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Abstract: Confidence intervals are a fundamental tool for quantifying the
uncertainty of parameters of interest. With the increase of data privacy
awareness, developing a private version of confidence intervals has gained
growing attention from both statisticians and computer scientists. Differ-
ential privacy is a state-of-the-art framework for analyzing privacy loss
when releasing statistics computed from sensitive data. Recent work has
been done around differentially private confidence intervals, yet to the best
of our knowledge, rigorous methodologies on differentially private confi-
dence intervals in the context of survey sampling have not been studied. In
this paper, we propose three differentially private algorithms for construct-
ing confidence intervals for proportions under stratified random sampling.
We articulate two variants of differential privacy that make sense for data
from stratified sampling designs, analyzing each of our algorithms within
one of these two variants. We establish analytical privacy guarantees and
asymptotic properties of the estimators. In addition, we conduct simula-
tion studies to evaluate the proposed private confidence intervals, and two
applications to the 1940 Census data are provided.
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1. Introduction

With the increase of privacy awareness in the modern information era, estab-
lishing privacy-preserving methodologies for statistics and machine learning has
become an active research area. Differential privacy, a state-of-the-art privacy
protection technique [14], is considered a gold standard for rigorous privacy
guarantees. Not only has it drawn significant attention in academia [15, 16],
but also it has been deployed by governments, firms, and other data agencies,
such as the U.S. Census Bureau [1], Google [20], Microsoft [8], and Apple [38].
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Recently, the U.S. Census Bureau released a new demonstration of its differen-
tially private Disclosure Avoidance System (DAS) for the 2020 Census [5, 24].
At the intersection of differential privacy and statistics, both statisticians and
computer scientists are working on developing private versions of statistical in-
ference procedures. Early work discussing differential privacy in the context of
statistics includes [17, 13, 42, 37]. More recent work has explored statistical
inference and estimation under the constraint of differential privacy [6, 29, 31].

As one of the most fundamental tools for statistical inference, confidence in-
tervals are ubiquitous in quantifying the uncertainty of parameters of interest.
In this paper, we propose three differentially private algorithms for constructing
confidence intervals for the population proportion under stratified random sam-
pling. To the best of our knowledge, our work is the first to establish rigorous
methodologies on differentially private confidence intervals in the context of sur-
vey sampling. Survey sampling is an important area in statistics that involves
selecting a sample of individuals from a target population to conduct a survey.
It provides timely and cost-efficient estimates of population characteristics of
interest and is widely used in broad-scale data gatherings, such as the American
Community Survey (ACS), the Survey of Income and Program Participation
(SIPP), and the Current Population Survey (CPS).

This paper provides the first study of differentially private confidence intervals
for data from stratified sampling designs. Specifically:

• We articulate two specific variants of differential privacy that are appropri-
ate for data from stratified sampling designs. In addition to the standard
notion of differential privacy, we also consider settings in which the sample
stratum sample sizes are fixed and public. This latter setting allows for
simpler algorithms and tighter confidence intervals.

• We give methods to propagate the uncertainty due to the application of
differentially private mechanisms (adding random noise) into the construc-
tion of confidence intervals. A necessary bias correction is made to achieve
(asymptotic) unbiased variance estimates. Central limit theorem (CLT)-
type statements are provided to guarantee the confidence level asymptot-
ically.

• We assess the performance of the proposed algorithms both in theory and
through simulations. The theoretical analysis comparing the non-private
and private methods gives practitioners a sense of how the algorithms
would work prior to applying them to real data.

• To support the theoretical analysis of one of the algorithms, we study
the behavior of a reciprocal normal variable in depth. A general form of
the Taylor expansion (for conditional moments) is obtained to solve the
problem of the non-existence of moments due to its heavy-tailed nature.

The paper is organized as follows. We briefly discuss the existing work on
differentially private confidence intervals in Section 1.1. Section 2 provides pre-
liminaries on confidence intervals of population proportions and differential pri-
vacy. In Section 3, we discuss the methodology of three differentially private
algorithms. Section 4 provides theorems on both privacy and asymptotic cov-
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erage guarantees. Numerical experiments, including simulation studies and two
applications to the 1940 Census data, are conducted in Section 5. Section 6
discusses the implications of our methods and general research directions on
differentially private confidence intervals.

1.1. Related work

Differentially private confidence intervals have recently been studied for other
settings. Some studied differentially private confidence intervals for the popula-
tion mean of normally distributed data [27, 11, 23]. Other tasks on confidence
intervals have also been explored. Drechsler et al. designed and evaluated sev-
eral strategies to obtain differentially private confidence intervals for the median
[10]. Wang et al. provided confidence intervals for differentially private models
trained with objective or output perturbation algorithms [41].

Besides, bootstrapping is a popular technique for constructing more general
differentially private confidence intervals. Ferrando et al. proposed a general-
purpose approach to construct confidence intervals for a population parameter
[21]. A numerical confidence interval for the difference of mean was provided [9].
The nonparametric bootstrap was considered in [3]. Covington et al. described a
method to induce distributions of mean and covariance estimates via the bag of
little bootstraps (BLB), which can further produce private confidence intervals
[7].

Our work is the first to study design-based approaches to sampling. In a
design-based setting, the values of interest are viewed as fixed but unknown
constants. Randomness only comes from the sampling design. The selection
probabilities introduced with the design will be used for estimation. On the
contrary, in a model-based setting, a parametric model is postulated. In many
cases, especially with natural populations where no accurate prior information
about the population distribution is available, design-based sampling methods
can be more reassuring. More discussion of design-based versus model-based
approaches in sampling can be found in [39].

2. Preliminaries

In this section, we provide some preliminaries on population proportion estima-
tion and differential privacy. We first review the classic Wald confidence interval
for the population proportion under stratified random sampling. Then we define
a notion of differential privacy specifically for stratified data. Some properties
of differential privacy are revisited in preparation for the theoretical analysis in
Section 4.

2.1. Confidence intervals for the population proportion

In stratified random sampling, a population of N individuals is partitioned into
H strata, where stratum h has Nh individuals, and simple random sampling
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of nh individuals is conducted within each stratum. When the objective is to
estimate the proportion of individuals having some attribute in the population,
one can estimate it by the sample proportion. Let yhi be the corresponding
indicator variable: yhi = 1 when the individual i in stratum h has the attribute
and yhi = 0 otherwise. One can estimate the population proportion

p = 1
N

H∑
h=1

Nh∑
i=1

yhi

by the sample proportion

p̂ = 1
N

H∑
h=1

Nh

nh

nh∑
i=1

yhi =
H∑

h=1

whp̂h

where wh
def= Nh

N
and p̂h

def= 1
nh

nh∑
i=1

yhi. Its variance Var(p̂) =
H∑

h=1

w2
hVar(p̂h),

where
Var(p̂h) =

(
Nh − nh

Nh − 1

)
ph(1 − ph)

nh
.

An unbiased estimator for Var(p̂h) is given by the sample variance in the stratum

V̂ar(p̂h) =
(

Nh − nh

Nh

)
p̂h(1 − p̂h)

nh − 1 . (1)

Then an unbiased estimator for Var(p̂) is given by V̂ar(p̂) =
H∑

h=1

w2
hV̂ar(p̂h). An

approximate 100%(1−α) confidence interval for p based on a normal distribution
can be constructed:

p̂ ± z1− α
2

√
V̂ar(p̂), (2)

where z1− α
2

denotes the 1 − α
2 quantile of standard normal distribution. The

normal approximation is useful when all the sample sizes are moderate to large.
Otherwise, the t distribution with appropriate degrees of freedom is typically
used to replace the standard normal distribution. For small sample sizes, various
specialized confidence intervals have been developed [22].

2.2. Differential privacy

Differential privacy ensures that the output of data analysis or a query does not
differ much when the data set is changed by one record, such that one can not
infer the presence or absence of any individual. If two data sets x, x′ differ by
one record, we say that x, x′ are adjacent or neighboring, written as x ∼ x′.
The definition of differential privacy depends on how we define adjacency. For
the partitioned data under stratified sampling, there are two ways to change a
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record: (1) one way is to substitute one record within a stratum, with all the
stratum sample sizes fixed. We refer to this adjacency relation as “substitute-one
relation within a stratum” and denote it by ∼ss. This relation corresponds to the
case where the sample sizes are public and fixed; (2) another way to obtain an
adjacent data set is to remove or add one record from one stratum; we refer to
the corresponding relation as, which we call “remove/add-one relation”, denoted
by ∼r. In this case, one of the stratum sample sizes will change by one, as will
the overall sample size. This relation corresponds to the case where the sample
sizes are private.

Under either adjacency relation, we can define zero-concentrated differentially
private (ρ-zCDP) as in [4]:

Definition 1 (ρ-zCDP). Let X ∗ denote the space of the input data with an
arbitrary finite dimension. Under the adjacency relation ∼, a randomized algo-
rithm M : X ∗ → Y is ρ-zero-concentrated-differentially private (ρ-zCDP) if, for
every pair of adjacent data sets x ∼ x′ ∈ X ∗, and all α ∈ (1, ∞),

Dα(M(x)‖M(x′)) ≤ ρα,

where Dα(M(x)‖M(x′)) is the α-Rényi divergence [40] between the distribution
of M(x) and the distribution of M(x′).

The parameter ρ indicates the privacy level. A smaller ρ means a more re-
strictive distance control between M(x) and M(x′). As a result, the outputs on
two adjacent data sets are harder to tell apart and the algorithm achieves higher
privacy. We call ρ the privacy budget when we deliberately design an algorithm
to satisfy ρ-zCDP.

Depending on the adjacency notion, there are two types of differential pri-
vacy: bounded and unbounded differential privacy [28]. Definition 1 under the
“remove/add-one relation” corresponds to the standard unbounded differential
privacy. The sample size of the data set changes when one record is added or
removed to obtain an adjacent data set. With “substitute-one within a stratum”
relation ∼ss, the resulting notion corresponds to the bounded version of differ-
ential privacy where the sizes of two adjacent data sets are the same. But it
is somewhat different from the standard notion of bounded differential privacy
in that for the latter, substitutions can happen across strata. That is, we can
change both the record and the stratum it is part of.

