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ABSTRACT

We consider the communication complexity of some fundamen-

tal convex optimization problems in the point-to-point (coordina-

tor) and blackboard communication models. We strengthen known

bounds for approximately solving linear regression, ?-norm regres-

sion (for 1 ≤ ? ≤ 2), linear programming, minimizing the sum of

�nitely many convex nonsmooth functions with varying supports,

and low rank approximation; for a number of these fundamental

problems our bounds are optimal, as proven by our lower bounds.

For example, for solving least squares regression in the coor-

dinator model with B servers, = examples, 3 dimensions, and co-

e�cients speci�ed using at most ! bits, we improve the prior

communication bound of Vempala, Wang, and Woodru� (SODA,

2020) from $̃ (B32!) to $̃ (B3! + 32Y−1!), which is optimal up to

logarithmic factors. We also study the problem of solving least

squares regression in the coordinator model to high accuracy, for

which we provide an algorithm with a communication complexity

of $̃ (B3 (! + log^) log(Y−1) + 32!), matching our improved lower

bound for well-conditioned matrices up to a log(Y−1) factor. Among

our techniques, we use the notion of block leverage scores, which

have been relatively unexplored in this context, as well as drop-

ping all but the “middle" bits in Richardson-style algorithms. We

also introduce a new communication problem for accurately ap-

proximating inner products and establish a lower bound using the

spherical Radon transform. Our lower bound can be used to show

the �rst separation of linear programming and linear systems in the

distributed model when the number of constraints is polynomial,

addressing an open question in prior work.

∗The ordering of authors is alphabetical. The full version of the paper is available at
https://arxiv.org/abs/2403.19146

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0383-6/24/06
https://doi.org/10.1145/3618260.3649787

We also give an improved algorithm for high-accuracy linear

programming in the coordinator model that computes an approx-

imate solution on well-conditioned inputs using $̃ (B31.5! + 32!)
communication. This improves over the previous bound of B32!.

Finally, we give an improved algorithm, in the blackboard model of

communication, for the problem min\ ∈R3
∑B
8=1 58 (\ ) where each

58 is convex, Lipschitz, and supported on 38 ≤ 3 (potentially over-

lapping) coordinates of \ using $̃ (∑B
8=1 3

2
8 !) communication. Our

techniques yield improved rates for decomposable submodular

function minimization in the non-distributed setting as well.
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1 INTRODUCTION

The scale of modern optimization problems often necessitates work-

ing with datasets that are distributed across multiple machines,

which then communicate with each other to solve the optimization

problem at hand. A crucial performance metric for algorithms in

such distributed settings is the communication complexity. Tradi-

tionally, this has referred to the number of rounds of communication

needed between the machines to solve the problem, and there has

been a long line of work (which we shortly describe) optimizing this

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0
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metric. However, as was highlighted in [31, 59, 76], in many core al-

gorithmic primitives underlying recent advances in continuous opti-

mization, the claimed (theoretical) runtimes are predicated on the as-

sumption of exact computations with in�nite precision. When ana-

lyzed under the �nite-precision model, the true runtimes can be sub-

stantially higher. Consequently, inferring the true cost of distributed

optimization algorithms built with these components requires a

careful analysis. To address this need, our focus in this paper is on

designing, for some fundamental optimization problems, distributed

algorithms e�cient in the total number of bits communicated.

Before describing our setup and results, we �rst provide a brief

overview of prior work in the related area of distributed optimiza-

tion, a mature �eld encompassing problems spanning engineer-

ing, control theory, signal processing, and machine learning. For

instance, multi-agent coordination, distributed tracking and local-

ization, estimation problems in sensor networks, opinion dynam-

ics, and packet routing are all naturally cast as distributed convex

minimization [11, 45, 68]. Classically, the primary goal in these

problems was to design a communication strategy between the

computational agents so that they eventually arrive at the optimal

objective value [73]. A considerable body of work [33, 54, 72, 78]

has therefore been devoted to obtaining asymptotic convergence

guarantees for these problem classes. Going beyond asymptotic

analysis, recent years have witnessed extensive progress in ob-

taining non-asymptotic rates (typically in terms of the number of

rounds of communication) for problems in distributed machine

learning such as distributed PAC learning [9], distributed online

prediction [22], distributed estimation [26, 35, 54], and distributed

delayed stochastic optimization [2, 53].

A related paradigm that has recently emerged in distributed com-

puting is that of federated learning [37]. In this paradigm, the pro-

cesses of data acquisition, processing, andmodel training are largely

carried out on a network’s edge nodes such as smartphones [13],

wearables [32], location-based services [67], and IoT sensors [40, 52],

under the orchestration of a central coordinator. Similar to the

recent works on distributed machine learning mentioned in the

preceding paragraph, for the works in this setting as well, it is the

number of rounds of communication that is typically used as a

proxy for total communication cost. Additional important concerns

for works in federated learning include user privacy and robustness

to distribution shifts in users’ samples [63] and to heterogeneity

in the computational capabilities of the nodes [64]. Finally, while

our focus in this paper is the theory, we note that advances in the

practice of distributed computing have been tremendously spurred

by the development of programming models like MapReduce [21],

which enable parallelizing the computation, distributing the data,

and handling failures across thousands of machines.

Our setup. As mentioned earlier, only recently has there been

a surge of interest in studying the bit complexity of optimization

algorithms [31, 59, 76]. In this paper, we hope to continue pushing

e�orts in this direction and study the number of bits communicated

to solve various distributed convex optimization problems under

two models of communication, de�ned next. Our goal is to compute

approximate solutions with e�cient communication complexity.

De�nition 1.1 (Coordinator Model). There are B machines (servers)

and a central coordinator. Each machine can send information to and

receive information from the coordinator. Any bit communicated with

the coordinator counts toward the communication complexity of the

algorithm.

De�nition 1.2 (Blackboard Model). There are B machines and a

coordinator (blackboard). Each machine can send information to and

receive information from the coordinator. Only bits sent to the coordi-

nator count toward the communication complexity of the algorithm.

The coordinator model is equivalent, up to a factor of two and

an additive log B bits per message, to the point-to-point model of

computation, in which machines directly interact with each other.

The blackboard model may be viewed as having a shared memory

between the machines, since it costs the machines only to write on

to the blackboard, while reading from the blackboard is free.

We consider several fundamental optimization problems that

have been studied extensively outside the distributed setting: least

squares regression, low rank approximation, linear programming,

and optimizing a sum of convex nonsmooth functions. We provide

improved communication upper and lower bounds for these prob-

lems in the aforementioned distributed settings. While we obtain

nearly tight upper and lower bounds for several of these prob-

lems in the “worst-case" settings, e.g., when matrices are arbitrarily

poorly conditioned, another important component of our work is in

improving bounds for well-behaved inputs, e.g., well-conditioned

matrices or decomposable functions.

1.1 Our Contributions

In this paper, we address the communication complexity of least

squares regression, low-rank approximation, and linear program-

ming in the coordinator model, and �nite-sum minimization of

Lipschitz functions in the blackboard model. Our central techni-

cal novelty lies in developing e�cient — in terms of bit complex-

ity — methods for leverage score sampling, inverse maintenance,

cutting-plane methods, and the use of block leverage scores in the

distributed setting and in �nite arithmetic. We summarize all formal

statements in this section.

