming in the coordinator model, and finite-sum minimization of
Lipschitz functions in the blackboard model. Our central techni-
cal novelty lies in developing efficient — in terms of bit complex-
ity — methods for leverage score sampling, inverse maintenance,
cutting-plane methods, and the use of block leverage scores in the
distributed setting and in finite arithmetic. We summarize all formal
statements in this section.

General Setup. In all problems, we consider a matrix that is di-
vided among s servers as per the row-partition model. This is in
contrast to the arbitrary partition model, in which each server
holds a matrix A, with A = Zie[s] A In our model, the ith
machine stores a matrix A() € R"*9 and our problem matrix
A e R4 withn = 51 ni, is formed by vertically stacking all the
A matrices, i.e., A = [A(i)].

For least squares regression and linear programming, each server
additionally holds a vector b() € R™ whose vertical concatenation
we denote by R" 5 b = (b, with n = 23=1 ni- When consider-
ing linear programming and finite-sum minimization, the vector
¢ (where c is the vector that appears in the objective obtained by
reducing the original finite-sum minimization using an epigraph
trick) is also shared between the machines (or can be shared with
O(sd) communication). We explicitly describe the setup for each
problem in its corresponding section.

We assume that the entries of A®) and b() can be represented
with L bits. We often model this by assuming that all entries are
integers in {—2L +1,..., 2L }. Sometimes it will be more convenient
to work with normalized vectors and matrices, in which case we
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allow entries to be of the form ¢ 27L with ¢ € {-2L +1,...,2L}. We
say that such numbers are expressed to L bits of precision.

1.1.1  Least Squares Regression, £, Regression, and Low-Rank Ap-
proximation. In many large-scale machine learning applications,
one is faced with a large, potentially noisy regression problem for
which a constant factor approximation is acceptable. Specifically,
we are interested in computing an approximate solution X satisfying,
for a given constant ¢, the bound

1A =il < (1+¢) min || Ax - bl (11)
We formalize our setup below.

Problem 1.3 (Setup in the Coordinator Model). Suppose there is
a coordinator and s machines that communicate with each other as
per the coordinator model of communication (Definition 1.1) with
shared randomness. Suppose each machine i € [s] holds a matrix
AD e RMXd gnd g vector b € R™ . Denote A = [A(D] € R"™¥d
andb = [bD] € R™, both represented with L bits in fixed-point
arithmetic. Moreover, suppose the condition number of A is bounded
by x!.

For least squares regression in this model, [76] gave upper and
lower bounds of O(sd?L) and Q(sd+d?L), respectively. Their upper
bound comes from sending (AD)TA()’s and (AD)Th()’s to the
coordinator which then computes the exact solution by the normal
equations. On the other hand, they show that consistent? linear sys-
tems can be solved exactly using only O(sd + d2L) communication.
Furthermore, for consistent systems, the optimal regression error is
zero, and so a regression algorithm must output the precise solution.
Least squares regression is, therefore, certainly as hard as solving
consistent linear systems. This motivates the following question:
Is solving least squares regression to constant accuracy harder than
solving a consistent linear system?

Our key (and surprising) takeaway message for this setting is
that for constant L, regression is no harder than solving linear sys-
tems. Specifically, we give a protocol which, for any constant ¢ > 0,
achieves 5(de +d’L) bits of communication for least squares re-
gression, thus improving upon [76]’s O(sd’L) upper bound and
matching its lower bound of Q(sd +d?L) for constant L. Our upper
bound also gives the first separation for least squares regression
between the row-partition model and the arbitrary partition model,
for which [46] showed an Q(sd?) lower bound.

THEOREM 1.4 (£ REGRESSION IN THE COORDINATOR MODEL).
Given ¢ > 0 and a least squares regression problem in the setup
of Problem 1.3 with input matrix A = [AD] € R™ gnd vector
b= [b(i)] € R", there is a randomized protocol that allows the co-
ordinator to solve the least squares regression problem with constant
probability and relative error (1 + ¢) using

o (de + dzs_lL) bits of communication.

Additionally, if k is a known upper bound on the condition number of
A then there is a protocol using O(sd log k +d?¢~'L) communication.

Note that not all of our bounds depend on k.
2The system (A, b) is consistent if for some x, we have Ax = b.
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If L is not constant, there still remains a gap between the above
bound and [76]’s lower bound of E)(sd +d’L). By proving an im-
proved Q(sdL) lower bound for £ regression under a mild restric-
tion on the number of rounds of the protocol, we close this gap (cf.
Section 1.2.5).

Our upper bound from Theorem 1.4 extends to £, regression for
1 < p < 2, as captured by Theorem 1.5. Notably, our protocols for
regression have a small O(1) number of rounds of communication,
with no dependence on the condition number of A.