In the literature on differential privacy, (ε, δ)-DP ([15] Definition 2.4) is con-
sidered the classic notion. We consider ρ-zCDP because (1) ρ-zCDP implies
(ε, δ)-DP ([4] Proposition 1.3), (2) the application of the Gaussian mechanism
to achieve zCDP facilitates the theoretical analyses, and (3) the composition of
ρ-zCDP is straightforward. The Gaussian mechanism is a prototypical exam-
ple of a mechanism satisfying zCDP, which perturbs the true values by adding
Gaussian noise. We provide the Gaussian mechanism and the composition and
post-processing properties of ρ-zCDP in the following propositions. All proposi-
tions can be found in [4] and will be used in the analyses of privacy guarantees
in Section 4.



Differentially private confidence intervals 1461

Definition 2 (Sensitivity). A function q: X ∗ → R has sensitivity Δ if for all
pairs of adjacent data sets x ∼ x′ ∈ X ∗, we have |q(x) − q(x′)| ≤ Δ.

Proposition 1 (Gaussian Mechanism of ρ-zCDP). Let q : X ∗ → R be a
sensitivity-Δ query. Consider the mechanism M : X ∗ → R that on input x,
releases a sample from N(q(x), Δ2/(2ρ)). Then, M satisfies ρ-zCDP.

A smaller budget leads to larger noise added to the query on average. Con-
sequently, the output is more private.

Proposition 2 (Composition). Let M : X ∗ → Y and M ′ : X ∗ → Z be two
randomized algorithms. Suppose M satisfies ρ-zCDP and M ′ satisfies ρ′-zCDP,
then algorithm M ′′ = (M, M ′) : X ∗ → Y × Z is (ρ + ρ′)-zCDP.

Proposition 3 (Post-processing). Let M : X ∗ → Y and f : Y → Z be
randomized algorithms. If M is ρ-zCDP, then so is the composed algorithm
M ′ = f ◦ M : X ∗ → Z.

3. Methodology

Our goal is to release a ρ-zCDP confidence interval for the population proportion
p under stratified random sampling. To construct a confidence interval as in (2),
we need to estimate both p and the variance of the estimator privately. Recall
that the non-private estimator of population proportion is given by the sample
proportion

p̂ =
H∑

h=1

whp̂h.

We assume the stratum sizes Nh are all public and fixed, thus so are wh. To get
a private estimator for p, denoted by p̃, we can add noise at the level of either
the (non-private) estimator p̂ or the estimator p̂h. With p̃, we further devise a
private estimator for Var(p̃). Based on this idea, two algorithms for the case of
public sample sizes are designed by adding noise at the stratum or population
level in section 3.1. In section 3.2, we additionally propose adding noise at the
stratum level when sample sizes are private. Throughout the paper, the accents
·̂ and ·̃ are used to represent non-private and private estimators, respectively.

3.1. Estimating with public sample sizes

When sample sizes nh are fixed, there are two natural strategies for perturbing
p̂: add Gaussian noise to (1) the stratum-level statistics p̂h’s, or (2) the overall
statistic p̂. Adding noise to the p̂h’s has the advantage of producing private
estimators for stratum-level proportions simultaneously.
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3.1.1. Adding noise at the stratum level

We apply the Gaussian mechanism to each stratum to derive a private estimator
p̃h

def= p̂h + eh where eh is the Gaussian noise. Then the private estimator for
the population proportion is

p̃
def=

H∑
h=1

whp̃h.

As a result, the variance of p̃ consists of both the intrinsic variances of estimating
ph’s by p̂h’s and the additional variability from added noise:

Var(p̃) =
H∑

h=1

w2
h

(
Var(p̂h) + w2

h Var(eh)
)

(3)

where Var(eh), h = 1, ..., H are public since they do not depend on the data.
To obtain a private confidence interval for p̂, we will need to privately estimate

Var(p̂h). Note that the added noise biases the term p̂h(1− p̂h) in the non-private
estimate of Var(p̂h) in (1). More specifically, Ee[p̃h(1−p̃h)] = p̂h(1−p̂h)−Var(eh)
where Ee denotes the expectation taken on the randomness of the added noise.
Then a private unbiased estimator of Var(p̂h) in the right-hand side in (3) is
given by

Ṽar(p̂h) def=
(

Nh − nh

Nh

)
p̃h(1 − p̃h) + Var(eh)

nh − 1 . (4)

To estimate Var(p̃), we set

Ṽar(p̃) def=
H∑

h=1

w2
h

(
Ṽar(p̂h) + Var(eh)

)
This approach is formulated in Algorithm 1 which we call StrNz-PubSz (adding
noise at the stratum level with public sample sizes). The theoretical results re-
garding privacy level and asymptotic coverage are provided in Theorems 4.1
and 4.2.

3.1.2. Adding noise at the population level

An alternative strategy is to directly add noise to the non-private estimator of
p, i.e., p̂. The sensitivity of p̂ is

Δp = max
h

wh

nh
.

Since wh and nh are public, Δp can be made public. We set p̃ = p̂ + e where
e is the Gaussian noise with standard deviation proportional to Δp. Then, the
variance of p̃ becomes

Var(p̃) = Var(p̂) + Var(e). (5)
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Algorithm 1 Adding noise at the stratum level with public sample sizes, StrNz-
PubSz
Input: p̂h, nh, Nh, wh, ρ, α.
Output: ρ-zCDP (1 − α) CI for the population proportion.
1: for h = 1 to H do
2: Generate Gaussian noise eh ∼ N (0, 1

2ρn2
h

), and let

p̃h ← p̂h + eh.

3: Estimate Var(p̃h) by

Ṽh ←
(

Nh − nh

Nh

) p̃h(1 − p̃h) + 1
2ρn2

h

nh − 1
+

1
2ρn2

h

.

4: end for

5: Estimate p by p̃ ←
H∑

h=1
whp̃h and Var(p̃) by Ṽ ←

H∑
h=1

w2
hṼh.

6: Return
p̃ ± z1−α/2

√
Ṽ ,

where z1−α/2 is the (1 − α/2)-quantile of the standard normal distribution.

Recall that

V̂ar(p̂) =
H∑

h=1
w2

h

(
Nh − nh

Nh

)
p̂h(1 − p̂h)

nh − 1

is an unbiased estimator for Var(p̂). To get a private estimator for Var(p̃),
we again apply the Gaussian mechanism to V̂ar(p̂) based on the sensitivity
of Var(p̂):

ΔV = max
h

(
Ch

nh

(
1 − 1

nh

))
,

where Ch = w2
h

Nh−nh

Nh

1
nh−1 .

Since we apply the Gaussian mechanism twice, the total privacy budget
should be divided into two parts: ρ = ρ1 + ρ2 to spend on adding noise to p̂
and Var(p̂), respectively. The composition property (Proposition 2) ensures the
total privacy level is ρ. The resulting algorithm, PopNz-PubSz, is presented
in Algorithm 2.

Remark 1. When there are multiple strata with similar sampling rates, Algo-
rithm 1 yields a wider confidence interval for p than Algorithm 2 does, given the
same privacy budget. However, Algorithm 1 additionally produces private confi-
dence intervals for p̂h which may be of interest for release. In Section 4.2.1, we
compare the two algorithms quantitatively.

Remark 2. Proportions are always between 0 and 1. One can post-process
proportion estimates (p̃h in Algorithm 1 and p̃ in Algorithm 2) by clipping them
onto interval [0,1] without undermining privacy. When the privacy budget is
very small, the noisy proportion estimates are likely to lie outside [0,1]. Thus,
clipping moves the confidence interval toward the truth and a higher coverage
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Algorithm 2 Adding noise at the population level with public sample sizes,
PopNz-PubSz
Input: p̂, p̂h, nh, Nh, wh, ρ, α.
Output: A ρ-zCDP (1 − α) CI for Population Proportion.
1: Split the budget ρ = ρ1 + ρ2.
2: Generate noise e ∼ N (0,

Δ2
p

2ρ1
) where Δp = maxh

wh
nh

and let

p̃ ← p̂ + e.

3: Generate noise eV ∼ N (0,
Δ2

V
2ρ2

) where ΔV = maxh

(
Ch
nh

(
1 − 1

nh

))
and Ch =

w2
h

Nh−nh
Nh

1
nh−1 . Let

Ṽ ←
H∑

h=1
w2

h

(
Nh − nh

Nh

)
p̂h(1 − p̂h)

nh − 1
+

Δ2
p

2ρ1
+ eV .

4: Return
p̃ ± z1−α/2

√
Ṽ ,

where z1−α/2 is the (1 − α/2)-quantile of the standard normal distribution.

rate will be observed. With a moderate or large budget, clipping does not make
a noticeable difference.

Lastly, one can always clip the output confidence intervals onto [0,1] without
privacy loss.

3.2. Estimating with private sample sizes

When sample sizes are public information, keeping the proportions private is
essentially protecting only the numerator, i.e., the counts of individuals with
y = 1. In some cases where subpopulation proportions also need to be estimated,
Algorithms 1 and 2 with public sample sizes can lead to privacy leakage since the
counts become the denominator. For example, one may ask the following queries:
(1) what is the proportion of females in the US; and (2) what is the proportion of
unemployed among females in the US. The number of females is the numerator in
query (1) but becomes the denominator in query (2). Employing Algorithms 1
or 2 protects the number of females in query (1) but reveals it in query (2).
Therefore, a method of constructing confidence intervals for proportions to keep
both the counts and sample sizes private is necessary for subpopulation analysis.
We protect the sample sizes by adding noise to them. As a result, sample sizes
are not fixed and therefore we need the unbounded notion of differential privacy
with the adjacency relation ∼r.

In the following, we extend Algorithm 1 to serve the needs of privacy pro-
tection of sample sizes by adding noise at the stratum level. (It is not obvious
how to extend Algorithm 2, which adds noise at the population level. It requires
more sophisticated mechanisms; we briefly discuss in Section 6.)

To begin, we first consider the setting of simple random sampling. The idea
is to add independent Gaussian noise to both the numerator and denominator
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for each stratum. For ease of notation, we first consider a single stratum with
count c =

∑n
i=1 xi. We know

c ∼ Hypergeometric(N, K, n),

where K is the total number of individuals with the attribute of interest. The
count c has mean nK

N = np and variance n K
N

N−K
N

N−n
N−1 = n2 Var(p̂). By applying

the Gaussian mechanism to c and n with privacy budgets ρ1 and ρ2, respectively,
we have private count c̃ and sample size ñ:

c̃ | c ∼ N (c,
1

2ρ1
)

and
ñ ∼ N (n,

1
2ρ2

).