General Setup. In all problems, we consider a matrix that is di-

vided among B servers as per the row-partition model. This is in

contrast to the arbitrary partition model, in which each server

holds a matrix A
(8) , with A =

∑
8∈[B ] A

(8) . In our model, the 8th

machine stores a matrix A
(8) ∈ R=8×3 , and our problem matrix

A ∈ R=×3 , with = =
∑B
8=1 =8 , is formed by vertically stacking all the

A
(8) matrices, i.e., A = [A(8) ].
For least squares regression and linear programming, each server

additionally holds a vector b(8) ∈ R=8 whose vertical concatenation
we denote by R= ∋ b = [b(8) ], with = =

∑B
8=1 =8 . When consider-

ing linear programming and �nite-sum minimization, the vector

c (where c is the vector that appears in the objective obtained by

reducing the original �nite-sum minimization using an epigraph

trick) is also shared between the machines (or can be shared with

$ (B3) communication). We explicitly describe the setup for each

problem in its corresponding section.

We assume that the entries of A(8) and b
(8) can be represented

with ! bits. We often model this by assuming that all entries are

integers in {−2! + 1, . . . , 2!}. Sometimes it will be more convenient

to work with normalized vectors and matrices, in which case we
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allow entries to be of the form 2 2−! with 2 ∈ {−2! + 1, . . . , 2!}. We

say that such numbers are expressed to ! bits of precision.

1.1.1 Least Squares Regression, ℓ? Regression, and Low-Rank Ap-

proximation. In many large-scale machine learning applications,

one is faced with a large, potentially noisy regression problem for

which a constant factor approximation is acceptable. Speci�cally,

we are interested in computing an approximate solution x̂ satisfying,

for a given constant Y, the bound

∥Ax̂ − b∥2 ≤ (1 + Y)min
x

∥Ax − b∥2 . (1.1)

We formalize our setup below.

Problem 1.3 (Setup in the Coordinator Model). Suppose there is

a coordinator and B machines that communicate with each other as

per the coordinator model of communication (De�nition 1.1) with

shared randomness. Suppose each machine 8 ∈ [B] holds a matrix

A
(8) ∈ R=8×3 and a vector b(8) ∈ R=8 . Denote A = [A(8) ] ∈ R=×3

and b = [b(8) ] ∈ R= , both represented with ! bits in �xed-point

arithmetic. Moreover, suppose the condition number of A is bounded

by ^1.

For least squares regression in this model, [76] gave upper and

lower bounds of $̃ (B32!) and Ω(B3+32!), respectively. Their upper
bound comes from sending (A(8) )⊤A(8) ’s and (A(8) )⊤b(8) ’s to the

coordinator which then computes the exact solution by the normal

equations. On the other hand, they show that consistent2 linear sys-

tems can be solved exactly using only $̃ (B3 + 32!) communication.

Furthermore, for consistent systems, the optimal regression error is

zero, and so a regression algorithmmust output the precise solution.

Least squares regression is, therefore, certainly as hard as solving

consistent linear systems. This motivates the following question:

Is solving least squares regression to constant accuracy harder than

solving a consistent linear system?

Our key (and surprising) takeaway message for this setting is

that for constant !, regression is no harder than solving linear sys-

tems. Speci�cally, we give a protocol which, for any constant Y > 0,

achieves $̃ (B3! + 32!) bits of communication for least squares re-

gression, thus improving upon [76]’s $̃ (B32!) upper bound and

matching its lower bound of Ω(B3 +32!) for constant !. Our upper
bound also gives the �rst separation for least squares regression

between the row-partition model and the arbitrary partition model,

for which [46] showed an Ω(B32) lower bound.

Theorem 1.4 (ℓ2 Regression in the Coordinator Model).

Given Y > 0 and a least squares regression problem in the setup

of Problem 1.3 with input matrix A = [A(8) ] ∈ R=×3 and vector

b = [b(8) ] ∈ R= , there is a randomized protocol that allows the co-

ordinator to solve the least squares regression problem with constant

probability and relative error (1 ± Y) using

$̃
(
B3! + 32Y−1!

)
bits of communication.

Additionally, if ^ is a known upper bound on the condition number of

A then there is a protocol using $̃ (B3 log^ +32Y−1!) communication.

1Note that not all of our bounds depend on ^ .
2The system (A, b) is consistent if for some x, we have Ax = b.

If ! is not constant, there still remains a gap between the above

bound and [76]’s lower bound of Ω̃(B3 + 32!). By proving an im-

proved Ω̃(B3!) lower bound for ℓ2 regression under a mild restric-

tion on the number of rounds of the protocol, we close this gap (cf.

Section 1.2.5 ).

Our upper bound from Theorem 1.4 extends to ℓ? regression for

1 ≤ ? < 2, as captured by Theorem 1.5. Notably, our protocols for

regression have a small $̃ (1) number of rounds of communication,

with no dependence on the condition number of A.

Theorem 1.5 (ℓ? Regression for 1 ≤ ? < 2 in the Coordina-

tor Model). For the setup described in Problem 1.3, there exists a

randomized protocol that, with a probability of at least 1 − X , allows

the coordinator to produce an Y-distortion ℓ? subspace embedding for

the column span of A using only

$̃
(
(B3! + 32Y−4!) log(X−1)

)
bits of communication.

As a result, the coordinator can solve ℓ? regression (for 1 ≤ ? < 2)

with the same communication.

While the focus of our work for regression has been on the

coordinator model (Theorem 1.4 and Theorem 1.5), we note that

[76] already provide optimal communication cost algorithms for

constant-accuracy regression in the blackboard model, as remarked

below.

Remark 1.6. For constant-accuracy ℓ1 and ℓ2 regression in the black-

board model, [76] provides optimal algorithms with communication

cost $̃ (B + 32!).

Low Rank Approximation. As an application of our aforemen-

tioned least squares regression techniques, we obtain improved

bounds for low-rank approximation in the distributed setting, a

problem several prior works [12, 14, 29, 38] have considered. No-

tably, [14] studied the variant of the problem wherein the rows3

of A are partitioned among B servers, and all servers must learn a

projection Π that yields an approximately optimal Frobenius-norm

error:

∥AΠ − A∥F ≤ (1 + Y)∥A: − A∥F, (1.2)

where A: is the best rank-: approximation of A. In this setting,

[14] provide an upper bound of $ (B:3!) for constant Y, along with

a nearly matching lower bound of Ω(B:3). However, their lower
bound crucially requires all servers to learn the projection. A natural

question we answer is if relaxing this constraint could yield a better

communication complexity. In other words: Is it possible to do better

when only the coordinator needs to learn the projection?

Theorem 1.7 (Low-Rank Approximation in the Coordinator

Model). For the setup described in Problem 1.3, suppose that the B

servers have shared randomness. Then there is a randomized protocol

using

$̃
(
:! · (3Y−2 + BY−1)

)
bits of communication,

that with constant probability lets the coordinator produce a rank-:

orthogonal projection Π ∈ R3×: (where : ≤ 3) satisfying Inequal-

ity (1.2).