THEOREM 1.5 (£, REGRESSION FOR 1 < p < 2 IN THE COORDINA-
TOR MODEL). For the setup described in Problem 1.3, there exists a
randomized protocol that, with a probability of at least 1 — &, allows
the coordinator to produce an e-distortion £, subspace embedding for
the column span of A using only

0 ((de +d%e74L) log(cs_l)) bits of communication.

As a result, the coordinator can solve £y, regression (for1 < p < 2)
with the same communication.

While the focus of our work for regression has been on the
coordinator model (Theorem 1.4 and Theorem 1.5), we note that
[76] already provide optimal communication cost algorithms for
constant-accuracy regression in the blackboard model, as remarked
below.

Remark 1.6. For constant-accuracy {1 and £, regression in the black-
board model, [76] provides optimal algorithms with communication
cost O(s + d°L).

Low Rank Approximation. As an application of our aforemen-
tioned least squares regression techniques, we obtain improved
bounds for low-rank approximation in the distributed setting, a
problem several prior works [12, 14, 29, 38] have considered. No-
tably, [14] studied the variant of the problem wherein the rows?
of A are partitioned among s servers, and all servers must learn a
projection II that yields an approximately optimal Frobenius-norm
error:

IAIT - Allp < (1 +¢)[|Ax — Allp, (1.2)

where Ay is the best rank-k approximation of A. In this setting,
[14] provide an upper bound of O(skdL) for constant ¢, along with
a nearly matching lower bound of Q(skd). However, their lower
bound crucially requires all servers to learn the projection. A natural
question we answer is if relaxing this constraint could yield a better
communication complexity. In other words: Is it possible to do better
when only the coordinator needs to learn the projection?

THEOREM 1.7 (LOW-RANK APPROXIMATION IN THE COORDINATOR
MobEL). For the setup described in Problem 1.3, suppose that the s
servers have shared randomness. Then there is a randomized protocol
using

0o (kL S(de? + ss_l)) bits of communication,

that with constant probability lets the coordinator produce a rank-k
orthogonal projection T1 € Rk (where k < d) satisfying Inequal-
ity (1.2).

3Their matrices are transposed relative to ours, so their columns are partitioned among
servers.
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1.1.2 High-Accuracy Least Squares Regression. Complementing our
constant-factor regression results in the previous paragraphs, we
study regression solved to machine precision. We show that when
the matrix A € R™ has a small condition number (i.e., poly(d)),
we obtain an O(sdL + d%L log(¢7!)) communication complexity of
solving least squares regression to high accuracy. Specifically, we
obtain the following result.

THEOREM 1.8 (HIGH-ACCURACY £, REGRESSION IN THE COORDI-
NATOR MODEL). Given ¢ > 0 and the least squares regression setting
of Problem 1.3 with input matrix A = [A)] € R™ and vector
b = [b(] € R", there is a randomized algorithm that, with high
probability, outputs a vector X such that

A% —bll2 < e [|A(ATA)'ATb|z + min [[Ax—bllz.  (1.3)
x€eR

Let x be the condition number of A. Then the algorithm uses
5(sd(L + log k) log(e_l) +d%L) bits of communication.

Moreover, the vectorX is available on all the machines at the end of
the algorithm.

This result improves upon the O(sd?L) bound of [76] (which
also gives an associated lower bound of 5(sd +d%L)). The error
guarantee of Theorem 1.8 is different than that of Theorem 1.4
in two ways. First, the error is additive in Theorem 1.8 instead of
multiplicative. The main reason is that the solution produced by the
algorithm of Theorem 1.8 is available to all the machines instead of
only being available only to the coordinator. This is needed when
we use this result for each iteration of linear programming (The-
orem 1.10). We note that the solution produced by the algorithm of
Theorem 1.4 can be shared among all the machines, but we would
need to use the rational number representation to share it, and the
communication cost would increase significantly in this case. The
second difference is that the dependence of the running time on
the error parameter ¢ is logarithmic in Theorem 1.8. This allows
us to achieve high-accuracy solutions, which are again needed for
linear programming results to deal with adaptive adversary issues.

Our improvement is achieved by a novel rounding procedure
for Richardson’s iteration with preconditioning and has conse-
quences outside the distributed setting as well. In particular, it
implies an improvement for the bit complexity of solving a least
squares regression problem (with an input that has constant bit
complexity) from O((d® + (nnz(A) +d?) - log?(¢71)) - logx) [31]
to O((d® + (nnz(A) + d?) - log(¢71)) - log ), where nnz(A) is the

number of nonzero entries of A.