The unconditional mean and variance for c are

E(c̃) = E[E(c̃ | c)] = E(c) = np

and
Var(c̃) = EVar(c̃ | c) + VarE(c̃ | c) = 1

2ρ1
+ n2 Var(p̂). (6)

By the composition property of zCDP, we get a private estimator for proportion
p, denoted by p̃, with privacy level ρ = ρ1 + ρ2. Since c̃ and ñ are independent
variables, in principle,

E(p̃) = E

(
c̃

ñ

)
= E(c̃)E

(
1
ñ

)
, (7)

and

Var(p̃) = E

(
c̃

ñ

)2
−
(
E

(
c̃

ñ

))2
= Ec̃2

E

(
1
ñ2

)
− (Ec̃)2

(
E

1
ñ

)2
. (8)

However, the moments of 1
ñ do not exist, thus neither do those of p̃. Generally

speaking, the ratio of two independent normal random variables has a heavy-
tailed distribution with no moments [34, 18]. The shape of the distribution could
be unimodal, bimodal, symmetric, or asymmetric. It is primarily determined by
the coefficient of variation of the denominator variable, CV . When CV is suffi-
ciently small, a normal distribution approximation can be effective. It has been
shown theoretically that a normal distribution can be arbitrarily close to the
ratio variable in an interval centered at the ratio of means of two normal ran-
dom variables [18]. Experiments have provided guidelines for when the normal
approximation can be used. For example, a simple rule is that the approxima-
tion is reasonable whenever CV is less than 0.1 [30]. Other practical rules are
mentioned in [26, 34].

We take advantage of the normal approximation to construct a ρ-zCDP con-
fidence interval for the proportion. We present the following estimation strategy
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Algorithm 3 Adding noise at the stratum level with private sample sizes,
StrNz-PrivSz
Input: Nh, wh, nh, ch, ρ, α.
Output: A ρ-zCDP (1 − α) CI for the population proportion.
1: Split the budget ρ = ρ1 + ρ2.
2: for h = 1 to H do
3: Generate e

(1)
h ∼ N (0, 1

2ρ1
) and e

(2)
h ∼ N (0, 1

2ρ2
), and let{

c̃h ← ch + e
(1)
h

ñh ← max(nh + e
(2)
h , 2)

(9)

4: Let
p̃h ← c̃h

ñh
(10)

5: Let
Ṽh ←

(
Nh − ñh

Nh − 1

)
p̃h(1 − p̃h)

ñh
+

1
2ρ1ñ2

h

+
p̃2

h

2ρ2ñ2
h

. (11)

6: end for

7: Estimate p by p̃ ←
H∑

h=1
whp̃h and let Ṽ ←

H∑
h=1

w2
hṼh.

8: Return
p̃ ± z1−α/2

√
Ṽ ,

where z1−α/2 is the (1 − α/2)-quantile of the standard normal distribution.

in Algorithm 3, StrNz-PrivSz. In the algorithm, we clip ñh in (9) to ensure the
denominator is not too small. Otherwise, the ratio can be arbitrarily large. Such
a post-processing step preserves the same privacy guarantee. For the theoretical
analysis, we do not clip ñh, but instead, we consider the ratio variable c̃h/ñh

given the event Sh = {1 ≤ ñh ≤ 2nh − 1} (a symmetric area around the mean
of ñh). It is more convenient for the analysis. The asymptotic behaviors of p̃h

in the algorithm and c̃h/ñh | Sh are essentially the same since Pr(ñh ≥ 2) → 1
and Pr(Sh) → 1 as n → ∞. We will see the private estimator of the variance of
p̃h we derive from the analysis of c̃h/ñh | Sh works well and the algorithm does
achieve the desired coverage level.

We consider the ratio of two independent normal variables. By independence,
what remains unclear is the behavior of the reciprocal of a normal distribution.
(We should mention that the Inverse Gaussian distribution is a different dis-
tribution than the reciprocal distribution we discuss here.) In Theorem 3.1, we
provide a general form of the Taylor series of conditional mean and variance of
a reciprocal normal distribution. To our best knowledge, this is the first com-
plete result of the Taylor series, with the remainder term specified. We prove
the theorem in the Proofs section. We use k = 2 to derive an estimator for the
variance of p̃ Algorithm 3, which leads to (11).

Theorem 3.1 (Conditional mean and variance of a reciprocal normal distribu-
tion). For random variable X ∼ N (μ, σ2) where μ > 1 and σ2 > 0, given the
event S = {1 ≤ X ≤ 2μ − 1}, for any integer k > 0, the first two moments of
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1
X | S have the following expansions:

E

(
1
X

| S

)
= 1

μ

k∑
j=0

(2j − 1)!!σ2j

μ2j
+ O

(
σ2k+2

μ2k+2

)
(12)

and

E

(
1

X2 | S

)
= 1

μ2

k∑
j=0

(2j + 1)!!σ2j

μ2j
+ O

(
σ2k+2

μ2k+2

)
. (13)

4. Theoretical results

In this section, we present the theoretical results of both privacy and asymptotic
coverage guarantees. In addition, comparisons of the three algorithms in terms
of variance and width ratios are discussed.

4.1. Privacy and coverage guarantees

Our theoretical results are two-fold. First, the proposed algorithms satisfy the
desired privacy level under the corresponding adjacency relation, which is pre-
sented in Theorem 4.1.

Theorem 4.1 (Privacy Guarantee). Algorithms 1 and 2 satisfy ρ-zCDP under
the adjacency relation ∼ss; Algorithm 3 satisfies ρ-zCDP under the adjacency
relation ∼r.

Proofs are presented in the Proofs section.
On the other hand, for the confidence intervals to be useful, we provide the-

orems that guarantee the asymptotic coverage for each algorithm. The central
limit theorem (CLT) asserts (essentially) that the sample mean is asymptoti-
cally normally distributed regardless of the original distribution. Therefore, the
sample mean can be used to construct a confidence interval for the population
mean. In the finite-population sampling designs we are considering, variants of
CLTs can be found among [19, 25, 32] and others. We restate a general form
of the finite-population CLT for simple random sampling in Theorem A.2 and
provide asymptotic coverage guarantees in the following theorems.

Theorem 4.2 (Algorithm 1). For a population of size N , let p be the pro-
portion in the population with the attribute of interest. Under stratified random
sampling with sample sizes nh within the stratum of size Nh, h = 1, .., H, let

Ṽ =
H∑

h=1

w2
hṼh where

Ṽh =
(

Nh − nh

Nh

) p̃h(1 − p̃h) + 1
2ρn2

h

nh − 1 + 1
2ρn2

h

. (14)

for ρ > 0 as described in Algorithm 1. If ρ = ω(1/nh) for all h, then as Nh −nh

and nh both tend to infinity for every stratum,
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(i) Ṽ
p→ Var(p̃), more specifically, for all h,

Ṽh − Var(p̃h) = V̂ar(p̂h) − Var(p̂h) + OP

(
1

√
ρn2

h

)
= OP

(
1

n
3/2
h

)
,

where V̂ar(p̂h) is the non-private estimator for Var(p̂h);

(ii) for 0 < α < 1,

Pr
(

p ∈
(

p̃ − z1−α/2

√
Ṽ , p̃ + z1−α/2

√
Ṽ
))

→ 1 − α. (15)

Theorem 4.3 (Algorithm 2). For a population of size N , let p be the proportion
in the population with the attribute of interest. Under stratified random sampling
with sample sizes nh within the stratum of size Nh, h = 1, .., H, let

Ṽ =
H∑

h=1

w2
h

(
Nh − nh

Nh

)
p̂h(1 − p̂h)

nh − 1 +
Δ2

p

2ρ1
+ eV (16)

where eV ∼ N (0,
Δ2

V

2ρ2
) for ρ1, ρ2 > 0 as described in Algorithm 2. If ρ1 =

ω(1/nh) and ρ2 = ω(1/nh) for all h, then as Nh − nh and nh both tend to
infinity for every stratum,

(i) Ṽ
p→ Var(p̃), more specifically,

Ṽ − Var(p̃) = V̂ar(p̂) − Var(p̂) + OP

⎛⎝ 1
max

h

√
ρ2n2

h

⎞⎠ = OP

⎛⎝ 1
max

h
n

3/2
h

⎞⎠ ;

where V̂ar(p̂) is the non-private estimator for Var(p̂);

(ii) for 0 < α < 1,

Pr
(

p ∈
(

p̃ − z1−α/2

√
Ṽ , p̃ + z1−α/2

√
Ṽ
))

→ 1 − α. (17)

Proofs of the above theorems use the finite-population CLT and are provided
in the Proofs section.

For Algorithm 3, the asymptotic behavior of p̃ is grounded on the normal
approximation to a ratio variable in addition to the CLT. We revisit the result
of normal approximation by [18] in Theorem A.4. Based on the approximation,
we have shown the consistency of p̃ in the case of simple random sampling.

Theorem 4.4. Under simple random sampling, let c be the count of individuals
having the attribute of interest and n be the sample size. The true population
proportion is denoted by p. Let p̃ = c̃/ñ where c̃ ∼ N (c, 1

2ρ1
) and ñ ∼ N (n, 1

2ρ2
)

for ρ1, ρ2 > 0. Under the conditions that ρ2 = ω(1/n), ρ1 = ω(1/n), p̃ is a
consistent estimator for p.
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With the foundation of the above consistency, we establish the asymptotic
properties:

Theorem 4.5 (Algorithm 3). For a population of size N , let p be the pro-
portion in the population with the attribute of interest. Under stratified random
sampling with sample sizes nh within the stratum of size Nh, h = 1, .., H, let

Ṽ =
H∑

h=1

w2
hṼh where

Ṽh =
(

Nh − ñh

Nh − 1

)
p̃h(1 − p̃h)

ñh
+ 1

2ρ1ñ2
h

+ p̃2
h

2ρ2ñ2
h

(18)

for ρ1, ρ2 > 0 as described in Algorithm 3. If ρ1 = ω(1/nh) and ρ2 = ω(1/nh)
for all h, then as Nh − nh and nh both tend to infinity for every stratum,

(i) Ṽ
p→ Var(p̃ | S) where S is an event with Pr(S) → 1, more specifically,

for all h,

Ṽh − Var(p̃h | S) = V̂ar(p̂h) − Var(p̂h) + Op

(
1

ρ1n2
h

+ 1
ρ2n2

h

)
= op

(
1

nh

)
,

where Sh is an event with Pr(Sh) → 1;

(ii) for 0 < α < 1,

Pr
(

p ∈
(

p̃ − z1−α/2

√
Ṽ , p̃ + z1−α/2

√
Ṽ
))

→ 1 − α. (19)

The event Sh is discussed in Section 3.2 and S can be set to ∩hSh. As the
variance of both p̃ and p̃h does not exist, we resort to the conditional variance
under high probability events. To prove Theorem 4.5, we start with a single
stratum. We use a normal distribution (denoted by p∗

h) to approximate that
of the proportion estimator p̃h, with the distance between the two distribution
vanishing to zero in an interval. Then for multiple strata, we show that the linear
combination of the normal variables (denoted by p∗) is an accurate approxima-
tion to p̃. Last but not least, due to the consistency stated in Theorem 4.4, the
noisy estimator Ṽ is a consistent estimator for the variance of p∗. Then, a Wald
confidence interval can be constructed using p̃ and Ṽ . Details are presented in
the Proofs section.