3Their matrices are transposed relative to ours, so their columns are partitioned among
servers.
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1.1.2 High-Accuracy Least Squares Regression. Complementing our

constant-factor regression results in the previous paragraphs, we

study regression solved to machine precision. We show that when

the matrix A ∈ R=×3 has a small condition number (i.e., poly(3)),
we obtain an $̃ (B3! + 32! log(Y−1)) communication complexity of

solving least squares regression to high accuracy. Speci�cally, we

obtain the following result.

Theorem 1.8 (High-Accuracy ℓ2 Regression in the Coordi-

nator Model). Given Y > 0 and the least squares regression setting

of Problem 1.3 with input matrix A = [A(8) ] ∈ R=×3 and vector

b = [b(8) ] ∈ R= , there is a randomized algorithm that, with high

probability, outputs a vector x̂ such that

∥Ax̂ − b∥2 ≤ Y · ∥A(A⊤
A)†A⊤

b∥2 + min
x∈R3

∥Ax − b∥2 . (1.3)

Let ^ be the condition number of A. Then the algorithm uses

$̃ (B3 (! + log^) log(Y−1) + 32!) bits of communication.

Moreover, the vector x̂ is available on all the machines at the end of

the algorithm.

This result improves upon the $̃ (B32!) bound of [76] (which

also gives an associated lower bound of Ω̃(B3 + 32!)). The error
guarantee of Theorem 1.8 is di�erent than that of Theorem 1.4

in two ways. First, the error is additive in Theorem 1.8 instead of

multiplicative. The main reason is that the solution produced by the

algorithm of Theorem 1.8 is available to all the machines instead of

only being available only to the coordinator. This is needed when

we use this result for each iteration of linear programming (The-

orem 1.10). We note that the solution produced by the algorithm of

Theorem 1.4 can be shared among all the machines, but we would

need to use the rational number representation to share it, and the

communication cost would increase signi�cantly in this case. The

second di�erence is that the dependence of the running time on

the error parameter Y is logarithmic in Theorem 1.8. This allows

us to achieve high-accuracy solutions, which are again needed for

linear programming results to deal with adaptive adversary issues.

Our improvement is achieved by a novel rounding procedure

for Richardson’s iteration with preconditioning and has conse-

quences outside the distributed setting as well. In particular, it

implies an improvement for the bit complexity of solving a least

squares regression problem (with an input that has constant bit

complexity) from $̃ ((3l + (nnz(A) + 32) · log2 (Y−1)) · log^) [31]
to $̃ ((3l + (nnz(A) + 32) · log(Y−1)) · log^), where nnz(A) is the
number of nonzero entries of A.

Remark 1.9. While our result in Theorem 1.8 operates only in the

coordinator model, [76] studies this problem in the blackboard model

as well. In particular, for ℓ2 regression in the blackboard model with

general accuracy parameter Y, [76] provides an algorithm with com-

munication cost $̃ (B + 32!Y−1), with an associated lower bound of

Ω̃(B + 3Y−1/2 + 32!) for B ≥ Ω(Y−1/2).
1.1.3 High-Accuracy Linear Programming. A core technical compo-

nent in achieving the results of Section 1.1.2 is the communication-

e�cient computation of a spectral approximation of a matrix via its

intimate connection to its approximate leverage scores. We utilize

this idea to develop communication-e�cient high-accuracy linear

programming too, as we describe next.

The work of [76] studied this problem and gave an upper bound

of $̃ (B33! + 34!) by implementing Clarkson’s algorithm [18] in

the coordinator model. To obtain this bound, [76] �rst note that

following the analysis of the original algorithm in [18], the total

number of rounds of communication is $ (3 log3). In each round,

the coordinator sends to all the B servers a vector x' , which is

an optimal solution to the linear program Ax ≤ b. By polyhedral

theory, there exists a non-singular subsystem Bx ≤ c, such that

x' is the unique solution of Bx = c. By Cramer’s rule, each of 3

entries of x is a ratio of integers between −3!23! and 3!23! and

can therefore be represented in $̃ (3!) bits. Multiplying all these

quantities yields the claimed communication complexity.

We take a di�erent approach and improve upon [76]’s above

bound of $̃ (B33! + 34!) to $̃ (B31.5! + 32!). Our improvement

is achieved by essentially adapting to the distributed setting re-

cent advances in interior point methods for solving linear pro-

grams [42, 43, 75], with the associated toolkit of a weighted central

path approach, e�cient inverse maintenance, and data structures

for e�cient matrix-vector operations. Our rate holds for linear

programs that have a small outer radius and a well-conditioned

constraint matrix A, as we formalize next.

Theorem 1.10 (Linear Programming in the Coordinator

Model). Given Y > 0, input matrix A = [A(8) ] ∈ R=×3 , and vectors
c = [c(8) ] ∈ R= and b ∈ R3 in the setup of Problem 1.3, there is a

randomized algorithm that, with high probability, outputs a vector

x̂ ∈ R= such that

∥A⊤
x̂ − b∥2 ≤ Y · (∥A∥F · ' + ∥b∥2)

and

c
⊤
x̂ ≤ min

x:A⊤x=b,x≥0
c
⊤
x + Y · ∥c∥2 · ', (1.4)

where ' is the linear program’s outer radius, i.e., ∥x∥2 ≤ ' for all

feasible x. The algorithm uses

$̃ ((B31.5 (! + log(^'A−1Y−1)) + 32! log(Y−1)) · log(Y−1))

bits of communication, where ^ is the condition number of A, and A

is the linear program’s inner radius, i.e., there exists a feasible x with

x8 ≥ A for all 8 ∈ [=]. Moreover, the vector x̂ is available on all the

machines at the end of the algorithm.

As a special case of our Theorem 1.10, when our linear pro-

gram has parameters ^, ', and Y−1 of the scale poly(3), we obtain
a communication complexity of $̃ (B31.5! + 32!), which is also an

improvement over [76]’s previous bound.

Remark 1.11. While we study linear programming only in the co-

ordinator model, [76] studies this in the blackboard model as well.

Speci�cally, in constant dimensions, [76] provides a randomized com-

munication complexity of Ω̃(B + !) for linear programming in the

blackboard model.

1.1.4 Finite-Sum Minimization with Varying Supports. Another

problem class naturally amenable to study in the distributed setting

is that of �nite-sum minimization. We consider, in the blackboard

model, the problem minx
∑B
8=1 58 (x) where each 58 : R3 ↦→ R is

`-Lipschitz, convex, nonsmooth, and supported on (potentially

overlapping) 38 coordinates. We call this problem “decomposable
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nonsmooth convex optimization”. The assumption of varying sup-

ports appears prominently in decomposable submodular function

minimization [8, 61] and was recently studied by [25]. This problem,

without this assumption, has seen extensive progress in variants of

stochastic gradient descent (cf. Section 1.2.4). We formalize below

the problem setup in the blackboard model.

Problem 1.12 (Decomposable Nonsmooth Convex Optimization

Setup). Suppose there is a blackboard/coordinator and B machines

that communicate with each other as per the blackboard model of

communication (De�nition 1.2). Suppose each machine 8 ∈ [B] holds
an oracle O8 that returns a subgradient (represented with ! bits in

�xed-point arithmetic) of the function 58 : R
3 ↦→ R.