Remark 1.9. While our result in Theorem 1.8 operates only in the
coordinator model, [76] studies this problem in the blackboard model
as well. In particular, for ¢, regression in the blackboard model with
general accuracy parameter ¢, [76] provides an algorithm with com-
munication cost O(s + d2Le™Y), with an associated lower bound of
Q(s+de /2 + 42L) fors > Q(e71/2),

1.1.3  High-Accuracy Linear Programming. A core technical compo-
nent in achieving the results of Section 1.1.2 is the communication-
efficient computation of a spectral approximation of a matrix via its
intimate connection to its approximate leverage scores. We utilize
this idea to develop communication-efficient high-accuracy linear
programming too, as we describe next.
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The work of [76] studied this problem and gave an upper bound
of O(sd®L + d*L) by implementing Clarkson’s algorithm [18] in
the coordinator model. To obtain this bound, [76] first note that
following the analysis of the original algorithm in [18], the total
number of rounds of communication is O(dlogd). In each round,
the coordinator sends to all the s servers a vector xg, which is
an optimal solution to the linear program Ax < b. By polyhedral
theory, there exists a non-singular subsystem Bx < c, such that
xR is the unique solution of Bx = c. By Cramer’s rule, each of d
entries of x is a ratio of integers between —d!129L and d!29% and
can therefore be represented in O(dL) bits. Multiplying all these
quantities yields the claimed communication complexity.

We take a different approach and improve upon [76]’s above
bound of O(sd3L + d*L) to O(sd*>L + d%L). Our improvement
is achieved by essentially adapting to the distributed setting re-
cent advances in interior point methods for solving linear pro-
grams [42, 43, 75], with the associated toolkit of a weighted central
path approach, efficient inverse maintenance, and data structures
for efficient matrix-vector operations. Our rate holds for linear
programs that have a small outer radius and a well-conditioned
constraint matrix A, as we formalize next.

THEOREM 1.10 (LINEAR PROGRAMMING IN THE COORDINATOR
MobEL). Given ¢ > 0, input matrix A = [A<i)] € R™4_ and vectors
c=[cD] € R" andb € R? in the setup of Problem 1.3, there is a
randomized algorithm that, with high probability, outputs a vector
X € R" such that

[ATX = bll2 < - (Allr - R+[bll2)

and

¢'X< min  c'x+¢-|c[z2 R (1.4)

x:ATx=b,x>0
where R is the linear program’s outer radius, i.e., ||x||2 < R for all
feasible x. The algorithm uses

O((sd™ (L +log(xRr~'e71)) + d?Llog(e7Y)) - log(e™1))

bits of communication, where k is the condition number of A, and r
is the linear program’s inner radius, i.e., there exists a feasible x with
x; > r for alli € [n]. Moreover, the vector X is available on all the
machines at the end of the algorithm.

As a special case of our Theorem 1.10, when our linear pro-
gram has parameters «, R, and ¢! of the scale poly(d), we obtain
a communication complexity of O(sd'->L + d2L), which is also an
improvement over [76]’s previous bound.

Remark 1.11. While we study linear programming only in the co-
ordinator model, [76] studies this in the blackboard model as well.
Specifically, in constant dimensions, [76] provides a randomized com-
munication complexity of Q(s + L) for linear programming in the
blackboard model.

1.1.4  Finite-Sum Minimization with Varying Supports. Another
problem class naturally amenable to study in the distributed setting
is that of finite-sum minimization. We consider, in the blackboard
model, the problem miny }3}_; fi(x) where each f; : RY — Ris
p-Lipschitz, convex, nonsmooth, and supported on (potentially
overlapping) d; coordinates. We call this problem “decomposable
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nonsmooth convex optimization”. The assumption of varying sup-
ports appears prominently in decomposable submodular function
minimization [8, 61] and was recently studied by [25]. This problem,
without this assumption, has seen extensive progress in variants of
stochastic gradient descent (cf. Section 1.2.4). We formalize below
the problem setup in the blackboard model.

Problem 1.12 (Decomposable Nonsmooth Convex Optimization
Setup). Suppose there is a blackboard/coordinator and s machines
that communicate with each other as per the blackboard model of
communication (Definition 1.2). Suppose each machine i € [s] holds
an oracle O; that returns a subgradient (represented with L bits in
fixed-point arithmetic) of the function f; : RY — R.

Directly adapting the algorithm of [25] to the above model yields
a communication cost of O(max ¢ [s] d;L 23_; di). In this work, we
improve this cost to 5(215.:1 dl.zL), as formalized next.

THEOREM 1.13 (DISTRIBUTED DECOMPOSABLE NONSMOOTH CON-
VEX OPTIMIZATION). Given ¢ > 0 and the setup of Problem 1.12,
consider the problem ming Y.3_, fi(0), where each f; : R — R is
convex, pu-Lipschitz, and dependent on d; coordinates of 0. Define
0* = argmingpa X.5_; fi(0). Suppose further that we know an
initial 09 € R¥ such that ||0* — 00|y < D. Then, there is an
algorithm that outputs a vector 0 € R? such that

D fil0) <
i=1

Our algorithm uses

1

S
£i(0*) +¢- uD.
=1

(0]

S
Z ali2 log(sde™) - L) bits of communication,
i=1

where L = O(logd) is the word length. At the end of our algorithm,
all servers hold this solution.