Note that, in addition to consistency for our estimates of the variance, the
results above provide convergence rates. Compared to the estimation of variance
in non-private settings, the additional biases are merely nuances given the con-
ditions on ρ, ρ1 and ρ2. In fact, we impose these conditions to ensure that the
introduced noise does not dominate when estimating the variance. In principle,
these rates may be used in practice to adjust the length of confidence intervals
accordingly, although we do not explore that direction here.
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4.2. Comparisons of variances

The theorems presented in Section 4.1 ensure that, under proper conditions, the
desired coverage is achieved asymptotically. Therefore, to compare the perfor-
mance of the different proposed confidence intervals, we compare their widths,
which are determined by their variance estimates. In this section, we will an-
alyze our variance estimates and compare the resulting widths to that of the
non-private confidence interval.

4.2.1. Extrinsic variances

To investigate how much additional uncertainty is caused by adding noise, we
decompose the variances of the private estimators into two parts: (1) the inherent
component coming from the estimation from the sampling data, i.e, Var(p̂), and
(2) the extrinsic component introduced by the added noise, written as

Vex
def= Var(p̃) − Var(p̂).

Table 1 provides the (approximate) variances of p̃ for three algorithms, where
wh = Nh

N are the stratum weights. The variances are derived in the proofs of
Theorems 4.2, 4.3, and 4.5. The additional variance terms, Vex, can be rewritten
in terms of uh

def= Nh

nh
instead of wh, as shown in the second row of the table.

In fact, uh are called sampling weights in the literature on survey sampling. A
sample weight is defined as the number of individuals that each respondent in
the sample is representing in the population. It is the reciprocal of the sampling
rate nh

Nh
and plays an important role in statistical inference for survey data

[35, 12]. Understanding the relation between sampling weights and the variance
of the noisy estimators is helpful for practitioners to make survey designs and
the choice of algorithms.

Table 1

(Approximate) variances of p̃.

Algorithm StrNz-PubSz PopNz-PubSz StrNz-PrivSz (approximate)

Var(p̃) Var(p̂) + 1
2ρ

∑H
h=1

w2
h

n2
h

Var(p̂) + 1
2ρ1

maxh
w2

h
n2

h
Var(p̂) + 1

2ρ1

∑H
h=1

w2
h

n2
h

+ 1
2ρ2

∑H
h=1

w2
hp2

h
n2

h

Vex
1

2N2
∑H

h=1
u2

h
ρ

1
2N2 maxh

u2
h

ρ1
1

2N2
∑H

h=1 u2
h( 1

ρ1
+ p2

h
ρ2

)

With a fixed population size N and a chosen privacy level ρ, the extra vari-
ances Vex induced by the added noise are primarily dictated by uh. In PopNz-
PubSz where we add noise at the population level, Vex is solely determined by
the largest sample weight among all strata. If noise is injected into each stra-
tum, then sampling weights in all strata collectively affect Vex. In particular,
for StrNz-PrivSz, Vex is impacted by ph additionally. For all three algorithms,
smaller sampling weights lead to lower extrinsic variance.
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For comparison, we look at the ratio of Vex with the budgeting ρ1 = ρ2 = ρ/2
for PopNz-PubSz and StrNz-PrivSz. The ratio of Vex for StrNz-PubSz to PopNz-
PubSz is ∑H

h=1 u2
h

2 maxh u2
h

. (20)

Roughly speaking, when there are many strata, adding noise at the population
level gives a smaller variance. To compare StrNz-PrivSz and StrNz-PubSz, the
ratio of Vex is

2
∑H

h=1 u2
h(1 + p2

h)∑H
h=1 u2

h

, (21)

which will always be greater than 2 (due to the cost it takes to protect sample
sizes in StrNz-PrivSz) and at most 4.

4.2.2. Comparing with Non-Private CI: One Stratum Case

To assess the width in theory, we also look at the confidence interval width
ratios by comparing them to the non-private one. Since the parameters Nh, nh,
ph, ρh come into play together in the stratification setting, it is more practical
to analyze the special case with one stratum.

Let the theoretical width ratio (TWR) be

TWR =

√
Var(p̃)
Var(p̂) .

In the implementation, the real width ratio (WR), defined as
√

Ṽ / Var(p̂), will
be very close to TWR in that Ṽ is a consistent estimator for Var(p̃). Table 2
displays some relevant quantities. Note that N−1

N−n is always less than 1 but tends
to 1 when the population size is far larger than the sample size.

Table 2

Theoretical width ratios and lower bounds. The budgeting ρ1 = ρ2 = ρ/2 are used for
PopNz-PubSz and StrNz-PrivSz.

Algorithm StrNz-PubSz PopNz-PubSz StrNz-PrivSz

p̃ p̂ + N (0, 1
2ρn2 ) p̂ + N (0, 1

ρn2 ) (c + N (0, 1
ρ

))/(n + N (0, 1
ρ

))

Var(p̃) Var(p̂) + 1
2ρn2 Var(p̂) + 1

ρn2 Var(p̂) + 1+p2

ρn2

TWR
√

1 + N−1
N−n

1
2p(1−p)nρ

√
1 + N−1

N−n
1

p(1−p)nρ

√
1 + N−1

N−n
1+p2

p(1−p)nρ

Lower bound of TWR
√

1 + 2
nρ

√
1 + 4

nρ

√
1 + 2(1+

√
2)

nρ

We can obtain a lower bound for TWR by dropping the factor N−1
N−n and

minimizing over p. We can see that the width ratio mainly depends on p and
the relative magnitude between n and ρ. If p is extreme (tends to 0 or 1), TWR is
drastically large; when p is around 0.5, TWR is close to the lower bound. Also,
the added noise induces a term involving ρ. For example, under the regime
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ρ = 1/n, the three algorithms result in an interval of length at least
√

3 ≈ 1.73,√
5 ≈ 2.24, and

√
3 + 2

√
2 ≈ 2.41 as wide, respectively. It is trivial that with

one stratum, StrNz-PubSz produces a tighter confidence interval than PopNz-
PubSz does in that the ratio of Vex in (20) is 1/2. However, PopNz-PubSz will
outperform StrNz-PubSz once there are enough strata such that (20) is greater
than 1.

5. Numerical results

In this section, we conduct both simulation studies and applications to assess
and illustrate the numerical performance of the proposed algorithms. The bud-
geting ρ1 = ρ2 = ρ/2 are used for PopNz-PubSz and StrNz-PrivSz. We clip the
proportions p̃h onto [0, 1] as mentioned in Remark 2.

5.1. Simulations

We set up a set of experiments to (1) check the normality of noisy estimators,
and (2) evaluate the performance of the proposed confidence intervals by varying
the number of strata H, the true population proportion p, and the privacy level
ρ. To generate the data, we need to specify the strata sizes Nh and the sampling
rates rh. The setup of these parameters is presented in Table 3. We generate
a proportion for each stratum to create heterogeneity across strata. The true
population proportion is then calculated and reported in each experiment.

Table 3

Parameter setup. The resulting sample sizes are between 60 and 160.

Fixed parameter Value / Distribution Varying parameter Value / Distribution

α 0.1 H 1 or 20
Nh Uniform(1500, 2000) ph 0.5, Uniform(0.4, 0.6) or Uniform(0.05, 0.15)
rh Uniform(0.04, 0.08) ρ 1/ max(nh) or specified in the axis of the plot

5.1.1. Normality Check

We first check whether the distributions of p̃ in the three algorithms are reason-
ably close to the theoretical normal distributions with the corresponding means
and variances. Figure 1 displays the Q-Q plots of the theoretical distribution of
p̃ versus its sample distribution:

• Non-private: N (p, Var(p̂));
• StrNz-PubSz: N (p, Var(p̃)) as Var(p̃) in (3);
• PopNz-PubSz: N (p, Var(p̃)) as Var(p̃) in (5);
• StrNz-PrivSz: N

(
p +

∑H
h=1

whph

2ρ2n2
h

,
∑H

h=1 w2
hVh

)
with Vh specified in (51).

Note that, p̃ in Algorithms StrNz-PubSz and PopNz-PubSz are unbiased for
p while p̃ in StrNz-PrivSz is not. Nevertheless, under the condition that ρ2 =
ω(1/nh) in Theorem 3, the bias term

∑H
h=1

whph

2ρ2n2
h

is negligible and thus we
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Fig 1: Q-Q plots: Theoretical versus sample distributions of p̃ with 20 strata and p = 0.505
(resulting from ph ∼ Uniform(0.4, 0.6)), based on 10,000 repetitions each.

do not make a bias correction in Algorithm 3. We observe great alignments
between the theoretical and experimental distributions, indicating that the pri-
vate estimators in all three algorithms are indeed highly close to being normally
distributed.

5.1.2. Varying key parameters

Assured by the results of the normality check, we experiment with a wide range
of the privacy budget, different numbers of strata, and true population propor-
tions.

We examine the impact of ρ on the performance of the three private esti-
mators. The simulation is run on 10,000 repetitions and therefore the empirical
coverage falling into 90% ± 0.006 (departure of two standard deviations) is con-
sidered appropriate. In Figure 2a, the empirical coverage is reasonable except
that StrNz-PrivSz gives unnecessarily higher coverage when ρ is smaller than
around 0.005. This is because the budget is so small for the method that, with
clipping, it covers the truth more often than needed. In this case, the confidence
intervals are too wide to be as useful, as shown in Figure 2b. For all three meth-
ods, the width grows as ρ becomes smaller. However, the rates of width growth
differ: in the multiple strata case we simulate, the width of PopNz-PubSz grows
the slowest, StrNz-PrivSz grows the fastest, and StrNz-PubSz is in the middle.
Thus, the optimal privacy level should be chosen by taking into account the
method, width, and coverage. For instance, if we want a 90% of confidence level
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Fig 2: Setup: 20 strata and p = 0.505 (ph ∼ Uniform(0.4, 0.6)) with 10,000 repetitions. Figure
(a) is the empirical coverage with the black solid line indicating the nominal confidence level
of 90%. Error bars of one standard deviation are shown for coverage. The average width and
width ratio are displayed in (b) with the non-private as the benchmark. Error bars of width
are not visible in the plots and therefore not shown.

and width under 0.1, one can choose the value for ρ as small as (1) 0.001 for
PopNz-PubSz, (2) 0.003 for StrNz-PubSz, and (3) 0.01 for StrNz-PrivSz.