Directly adapting the algorithm of [25] to the above model yields

a communication cost of $̃ (max9 ∈[B ] 3 9!
∑B
8=1 38 ). In this work, we

improve this cost to $̃ (∑B
8=1 3

2
8 !), as formalized next.

Theorem 1.13 (Distributed Decomposable Nonsmooth Con-

vex Optimization). Given Y > 0 and the setup of Problem 1.12,

consider the problem min\
∑B
8=1 58 (\ ), where each 58 : R3 ↦→ R is

convex, `-Lipschitz, and dependent on 38 coordinates of \ . De�ne

\★ := argmin\ ∈R3
∑B
8=1 58 (\ ). Suppose further that we know an

initial \ (0) ∈ R3 such that ∥\★ − \ (0) ∥2 ≤ � . Then, there is an

algorithm that outputs a vector \ ∈ R3 such that

B∑

8=1

58 (\ ) ≤
B∑

8=1

58 (\★) + Y · `�.

Our algorithm uses

$

(
B∑

8=1

328 log(B3Y
−1) · !

)
bits of communication,

where ! = $ (log3) is the word length. At the end of our algorithm,

all servers hold this solution.

Our technical novelty —modifying the analysis and slightly mod-

ifying the algorithm of [25] — yields an improvement in not just

the distributed setting but also in the (non-distributed) setting [25]

studied this problem in. Speci�cally, as a corollary (Theorem 1.14),

we improve the total oracle cost of decomposable nonsmooth con-

vex optimization from $̃ (Omax ·
∑B
8=1 38 ) to $̃ (∑B

8=1 O8 · 38 ), where
O8 is the cost of invoking the 8

th separation oracle, and Omax is the

maximum of all O8 .

Theorem 1.14 (Solving Problem 1.12.). Consider the problem

min\ ∈R3
∑B
8=1 58 (\ ) with each 58 : R

3 ↦→ R convex, `-Lipschitz, pos-

sibly non-smooth functions, depending on 38 coordinates of \ , and

accessible via a (sub-)gradient oracle. De�ne the minimizer \★ :=

argmin\ ∈R3
∑B
8=1 58 (\ ). Suppose we are given a vector \ (0) ∈ R3

such that ∥\★ − \ (0) ∥2 ≤ � . Then, given a weight vector w ∈ RB≥1
with which we de�ne<

def
=

∑
8∈[B ] F838 , there is an algorithm that,

in time poly(< log(Y−1)), outputs a vector \ ∈ R3 such that

B∑

8=1

58 (\ ) ≤
B∑

8=1

58 (\★) + Y · `�.

Moreover, let =8 be the number of subgradient oracle calls to 58 . Then,

the algorithm’s total oracle cost is

B∑

8=1

F8 · =8 = $ (< log(</Y)) .

As alluded to earlier, an important special case of decomposable

nonsmooth convex optimization is decomposable submodular func-

tion minimization, which in turn has witnessed a long history of

research [8, 27, 34, 39, 57]. Therefore, outside of distributed opti-

mization, an immediate application of Theorem 1.14 is an improved

cost of decomposable submodular function minimization, as we

describe in Corollary 1.15.

Corollary 1.15 (Faster Submodular Function Minimization). Let

+ = {1, 2, . . . ,<}, and � : 2+ ↦→ [−1, 1] be given by � (() =∑=
8=1 �8 (( ∩ +8 ), where each �8 : 2+8 ↦→ R is a submodular func-

tion on +8 ⊆ + . We can �nd an Y-additive approximate minimizer of

� in

$

(
=∑

8=1

|+8 |2 log(=Y−1)
)
evaluation oracle calls.

To contextualize our above result for decomposable SFM, [25]

improved upon the cost of $
(
+ 2
max

∑=
8=1 |+8 |4 log(=Y−1)

)
by [8] to

get a cost of $
(
+max

∑=
8=1 |+8 | log(=Y−1)

)
. In cases where the |+8 |

are highly non-uniform, our result of$
(∑=

8=1 |+8 |2 log(=Y−1)
)
eval-

uation oracle calls is therefore an improvement upon what is, to

the best of our knowledge, the previous fastest result.

1.1.5 Lower Bounds. Finally, we complement our upper bounds re-

sults from the previous sections with lower bounds. [76] asked the

following question: from the perspective of communication com-

plexity, is solving a linear program harder than (exactly) solving a

linear system? Towards answering this question, they showed that,

in constant dimensions, checking feasibility of a linear program

requires Ω̃(B!) communication in the coordinator model, while

feasibility for linear systems requires only $̃ (B + !) communica-

tion, thereby demonstrating an exponential separation between

the two problems. However their lower bound for linear programs

was based on a hard instance with 2Ω (!) constraints. So for linear

program feasibility problems with = constraints they leave open the

possibility of a protocol with communication cost$ (B log=)+> (B!).
This is an important limitation of their lower bound, since they

show for example, that a modi�ed Clarkson’s Algorithm [18, 76],

indeed gives a protocol with log= dependence. This, therefore, mo-

tivates the following question: is there an exponential separation

between checking feasibility of linear programs and solving linear

systems when there are only poly(B + 3) constraints?
We answer this question in the a�rmative, showing that such

a separation does in fact hold, even for linear feasibility problems

with $ (B + 3) constraints.

Theorem 1.16. Any protocol solving Linear Feasibility in the coor-

dinator model requires at least Ω(B3!) communication for protocols

that exchange at most 2!/log! rounds of messages with each server

and with log3 ≤ 5!. This bound holds even when the number of con-

straints is promised to be at most $ (B + 3) . For constant 3 the Ω(B!)
lower bound holds with no assumption on the number of rounds.
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In addition to linear programming, one could also ask to get

tight lower bounds for relative error least squares regression as

discussed above. [76] gave a lower bound ofΩ(B3+32!) for constant
Y, however our algorithm requires $̃ (B3! + 32!) bits. We close this

gap by showing that the B3! term is unavoidable. Interestingly, our

regression lower bound follows from the same techniques that we

we use to derive our linear programming lower bound.

1.2 Technical Overview

Before providing the details of our algorithms and analyses for each

of the aforementioned results, we give high-level overviews of the

techniques we use for each of them.

1.2.1 Least Squares Regression and Subspace Embeddings. We give

two protocols for the regression problem instance ofminx ∥Ax−b∥2.
The �rst is based on sketching what we refer to as the block leverage

scores, which for us is simply the sum of the leverage scores of the

rows in that block (leverage scores computed with respect to A).

Our second protocol is based on non-adaptive adaptive sketches [50]

from the in the data streaming literature. Both of our protocols

for regression operate by constructing a subspace embedding4 ma-

trix S for the span of the columns of A and b. This is a stronger

guarantee than solving the regression problem, as the coordinator

may compute SAx − Sb = S(Ax − b) and output the solution to

the sketched regression problem [77]. The subspace embedding

construction proves useful in contexts other than regression too.

Indeed, we require the subspace embedding construction to get

improved communication for low-rank approximation. We now

describe our two approaches below.

