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Abstract

We use subhalo abundance and age distribution matching to create magnitude-limited mock galaxy catalogs at
z∼ 0.43, 0.52, and 0.63 with z-band and 3.4 μm W1-band absolute magnitudes and r− z and r−W1 colors. From
these magnitude-limited mocks, we select mock luminous red galaxy (LRG) samples according to the (r− z)-based
(optical) and (r−W1)-based (infrared) selection criteria for the LRG sample of the Dark Energy Spectroscopic
Instrument (DESI) survey. Our models reproduce the number densities, luminosity functions, color distributions,
and projected clustering of the DESI Legacy Surveys that are the basis for DESI LRG target selection. We predict
the halo occupation statistics of both optical and IR DESI LRGs at fixed cosmology and assess the differences
between the two LRG samples. We find that IR-based SHAM modeling represents the differences between the
optical and IR LRG populations better than using the z band and that age distribution matching overpredicts the
clustering of LRGs, implying that galaxy color is uncorrelated with halo age in the LRG regime. Both the optical
and IR DESI LRG target selections exclude some of the most luminous galaxies that would appear to be LRGs
based on their position on the red sequence in optical color–magnitude space. Both selections also yield
populations with a nontrivial LRG–halo connection that does not reach unity for the most massive halos. We find
that the IR selection achieves greater completeness (90%) than the optical selection across all redshift bins
studied.

Unified Astronomy Thesaurus concepts: Large-scale structure of the universe (902); Galaxies (573)

1. Introduction

The Dark Energy Spectroscopic Instrument (DESI; DESI
Collaboration et al. 2016a, 2016b) survey is a spectroscopic
galaxy redshift survey of unprecedented scale that will classify
tens of millions of galaxies in four target classes over ∼14,000
deg2 at the lowest redshifts of this program. DESI’s Bright
Galaxy Survey (BGS; Hahn et al. 2022) extends to z∼ 0.4,
while the luminous red galaxy (LRG; Zhou et al. 2023) sample
will reach to z∼ 1 and cover 20 times the volume of the BGS.3

The DESI target samples are optimized for precision
measurements of cosmological parameters. However, DESI
also offers novel opportunities to study galaxy evolution and
the high-mass end of the stellar-to-halo mass relation (SHMR),
provided that sample selection effects are well understood.

Unlike the magnitude-limited BGS sample of relatively nearby
galaxies, the DESI LRG sample is selected with a comparatively
complex set of magnitude and color cuts, creating incompleteness
that may depend on any combination of galaxy color, stellar mass,
and redshift. However, the LRG sample covers a volume 20 times
larger than that of the BGS sample and will contain a much higher
number density of spectroscopic redshifts at 0.4< z< 1 than any
previous spectroscopic galaxy redshift survey, making it a good
sample for statistical studies with negligible sample and cosmic
variance uncertainties. The rarity and associated low number
density of massive galaxies (∼2× 10−5Mpc−3 for

( ) )M Mlog 11.5>*  means that such large volumes are
essential for obtaining sample sizes large enough for statistically
significant measurements of the high-mass end of the galaxy
stellar mass function (SMF) and the SHMR of LRGs.
Existing studies of the galaxy–halo relationship for “DESI-

like” LRG samples include halo occupation distribution (HOD)
modeling (e.g., Seljak 2000; Berlind & Weinberg 2002;
Bullock et al. 2002; Berlind et al. 2003; Zheng & Wein-
berg 2007; Zheng et al. 2007) in Zhou et al. (2021) and
semianalytic modeling in Hernández-Aguayo et al. (2021) with
GALFORM (Cole et al. 2000), which predicts absolute
magnitudes with dust attenuation.
In its simplest form, the HOD model provides a statistical

description for how galaxies occupy dark matter halos solely as
a function of halo mass. Zhou et al. (2021) fit the projected
clustering of DESI-like LRGs measured in five redshift bins in
the range 0.4< z< 0.9 with a five-parameter HOD model plus
a sixth nuisance parameter to account for photometric redshift
uncertainties. They found similar HOD parameters at
0.4< z< 0.8 and statistically significant differences in the
model parameters for only the highest redshift bin
(0.8< z< 0.9). While Zhou et al. (2021) demonstrated that
clustering measurements using photometric redshifts are
sufficient to constrain the HOD parameters of DESI-like
LRGs, the standard HOD framework they used does not
accommodate galaxy populations with halo occupation frac-
tions that do not reach unity for the most massive halos.
Hernández-Aguayo et al. (2021) applied the GALFORM

semianalytic model (SAM) to the Planck-Millennium cosmo-
logical N-body simulation (Baugh et al. 2018). They then
converted predicted absolute magnitudes to apparent magni-
tudes at various redshift snapshots, enabling the DESI LRG
target selection to be applied directly to GALFORM mock
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3 DESI will observe emission line galaxies to z ∼ 1.6 and quasars to z ∼ 3.5.