Our technical novelty — modifying the analysis and slightly mod-
ifying the algorithm of [25] — yields an improvement in not just
the distributed setting but also in the (non-distributed) setting [25]
studied this problem in. Specifically, as a corollary (Theorem 1.14),
we improve the total oracle cost of decomposable nonsmooth con-
vex optimization from 5(0maX “ X5 di)to 5(2;1 O; - d;), where
O; is the cost of invoking the ith separation oracle, and Opay is the
maximum of all O;.

THEOREM 1.14 (SOLVING PrROBLEM 1.12.). Consider the problem
mingepa 35— fi(0) with each f; : RY > R convex, p-Lipschitz, pos-
sibly non-smooth functions, depending on d; coordinates of 0, and
accessible via a (sub-)gradient oracle. Define the minimizer 0* :=
argmingcga 35—, fi(0). Suppose we are given a vector 0 ¢ R4
such that |0* — 0 ||, < D. Then, given a weight vector w € RY

with which we define m def 2ie[s] Widi, there is an algorithm that,
in time poly(mlog(¢™1)), outputs a vector § € R? such that
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Moreover, let n; be the number of subgradient oracle calls to f;. Then,
the algorithm’s total oracle cost is

N
EW;"

i=1

n; = O(mlog(m/e)).

As alluded to earlier, an important special case of decomposable
nonsmooth convex optimization is decomposable submodular func-
tion minimization, which in turn has witnessed a long history of
research [8, 27, 34, 39, 57]. Therefore, outside of distributed opti-
mization, an immediate application of Theorem 1.14 is an improved
cost of decomposable submodular function minimization, as we
describe in Corollary 1.15.

Corollary 1.15 (Faster Submodular Function Minimization). Let
V = {1,2,...,m}, and F : 2V  [-1,1] be given by F(S) =
>, Fi(SNV;), where each F; : 2% > R is a submodular func-
tion on'V; C V. We can find an e-additive approximate minimizer of
Fin

(@)

n
Z |V,-|2 log(nsl)) evaluation oracle calls.

i=1

To contextualize our above result for decomposable SFM, [25]
improved upon the cost of O (V2 > [Vi|* log(ne™1)) by [8] to
get a cost of O (Vinax il log(ne_l)). In cases where the |V;|
are highly non-uniform, our result of O (2?21 |V;|? log(ne_l)) eval-
uation oracle calls is therefore an improvement upon what is, to
the best of our knowledge, the previous fastest result.

1.1.5 Lower Bounds. Finally, we complement our upper bounds re-
sults from the previous sections with lower bounds. [76] asked the
following question: from the perspective of communication com-
plexity, is solving a linear program harder than (exactly) solving a
linear system? Towards answering this question, they showed that,
in constant dimensions, checking feasibility of a linear program
requires Q(sL) communication in the coordinator model, while
feasibility for linear systems requires only O(s + L) communica-
tion, thereby demonstrating an exponential separation between
the two problems. However their lower bound for linear programs
was based on a hard instance with 22(L) constraints. So for linear
program feasibility problems with n constraints they leave open the
possibility of a protocol with communication cost O(slog n)+o(sL).
This is an important limitation of their lower bound, since they
show for example, that a modified Clarkson’s Algorithm [18, 76],
indeed gives a protocol with log n dependence. This, therefore, mo-
tivates the following question: is there an exponential separation
between checking feasibility of linear programs and solving linear
systems when there are only poly(s + d) constraints?

We answer this question in the affirmative, showing that such
a separation does in fact hold, even for linear feasibility problems
with O(s + d) constraints.

THEOREM 1.16. Any protocol solving Linear Feasibility in the coor-
dinator model requires at least Q(sdL) communication for protocols
that exchange at most cL/log L rounds of messages with each server
and withlogd < 5L. This bound holds even when the number of con-
straints is promised to be at most O(s + d). For constant d the Q(sL)
lower bound holds with no assumption on the number of rounds.
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In addition to linear programming, one could also ask to get
tight lower bounds for relative error least squares regression as
discussed above. [76] gave a lower bound of Q(sd+d?L) for constant
¢, however our algorithm requires O(sdL + d2L) bits. We close this
gap by showing that the sdL term is unavoidable. Interestingly, our
regression lower bound follows from the same techniques that we
we use to derive our linear programming lower bound.

1.2 Technical Overview

Before providing the details of our algorithms and analyses for each
of the aforementioned results, we give high-level overviews of the
techniques we use for each of them.