In addition, Table 4 shows the numerical results of three experiments with
different combinations of the numbers of strata and the true population pro-
portions. The simulation in the middle panel shares the same setting as the
experiment shown in Figure 2 but has a fixed privacy level: 1/ max(nh). This
is an analogous regime to ρ = 1/n (for simple random sampling) for multiple
strata. In the literature on differential privacy, the regime ρ = 1/n for a simple
random sample is often considered to understand how small ρ can be as the
sample size increases. Recall that a smaller ρ means a higher privacy level.

As argued above, clipping p̃h (or p̃) onto [0,1] will yield better results in some
cases. The conclusions coincide with the analyses in Section 4. The empirical
coverage of the three private ones in all simulations achieves the nominal level of
90%, as guaranteed by Theorems 4.2, 4.3, and 4.5. The case where StrNz-PrivSz
gives a 91.9% confidence level in the bottom panel is due to clipping. (When
the stratum proportions are close to the extreme, clipping is more noticeable.)

The average width and width ratio (WR) varies. With one single stratum,
WRs are near the lower bounds of theoretical width ratios (TWR) given in
Section 4.2.2, which suggests that the lower bounds are almost tight. StrNz-
PubSz gives a narrower CI than PopNz-PubSz with one stratum. But with
more strata, PopNz-PubSz outperforms StrNz-PubSz in terms of WR. Having
more strata means splitting the total privacy budget into smaller portions, which
leads to adding more noise on the whole. The CI needs to be wider to achieve the
same confidence level. As for StrNz-PrivSz, however, it always yields the widest
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Table 4

Simulation results under ρ = 1/n (or ρ = 1/ max(nh)) regime based on 10,000 repetitions.
The strata sizes and sampling rates are drawn as described in Table 3. For the multiple

strata case, the resulting sample sizes in nh range from 72 to 152, and ρ is set to be
1/152 ≈ 6.58 × 10−3. For the one-stratum case, we set the sample size to 152 so that we

have the same level of privacy.

Non-Private StrNz-PubSz PopNz-PubSz StrNz-PrivSz

1 stratum, p = 0.5
coverage 0.893 0.901 0.894 0.901

coverage SD 3.09 ×10−3 2.99 ×10−3 3.08 ×10−3 2.99 ×10−3

width 0.127 0.228 0.295 0.327
width SD 5.47 × 10−4 9.85 × 10−4 8.89 × 10−3 3.15 × 10−2

CI (0.436, 0.564) (0.386, 0.614) (0.352, 0.648) (0.34, 0.667)
WR 1 1.786 2.318 2.567

20 strata, p = 0.505 (ph ∼ Uniform(0.4, 0.6))
coverage 0.902 0.895 0.902 0.902

coverage SD 2.97 ×10−3 3.07 ×10−3 2.97 ×10−3 2.97 ×10−3

width 0.035 0.073 0.043 0.111
width SD 1.08 × 10−4 1.58 × 10−4 5.87 × 10−4 5.22 × 10−3

CI (0.488, 0.523) (0.469, 0.542) (0.483, 0.527) (0.457, 0.568)
WR 1 2.074 1.239 3.168

20 strata, p = 0.103 (ph ∼ Uniform(0.05, 0.15))
coverage 0.902 0.919 0.904 0.899

coverage SD 2.97 ×10−3 2.73 ×10−3 2.95 ×10−3 3.01 ×10−3

width 0.021 0.067 0.033 0.096
width SD 6.17 × 10−4 5.21 × 10−4 8.71 × 10−4 3.94 × 10−3

CI (0.092, 0.113) (0.073, 0.143) (0.086, 0.119) (0.072, 0.168)
WR 1 3.189 1.571 4.563

CI due to the additional price it pays to protect sample sizes simultaneously.
On the other hand, with the same number of strata (20 here), we see that more
extreme ph leads to a larger WR than ph in the middle range. This is because
the factor ph(1 − ph) comes into play as p(1 − p) does in TWR in Table 2 for
the one stratum case.

We also provide the sample standard deviation of the widths (width SD). In
general, the non-private method results in a smaller standard deviation than
the private ones. In some cases, clipping helps reduce the width SD for the
private algorithms. With the same privacy level, there is more fluctuation in
width for PopNz-PubSz compared to StrNz-PubSz. This is because we use one-
half of the privacy budget and directly add noise to the variance estimate. As
expected, StrNz-PrivSz has the largest width SD since the magnitude of width
is the largest and the ratio variable is heavy-tailed by design. Nevertheless,
compared to the width, the width SD for all methods is so small that it does
not compromise the effectiveness of the confidence interval.
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5.2. Applications

In this section, we apply the proposed methods to the 1940 Census full enumer-
ation from IPUMS USA [36] and evaluate the performance of three differentially
private confidence intervals. To conduct stratified random sampling on the data
set, the state-level geographical variable “STATEICP” (49 categories, constitut-
ing the then-48 states and Washington, D.C.) is used for stratification. Under
stratified random sampling with H = 49 strata, we estimate the national un-
employment rate for the first application. In the second application, we are
interested in studying the discrepancy in income levels between black and white
men.

5.2.1. Confidence intervals for the unemployment rate

As an important indicator of the status of the national economy, the unem-
ployment rate is the percentage of unemployed workers in the total labor force
consisting of both the employed and unemployed. Thus, we consider all the indi-
viduals who are either employed or unemployed as the whole population. In the
1940 Census data set, the binary characteristic “EMPSTAT” represents employ-
ment status. The full enumeration is considered the truth and the true popula-
tion proportion is p = 9.346%. To carry out stratified random sampling, sample
sizes or sampling rates are selected for all 49 strata. For modern relevance, we
simulate in a manner intended to mimic the canonical design implemented in
the current American Community Survey (ACS), by choosing a typical range of
sampling rates used in ACS which is [0.5%, 15%]. See Table 5 for detail.

Table 5

Sampling rates.

Stratum size Sampling rate

nh ≤ 5 × 104 15%
5 × 104 < nh ≤ 105 10%
105 < nh ≤ 5 × 105 5%
5 × 105 < nh ≤ 106 2%
106 < nh ≤ 5 × 106 1%
nh > 5 × 106 0.5%

To apply and assess the proposed algorithms, we experiment with a wide
range of small privacy budgets: ρ ∈ [10−6, 10−3]. Each method is repeated 10,000
times and the empirical coverage, the average CI width, and the average CI
width ratio (WR) are computed. As shown in Figure 3a, the empirical coverage
is always around the nominal level which is chosen at the level of 90% for the
whole range of privacy levels. In Figure 3b, the CI width and CI width ratio
with the non-private CI as the benchmark, share the same shape. Even when
the CI given by StrNz-PrivSz is 8 times the non-private CI width, the CI width
is only 0.01 due to the large sample size. Both CI width and width ratio should
be taken into account when choosing an optimal privacy level.
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Fig 3: The empirical coverage with error bars, average width and width ratio of DP-CIs of
the unemployment rate.

5.2.2. Confidence intervals for the difference in income level

In the second application, we want to investigate whether there was a discrep-
ancy between the income levels of white males (population 1) and that of black
males (population 2). Note that only those who had valid income numbers in
the 1940 Census are considered. Since the poverty thresholds were not devel-
oped until the 1960s and thus are not available for the 1940 data, the national
income average is used as a threshold instead. We are interested in examining
the difference in subpopulation proportions of those whose income levels passed
this threshold.

The geographic feature “STATEICP” is used for stratification, yielding 49
strata, with stratum size ranges of (41838, 4621442) for the population of white
males and (50, 309214) for the population of black males. Sampling rates are
adaptively chosen based on stratum sizes. For the population of white males, the
range of sampling rates is also [0.5%, 15%], whereas the range of sampling rates
is [0.5%, 30%] for the population of black males given its small stratum sizes.
Additionally, to allow solid approximations based on the asymptotic results, we
impose that the sample sizes are adjusted to be 50 if the sampling rates give
smaller sizes than 50. See Table 6 for detail.

Let p1 and p2 denote the proportions of eligible individuals who earned more
than the national average income level $442.12. The true values of proportions
are p1 = 49.0223% and p2 = 29.5152%. Let pdiff = p1 − p2, then the true
difference in these two proportions is pdiff = 19.5071%. By the additivity of two
independent normal distributions, naturally, we use the following differentially
private CI:

p̃diff + z1−α/2

√
Ṽ(p̃diff), (22)
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Table 6

Sampling rates for two populations. Stratum sizes nh ∈ (4.1 × 104, 4.7 × 106) for the
population of white males and stratum sizes nh ∈ (50, 3.1 × 105) for the population of black
males. *The sample size will be adjusted to be 50 if the above sampling rate results in a size

smaller than 50.
Stratum size Nh of white males Sampling rate

Nh ≤ 5 × 104 15%
5 × 104 < Nh ≤ 105 10%
105 < Nh ≤ 5 × 105 5%
5 × 105 < Nh ≤ 106 2%
106 < Nh ≤ 4 × 106 1%
Nh > 4 × 106 0.5%

Stratum size Nh of black males Sampling rate*

Nh ≤ 500 30%
500 < Nh ≤ 5 × 103 15%
5 × 103 < Nh ≤ 104 5%
104 < Nh ≤ 2 × 104 2%
2 × 104 < Nh ≤ 3 × 104 1%
nh > 3 × 104 0.5%

Fig 4: The empirical coverage with error bars, average width and width ratio of DP-CIs of
the difference of the above-national-income-level proportions between black and white males
with valid income values.

where Ṽ (·) denotes a private estimator of variance, p̃diff is defined as p̃1 − p̃2
and

Ṽ(pdiff) = Ṽ(p1) + Ṽ(p2).