1

https://orcid.org/0000-0003-3582-6649
https://orcid.org/0000-0003-3582-6649
https://orcid.org/0000-0003-3582-6649
https://orcid.org/0000-0002-0553-3805
https://orcid.org/0000-0002-0553-3805
https://orcid.org/0000-0002-0553-3805
mailto:aberti@ucsd.edu
http://astrothesaurus.org/uat/902
http://astrothesaurus.org/uat/573
https://doi.org/10.3847/1538-4357/ace76e
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ace76e&domain=pdf&date_stamp=2023-08-29
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ace76e&domain=pdf&date_stamp=2023-08-29
http://creativecommons.org/licenses/by/4.0/


galaxy catalogs to select mock LRG samples. Hernández-
Aguayo et al. (2021) found that the DESI LRG selection
criteria exclude a small but important fraction of the most
massive galaxies ( ( )M Mlog 11.15>*  ). Consequently, their
model predicts that the halo occupation fraction of LRGs does
not reach unity for the most massive halos and actually drops
with increasing mass, indicative of a nontrivial LRG–halo
connection that is not modeled well with a standard HOD. By
comparing the HOD and subhalo mass functions of stellar
mass–selected mock galaxies against those of mock LRG
samples, Hernández-Aguayo et al. (2021) showed that the
DESI LRG selection cuts likely affect the selection of subhalos
populated by LRGs; i.e., (sub)halo mass is, by itself,
insufficient to determine whether a subhalo hosts an LRG.

Subhalo abundance matching (SHAM; e.g., Vale &
Ostriker 2004; Conroy et al. 2006; Behroozi et al. 2010;
Reddick et al. 2013) is an empirical technique for assigning
galaxies to dark matter halos in numerical N-body simulations
by assuming a correlation between a galaxy property—usually
luminosity or stellar mass—and a halo property such as mass or
circular velocity. In the simplest application of SHAM, mock
galaxy catalogs are constructed to reproduce the number
density and luminosity or SMF of a target data set with a single
free parameter to allow scatter in the galaxy–halo property
correlation.

Extensions to the SHAM framework to incorporate depen-
dencies between additional galaxy and halo properties are
broadly referred to as conditional abundance matching (CAM;
e.g., Hearin et al. 2014; Zentner et al. 2014). In addition to a
primary galaxy–halo property correlation, CAM models
assume a correlation between secondary galaxy and halo
properties at a fixed value of the primary property. Age
distribution matching (Hearin & Watson 2013) is a form of
CAM that equates galaxy color or a similar property with a
proxy for the age of dark matter halos. Unlike the standard
HOD framework, in which the statistical relationship between
galaxies and dark matter halos is solely a function of stellar and
halo mass, CAM can naturally accommodate galaxy assembly
bias, the dependence of galaxy properties (besides stellar mass)
on the mass accretion history of their host halos (e.g., Zentner
et al. 2014; Wechsler & Tinker 2018, and references therein).

The SHAM framework has been used to study the
dependence of sample completeness on redshift and stellar
mass for LRGs from the Baryon Oscillation Spectroscopic
Survey (BOSS; Dawson et al. 2013), which obtained spectro-
scopic redshifts of 1.5 million galaxies with ( )M Mlog 11>* 
to z∼ 0.7. BOSS contains two color- and magnitude-selected
samples of massive galaxies ( ( )M Mlog 11;>*  Reid et al.
2015): the LOWZ sample of LRGs at 0.15< z< 0.43 and the
approximately stellar mass-limited constant mass (CMASS)
sample, which includes galaxies of all colors at 0.43< z< 0.8.
Saito et al. (2016) used SHAM to construct z∼ 0.5 mock

galaxy catalogs for the BOSS CMASS sample with and
without added assembly bias effects. They used the Stripe 82
Massive Galaxy Catalog (Bundy et al. 2015) to replicate the
total galaxy SMF above ( )M Mlog 10.5>*  over
0.43< z< 0.7 and assign galaxies to halos in the MultiDark
simulation (Riebe et al. 2013). Saito et al. (2016) found that
assembly bias does factor into the galaxy–halo connection for
high-mass galaxies; i.e., the SHMR for these galaxies has some
dependence on galaxy color and should not be inferred from
the clustering signal without any consideration of color.

Yu et al. (2022) modeled LRGs from BOSS and eBOSS
(Dawson et al. 2016) at 0.2< z< 1.0 with a SHAM framework
that includes two additional free parameters to account for
redshift uncertainty and sample incompleteness.
SHAM has also been used to model DESI-like samples at

low redshift. Safonova et al. (2021) used SHAM and age
distribution matching to create z∼ 0.1 mock galaxy catalogs
representative of the DESI BGS sample with r-band luminos-
ities and g− r colors. The low-redshift range of the BGS
sample allowed them to utilize spectroscopic redshifts from the
Sloan Digital Sky Survey (SDSS; York et al. 2000) and Galaxy
and Mass Assembly (Loveday et al. 2012) project.
In this work, we use SHAM and age distribution matching to

create magnitude-limited mock galaxy catalogs at multiple
redshifts within the redshift range of the DESI LRG sample.
Two distinct target selection algorithms were considered for the
DESI LRG sample: an optical selection that uses r− z color
and an infrared selection that uses r−W14 color. We select
mock LRG samples from our magnitude-limited mocks based
on both the optical and IR DESI target selections that match the
number density and two-dimensional color–magnitude space
distribution of each DESI LRG target sample. We then predict
the clustering signal and halo occupation statistics of these
samples as a function of redshift.
Our method is a novel approach to modeling DESI LRGs