1.2.1 Least Squares Regression and Subspace Embeddings. We give
two protocols for the regression problem instance of miny ||Ax—b||s.
The first is based on sketching what we refer to as the block leverage
scores, which for us is simply the sum of the leverage scores of the
rows in that block (leverage scores computed with respect to A).
Our second protocol is based on non-adaptive adaptive sketches [50]
from the in the data streaming literature. Both of our protocols
for regression operate by constructing a subspace embedding? ma-
trix S for the span of the columns of A and b. This is a stronger
guarantee than solving the regression problem, as the coordinator
may compute SAx — Sb = S(Ax — b) and output the solution to
the sketched regression problem [77]. The subspace embedding
construction proves useful in contexts other than regression too.
Indeed, we require the subspace embedding construction to get
improved communication for low-rank approximation. We now
describe our two approaches below.

Block Leverage Scores. While block leverage scores have previ-
ously been considered in various forms [41, 51, 58, 60, 80] as far as
we are aware they have (naturally) been used only in the context of
sampling entire blocks at a time. In our setting, we are ultimately
interested only in sampling rows, but find that approximating the
block leverage score of each server is a useful subroutine. Specifi-
cally we show that for small k, sampling a k X d row-sketch of each
block is almost sufficient to estimate all the block leverage scores.
The catch is that we fail to accurately estimate block leverage scores
that are larger than k. Intuitively, this is because such blocks could
have more than k “important" rows. So our approach is to attempt
to estimate the leverage score of all blocks via sketching using a
small value of k. We might find that a small number of blocks have
leverage scores that are too big for the estimates of their leverage
scores to be accurate. To fix this, we focus on those blocks and sam-
ple a larger row-sketch from them in order to get a better estimate
of their block leverage scores. Taking a larger sketch requires more
communication per block. Crucially, however, the number of servers
with leverage score greater than k is at most d/k. Thus we may
proceed in a series of rounds, where in round r we focus on servers
with leverage score at least 2. There are at most d/2" such servers,
and for each server we take a sketch of total size roughly 2"d, so
each round after (of which there are only O(log d)) uses roughly
d? communication. We note that the first round requires a roughly
1 X d sized sketch from all servers, which yields an sd dependence.

“Recall that S is an e-distortion £, subspace embedding for A if [|SAx||, = (1 +
) ||Ax||p for all x.
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Once we have estimates of the block leverage scores, we observe
that sampling sketched rows from the blocks proportional to the
block leverage scores suffices to obtain a subspace embedding for A.

Non-adaptive Adaptive Sketching. When p = 2, our protocol runs
the recursive leverage score sampling procedure of [19] adapted
to the distributed setting. One potential approach is to run this
algorithm by sketching the inverse spectral approximations and
broadcasting them to the servers. Unfortunately, when A is nearly
singular, these sketches can have a high bit complexity. To avoid this,
we instead use a version of an £, sampling sketch which can be ap-
plied on the servers’ sides and sent to the coordinator, which allows
the coordinator to sample from the appropriate (relative) leverage
score distribution. An issue arises if some relative scores are much
larger than one, as we need to truncate them to roughly one before
using them as sampling probabilities (up to scaling). To fix this, we
first give a subroutine to identify this subset of outlying rows.

£p Regression beyond p = 2. Our “non-adaptive adaptive" protocol
above extends to give optimal guarantees for £, regression and £,
regression for 1 < p < 2 essentially by using the more general
recursive Lewis weight sampling protocol of [20].

For 2 < p < 4, the recursive Lewis weight sampling algorithm of
[20] can also be run exactly to construct an £, subspace embedding,
simply by broadcasting the approximate Lewis quadratic form to
all servers on each round. Since the quadratic form is a d X d matrix,
this broadcasting incurs an 6] (sd?L) cost per round and hence an
O(sd?L) cost for computing approximate Lewis weights for all rows.
The coordinator then must sample dP/2 rows, resulting in a cost of
5(SdzL + dmax(p/2,1)+1)'

If one is interested in sampling a coreset of rows to obtain an
£, subspace embedding, then the d? /2+1 term is unavoidable as we

need to sample at least dP/2 rows [48]. However for 1 < p <2
our approach for ¢ regression shows that the sd?L term can be
improved to sdL. Whether the sd?L term can be improved for all p
is an interesting question that we leave to future work.

1.2.2  High-Accuracy Least Squares Regression. While constant-
factor approximations often suffice, in certain settings it is impor-
tant to ask for a solution that is optimal to within machine precision,
e.g., if such solutions are used in iterative methods for solving a
larger optimization problem. In this setting we consider the prob-
lem instance miny |[Ax — b||2, where, given a row-partitioned sys-
tem A, b, the goal of the coordinator is to output an x for which
|Ax — bz < ming ||[Ax —b||z +¢ - [A(ATA)TATb]|,. A direct ap-
plication of gradient descent requires about « iterations, where k
is the condition number of matrix A.