In Figure 4, similar patterns are observed in this application as in the first.
All CIs have empirical coverage around/above the nominal confidence level as
in the simulation study in Section 5.1.2. The phenomenon of higher coverage
is due to small ρ and effective clipping. When the range of stratum sizes is
large (it is (50, 309214) in this application), that is, when the stratum sizes are
very different, a large privacy budget ρ should be chosen. The choice of a small
ρ harms the estimates of small-sized strata. We advise that the smallest ρ be
chosen given the tolerance of uncertainty in terms of width and/or width ratio.
For example, if the accuracy requirement is that the width should be under 0.05
or WR under 5, then the best choices of ρ among the experiments in Figure 4b
are (1) 0.0001 for PopNz-PubSz, (2) 0.0018 for StrNz-PubSz, and (3) 0.0056 for
StrNz-PrivSz.
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6. Discussion

We have designed three algorithms to construct confidence intervals for the
population proportion under stratified random sampling with zero concentrated
differential privacy guarantees. We consider both the case where the sample sizes
are public and the case where they are private information. Theoretical results
including privacy guarantees and asymptotic properties are established. With
proper conditions on the relation between the privacy budget and sample sizes,
as stated in the theorems, the resulting confidence intervals will achieve the
desired coverage asymptotically, and the width tends to be that of a non-private
confidence interval when the sample sizes go to infinity.

In the simulation studies and two applications, we have experimented with a
wide range of privacy budgets under a variety of parameter setups. The three
algorithms always perform well in terms of empirical coverage. The width and
width ratio are in a reasonable range even under the strict regime where ρ =
1/ maxh nh. Typically in practice, a constant between 0.001 to 10 is chosen to
be the privacy budget. According to our experiments, with the choice of the
smallest budget in this range, 0.001, the three algorithms still have fairly good
results even when the smallest stratum has only a size 50 (as demonstrated in
the second application).

The comparative analysis of the three algorithms in Section 4.2 gives ac-
tionable guidance to practitioners. When releasing the population proportion is
the only goal and there are enough strata (such that Eq.(20) regarding sam-
ple weights is greater than 1), PopNz-PubSz is the better option. However, if
stratum proportions should also be released or there are just a few strata, StrNz-
PubSz is preferable. On the other hand, when the population proportion and
sample sizes must be protected simultaneously, StrNz-PrivSz is the only algo-
rithm presented in this paper. StrNz-PrivSz, compared to the case with public
sample sizes, needs a larger budget to meet the same width requirement on
account of the additional cost of protecting sample sizes.

There are a few open questions worth considering for future research. In
this paper, we discuss the classic case where the number of strata is fixed,
and the sample sizes tend to infinity. In principle, asymptotic normality is also
valid in other settings with finite sample sizes. For example, it has been shown
in the non-private setting that as the total sample size N → ∞ with many
small samples or a few large samples, or some combination thereof, central limit
theorems hold under certain (complex) conditions [2]. Under the constraints of
differential privacy, we have shown that the trade-off between the privacy and
accuracy (a.k.a., utility) of DP-CIs depends on the smallest sample, i.e, recall
the condition, ρ = ω(1/nh) for all h, in Section 4.1. The overall privacy loss
is determined by the largest privacy loss among all strata. However, when the
strata sizes Nh remain finite, the weights (wh = Nh/N) of these strata tend to
0 as N → ∞. Therefore, the noise injected into these small strata should not
harm the overall accuracy of the intervals if N is sufficiently large.

More interestingly, we do not provide ‘PopNz-PrivSz’ – an analogous algo-
rithm to PopNz-PubSz for the private sample sizes case. To protect both the
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population proportion and the sample sizes, the direct addition of noise to the
non-private aggregated estimator is not plausible. One should consider more
sophisticated mechanisms other than directly adding noise to the statistics. If
‘PopNz-PrivSz’ were proposed, we shall expect it to yield a narrower confidence
interval since we only need to publish the private population proportion without
being able to provide private confidence intervals for stratum proportions at the
same time.

Another direction for future research would be optimal budget allocation. We
do not discuss how to best divide the total budget for PopNz-PubSz or StrNz-
PrivSz. Budgeting for the composed application of the algorithms may also be
of interest, like in Section 5.2.2 where we apply the algorithms twice for two
independent populations.

Lastly, one broad direction is to develop the differentially private versions
for other alternatives to the basic Wald interval, such as the Wilson Interval,
Jeffreys interval, etc.(see [22] for a comparative summary of seven such types
of confidence intervals for proportions). Many of these latter are specifically
designed for the case of small sample sizes, which we do not consider here and
for which we expect fundamentally different approaches to differential privacy
likely to be necessary.

Appendix A: Proofs

A.1. Proof of Theorem 3.1

Lemma A.1. Let X ∼ N (μ, σ2) and S = {μ − a ≤ X ≤ μ + a}. For any a > 0
and an integer k ≥ 1, the conditional even moments

E[(X − μ)2k | S] = σ2k(2k − 1)!! − O
(

e− a2
2σ2 a2k−1

)
, (23)

where the big-O hides a constant depending on σ and k.

Proof. Without loss of generality, we assume μ = 0. We prove the lemma by
induction. Set k = 1, integrate by parts,

E[X2IS ] =
∫ a

−a

x2 1
σ

√
2π

e− x2
2σ2 dx

= σ√
2π

(
−xe− x2

2σ2
∣∣a
−a

+
∫ a

−a

e− x2
2σ2 dx

)
.

Integrate by substitution, the integral in the second term becomes∫ a

−a

e− x2
2σ2 dx = σ

√
2π erf

(
a

σ
√

2

)
where

erf(z) = σ

∫ z

0
e−t2

dt
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is the error function. Then,

E[X2IS ] = σ2 erf
(

a

σ
√

2

)
− O

(
e− a2

2σ2 a
)

.

Assuming

E[X2kIS ] = σ2k(2k − 1)!! erf
(

a

σ
√

2

)
− O

(
e− a2

2σ2 a2k−1
)

, (24)

then integrate by parts for the k + 1 case,

E[X2(k+1)IS ] =
∫ a

−a

x2k+2 1
σ

√
2π

e− x2
2σ2 dx

= σ√
2π

∫ a

−a

x2k+1 · x

σ2 e− x2
2σ2 dx

= σ√
2π

(
−x2k+1e− x2

2σ2
∣∣a
−a

+ (2k + 1)
∫ a

−a

x2ke− x2
2σ2 dx

)
= σ2(2k + 1)E[X2kIS ] − O

(
e− a2

2σ2 a2k+1
)

.

Plug in (24), we obtain

E[X2(k+1)IS ] = σ2k+2(2k + 1)!! erf
(

a

σ
√

2

)
− O

(
e− a2

2σ2 a2k+1
)

.

So far we have proved (24). Note that

Pr(S) =
∫ a

−a

1
σ

√
2π

e− x2
2σ2 dx = erf

(
a

σ
√

2

)
,

and that the image of erf(z) is between (−1, 1). Therefore,

E[X2k | S] = E[X2kIS ]/ Pr(S) = σ2k(2k − 1)!! − O
(

e− a2
2σ2 a2k−1

)
.

Proof of (12) in Theorem 3.1. Consider the Taylor series of 1
x at x = μ:

1
x

=
∞∑

j=0

(−(x − μ))j

μj+1 = 1
μ

− x − μ

μ2 + (x − μ)2

μ3 − (x − μ)3

μ4 + . . .

Let ym be the partial sum of the above series, i.e., ym(x) =
∑m

k=0
(−(x−μ))k

μk+1 .
Then ym(x) converges to 1

x in (0, 2μ) which contains [1, 2μ − 1]. Let

g(x) =
∞∑

k=0

|x − μ|k
μk+1 =

{
1
x , if 1 ≤ x ≤ μ

1
2μ−x if μ < x ≤ 2μ − 1
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Then g is integrable as∫ 2μ−1

1
|g(x)|dν =

∫ μ

1

1
x

dν +
∫ 2μ−1

μ

1
2μ − x

dν = 2
∫ μ

1

1
x

dν < ∞,

where dν = f(x)dx is induced by N (μ, σ2) conditional on event S. Note also
that |ym(x)| ≤ g(x) for any naturals m and x ∈ [1, 2μ − 1]. By the dominated
convergence theorem, the operations of limit and integral are exchangeable for
ym(x). ∫ 2μ−1

1

1
x

dν =
∫ 2μ−1

1
lim

m→∞
ym(x)dν

= lim
m→∞

∫ 2μ−1

1
ym(x)dν

= lim
m→∞

∫ 2μ−1

1

⎛⎝ m∑
j=0

(−(x − μ))j

μj+1

⎞⎠ dν

= lim
m→∞

⎛⎝ m∑
j=0

∫ 2μ−1

1

(−(x − μ))j

μj+1 dν

⎞⎠

(25)

Then,

E

(
1
X

| S

)
=

∞∑
j=0

1
μj+1E

[
(−(X − μ))j | S

]
=

∞∑
j=0

1
μ2j+1E

[
(X − μ)2j | S

]
=

k∑
j=0

1
μ2j+1E

[
(X − μ)2j | S

]
+ 1

μ

∞∑
j=k+1

E

[(
X − μ

μ

)2j

| S

]
.

(26)
The second equality is because the odd moments are zero due to symmetry.

Note that given event S, | X−μ
μ | ≤ μ−1

μ < 1, then

E

[(
X − μ

μ

)2k+2
| S

]
≤
(

μ − 1
μ

)2
E

[(
X − μ

μ

)2k

| S

]
. (27)

It follows that
∞∑

j=k+1

E

[(
X − μ

μ

)2j

| S

]
≤

∞∑
j=0

(
μ − 1

μ

)2j

E

[(
X − μ

μ

)2k+2
| S

]

= μ2

2μ − 1E
[(

X − μ

μ

)2k+2

| S

]

= O

(
1

μ2k+1

)
· E[(X − μ)2k+2 | S].
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Applying Lemma A.1, by the choice of a = μ − 1, (26) becomes

E

(
1
X

| S

)
= 1

μ

k∑
j=0

(2j − 1)!!σ2j

μ2j
+ O

(
σ2k+2

μ2k+2

)
.