that complements existing SAM and HOD models by utilizing
the full photometric samples that are the basis of DESI LRG
target selection. We offset the precision of the training data lost
to photometric redshift errors by driving down cosmic variance
uncertainties with complete photometric samples from an
unprecedented survey volume. Finally, this work offers a
comparative study of the samples selected by the optical and IR
selection algorithms considered for DESI LRGs.
The structure of this paper is as follows. Section 2 describes

the cosmological simulation and photometric galaxy samples
used in this work. Section 3 describes our modeling procedure
and the two-point statistics used to constrain our models. In
Section 4, we present the predicted properties of the LRG
samples, and in Section 5, we summarize the conclusions of
this work. Where applicable, we assume the cosmological
parameter values of Planck Collaboration et al. (2016), h =
0.6777 and Ωm= 0.307115, under the assumption of a flat,
ΛCDM cosmological model.

2. Simulations and Data

In this section, we describe the cosmological simulation,
halo finder, and associated halo properties used for our models.
We also present the data from which we select parent galaxy
samples for training our models, as well as the DESI LRG
target selection functions.

2.1. Simulations

We use halo catalogs and merger histories obtained with the
publicly available ROCKSTAR phase-space temporal halo finder
(Behroozi et al. 2012b) for the MultiDark Planck 2 (MDPL2)
simulation5 (Klypin et al. 2016). The MDPL2 assumes Planck
cosmology (h = 0.6777, Ωm= 0.307115; Planck Collaboration
et al. 2016) and evolves 38403 dark matter particles in a
1 h−1 Gpc cubic volume beginning at z= 120. The particle

4 Here W1 is the 3.4 μm band of WISE (Wright et al. 2010).
5 www.cosmosim.org
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resolution is 1.51× 109 h−1Me. In total, 126 snapshots are
available between z∼ 15 and z= 0. For this work, we use three
snapshots at z = 0.425, 0.523, and 0.628.

The ROCKSTAR halo finder is designed to preserve particle–
halo membership and identify accurate halo merger trees across
multiple time steps of a simulation. For MDPL2, the ROCK-
STAR halo catalogs are mass-complete for halos (including
subhalos) above Mvir 11.4× 1011 h−1Me.

2.1.1. Subhalo Abundance Matching

In SHAM modeling, mock galaxies are assigned to dark
matter halos by exploiting the correlation between some galaxy
property—usually stellar mass or luminosity—and a halo
property, such as virial mass or circular velocity. Circular
velocity is defined as ( ) ( )v r z GM r z r, ,circ º < , where M
(<r, z) is the enclosed mass within a radius r at redshift z.
SHAM has been tested with several versions of halo circular
velocity. In this work, we use vpeak, the peak value of the
maximum circular velocity ( ( ) { ( )}v z v r zmax ,max circ= )
achieved throughout a halo’s entire assembly history.

2.1.2. Age Distribution Matching

Age distribution matching assumes a correlation at fixed
luminosity between galaxy color and some proxy (at fixed
model luminosity) for the age of the halo in which each mock
galaxy resides. Redder colors (i.e., older, quenched galaxies)
are generally assigned to older halos. Model colors are assigned
at fixed luminosity (in practice in narrow luminosity bins)
because the galaxy color distribution is highly dependent on
luminosity.

We equate the cumulative distribution gal of galaxies of k-
corrected color  at fixed absolute magnitude MX to the
cumulative distribution halo of halo age proxy A at fixed
model absolute magnitude:

( ∣ ) ( ∣ ) ( )M A Mmodel . 1X Xgal halo< = <  

In Equation (1), ( ) ( )M r z M, ,X z= - or (r−W1, MW1) for
this work.

Implementations of age distribution matching at z∼ 0 using
spectroscopic galaxy redshifts from SDSS have used the halo
starvation redshift, zstarve, for the halo age proxy A in
Equation (1) (Hearin & Watson 2013; Hearin et al. 2014;
Safonova et al. 2021). In general, zstarve represents the redshift
at which a galaxy loses its supply of cold gas, which leads to
the quenching of star formation and the reddening of the
galaxy. Multiple physical processes relevant to a halo’s
assembly history can affect the value of zstarve for a given
halo, which Hearin & Watson (2013) incorporated into the
following definition:

{ } ( )z z z zmax , , . 2starve char acc formº

Equation (2) is described as follows.

1. The zchar is either the redshift at which a halo’s mass first
exceeds some characteristic value, Mchar, or the redshift
of the relevant simulation snapshot (zsim) for halos that
never achieve Mchar.

2. The zacc is the redshift at which a subhalo accretes onto a
parent halo (for host halos z zacc sim= ). Hearin & Watson
(2013) followed Behroozi et al. (2012c), who defined zacc
as the snapshot after which a subhalo always remains a
subhalo. They noted that alternative definitions, such as

that of Wetzel et al. (2014), where zacc is the snapshot at
which a subhalo has been identified as such for two
consecutive snapshots, have little impact on their results.