Block Leverage Scores. While block leverage scores have previ-

ously been considered in various forms [41, 51, 58, 60, 80] as far as

we are aware they have (naturally) been used only in the context of

sampling entire blocks at a time. In our setting, we are ultimately

interested only in sampling rows, but �nd that approximating the

block leverage score of each server is a useful subroutine. Speci�-

cally we show that for small : , sampling a : ×3 row-sketch of each

block is almost su�cient to estimate all the block leverage scores.

The catch is that we fail to accurately estimate block leverage scores

that are larger than :. Intuitively, this is because such blocks could

have more than : “important" rows. So our approach is to attempt

to estimate the leverage score of all blocks via sketching using a

small value of : . We might �nd that a small number of blocks have

leverage scores that are too big for the estimates of their leverage

scores to be accurate. To �x this, we focus on those blocks and sam-

ple a larger row-sketch from them in order to get a better estimate

of their block leverage scores. Taking a larger sketch requires more

communication per block. Crucially, however, the number of servers

with leverage score greater than : is at most 3/:. Thus we may

proceed in a series of rounds, where in round A we focus on servers

with leverage score at least 2A . There are at most 3/2A such servers,

and for each server we take a sketch of total size roughly 2A3, so

each round after (of which there are only $ (log3)) uses roughly
32 communication. We note that the �rst round requires a roughly

1 × 3 sized sketch from all servers, which yields an B3 dependence.

4Recall that S is an Y-distortion ℓ? subspace embedding for A if ∥SAx∥? = (1 ±
Y) ∥Ax∥? for all x.

Once we have estimates of the block leverage scores, we observe

that sampling sketched rows from the blocks proportional to the

block leverage scores su�ces to obtain a subspace embedding forA.

Non-adaptive Adaptive Sketching. When ? = 2, our protocol runs

the recursive leverage score sampling procedure of [19] adapted

to the distributed setting. One potential approach is to run this

algorithm by sketching the inverse spectral approximations and

broadcasting them to the servers. Unfortunately, when A is nearly

singular, these sketches can have a high bit complexity. To avoid this,

we instead use a version of an ℓ2 sampling sketch which can be ap-

plied on the servers’ sides and sent to the coordinator, which allows

the coordinator to sample from the appropriate (relative) leverage

score distribution. An issue arises if some relative scores are much

larger than one, as we need to truncate them to roughly one before

using them as sampling probabilities (up to scaling). To �x this, we

�rst give a subroutine to identify this subset of outlying rows.

ℓ? Regression beyond ? = 2. Our “non-adaptive adaptive" protocol

above extends to give optimal guarantees for ℓ1 regression and ℓ?
regression for 1 ≤ ? ≤ 2 essentially by using the more general

recursive Lewis weight sampling protocol of [20].

For 2 < ? < 4, the recursive Lewis weight sampling algorithm of

[20] can also be run exactly to construct an ℓ? subspace embedding,

simply by broadcasting the approximate Lewis quadratic form to

all servers on each round. Since the quadratic form is a 3 ×3 matrix,

this broadcasting incurs an $̃ (B32!) cost per round and hence an

$̃ (B32!) cost for computing approximate Lewis weights for all rows.

The coordinator then must sample 3?/2 rows, resulting in a cost of

$̃ (B32! + 3max(?/2,1)+1) .
If one is interested in sampling a coreset of rows to obtain an

ℓ? subspace embedding, then the 3?/2+1 term is unavoidable as we

need to sample at least 3?/2 rows [48]. However for 1 ≤ ? ≤ 2

our approach for ℓ2 regression shows that the B32! term can be

improved to B3!. Whether the B32! term can be improved for all ?

is an interesting question that we leave to future work.

1.2.2 High-Accuracy Least Squares Regression. While constant-

factor approximations often su�ce, in certain settings it is impor-

tant to ask for a solution that is optimal to within machine precision,

e.g., if such solutions are used in iterative methods for solving a

larger optimization problem. In this setting we consider the prob-

lem instance minx ∥Ax − b∥2, where, given a row-partitioned sys-

tem A, b, the goal of the coordinator is to output an x for which

∥Ax − b∥2 ≤ minx ∥Ax − b∥2 + Y · ∥A(A⊤
A)†A⊤

b∥2. A direct ap-

plication of gradient descent requires about ^ iterations, where ^

is the condition number of matrix A.

Our protocol for solving this problem in the distributed setting

to a high accuracy is Richardson’s iteration with preconditioning,

coupled with careful rounding. We precondition using a constant

factor spectral approximation of the matrix to reduce the number

of iterations to only log(Y−1). This version of Richardson’s iteration

is equivalent to performing Newton’s method with an approximate

Hessian since the preconditioner spectrally approximates the Hes-

sian inverse (A⊤
A)−1. Computing a spectral approximation to A is

equivalent to computing a subspace embedding, so to compute the

preconditioner we employ our regression protocol from above. We

note that the re�nement sampling procedures we use in our two
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regression algorithms are very similar, since both are based on the

same algorithm from [19]. However, we believe there are su�cient

di�erences in the speci�cs to merit writing out the latter in full.

Alternatively, it is possible to employ a somewhat simpler protocol

(which also has the advantage of computing approximations to all

leverage scores) since in the high-precision setting we allow for a

condition-number dependence.

The key novelty in the implementation of our Richardson-style

iteration is to communicate, in each step, only a partial number

of bits of the residual vector. The idea here is that as the solution

converges, the bits with high place values do not change much

between consecutive iterations and therefore need not be sent every

time. Using a similar idea, we show that the Richardson iteration is

robust to a small amount of noise, which helps us avoid updating

the lowest order bits. Overall, via a careful perturbation analysis,

we show that communicating the updates on only the $ (! log^)
middle bits of each entry su�ces to guarantee the convergence of

Richardson’s iteration.

1.2.3 High-Accuracy Linear Programming. Similar to Section 1.2.2,

we ask the question of solving linear programs to a high accuracy.

These require di�erent techniques than ones in fast �rst-order algo-

rithms for linear programs with runtimes depending polynomially

on 1/Y [6, 7, 79]. Speci�cally, interior-point methods and cutting-

plane methods are the standard approaches in the high-accuracy

regime. Recent advances in fast high-accuracy algorithms for linear

programs [42, 43, 75] were spurred by developments in the novel

use of the Lewis weight barrier, techniques for e�cient mainte-

nance of the approximate inverse of a slowly-changing matrix, and

e�cient data structures for various linear algebraic primitives. Our

approach for a communication-e�cient high-accuracy linear pro-

gram solver builds upon these developments, e�ectively adapting

them into the coordinator model.

We �rst describe the standard framework of interior-point meth-

ods. In this paradigm, one reduces solving the problem ofminu∈S c
⊤
u

to that of solving a sequence of slowly-changing unconstrained

problemsminu ΨC (u)
def
=

{
C · c⊤u +kS (u)

}
parametrized by C , with

a self-concordant barrier kS that enforces feasibility by becoming

unbounded as x → mS. The algorithm starts at C = 0, for which

an approximate minimizer x★0 of kS is known, and it alternates

between increasing C and updating, via Newton’s method, x to

an approximate minimizer x★C of the new ΨC . For a su�ciently

large C , the minimizer x★C also approximately optimizes the original

problem minu∈S c
⊤
u with sub-optimality gap $ (a/C), where a is

the self-concordance parameter of the barrier function used. This

self-concordance parameter typically also appears in the iteration

complexity.