Our protocol for solving this problem in the distributed setting
to a high accuracy is Richardson’s iteration with preconditioning,
coupled with careful rounding. We precondition using a constant
factor spectral approximation of the matrix to reduce the number
of iterations to only log(¢™!). This version of Richardson’s iteration
is equivalent to performing Newton’s method with an approximate
Hessian since the preconditioner spectrally approximates the Hes-
sian inverse (ATA)~1. Computing a spectral approximation to A is
equivalent to computing a subspace embedding, so to compute the
preconditioner we employ our regression protocol from above. We
note that the refinement sampling procedures we use in our two
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regression algorithms are very similar, since both are based on the
same algorithm from [19]. However, we believe there are sufficient
differences in the specifics to merit writing out the latter in full.
Alternatively, it is possible to employ a somewhat simpler protocol
(which also has the advantage of computing approximations to all
leverage scores) since in the high-precision setting we allow for a
condition-number dependence.

The key novelty in the implementation of our Richardson-style
iteration is to communicate, in each step, only a partial number
of bits of the residual vector. The idea here is that as the solution
converges, the bits with high place values do not change much
between consecutive iterations and therefore need not be sent every
time. Using a similar idea, we show that the Richardson iteration is
robust to a small amount of noise, which helps us avoid updating
the lowest order bits. Overall, via a careful perturbation analysis,
we show that communicating the updates on only the O(L log x)
middle bits of each entry suffices to guarantee the convergence of
Richardson’s iteration.

1.2.3  High-Accuracy Linear Programming. Similar to Section 1.2.2,
we ask the question of solving linear programs to a high accuracy.
These require different techniques than ones in fast first-order algo-
rithms for linear programs with runtimes depending polynomially
on 1/e [6, 7, 79]. Specifically, interior-point methods and cutting-
plane methods are the standard approaches in the high-accuracy
regime. Recent advances in fast high-accuracy algorithms for linear
programs [42, 43, 75] were spurred by developments in the novel
use of the Lewis weight barrier, techniques for efficient mainte-
nance of the approximate inverse of a slowly-changing matrix, and
efficient data structures for various linear algebraic primitives. Our
approach for a communication-efficient high-accuracy linear pro-
gram solver builds upon these developments, effectively adapting
them into the coordinator model.

We first describe the standard framework of interior-point meth-
ods. In this paradigm, one reduces solving the problem of min,c g ¢ u
to that of solving a sequence of slowly-changing unconstrained

problems miny, ¥; (u) def {t cTu+ysg (u)} parametrized by t, with
a self-concordant barrier g that enforces feasibility by becoming
unbounded as x — 98. The algorithm starts at t = 0, for which
an approximate minimizer xo* of Y5 is known, and it alternates
between increasing t and updating, via Newton’s method, x to
an approximate minimizer x} of the new ¥;. For a sufficiently
large ¢, the minimizer X} also approximately optimizes the original
problem min, ¢ g ¢ u with sub-optimality gap O(v/t), where v is
the self-concordance parameter of the barrier function used. This
self-concordance parameter typically also appears in the iteration
complexity.

While this is the classical interior-point method as pioneered
by [55], there has been a flurry of recent effort focusing on improv-
ing different components of this paradigm. The papers we use for
our purposes are those by [42, 43, 75], which developed variants
of the aforementioned central path method essentially by reducing
the original LP to certain data structure problems such as inverse
maintenance and heavy-hitters. Adapting these approaches to the
coordinator model, we provide an algorithm for approximately
solving LPs with O((sd™5(L + log(xR)) + d°L) - log(e™!)) bits of
communication (Theorem 1.10). Among the tools we employ for
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our analysis are those for matrix spectral approximation we develop
and our result for the communication complexity of leverage scores,
which we use to bound the communication complexity of iteratively
computing Lewis weights for computing an initial feasible solution.

1.2.4  Decomposable Nonsmooth Convex Optimization. For decom-
posable nonsmooth convex optimization in the blackboard model,
we improve an algorithm from the literature and then adapt this
improved algorithm to the distributed setting. Specifically, we study
ming pa 3.3_; fi(x), where each f; is y-Lipschitz, convex, and de-
pendent on some d; coordinates of x — note that the different
fi could have overlapping supports — and the ith machine has
subgradient-oracle access to the i*® function.

Most prior works [36, 66, 69] and their accelerated variants [1, 3,
30, 49, 82] designed in the non-distributed variant of finite-sum min-
imization assumed f; to be smooth and strongly convex. Those de-
signed for the distributed setting [15, 70, 81] also typically imposed
this assumption (some exceptions include [26]), but additionally
also used as their performance metric only the number of rounds
of communication, as opposed to the total number of bits communi-
cated, which is what we focus on. Variants of gradient descent [56]
that are typically applicable to this problem also require a bounded
condition number. There has also been work on non-smooth empir-
ical risk minimization, but usually it requires that the objective be
a sum of a smooth loss and a non-smooth regularizer. The formula-
tion we study is a more general form of empirical risk minimization:
In particular, our setting allows all f; to be non-smooth.

The work of [25] combines ideas from classical cutting-plane and
interior-point methods to obtain a nearly-linear (in total effective
dimension) number of subgradient oracle queries for solving the
problem in the non-distributed setting. This is the algorithm we
modify and adapt to the distributed setting; our modification also
yields improvements in the non-distributed setting.