Proof of (13) in Theorem 3.1. We conduct a similar procedure for the second
moment of X | S. Based on the Taylor expansion

1
x2 =

∞∑
j=0

(j + 1)(−(x − μ))j

μj+2 = 1
μ2 − 2(x − μ)

μ3 + 3(x − μ)2

μ4 − 4(x − μ)3

μ5 + · · · ,

we have

E

(
1

X2 | S

)
=

∞∑
j=0

j + 1
μj+2 E

[
(−(X − μ))j | S

]
=

∞∑
j=0

2j + 1
μ2j+2 E

[
(X − μ)2j | S

]
=

k∑
j=0

2j + 1
μ2j+2 E

[
(X − μ)2j | S

]
+ 1

μ2

∞∑
j=k+1

(2j + 1)E
[(

X − μ

μ

)2j

| S

]
.

(28)

Due to (27), it follows that

∞∑
j=k+1

(2j + 1)E
[(

X − μ

μ

)2j

| S

]

≤ E

[(
X − μ

μ

)2k+2
| S

]
·

∞∑
j=0

(2k + 3 + 2j)
(

μ − 1
μ

)2j

= E

[(
X − μ

μ

)2k+2

| S

]
·

⎡⎣(2k + 3)
∞∑

j=0

(
μ − 1

μ

)2j

+ 2
∞∑

j=1
j

(
μ − 1

μ

)2j
⎤⎦

= E

[(
X − μ

μ

)2k+2

| S

]
·
[

(2k + 3)μ2

2μ − 1 + 2μ2(μ − 1)2

(2μ − 1)2

]

= E

[(
X − μ

μ

)2k+2

| S

]
· O(μ2)

= O

(
1

μ2k

)
· E[(X − μ)2k+2 | S],

(29)
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where the term
∑∞

j=1 j
(

μ−1
μ

)2j

is a sum of an arithmetic–geometric sequence.
By Lemma A.1, (28) becomes

E

(
1

X2 | S

)
= 1

μ2

k∑
j=0

(2j + 1)!!σ2j

μ2j
+ O

(
σ2k+2

μ2k+2

)
. (30)

A.2. Proof of Theorem 4.1

Proof for Algorithm 1. Under neighboring relation ∼ss, only one record changes
within one stratum and sample sizes remain the same. Applying the Gaussian
mechanism to each stratum at the level of ρ gives ρ-zCDP guarantee. By post-
processing, the confidence interval is also ρ-zCDP.

Proof for Algorithm 2. The sensitivities of p̂ and V̂ar(p̂) are Δp and ΔV , re-
spectively. Applying the Gaussian mechanism, it follows that p̃ is ρ1-zCDP and
Ṽ is ρ2-zCDP. By basic composition, the confidence interval p̃ ± z1− α

2

√
Ṽ is

(ρ1 + ρ2)-zCDP.

Proof for Algorithm 3. By the Gaussian mechanism and the basic composition
property of zCDP, we know that p̃h is ρ-zCDP. Under neighboring relation
∼r, only one record changes within one stratum. Then, by post-processing, the
confidence interval is ρ-zCDP.

A.3. Proof of Theorem 4.2

Before proving the theorem, we revisit the finite-population CLT first:

Theorem A.2 (Theorem 1, [33]). Consider a finite population Π = {X1, ..., XN }
of size N . Let μ be the population mean and X̄n be the mean of a simple ran-
dom sample of size n from Π, and Var(X̄n) is the variance of X̄n. The finite
population variance of Π is denoted by

v = 1
N − 1

N∑
i=1

(Xi − μ)2.

As N → ∞, if

1
min(n, N − n) · max1≤i≤N (Xi − μ)2

v
→ 0, (31)

we have
X̄n − μ√
Var(X̄n)

d→ N (0, 1). (32)
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The variance of X̄n is determined by the population variance v which is
unknown. Nevertheless, the sample variance V̂ar(X̄n) can be used to estimate
v. To make sure the CLT still holds when substituting Var(X̄n) by V̂ar(X̄n),
the consistency of V̂ar(X̄n) is crucial, as stated in the following lemma.

Lemma A.3. Let V̂ar(X̄n) be the sample variance. V̂ar(X̄n) is an unbiased
estimator for Var(X̄n). Moreover, under the condition in Theorem A.2, as N →
∞,

V̂ar(X̄n)/Var(X̄n) p→ 1.

Now we prove Theorem 4.2:

Proof of Theorem 4.2. It suffices to show p̃h−ph√
Ṽh

d→ N (0, 1) for all h. By the

finite-population CLT in Theorem A.2, we know

p̂h − ph√
Var(p̂h)

d→ N (0, 1).

Since p̃h = p̂h + eh where eh ∼ N (0, 1
2ρn2

h
), we have

p̃h − ph√
Var(p̃h)

d→ N (0, 1) (33)

where
Var(p̃h) = Var(p̂h) + 1

2ρn2
h

.

Let

Ṽh =
(

Nh − nh

Nh

) p̃h(1 − p̃h) + 1
2ρn2

h

nh − 1 + 1
2ρn2

h

= V̂ar(p̂h) +
(

Nh − nn

Nh

) eh − 2p̃heh − e2
h + 1

2ρn2
h

nh − 1 + 1
2ρn2

h

.

(34)

Since eh ∼ N (0, 1
2ρn2

h
), we have eh = OP ( 1√

ρnh
). Then, the second term of

(34) is OP ( 1√
ρn2

h
), and thus, Ṽh − Var(p̃h) = V̂ar(p̂h) − Var(p̂h) + OP

(
1√
ρn2

h

)
.

Note that V̂ar(p̂h) is of order 1
nh

, and that by Lemma A.3, V̂ar(p̂h) p→ Var(p̂h).
Therefore, Ṽh

p→ Var(p̃h), and thus, Ṽ
p→ Var(p̃).

Combining the consistency of Ṽ with (33), we have

p̃h − ph√
Ṽh

d→ N (0, 1) (35)

by Slutsky’s Theorem. Then, p̃−p√
Ṽ

d→ N (0, 1). Therefore, the confidence interval

given by p ± z1−α/2

√
Ṽ has asymptotic coverage level 1 − α.
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A.4. Proof of Theorem 4.3

Proof. Since p̂−p√
Var(p̂)

d→ N (0, 1) and p̃ = p̂ + N (0, Δ2
p/2ρ1) with Δp = maxh

wh

nh
,

it follows that
p̃ − p√
Var(p̃)

d→ N (0, 1),

and

Var(p̃) = Var(p̂) +
Δ2

p

2ρ1
.

In Algorithm 2, we set

Ṽ = V̂ar(p̂) +
Δ2

p

2ρ1
+ eV , (36)

where eV ∼ N (0,
Δ2

V

2ρ2
) with ΔV = maxh

(
Ch

nh

(
1 − 1

nh

))
and Ch = w2

h
Nh−nh

Nh

1
nh−1 .

Since ΔV = O( 1
maxh n2

h
), we have eV = OP ( 1

max
h

√
ρ2n2

h
). Thus, Ṽ − Var(p̃) =

V̂ar(p̂) − Var(p̂) + OP

(
1

maxh
√

ρn2
h

)
. Since V̂ar(p̂) p→ Var(p̂) by finite-population

CLT, we have Ṽ
p→ Var(p̃).

Therefore, by Slutsky’s Theorem,

p̃ − p√
Ṽ

d→ N (0, 1). (37)

Then, the confidence interval given by p ± z1−α/2

√
Ṽ has the asymptotic cov-

erage level 1 − α.

A.5. Proof of Theorem 4.4

Proof. For ñ ∼ N (n, 1
2ρ2

), by Proposition 3.1, we derive the kth-order Taylor
series of the conditional expectation of p̃ given S = {1 ≤ ñ ≤ 2n − 1}:

E (p̃ | S) = p
k∑

j=0

(2j − 1)!!
n2j(2ρ2)j

+ O

(
1

n2k+1ρk+1
2

)
. (38)

For example, when k = 2,

E (p̃ | S) = p

(
1 + 1

2n2ρ2
+ 3

4n4ρ2
2

)
+ O

(
1

n5ρ3
2

)
. (39)

To obtain a Taylor expansion for the conditional variance, we plug

E

(
1
ñ

| S

)
= 1

n

k∑
j=0

(2j − 1)!!
n2j(2ρ2)j

+ O

(
1

n2k+2ρk+1
2

)
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and

E

(
1
ñ2 | S

)
= 1

n2

k∑
j=0

(2j + 1)!!
n2j(2ρ2)j

+ O

(
1

n2k+2ρk+1
2

)
into

Var(p̃ | S) = E(p̃2 | S) − (E(p̃ | S))2 = Ec̃2
E

(
1
ñ2 | S

)
− (E(p̃ | S))2,

by which we derive a general expansion for the conditional variance:

Var(p̃ | S) = Var(p̂)
k∑

j=0

(2j + 1)!!
n2j(2ρ2)j

+ p2

⎛⎜⎝ k∑
j=0

(2j + 1)!!
n2j(2ρ2)j

−

⎛⎝ k∑
j=0

(2j − 1)!!
n2j(2ρ2)j

⎞⎠2
⎞⎟⎠

+ 1
2ρ1

k∑
j=0

(2j + 1)!!
n2j+2(2ρ2)j

+ O

(
1

n2kρk+1
2

)
+ O

(
1

n2k+2ρ1ρk+1
2

)
.

(40)
When k = 2,

Var(p̃ | S) = Var(p̂)
(

1 + 3
2n2ρ2

+ 15
4n4ρ2

2

)
+ p2

(
1

2n2ρ2
+ 2

n4ρ2
2

− 6
8n6ρ3

2
− 9

16n8ρ4
2

)
+ 1

2ρ1

(
1
n2 + 3

2n4ρ2
+ 15

4n6ρ2
2

)
+ O

(
1

n4ρ3
2

)
+ O

(
1

n6ρ1ρ3
2

)
.

(41)
Based on Taylor expansion with k = 2 for both conditional mean and variance

given in (39) and (41), under the condition 1
ρ1n = o(1) and 1

ρ2n = o(1), we have

E(p̃ | S) = p + o

(
1
n

)
and

Var(p̃ | S) = Var(p̂) + o

(
1
n

)
.

Then, p̃ | S is asymptotically unbiased. Note that Var(p̂) is of order 1
n and thus

p̃ | S has a vanishing variance. Therefore, p̃ | S converges to p in probability.
Note also that Pr(S) → 1 as n → ∞, then for any ε > 0,

Pr(|p̃ − p| > ε) = Pr(|p̃ − p| > ε | S) + Pr(|p̃ − p| > ε | Sc) → 0.

That is, p̃ is a consistent estimator for p.
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A.6. Proof of Theorem 4.5

To prove Theorem 4.5, we need the following theorem and lemmas.