While this is the classical interior-point method as pioneered

by [55], there has been a �urry of recent e�ort focusing on improv-

ing di�erent components of this paradigm. The papers we use for

our purposes are those by [42, 43, 75], which developed variants

of the aforementioned central path method essentially by reducing

the original LP to certain data structure problems such as inverse

maintenance and heavy-hitters. Adapting these approaches to the

coordinator model, we provide an algorithm for approximately

solving LPs with $̃ ((B31.5 (! + log(^')) + 32!) · log(Y−1)) bits of
communication (Theorem 1.10). Among the tools we employ for

our analysis are those for matrix spectral approximation we develop

and our result for the communication complexity of leverage scores,

which we use to bound the communication complexity of iteratively

computing Lewis weights for computing an initial feasible solution.

1.2.4 Decomposable Nonsmooth Convex Optimization. For decom-

posable nonsmooth convex optimization in the blackboard model,

we improve an algorithm from the literature and then adapt this

improved algorithm to the distributed setting. Speci�cally, we study

min
x∈R3

∑B
8=1 58 (x), where each 58 is `-Lipschitz, convex, and de-

pendent on some 38 coordinates of x — note that the di�erent

58 could have overlapping supports — and the 8th machine has

subgradient-oracle access to the 8th function.

Most prior works [36, 66, 69] and their accelerated variants [1, 3,

30, 49, 82] designed in the non-distributed variant of �nite-summin-

imization assumed 58 to be smooth and strongly convex. Those de-

signed for the distributed setting [15, 70, 81] also typically imposed

this assumption (some exceptions include [26]), but additionally

also used as their performance metric only the number of rounds

of communication, as opposed to the total number of bits communi-

cated, which is what we focus on. Variants of gradient descent [56]

that are typically applicable to this problem also require a bounded

condition number. There has also been work on non-smooth empir-

ical risk minimization, but usually it requires that the objective be

a sum of a smooth loss and a non-smooth regularizer. The formula-

tion we study is a more general form of empirical risk minimization:

In particular, our setting allows all 58 to be non-smooth.

The work of [25] combines ideas from classical cutting-plane and

interior-point methods to obtain a nearly-linear (in total e�ective

dimension) number of subgradient oracle queries for solving the

problem in the non-distributed setting. This is the algorithm we

modify and adapt to the distributed setting; our modi�cation also

yields improvements in the non-distributed setting.

We �rst describe the result obtained by simply adapting the algo-

rithm of [25] to the blackboard model. Following [25], we �rst use

a simple epigraph trick to reduce this problem to one with a linear

objective and constrained to be on an intersection of parametrized

epigraphs of 58 : min
x:xi∈K8 ⊆R38+1∀8∈[B ],Ax=b c

⊤
x, where K8 are all

convex sets. All servers hold identical copies of the problem data at

all times. However, each server 8 has only separation-oracle access

to the setK8 , which comes from the equivalence to the subgradient-

oracle access to 58 by the result of [44].

We maintain crude outer and inner set approximations, Kin,8

and Kout,8 , to each set K8 (such that Kin,8 ⊆ K8 ⊆ Kout,8 ) and up-

date x, our candidate minimizer of the (new) objective c⊤x using

an interior-point method. Ideally, for some choice of barrier func-

tion de�ned over K ∩ {Ax = b}, we would update our candidate

minimizer to move along the central path through this set. How-

ever, since we do not explicitly know K , we instead use a barrier

function de�ned over its proxy, Kout ∩ {Ax = b}. We improve our

approximations ofKin andKout using ideas inspired from classical

cutting plane methods [74]. Thus, our algorithm essentially alter-

nates between performing a cutting-plane step (to improve our set

approximation ofK) and performing an interior-point method step

(to enable the candidate minimizer x to make progress along the

central path).
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Each server runs a copy of the above algorithm. After updating

the parameter C and computing x
★

out — the current target for the

interior-point method step — each server tests feasibility of x★out.

If there is a potential infeasibility of the 8th block, x★out,8 , then the

server queries x★out,8 (the 8
th block of the current target point) and

sends to the blackboard a separating hyperplane to updateKout,8 or

a bit to indicate otherwise. The other servers then read this infor-

mation and update either the setKout,8 orKin,8 on their ends. It was

shown in [25] that this algorithm (without the distributed setting)

has an oracle query complexity of $̃ (∑B
8=1 38 ). In the distributed

setting, this would translate to a communication complexity of

$̃ (max9 ∈[B ] 3 9! ·∑B
8=1 38 ).

Our main novelty is to modify the prior analysis (and slightly

modify a speci�c parameter of the algorithm) so as to obtain the

more �ne-grained oracle cost of $̃ (∑B
8=1F838!), for any arbitrary

weight vector w ≥ 0. In our distributed algorithm, we setF8 = 38 ,

since the only communication that happens in a round is when a

server sends hyperplane information to the blackboard. Thus, this

translates to the communication cost of $̃ (∑B
8=1 3

2
8 !), an improve-

ment over the bound of $̃ (max9 ∈[B ] 3 9! ·∑B
8=1 38 ) obtained from

adapting [25] to the blackboard setting.

1.2.5 Lower Bounds. We are interested in obtaining tight lower

bounds for least squares regression and low-rank approximation

that capture the dependence on the bit complexity !. When proving

such lower bounds, it is common to reduce from communication

games such as multi-player set-disjointness [65]. However, it is not

at all clear how one could encode such a combinatorial problem into

an instance of regression that would yield a good bit-complexity

lower bound. Indeed, most natural reductions from the standard

communication problems would result in a single bit entry of A.

This motivates us to introduce a new communication game (Prob-

lem 1.17) that forces the players to communicate a large number of

bits of their inputs.

Problem 1.17. The coordinator holds an (in�nite-precision) unit

vector v ∈ R3 with 3 ≥ 3, and the B servers hold unit vectors

w1, . . . ,wB ∈ R3 respectively. The coordinator must decide between

(a) v⊤w: = 0 for all : ∈ [B] and (b) For some : , |v⊤w: | ≥ Y
3
and

v
⊤
w8 = 0 for all 8 ≠ : .

The two player-version of Problem 1.17 is reminiscent of the

promise inner product problem (PromiseIP3 ) over F? , where the

goal is to distinguish between v
⊤
w = 0 and v⊤w = 1 for v,w ∈ F

3
? .

This problem was introduced by [71] who gave an Ω(3 log ?) lower
bound and further considered by [47] who developed an B-player

version. We note that their B-player version is for the “generalized

inner product" and is therefore quite di�erent from the game that we

introduce. Furthermore we are not aware of a version of PromiseIP3
over R that is suitable for our purposes, even though real versions

of the inner product problem have been studied [5].

We give the following lower bound for our problem:

Theorem 1.18. A protocol that solves Problem 1.17 with probabil-

ity at least 0.9 requires at least Ω(B3 log(Y−1)) communication for

protocols that exchange at most 2 log(Y−1)/log log(Y−1) rounds of
messages with each server.