3. The zform is the “formation” redshift at which a halo
transitions from the fast to slow accretion regime.

We use same definition of zform as Hearin & Watson (2013),
motivated by Wechsler et al. (2002),

( )z
c

a4.1
1, 3form

vir

0
º -

where cvir= Rvir/Rs is a halo’s concentration at the time of
observation, indicated by a0. For host halos, a0 is the scale
factor of the relevant simulation snapshot, while for subhalos,
a0 is the scale factor at the time of accretion: zacc= 1/a0− 1.
Here Rvir is the virial radius of a halo, and Rs is the NFW scale
radius (Navarro et al. 1997).
We adopt the value of Mchar= 1012 h−1 Me used in Hearin

& Watson (2013), who noted that their results are insensitive to
the precise value of Mchar used. The empirical and physical
motivations for Mchar are described in detail in Section 6.3 of
Hearin & Watson (2013). Briefly, there is empirical support for
a characteristic halo mass above which star formation is highly
inefficient: ∼1012 h−1 Me is the halo mass at which the SHMR
peaks, falling off rapidly at higher halo masses (Yang et al.
2012, 2013; Behroozi et al. 2013; Moster et al. 2013; Watson
& Conroy 2013), and Behroozi et al. (2012a) showed that this
mass remains essentially constant throughout much of cosmic
history.
We compute zstarve for all halos in our model from the

publicly available ROCKSTAR halo merger trees for MDPL2.
Figure 1 shows sample halo mass accretion histories and
corresponding zstarve values for four randomly selected halos
from the z 0.425sim = snapshot of MDPL2.

Figure 1. Mass accretion histories and zstarve values of four randomly selected
halos from the z 0.425sim = snapshot of the MDPL2 simulation. The most
massive halo (purple dashed–dotted line) has the earliest starvation redshift
(zstarve = 4.63), corresponding to when its mass first reaches the characteristic
value Mchar = 1012 h−1 Me. The other three halos also reach Mchar (at later
redshifts), but in accordance with Equation (2), the redshift at which this occurs
for each halo is not necessarily the same as its zstarve value; e.g., the least
massive halo (orange solid line) has zstarve = 1.36, although its mass does not
exceed Mchar until z  1. The shaded region below each curve corresponds to a
halo’s mass accretion history before it reaches zstarve.
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2.2. Photometry and Redshift Estimates

We use publicly available catalogs from the ninth data
release (DR9) of the DESI Legacy Imaging Surveys6 (Dey
et al. 2019). The Legacy Surveys provide optical imaging in the
g, r, and z bands from a combination of three public
surveys: the DECam Legacy Survey (DECaLS; Flaugher
et al. 2015; Blum et al. 2016), the Beijing–Arizona Sky Survey
(BASS; Zou et al. 2017), and the Mayall z-band Legacy Survey
(MzLS; Silva et al. 2016). The Legacy Surveys also include
four mid-infrared bands from the Wide-field Infrared Survey
Explorer (WISE; Wright et al. 2010), although only the 3.4 μm
W1 band is relevant for DESI LRG target selection.

In total, the Legacy Surveys cover 14,000 deg2 visible from
the northern hemisphere, comprised of two contiguous regions
within the northern and southern galactic caps. To avoid effects
from systematic differences among the data from the three
component optical surveys, we limit our study to the
approximately 9000 deg2 covered by DECaLS.

Zhou et al. (2021) computed photometric redshifts for the
full catalog of DECaLS DR7 objects using the random forest
regression machine-learning algorithm in Scikit-Learn
(Pedregosa et al. 2011) and a “truth” data set of spectroscopic
and many-band photometric redshifts for objects within DR7.
They quantified the accuracy of their photometric redshifts with
the normalized median absolute deviation (NMAD,
σNMAD= 1.48×median(|Δz|/(1+ zspec); Dahlen et al. 2013),
where Δz= zphot− zspec and zspec are the redshift truth values
used to train the random forest algorithm, and reported
σNMAD= 0.021 for LRGs. Their outlier rate for LRGs is 1%,
where outliers are objects with |Δz|> 0.1× (1+ zspec).
Additionally, Zhou et al. (2021) estimated that their redshifts
are accurate for objects with an apparent z-band magnitude of
z< 21, well beyond the z< 20.7 cut we use to select our target
galaxy samples, described in Section 2.4 below.

2.3. DESI LRG Target Selection

The DESI LRG target sample is intended to serve as a
cosmological tracer spanning a redshift range of
∼0.4< z 1.0. The sample lies between the low-redshift
BGS (Hahn et al. 2022) tracer sample at z 0.4 and the
emission line galaxy (Raichoor et al. 2022) sample, optimized
to trace the density field over the approximate range
1.0< z< 1.6.

Two different selection algorithms were considered for the
DESI LRG sample: an optical selection function based on z-
band magnitude and r− z color and an infrared selection
function based on W1-band magnitude and r−W1 color. Both
selections are tuned to yield a constant LRG target density of
∼600 objects deg–2 and a comoving number density around
5× 10−4 h3 Mpc−3 at 0.4< z< 0.8. Both the optical and IR
selections were tested in DESI’s Survey Validation (DESI et al.
2023, in preparation) observations. Based largely on the
calibration of W1-band imaging, the DESI Main Survey
exclusively uses the IR selection. A complete description of
DESI LRG target selection is given in Zhou et al. (2023). Here
we cover the details most relevant for this work.