Theorem A.4 (Theorem 1, [18]). Let X be a normal random variable with
positive mean μx, variance σ2

x and coefficient of variation δx = σx/μx such that
0 < δx < λ ≤ 1, where λ is a known constant. For every ε > 0, there exists
γ(ε) ∈ (0,

√
λ2 − δ2

x) and also a normal random variable Y independent of X,
with positive mean μy, variance σ2

y and coefficient of variation δy = σy/μy that
satisfy the conditions,

0 < δy ≤ γ(ε) ≤
√

λ2 − δ2
x < λ (42)

for which the following result holds. Any z that belongs to the interval

I =
[
β − σz

λ
, β + σz

λ

]
,

where β = μx/μy, σz = β
√

δ2
x + δ2

y, satisfies that

|G(z) − FZ(z)| < ε,

where G(z) is the cumulative distribution function of N (β, σ2
z), and FZ is that

of Z = X/Y . Note that once a given Y fulfills the closeness between the cor-
responding G to FZ , any other random variables with a smaller coefficient of
variation will satisfy this result too.

Lemma A.5. For a population of size N , let p be the true proportion in the
population with the attribute of interest. Consider simple random sampling with
sample size n. Let Z∗ ∼ N (p, V ) where V =

(
N−n
N−1

)
p(1−p)

n + 1
2ρ1n2 + p2

2ρ2n2 . If
ρ1 = ω(1/n2) and ρ2 = ω(1/n), as N − n and n both tend to infinity, then for
any z ∈ (0, 2p),

|Fp̃(z) − FZ∗(z)| → 0. (43)

Proof. By the CLT in Theorem A.2, we know that p̂ ∼ AN (p, Var(p̂)). Recall
that c̃ = np̂ + N (n, 1

2ρ1
), then c̃ ∼ AN (np, n2 Var(p̂) + 1

2ρ1
).

Let X̃ ∼ AN (np, n2 Var(p̂)+ 1
2ρ1

) and X ∼ N (np, n2 Var(p̂)+ 1
2ρ1

). Therefore,
for any ε > 0, there exists some n0 = n0(ε) such that for any x and n > n0,

|FX̃(x) − FX(x)| < ε, (44)

where F denotes the cumulative density function. Let Y ∼ N (n, 1
2ρ2

), Z̃ = X̃/Y

and Z = X/Y , then

FZ̃(z) = Pr
(

X̃

Y
< z

)
= Pr(X̃ < Y z) =

∫ ∞

−∞
FX̃(yz)fy(y)dy,
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where fy(y) is the density function of Y . From (44), |FX̃(yx) − FX(yx)| < ε. It
follows that,∫ ∞

−∞
(FX(yx) − ε)fy(y)dy <

∫ ∞

−∞
FX̃(yx)fy(y)dy <

∫ ∞

−∞
(FX(yx) + ε)fy(y)dy,

which is equivalent to∣∣∣∣∫ ∞

−∞
FX̃(yx)fy(y)dy −

∫ ∞

−∞
FX(yx)fy(y)dy

∣∣∣∣ < ε,

i.e.,
|FZ̃(z) − FZ(z)| < ε. (45)

Let δx and δy be the coefficients of variation of X and Y , respectively, then
δ2

x = (Var(p̂) + 1
2ρ1n2 )/p2 and δ2

y = 1
2ρ2n2 . Under the condition 1

ρ1n = o(1),
we have δ2

x = O( 1
n ) since Var(p̂) = O( 1

n ). Under the condition 1
ρ2n = o(1),

we know δ2
y = o( 1

n ) and then δy = o(δx). When n is sufficiently large, δy is
sufficiently small. Let λ =

√
δ2

x + 2δ2
y and FZ∗(z) be the distribution function of

Z∗ ∼ N (p, Var(p̂)+ 1
2ρ1n2 + p2

2ρ2n2 ). By Lemma A.4, for a normal random variable
Y independent of X, with small enough δy, the condition (42) is satisfied and
we have

|FZ(z) − FZ∗(z)| < ε, (46)

for any z ∈ I =
[
p − σz∗

λ , p + σz∗
λ

]
where σz∗ = p

√
δ2

x + δ2
y. Hence, for z ∈ I,

|FZ̃(z) − FZ∗(z)| < |FZ̃(z) − FZ(z)| + |FZ(z) − FZ∗(z)| < 2ε. (47)

Note also that as n → ∞, σz∗
λ → p, and the limit of I is (0, 2p).

So far, we have shown that as n goes to infinity, under the conditions 1
ρ1n =

o(1) and 1
ρ2n = o(1), for z ∈ Ih,

|FZ̃(z) − FZ∗(z)| → 0. (48)

Lemma A.6. Let Z1, ..., ZH and Z∗
1 , ..., Z∗

H be independent continuous random
variables which depend on n. Let F denote the distribution function. As n → ∞,
if

|FZh
(z) − FZ∗

h
(z)| → 0

holds for any h = 1, ..., H and z in an interval (ah, bh) and Pr(Zh ∈ (ah, bh)) →
1, Pr(Z∗

h ∈ (ah, bh)) → 1. Then,∣∣∣F∑H
h=1 chZh

(z) − F∑H
h=1 chZ∗

h
(z)
∣∣∣ → 0

for any z ∈
(∑H

h=1 chah,
∑H

h=1 chbh

)
, where ch’s are constants.
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Proof. It suffices to show that, for any z ∈ (a1c1 + a2c2, b1c1 + b2c2),∣∣Fc1Z1+c2Z2(z) − Fc1Z∗
1 +c2Z∗

2 (z)
∣∣ → 0

as n → ∞. We have

Fc1Z1+c2Z2(z)
= Pr(c1Z1 + c2Z2 < z)

= Pr
(

Z1 <
z − c2Z2

c1

)
=
∫
R

FZ1

(
z − c2x

c1

)
fZ2(x)dx

=
∫
R

[
FZ1

(
z − c2x

c1

)
− FZ∗

1

(
z − c2x

c1

)]
fZ2(x)dx

+
∫
R

FZ∗
1

(
z − c2x

c1

)
fZ2(x)dx

=
∫
R

[
FZ1

(
z − c2x

c1

)
− FZ∗

1

(
z − c2x

c1

)]
fZ2(x)dx + Fc1Z∗

1 +c2Z2(z).

(49)

When a1 < (z − c2x)/c1 < b1, we know∣∣∣∣FZ1

(
z − c2x

c1

)
− FZ∗

1

(
z − c2x

c1

)∣∣∣∣ → 0. (50)

Since FZ1(b1) − FZ1(a1) → 1 and FZ∗
1 (b1) − FZ∗

1 (a1) → 1, for any a < a1,
it holds that FZ1(a) → 0 and FZ∗

1 (a) → 0, and for any b > b1, FZ1(b) → 1
and FZ∗

1 (b) → 1. Thus, (50) also holds when (z − c2x)/c1 is outside (a1, b1).
Therefore, the first term of the right-hand side of (49) converges to 0. Then∣∣Fc1Z1+c2Z2(z) − Fc1Z∗

1 +c2Z2(z)
∣∣ → 0.

Similarly, we have ∣∣Fc1Z∗
1 +c2Z2(z) − Fc1Z∗

1 +c2Z∗
2 (z)

∣∣ → 0.

By the triangle inequality,∣∣Fc1Z1+c2Z2(z) − Fc1Z∗
1 +c2Z∗

2 (z)
∣∣ → 0.

Proof of Theorem 4.5. By Lemma A.5, for each stratum, under the conditions
ρ1 = ω(1/nh) and ρ2 = ω(1/nh), the distribution function of p̃h converges to
that of N (ph, Vh) in the interval (0, 2ph) where

Vh =
(

Nh − nh

Nh − 1

)
ph(1 − ph)

nh
+ 1

2ρ1n2
h

+ p2
h

2ρ2n2
h

. (51)
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Let p∗ ∼ N (p, V ) where V =
∑H

h=1 w2
hVh. By Lemma A.6, in the interval (0, 2p),

we have
|Fp̃(z) − Fp∗(z)| → 0. (52)

where Fp̃ denotes the distribution function of p̃ designed in Algorithm 3 and
Fp∗ is the distribution function of p∗.

Let L = p − z1−α/2
√

V , U = p + z1−α/2
√

V , L̃ = p − z1−α/2

√
Ṽ and Ũ =

p + z1−α/2

√
Ṽ . Note that L and U are constants whereas L̃ and Ũ are random

variables. Provided that nh’s are sufficiently large, U and L lie in the interval
where the following hold due to (52),

|Fp̃(U) − Fp∗(U)| → 0 (53)

and
|Fp̃(L) − Fp∗(L)| → 0. (54)

On the other hand, by Theorems 3.1 and 4.4, we know that p̃h
p→ ph and 1

ñh

p→
1

nh
under the conditions ρ1 = ω(1/nh) and ρ2 = ω(1/nh). By the continuous

mapping theorem, Ṽh
p→ Vh as nh → ∞, and, hence, Ṽ

p→ V . Therefore, Ũ
p→ U

and L̃
p→ L. Since Fp̃ is continuous, we have

|Fp̃(Ũ) − Fp̃(U)| p→ 0 (55)

and
|Fp̃(L̃) − Fp̃(L)| p→ 0. (56)

Therefore,

Pr
(

p ∈
(

p̃ − z1−α/2

√
Ṽ , p̃ + z1−α/2

√
Ṽ
))

= Pr
(

p − z1−α/2

√
Ṽ < p̃ < p + z1−α/2

√
Ṽ
)

=
(
Fp̃(Ũ) − Fp̃(U)

)
+ (Fp̃(U) − Fp∗(U))

−
(
Fp̃(L̃) − Fp̃(L)

)
− (Fp̃(L) − Fp∗(L)) + (Fp∗(U) − Fp∗(L)) .

Putting together (53) through (56) and Fp∗(U) − Fp∗(L) = 1 − α, we have

lim
n→∞

Pr
(

p ∈
(

p̃ − z1−α/2

√
Ṽ , p̃ + z1−α/2

√
Ṽ
))

→ 1 − α.

Since 1
ñh

p→ 1
nh

, under the conditions ρ1 = ω(1/nh) and ρ2 = ω(1/nh),
it holds that 1

2ρ1ñ2
h

= oP ( 1
nh

) and p̃2
h

2ρ2ñ2
h

= oP ( 1
nh

). Therefore, the additional
error in estimating the conditional variance of p̃ caused by the injected noise is
Op

(
1

ρ1n2
h

+ 1
ρ2n2

h

)
= op

(
1

nh

)
.
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