To prove this, we begin by considering 3 = 3, and B = 1 so that

the game involves two players, say Alice and Bob, holding vectors

v and w in R3. We borrow techniques from Fourier analysis on

the sphere to prove an Ω(Y−1) communication lower bound. Our

techniques are reminiscent of those in [62], although we require

somewhat less sophisticated machinery. One might wonder why

we choose to start with 3 = 3 rather than 3 = 2. It turns out that

when 3 = 2 the Ω(Y−1) lower bound does not hold! Indeed Alice

can form the vector v⊥ so that the problem reduces to checking

if v⊥ and w are approximately equal up to sign. This reduces to

checking exact equality after truncating to approximately log(Y−1)
bits. But this is easy to accomplish with $ (1) bits of communica-

tion by communicating an appropriate hash. It is not immediately

clear whether a similar trick could apply in higher dimensions. In

particular any proof of the lower bound must explain the di�erence

between 3 = 2 and 3 = 3. The di�erence turns out to be that the

spherical Radon transform is smoothing in dimensions 3 and higher,

but not in dimension 2.

Given the 3 = 3 case, we boost our result to higher dimensions

by a viewing a 3-dimensional vector as the concatenation of 3/3
vectors each of 3-dimensions and then applying the direct-sum

technique of [10]. This requires us to �rst prove an information

lower bound on a particular input distribution. This turns out to be

easier to accomplish for public-coin protocols, and we then upgrade

to general (private-coin) protocols using a “reverse-Newman" result

of [17]. This last step is where our bounded round assumption arises

from. We note that this is a purely technical artifact of our proof

and can likely be avoided. Finally, we show how to extend our lower

bound from two players to B players. With this result, we are able to

deduce new lower bounds for least-squares regression and testing

feasibility of linear programs.

Least Squares Regression. [76] studied the communication com-

plexity of the least squares regression problem and showed a com-

munication lower bound of Ω̃(B3 + 32!) . We show that obtaining a

constant factor approximation to a least-squares regression prob-

lem requires Ω(B3!) communication, at least for protocols that use

at most roughly ! rounds of communication. This bounded round

assumption is mild since our algorithms need only $̃ (1) rounds,
which is desirable.

The reduction is from Problem 1.17 above. Our approach is to

construct a matrix from the inputs whose smallest singular value is

roughly 2−! in case (a) and roughly 2−!/2 in case (b). To create such

a matrix A we stack the vectors Uv,w1, . . . ,wB and additionally ap-

pend an orthonormal basis for v⊥ . We choose U to be an extremely

small constant so that in either case, v is approximately the singular

vector of A corresponding to fmin (A) . In case (a) we will arrange

for fmin (A) to be roughly 2−! whereas in case (b) w: will cause

fmin (A) to increase since w: has positive inner product with v.

While the additive change in fmin (A) is small, the multiplicative

e�ect will be large. We then set up a regression problem involving

A so that an approximate least squares solution has norm roughly

1/fmin (A) in either case, allowing us to distinguish cases (a) and (b).

Linear programming. Given our new communication lower bound,

our reduction to linear feasibility is simple. We pick a collection

of linear constraints that forces a feasible point x to satisfy x = v
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and x
⊤
w: = 0. In fact, this is just a linear system so how can our

lower bound apply to it, given the better upper bounds for linear

systems in [76]? The issue is that we need our linear constraints to

have �xed bit precision whereas Problem 1.17 involves vectors with

in�nite precision. So we create inequalities enforcing the machine

precision instead of requiring inner products exactly zero. Our

lower bound gives a new way to obtain lower bounds depending

on the condition number in this context, which may be useful for

other problems.

High-Accuracy Regression. Finally, in the high-accuracy regime

we show an Ω̃(B3 log(Y−1)) lower bound for solving least squares

regression to Y additive error. This shows that the B3 log(Y−1) de-
pendence in our high precision algorithm is unavoidable, and in

fact shows that our upper bound is tight in the common setting

where ! and log^ are $ (1) .

Theorem 1.19. Consider a distributed least squares regression

problem with the rows A and b distributed across B servers, and with

∥b∥ = 1. Let x★ minimize ∥Ax★ − 1∥2 . A protocol in the coordinator

model that produces x̂ satisfying

∥Ax̂ − b∥2 ≤ Y + ∥Ax★ − b∥2
with probability at least 0.98 requires Ω̃

(
B3 min(log(Y−1), !)

)
com-

munication. This lower bound holds even if A is promised to have

condition number $ (1) .

2 CONCLUSION AND FUTURE DIRECTIONS

In this section, we discuss a few open problems and possible direc-

tions for future research regarding the communication complexity

of the convex optimization problems we discussed in the paper.

Linear regression on matrices with special structure. Many opti-

mization algorithms use linear regression as a subprocedure. One

such example is IPMs, which are used to solve linear programs,

which we discussed in this paper. In some scenarios, the linear

regression problem has a special structure, e.g., the alternating least

squares algorithm in tensor decomposition [24, 28] and least squares

with non-negative data [23], which appears in many real-world

problems. It would be interesting to investigate the communication

complexity of solving linear regression problems that have matrices

with special structures.

Inverse maintenance. Many recent improvements for the running

time of convex optimization problems, such as linear programming

and semi-de�nite programming, have relied on the use of inverse

maintenance. We also used this to improve the communication com-

plexity of solving linear programswhenwe use IPMs in a distributed

setting. There has recently been some progress on analyzing inverse

maintenance for general matrix formulas in an attempt to unify the

analysis of many algorithms [4, 16]. An interesting direction is to

analyze the communication complexity of inverse maintenance for

such general matrix formulas.
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[40] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. 2016. Federated learning: Strategies
for improving communication e�ciency. arXiv preprint arXiv:1610.05492 (2016).

[41] Rasmus Kyng, Yin Tat Lee, Richard Peng, Sushant Sachdeva, and Daniel A Spiel-
man. 2016. Sparsi�ed cholesky and multigrid solvers for connection laplacians. In
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing.

[42] Yin Tat Lee and Aaron Sidford. 2014. Path Finding Methods for Linear Program-

ming: Solving Linear Programs in $̃ (
√
rank) Iterations and Faster Algorithms

for Maximum Flow. In 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2014.

[43] Yin Tat Lee and Aaron Sidford. 2015. E�cient Inverse Maintenance and Faster
Algorithms for Linear Programming. In IEEE 56th Annual Symposium on Founda-
tions of Computer Science, FOCS 2015.

[44] Yin Tat Lee, Aaron Sidford, and Santosh S Vempala. 2018. E�cient convex
optimization with membership oracles. In Conference On Learning Theory. PMLR.

[45] Victor Lesser, Charles L Ortiz Jr, and Milind Tambe. 2003. Distributed sensor
networks: A multiagent perspective. Springer Science & Business Media.

[46] Yi Li, Honghao Lin, and David Woodru�. 2023. ℓ? -Regression in the Arbitrary
Partition Model of Communication. In The Thirty Sixth Annual Conference on
Learning Theory.

[47] Yi Li, Xiaoming Sun, Chengu Wang, and David P Woodru�. 2014. On the commu-
nication complexity of linear algebraic problems in the message passing model.

In Distributed Computing: 28th International Symposium, DISC 2014, Austin, TX,
USA, October 12-15, 2014. Proceedings 28. Springer.