Due to slight differences in photometry among BASS,
MzLS, and DECaLS, the optical and IR DESI LRG target
selections use slightly different cuts for the north (BASS and

MzLS) and south (DECaLS) galactic caps. As this work uses g,
r, and z magnitudes from DECaLS, we use the corresponding
optical LRG target selection cuts (Zhou et al. 2020):

( ) ( )z W r z1 0.8 0.6, 4a- > ´ - -

(( ) ( ))
( ) ( )
g W g r
r W

1 2.6 AND 1.4 OR
1 1.8 , 4b

- > - >
- >

( ( )) ( ) ( )r z z r z0.45 16.83 AND 0.7 4c- > ´ - - >
( ( )) ( )r z z zAND 0.19 13.80 , 21.5. 4dfiber- > ´ - <

The relevant IR LRG target selection cuts for this work are
(Zhou et al. 2023)

( ) ( )z W r z1 0.8 0.6, 5a- > ´ - -
( ) ( ) ( )g W r W1 2.9 OR 1 1.8 , 5b- > - >

(( ( ))
( )) ( ) ( )
r W W
r W W r W

1 1.8 1 17.14 AND
1 1 16.33 OR 1 3.3 , 5c

- > ´ -
- > - - >

( )z 21.6. 5dfiber <

Equations 4(a) and 5(a) are designed to reject stars,
Equations 4(b) and 5(b) remove blue and low-redshift objects,
Equations 4(c) and 5(c) are color-dependent magnitude limits
that select only the most luminous objects at a given redshift,
and zfiber in Equations 4(d) and 5(d) is the expected z-band flux
within a DESI fiber. All magnitudes in Equations (4a) and (5a)
use the AB system and are corrected for galactic extinction
using the relevant MW_TRANSMISSION values from the
Legacy Surveys DR9.

2.4. Parent Galaxy Samples

A primary goal of this work is to create mock galaxy
catalogs that are both statistically complete and represent a
superset of the color–magnitude space occupied by DESI LRG
targets. Selection of DESI LRG targets is based entirely on g, r,
z, and W1 apparent magnitudes (see Section 2.3), so we would
ideally create mock catalogs where every mock galaxy has an
apparent magnitude in each of these bands. SHAM, however,
exploits the correlation between some physical halo property
(e.g., circular velocity) and a physical galaxy property
independent of redshift (e.g., luminosity). We therefore train
our mock catalogs on galaxy samples that are complete to an
absolute magnitude threshold that includes all DESI LRG
targets (in the relevant redshift bin; see below).
To select suitable parent galaxy samples, we first apply an

apparent z-band magnitude cut of z< 20.7 and take an
additional step to remove stars by excluding catalog sources
with TYPE= PSF. We also apply the masks described in
Table 1, which are provided with DECaLS DR9, to remove
sources affected by bad pixels or contamination from bright
stars. Finally, a geometric mask is applied to ensure complete
angular coverage by the catalogs of random points provided
with DR9 (see Section 3.1). The resulting sample contains

( )108 galaxies, sufficient to divide it into redshift bins and
maintain a low statistical error.
We initially tested six redshift bins of width Δzphot= 0.1

between zphot= 0.4 and 1.0 but found that DECaLS photo-
metry is only deep enough to apply our model up to zphot∼ 0.7.
At zphot 0.7, the data are incomplete above the absolute
magnitude threshold that encompasses DESI LRG targets. We
therefore limit our study to three redshift bins of Δzphot= 0.1
within 0.4< zphot< 0.7.6 www.legacysurvey.org/dr9
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For each redshift bin, we compute z- and W1-band absolute
magnitudes using photometric redshifts to obtain distance
moduli. We k-correct the absolute magnitudes to the redshift of
the relevant simulation snapshot, zsim (see Table 2), with the
IDL package kcorrect (Blanton & Roweis 2007) using
DECam g, r, and z and WISE W1 and W2 filter responses. For
each redshift bin, we use the simulation snapshot closest to the
median zphot of the data; e.g., galaxies in the 0.4< zphot< 0.5
bin are k-corrected to z 0.425sim = .

The final step in selecting parent galaxy samples is to
identify z- and W1-band absolute magnitude cuts in each
redshift bin that yield complete samples that also include the
full absolute magnitude range of DESI LRG targets in that bin.
Figure 2 shows k-corrected absolute magnitude distributions
for all z< 20.7 DECaLS galaxies in each redshift bin. For each
bandpass and redshift bin combination, we identify an absolute
magnitude cut (dashed black lines in Figure 2) that eliminates
fainter galaxies where DECaLS becomes incomplete while
preserving 99% of the DESI LRG targets (solid orange and
hatched purple histograms).

Table 2 lists the details of each parent galaxy sample,
including the relevant absolute magnitude cut, sample size,
effective number density, and included fractions of IR and
optical DESI LRG targets. Besides enforcing statistically
complete parent samples, these magnitude cuts also eliminate
galaxies with larger photometric redshift errors, increasing the
accuracy of clustering measurements (see Section 3.1).

Figure 3 shows example optical (r− z vs. Mz) and IR
(r−W1 vs. MW1) color–magnitude diagrams of the magnitude-
limited parent galaxy samples for the 0.4< zphot< 0.5 redshift
bin. Also shown in Figure 3 are the color–magnitude
distributions of the optical and IR DESI LRG targets.

3. Modeling

In this section, we describe our modeling procedure and the
two-point statistics we use to constrain the model parameters.