We first describe the result obtained by simply adapting the algo-
rithm of [25] to the blackboard model. Following [25], we first use
a simple epigraph trick to reduce this problem to one with a linear
objective and constrained to be on an intersection of parametrized
epigraphs of fi: min, . cg. crdi+1yic[s] Axch € X Where %G are all
convex sets. All servers hold identical copies of the problem data at
all times. However, each server i has only separation-oracle access
to the set K;, which comes from the equivalence to the subgradient-
oracle access to f; by the result of [44].

We maintain crude outer and inner set approximations, Ky ;
and Kout,i, to each set K; (such that Kin ; € K; € Kout,i) and up-
date x, our candidate minimizer of the (new) objective ¢' x using
an interior-point method. Ideally, for some choice of barrier func-
tion defined over K N {Ax = b}, we would update our candidate
minimizer to move along the central path through this set. How-
ever, since we do not explicitly know %K, we instead use a barrier
function defined over its proxy, Kout N {Ax = b}. We improve our
approximations of K, and Koyt using ideas inspired from classical
cutting plane methods [74]. Thus, our algorithm essentially alter-
nates between performing a cutting-plane step (to improve our set
approximation of K) and performing an interior-point method step
(to enable the candidate minimizer x to make progress along the
central path).
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Each server runs a copy of the above algorithm. After updating
the parameter ¢ and computing x} , — the current target for the
interior-point method step — each server tests feasibility of X},
* ., then the

If there is a potential infeasibility of the ith block, XSt
server queries x:ut’l. (the i block of the current target point) and
sends to the blackboard a separating hyperplane to update Koyt,; or
a bit to indicate otherwise. The other servers then read this infor-
mation and update either the set Kout,; or Kin ; on their ends. It was
shown in [25] that this algorithm (without the distributed setting)
has an oracle query complexity of 5(2;1 d;i). In the distributed
setting, this would translate to a communication complexity of
O(max ¢ djL - Yioq di).

Our main novelty is to modify the prior analysis (and slightly
modify a specific parameter of the algorithm) so as to obtain the
more fine-grained oracle cost of 5(213.21 wid;L), for any arbitrary
weight vector w > 0. In our distributed algorithm, we set w; = d;,
since the only communication that happens in a round is when a
server sends hyperplane information to the blackboard. Thus, this
translates to the communication cost of 5(215.:1 dizL), an improve-

ment over the bound of 5(maxj€[s] djL - ¥3_, d;) obtained from
adapting [25] to the blackboard setting.

1.2.5 Lower Bounds. We are interested in obtaining tight lower
bounds for least squares regression and low-rank approximation
that capture the dependence on the bit complexity L. When proving
such lower bounds, it is common to reduce from communication
games such as multi-player set-disjointness [65]. However, it is not
at all clear how one could encode such a combinatorial problem into
an instance of regression that would yield a good bit-complexity
lower bound. Indeed, most natural reductions from the standard
communication problems would result in a single bit entry of A.
This motivates us to introduce a new communication game (Prob-
lem 1.17) that forces the players to communicate a large number of
bits of their inputs.

Problem 1.17. The coordinator holds an (infinite-precision) unit
vector v e RY withd > 3, and the s servers hold unit vectors
wi,...,ws € R4 respectively. The coordinator must decide between
(a)v'wy = 0 for allk € [s] and (b) For somek, |v' wi| > & and

d
viw; =0 foralli+ k.

The two player-version of Problem 1.17 is reminiscent of the

promise inner product problem (PromiselP,;) over Fp, where the

goal is to distinguish between v’

This problem was introduced by [71] who gave an Q(d log p) lower
bound and further considered by [47] who developed an s-player
version. We note that their s-player version is for the “generalized
inner product” and is therefore quite different from the game that we
introduce. Furthermore we are not aware of a version of PromiselP;
over R that is suitable for our purposes, even though real versions
of the inner product problem have been studied [5].

We give the following lower bound for our problem:

szandvazlforv,weFZ.

THEOREM 1.18. A protocol that solves Problem 1.17 with probabil-
ity at least 0.9 requires at least Q(sdlog(e™')) communication for
protocols that exchange at most clog(¢™!) /loglog(e™!) rounds of
messages with each server.
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To prove this, we begin by considering d = 3, and s = 1 so that
the game involves two players, say Alice and Bob, holding vectors
v and w in R3. We borrow techniques from Fourier analysis on
the sphere to prove an Q(¢~!) communication lower bound. Our
techniques are reminiscent of those in [62], although we require
somewhat less sophisticated machinery. One might wonder why
we choose to start with d = 3 rather than d = 2. It turns out that
when d = 2 the Q(¢7!) lower bound does not hold! Indeed Alice
can form the vector v so that the problem reduces to checking
if vt and w are approximately equal up to sign. This reduces to
checking exact equality after truncating to approximately log(e~!)
bits. But this is easy to accomplish with O(1) bits of communica-
tion by communicating an appropriate hash. It is not immediately
clear whether a similar trick could apply in higher dimensions. In
particular any proof of the lower bound must explain the difference
between d = 2 and d = 3. The difference turns out to be that the
spherical Radon transform is smoothing in dimensions 3 and higher,
but not in dimension 2.