[48] Yi Li, RuosongWang, and David PWoodru�. 2021. Tight bounds for the subspace
sketch problem with applications. SIAM J. Comput. (2021).

[49] Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. 2015. A universal catalyst
for �rst-order optimization. Advances in neural information processing systems
(2015).

[50] Sepideh Mahabadi, Ilya Razenshteyn, David P Woodru�, and Samson Zhou. 2020.
Non-adaptive adaptive sampling on turnstile streams. In Proceedings of the 52nd
Annual ACM SIGACT Symposium on Theory of Computing.

[51] Naren Sarayu Manoj and Max Ovsiankin. 2023. The Change-of-Measure
Method, Block Lewis Weights, and Approximating Matrix Block Norms.
arXiv:2311.10013 [math.FA]

[52] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-e�cient learning of deep net-
works from decentralized data. In Arti�cial Intelligence and Statistics.

[53] Angelia Nedić, Dimitri P Bertsekas, and Vivek S Borkar. 2001. Distributed asyn-
chronous incremental subgradient methods. Studies in Computational Mathemat-
ics (2001).

[54] Angelia Nedic and Asuman Ozdaglar. 2009. Distributed subgradient methods for
multi-agent optimization. IEEE Trans. Automat. Control (2009).

[55] Yurii Nesterov and Arkadii Nemirovskii. 1994. Interior-point polynomial algo-
rithms in convex programming. SIAM.

[56] Yurii E Nesterov. 1983. A method for solving the convex programming problem

with convergence rate$ (1/:2) . In Dokl. akad. nauk Sssr, Vol. 269.
[57] Robert Nishihara, Stefanie Jegelka, and Michael I Jordan. 2014. On the conver-

gence rate of decomposable submodular function minimization. Advances in
Neural Information Processing Systems 27 (2014).

[58] Urvashi Oswal, Swayambhoo Jain, Kevin S Xu, and Brian Eriksson. 2019. Block
cur: Decomposing matrices using groups of columns. In Machine Learning and
Knowledge Discovery in Databases: European Conference, ECML PKDD 2018, Dublin,
Ireland, September 10–14, 2018, Proceedings, Part II 18.

[59] Richard Peng and Santosh Vempala. 2021. Solving sparse linear systems faster
than matrix multiplication. In Proceedings of the 2021 ACM-SIAM symposium on
discrete algorithms (SODA). SIAM.

[60] Alessandro Perelli and Martin S Andersen. 2021. Regularization by denoising
sub-sampled Newton method for spectral CT multi-material decomposition.
Philosophical Transactions of the Royal Society A (2021).

[61] Akbar Ra�ey and Yuichi Yoshida. 2022. Sparsi�cation of decomposable submod-
ular functions. In Proceedings of the AAAI Conference on Arti�cial Intelligence.

[62] Oded Regev and Bo’az Klartag. 2011. Quantum one-way communication can
be exponentially stronger than classical communication. In Proceedings of the
forty-third annual ACM symposium on Theory of computing.

[63] Amirhossein Reisizadeh, Farzan Farnia, Ramtin Pedarsani, and Ali Jadbabaie.
2020. Robust federated learning: The case of a�ne distribution shifts. Advances
in Neural Information Processing Systems (2020).

[64] Amirhossein Reisizadeh, Isidoros Tziotis, Hamed Hassani, Aryan Mokhtari, and
Ramtin Pedarsani. 2022. Straggler-resilient federated learning: Leveraging the
interplay between statistical accuracy and system heterogeneity. IEEE Journal
on Selected Areas in Information Theory (2022).

[65] Tim Roughgarden et al. 2016. Communication complexity (for algorithm design-
ers). Foundations and Trends® in Theoretical Computer Science (2016).

[66] Nicolas Roux, Mark Schmidt, and Francis Bach. 2012. A stochastic gradient
method with an exponential convergence rate for �nite training sets. Advances
in neural information processing systems 25 (2012).

[67] Sumudu Samarakoon, Mehdi Bennis, Walid Saad, and Mérouane Debbah. 2019.
Distributed federated learning for ultra-reliable low-latency vehicular communi-
cations. IEEE Transactions on Communications (2019).

[68] Ali H Sayed et al. 2014. Adaptation, learning, and optimization over networks.
Foundations and Trends® in Machine Learning (2014).

[69] Shai Shalev-Shwartz and Tong Zhang. 2013. Stochastic dual coordinate ascent
methods for regularized loss minimization. Journal of Machine Learning Research
14, 2 (2013).

[70] Ohad Shamir, Nati Srebro, and Tong Zhang. 2014. Communication-e�cient dis-
tributed optimization using an approximate newton-type method. In International
conference on machine learning.

[71] Xiaoming Sun, Chengu Wang, and Wei Yu. 2012. The relationship between
inner product and counting cycles. In Latin American Symposium on Theoretical
Informatics.

[72] S Sundhar Ram, Angelia Nedić, and Venugopal V Veeravalli. 2010. Distributed
stochastic subgradient projection algorithms for convex optimization. Journal of
optimization theory and applications (2010).

[73] John N Tsitsiklis. 1984. Problems in decentralized decision making and computation.
Ph.D. Dissertation. Massachusetts Institute of Technology.

[74] Pravin M Vaidya. 1989. A new algorithm for minimizing convex functions over
convex sets. In 30th Annual Symposium on Foundations of Computer Science.

1139

https://www.computer.org/csdl/proceedings-article/focs/2023/189400c059/1T9796LmQ80
https://www.computer.org/csdl/proceedings-article/focs/2023/189400c059/1T9796LmQ80
https://arxiv.org/abs/2311.10013


Improving the Bit Complexity of Communication for Distributed Convex Optimization STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

[75] Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao Song. 2020. Solving tall
dense linear programs in nearly linear time. In Proceedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing.

[76] Santosh S Vempala, Ruosong Wang, and David P Woodru�. 2020. The Commu-
nication Complexity of Optimization. In Proceedings of the Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms.

[77] David P Woodru� et al. 2014. Sketching as a tool for numerical linear algebra.
Foundations and Trends® in Theoretical Computer Science (2014).

[78] Lin Xiao, Stephen Boyd, and Seung-Jean Kim. 2007. Distributed average consensus
with least-mean-square deviation. Journal of parallel and distributed computing
(2007).

[79] Zikai Xiong and Robert Michael Freund. 2023. Computational Guarantees for
Restarted PDHG for LP based on" Limiting Error Ratios" and LP Sharpness. arXiv

preprint arXiv:2312.14774 (2023).
[80] Peng Xu, Jiyan Yang, Fred Roosta, Christopher Ré, and Michael W Mahoney.

2016. Sub-sampled Newton methods with non-uniform sampling. Advances in
Neural Information Processing Systems (2016).

[81] Yuchen Zhang and Xiao Lin. 2015. DiSCO: Distributed optimization for self-
concordant empirical loss. In International conference on machine learning.

[82] Yuchen Zhang and Xiao Lin. 2015. Stochastic primal-dual coordinate method for
regularized empirical risk minimization. In International Conference on Machine
Learning.

Received 13-NOV-2023; accepted 2024-02-11

1140


	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview

	2 Conclusion and Future Directions
	References