3.1. Projected Correlation Functions

One goal of this work is to exploit the completeness and
enormous volume of DECaLS data, which comes at the
expense of the precision clustering measurements achievable
with spectroscopic redshifts. Zhou et al. (2021) demonstrated
the constraining power of the projected correlation function,
ωp(rp), of DECaLS galaxies computed with line-of-sight
distances derived from photometric redshifts (they used this
statistic to compute HOD parameters of DESI-like LRGs
selected from DECaLS DR7). The projected correlation
function conveys a three-dimensional correlation function, ξ
(r), integrated along the line of sight, effectively eliminating the
effects of radial distance uncertainty due to photometric
redshift errors:

( ) ( ) ( ) ( )r r d r d, 2 , , 6p p p
0

p
max

max max

ò òw x p p x p pº =
p

p p

-

where rp is the projection of r into the plane perpendicular to
the line-of-sight separation, π.

We use the Corrfunc package (Sinha & Garri-
son 2017, 2019) to calculate ωp(rp) for both our target galaxy
samples and mock catalogs in 19 logarithmic bins between
rp> 0.1 and 44 h−1 Mpc. We also compute ωp(rp) in

additional bins at rp< 0.1 h−1 Mpc but do not use these
measurements for model fitting.
As our data samples are confined to narrow redshift bins of

width Δzphot= 0.1, photometric redshift errors will cause some
galaxies that belong to a given redshift bin to scatter into an
adjacent bin and be excluded from the calculation of ωp(rp) for
their true bin. To account for this, we adopt the method used by
Zhou et al. (2021; see their Figure 8); we use the Landy–Szalay
estimator (Landy & Szalay 1993) for the cross-correlation of
two samples, D1 and D2:

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )r
D D D R D R

R R
1 . 7p p

1 2 1 2 2 1

1 2max

max

åw =
- -

+
p

p

-

Each term of Equation (7) denotes pair counts between two
samples, where D and R respectively indicate samples of data (
i.e., galaxies) and random points with the same angular and
redshift distributions as the corresponding data sample. Here
D1 is all galaxies within a given redshift bin,
z z zmin phot max< < , where zmin and zmax are the limits of the
bin, while D2 is all galaxies within a wider redshift range
defined by ( ) ( )z z zmin max phot max maxp p- < < + , where

h150 Mpcmax
1p = - . We verify our implementation of this

method with Corrfunc by reproducing the projected
correlation functions of DECaLS LRGs from Zhou et al.
(2021; see their Figure 9) using a different clustering code.
The DECaLS data include catalogs of random points with

the same angular sky coverage and mask information as the
survey footprint, which we use to construct our random
samples. We use 20 times as many random as data points for
each galaxy sample and draw redshifts for random points from
the redshift distribution of the corresponding data sample.
To measure the ωp(rp) of our mock catalogs, we take

advantage of the Corrfunc theory module, which can
quickly calculate the autocorrelation function of a sample
within a periodic volume using analytic random pair counts.
We confirmed that this method produces the expected result by
calculating the ωp(rp) of several mock catalogs directly from
pair counts between mock galaxies and catalogs of random
points constructed for the simulation volume.

Table 1
Bitmasks Applied to Photometry for Parent Galaxy Sample Selection

MASKBIT Description

5, 6, 7 Bad pixel in all of a set of overlapping g-, r-, or z-band
images

8, 9 Bad pixel in a WISE W1 or W2 bright star mask
11 Pixel within locus of a radius–magnitude relation for

Gaiaa DR2 stars to G < 16
12 Pixel in a Siena Galaxy Atlasb large galaxy
13 Pixel in a globular cluster

FITBIT Description

6 Source is a medium-bright star
7 Gaia sourcec

8 Tycho-2 stard

Notes. Additional details at legacysurvey.org/dr9/bitmasks.
a Gaia Collaboration (2018).
b Moustakas et al. (2021).
c Gaia Collaboration et al. (2016).
d Høg et al. (2000).
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3.2. Jackknife Error Estimation and Goodness of Fit

To estimate the uncertainty of the ωp(rp) measurements of
our target galaxy samples, we use healpy7 (Górski et al.
2005; Zonca et al. 2019) with Nside= 6 to divide the angular
sky coverage of each galaxy sample into Njk regions of roughly
equal area, suitable for jackknife resampling. We then measure
ωp(rp) in each jackknife sample, where each jackknife sample
consists of the entire galaxy sample with one jackknife region
removed, and compute the covariance matrix as follows:

( )( ) ( )
N

N
Cov

1
, 8ij

ℓ

N

i
ℓ

i j
ℓ

j
jk

jk 1

jk

å w w w w=
-

- -
=

where i
ℓw and j

ℓw are the ωp(rp) of the ℓth jackknife region for
the ith and jth rp bins, respectively, and iw and jw are the mean
values of ωp(rp) across all jackknife regions for the ith and jth
rp bins, respectively.

With the covariance matrix in hand, we quantify how
successful any instance of our model is at fitting the projected
correlation function of the data by computing χ2 per degree of
freedom ( )2cn ,

( )( ) ( ) ( )1
Cov , 9

i

N

j

N

i i ij j j
2

1 1

mod 1 mod
r rp p

ååc
n

w w w w= - -n
= =

-

where Nrp is the number of rp bins used for fitting, ν is equal to
Nrp minus the number of free model parameters, ωi and ωj are
the data ωp(rp) values in the ith and jth rp bins, respectively,
and i

modw and j
modw are the ωp(rp) values of the relevant mock

catalog in the ith and jth rp bins, respectively.