Given the d = 3 case, we boost our result to higher dimensions
by a viewing a d-dimensional vector as the concatenation of d/3
vectors each of 3-dimensions and then applying the direct-sum
technique of [10]. This requires us to first prove an information
lower bound on a particular input distribution. This turns out to be
easier to accomplish for public-coin protocols, and we then upgrade
to general (private-coin) protocols using a “reverse-Newman" result
of [17]. This last step is where our bounded round assumption arises
from. We note that this is a purely technical artifact of our proof
and can likely be avoided. Finally, we show how to extend our lower
bound from two players to s players. With this result, we are able to
deduce new lower bounds for least-squares regression and testing
feasibility of linear programs.

Least Squares Regression. [76] studied the communication com-
plexity of the least squares regression problem and showed a com-
munication lower bound of ﬁ(sd +d?L). We show that obtaining a
constant factor approximation to a least-squares regression prob-
lem requires Q(sdL) communication, at least for protocols that use
at most roughly L rounds of communication. This bounded round
assumption is mild since our algorithms need only O(1) rounds,
which is desirable.

The reduction is from Problem 1.17 above. Our approach is to
construct a matrix from the inputs whose smallest singular value is
roughly 27 in case (a) and roughly 27L/2 in case (b). To create such
a matrix A we stack the vectors av, wy, ..., ws and additionally ap-
pend an orthonormal basis for v. We choose a to be an extremely
small constant so that in either case, v is approximately the singular
vector of A corresponding to opmin(A). In case (a) we will arrange
for omin (A) to be roughly 27L whereas in case (b) wy will cause
Omin(A) to increase since wy has positive inner product with v.
While the additive change in oyjn (A) is small, the multiplicative
effect will be large. We then set up a regression problem involving
A so that an approximate least squares solution has norm roughly
1/0min (A) in either case, allowing us to distinguish cases (a) and (b).

Linear programming. Given our new communication lower bound,
our reduction to linear feasibility is simple. We pick a collection
of linear constraints that forces a feasible point x to satisfy x = v
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and x' wy = 0. In fact, this is just a linear system so how can our
lower bound apply to it, given the better upper bounds for linear
systems in [76]? The issue is that we need our linear constraints to
have fixed bit precision whereas Problem 1.17 involves vectors with
infinite precision. So we create inequalities enforcing the machine
precision instead of requiring inner products exactly zero. Our
lower bound gives a new way to obtain lower bounds depending
on the condition number in this context, which may be useful for
other problems.

High-Accuracy Regression. Finally, in the high-accuracy regime
we show an Q(sd log(e71)) lower bound for solving least squares
regression to ¢ additive error. This shows that the sd log(e™!) de-
pendence in our high precision algorithm is unavoidable, and in
fact shows that our upper bound is tight in the common setting
where L and log k are O(1).

THEOREM 1.19. Consider a distributed least squares regression
problem with the rows A and b distributed across s servers, and with
|Ib|| = 1. Let x4 minimize ||[Axx — b||2. A protocol in the coordinator
model that produces X satisfying

IAX = b]l2 < €+ ||Axx — b]|2
with probability at least 0.98 requires Q (sd min(log(e™1), L)) com-
munication. This lower bound holds even if A is promised to have
condition number O(1).

2 CONCLUSION AND FUTURE DIRECTIONS

In this section, we discuss a few open problems and possible direc-
tions for future research regarding the communication complexity
of the convex optimization problems we discussed in the paper.

Linear regression on matrices with special structure. Many opti-
mization algorithms use linear regression as a subprocedure. One
such example is IPMs, which are used to solve linear programs,
which we discussed in this paper. In some scenarios, the linear
regression problem has a special structure, e.g., the alternating least
squares algorithm in tensor decomposition [24, 28] and least squares
with non-negative data [23], which appears in many real-world
problems. It would be interesting to investigate the communication
complexity of solving linear regression problems that have matrices
with special structures.

Inverse maintenance. Many recent improvements for the running
time of convex optimization problems, such as linear programming
and semi-definite programming, have relied on the use of inverse
maintenance. We also used this to improve the communication com-
plexity of solving linear programs when we use IPMs in a distributed
setting. There has recently been some progress on analyzing inverse
maintenance for general matrix formulas in an attempt to unify the
analysis of many algorithms [4, 16]. An interesting direction is to
analyze the communication complexity of inverse maintenance for
such general matrix formulas.
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