3.3. Luminosity Assignment

We use SHAM to create mock galaxy populations with the
same number density and luminosity distribution as the parent
galaxy sample by assuming the relation

( ) ( ) ( )n M n v ; 10eff h peak< = >

i.e., the (effective) number density of galaxies, neff, of
magnitude M or brighter equals the number density of halos,
nh, with circular velocity vpeak or greater.

To assign absolute magnitudes to halos in each redshift bin,
we implement the following procedure.

1. Compute for each parent galaxy sample the effective
galaxy number density as a function of absolute
magnitude in band Xä {z,W1}, neff(<MX). We compute
neff(<MX) for each parent galaxy sample as follows. For
each galaxy in the sample, we calculate an effective
volume, Veff,

( ) ( ( ) ) ( )V M f V M V , 11X Xeff max min= -W

where fΩ is the fractional solid angle covered by the
parent galaxy sample, Vmin is the comoving volume of the
lower limit of the redshift bin, and ( )V MXmax is the
comoving volume of either the upper limit of the redshift
bin or the maximum possible redshift a galaxy of
magnitude MX could have and still be observed at the
magnitude limit of the sample, whichever is smaller. The
effective galaxy number density is the sum of the inverse
of Veff(MX) over all galaxies in the sample:

( ) [ ( )] ( )n M V M . 12X
i

i
Xeff eff

1å< = -

2. Assign absolute magnitudes to mock galaxies with no
scatter in the luminosity–vpeak relation according to
Equation (10). For each halo, we find the cumulative
number density nh(>vpeak) corresponding to its value of
vpeak. We then assign to each halo a mock galaxy with the
absolute magnitude MX at which the effective number
density neff(<MX) of the parent galaxy sample equals
nh(>vpeak).

3. To incorporate magnitude-dependent scatter into the
luminosity–vpeak relation, we assign to each mock galaxy
a new absolute magnitude, M X¢ , where M X¢ is drawn
from a Gaussian distribution centered at MX with width
σmag. The σmag is proportional to the absolute value of
MX, and the constant of proportionality is a free parameter
in the model. We then rank order all mock galaxies
(including their vpeak values) by M X¢ , rank order the
original distribution of mock magnitudes MX, and assign
the ordered original mock magnitude distribution to the
mock galaxy catalog ordered by M X¢ . This method
incorporates scatter into the luminosity–vpeak relation
while exactly replicating the target luminosity function in
the resulting mock galaxy catalog.

4. Scatter the positions of the mock galaxies along one of
the three axes of the simulation volume to mimic the
uncertainty in the radial (line-of-sight) position of our
target galaxy samples due to photometric redshift errors.
For each mock galaxy, we draw a “scattered” coordinate

Table 2
Properties of Parent Galaxy Samples and Corresponding Simulation Snapshot Redshifts (zsim)

Redshift Bin zsim Luminosity Cuta Ngal neff
Included Fraction of DESI LRG Targets

[×10−3 h3 Mpc−3] Optical Selection IR Selection

0.4 < zphot < 0.5 0.425 0.43Mz < −21.60 8,314,309 5.60 0.992 0.982
0.43MW1 < −22.25 7,565,153 4.33 0.992 0.992

0.5 < zphot < 0.6 0.523 0.52Mz < −21.60 7,804,346 2.86 0.992 0.988
0.52MW1 < −22.85 4,909,857 2.01 0.992 0.992

0.6 < zphot < 0.7 0.628 0.63Mz < −21.85 6,548,126 1.46 0.994 0.990
0.63MW1 < −23.15 4,758,470 1.12 0.993 0.994

Note.
a The k-correction redshifts are rounded to two decimal places for clarity; e.g., 0.43Mz indicates that the absolute z-band magnitudes are k-corrected to z 0.425sim = .

7 healpix.sourceforge.net
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x¢ from a Gaussian distribution of width σLOS centered at
the galaxy’s original x position. Mock galaxies that
scatter out of the simulation volume of 1 h−3 Gpc3 are
wrapped back in to preserve the periodic boundary
conditions; e.g., a mock galaxy at x= 25 h−1 Mpc that
scatters to x h50 Mpc1¢ = - - is placed at
x= 950 h−1 Mpc. We repeat this process for the other
two simulation axes (i.e., y and z).

5. For each mock catalog, compute the projected correlation
function, ωp(rp) (see Section 3.1), averaged over the three
axes of the simulation volume as described in the
previous step. We then compute the goodness of fit per
degree of freedom, 2cn (see Section 3.2), of the model fit
to the mean ωp(rp) of the relevant parent galaxy sample.
We measure 2cn for each mean ωp(rp) in bins of absolute
magnitude (Mz or MW1).

6. Repeat steps 3–5 for additional values of σmag and σLOS
as needed to minimize 2cn in each luminosity bin. In
practice, we first coarsely sample a wide range of values

of σmag and σLOS:

⎡
⎣⎢

⎤
⎦⎥∣ ∣ ∣ ∣

( )
M M

0 1.0, 0.1, 13a
X X

mag mag 
s s

D =

( )h h0 150 Mpc, 10 Mpc. 13bLOS
1

LOS
1 s sD =- -

We then more densely sample (using
Δ(σmag/|MX|)= 0.01 and ΔσLOS= 5 h−1 Mpc) narrower
ranges of both parameters around the initial coarse-
grained values that minimize 2cn .

7. Finally, identify the value of σmag that coincides with the
region of σmag–σLOS parameter space containing the
minimum 2cn across all luminosity bins (see Table 3) and
parameterize the dependence of σLOS on absolute
magnitude, MX, as follows:

( ) ( )M s M . 14X XLOS LOS LOS,0s s= +

The best-fit values of σmag, sLOS, and σLOS,0 are given in
Table 4. The values of sLOS and σLOS,0 are determined by
linear fits to σLOS

i versus MX
iá ñ, where σLOS

i are the
values that minimize the 2cn of ωp(rp) at fixed σmag

8 in the
ith luminosity bin, Mi

X.

The luminosity assignment stage of our modeling procedure
involves three free parameters, σmag, sLOS, and σLOS,0, which
account for scatter in the luminosity–vcirc relation and the
photometric redshift errors of our target galaxy samples. We
constrain these parameters by fitting the projected correlation
functions of mock galaxy catalogs created from our model to
those of the corresponding parent galaxy samples.
Figures 4 and 5 show ωp(rp) for the W1- and z-band absolute

magnitude–limited parent galaxy samples, respectively, and

Figure 2. Distribution of k-corrected z-band (left column) and W1-band (right
column) absolute magnitudes for the three redshift bins in our
study: 0.4 < zphot < 0.5 (top), 0.5 < zphot < 0.6 (middle), and 0.6 < zphot < 0.7
(bottom). Each panel shows the distribution of all galaxies with z < 20.7 (solid
gray), as well as the distributions of optical (hatched purple; see Equation (4a))
and IR (solid orange; see Equation (5a)) DESI LRG targets. The leftmost
dashed black line in each panel is the absolute magnitude cut that defines each
absolute magnitude–limited parent galaxy sample for our models. At fainter
magnitudes (to the left of the cut in each panel), the DECaLS sample is
incomplete. The three dotted black lines in each panel denote the luminosity
bins used to constrain the model parameters (see Section 3.2 and Tables 2
and 3).

Figure 3. Color–magnitude diagrams of the parent galaxy samples and DESI
LRG target samples (overlaid white contours) in the 0.4 < zphot < 0.5 redshift
bin. The left column shows optical (k-corrected r − z color vs. Mz magnitude),
while the right column shows IR (k-corrected r − W1 color vs. MW1

magnitude). The top (bottom) row shows the distribution of optical (IR) LRGs
in each color–magnitude space. The boxed regions labeled “A” and “B” are
referenced in Section 4.1 below.

8 We tested using σmag with linear dependence on absolute magnitude instead
of a constant value across all luminosity bins and found that fixing σmag while
allowing σLOS to scale linearly with luminosity reproduces ωp(rp) (Section 3.1)
better than if both parameters have linear luminosity dependence.
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corresponding mock galaxy catalogs. The agreement between
the data and model increases with increasing luminosity within
each redshift bin and increasing redshift overall. Note that the
shaded regions in Figures 4 and 5 at rp< 0.1 h−1 Mpc denote
measurements not used for model fitting.

The clustering of the full magnitude-limited parent galaxy
samples and corresponding mock catalogs is shown for each
redshift bin in Figure 6, with ωp(rp) for each redshift bin offset
by 0.15 dex for clarity. Agreement between the model and data
increases with increasing redshift. We emphasize that while the
model ωp(rp) deviates from that of the data for the full
magnitude-limited parent samples in the 0.4< zphot< 0.5
redshift bin, there is still good data–model agreement within
the highest luminosity bins, where the vast majority of LRGs
reside, for both the W1- and z-band models (Figures 4 and 5,
respectively).

3.4. Color Assignment

Figure 7 shows an illustration of our color assignment
algorithm (Equation (1)) with age distribution matching for the
0.4< zphot< 0.5 redshift bin of the z-band model. The dotted
purple curve is the cumulative distribution of 0.43(r− z) color
for galaxies in the −23.0 > 0.43Mz> −23.05 luminosity bin,
and the solid gray curve is the halo zstarve distribution of
z 0.425sim = mock galaxies in the same model luminosity bin.
The magenta arrows in Figure 7 indicate that a mock galaxy in
this luminosity bin in a halo with zstarve≈ 2.6 is assigned a
0.43(r− z) color of 0.96.

Implementation of the color assignment algorithm with no
scatter in the color–zstarve relationship yields mock LRG
samples (see Section 3.5 below) that generally overpredict
the clustering amplitude compared to the data, with the
exception of optical LRGs selected from the W1-band model

(see Figure 10). We tested the effect of introducing scatter into
the color–zstarve relation on the clustering of mock LRGs using
a method analogous to how scatter is incorporated into the
luminosity–vpeak relation (see Section 3.3). After assigning
model colors  without scatter according to Equation (1) as
described above, we assign to each mock galaxy a new color ¢ ,
where ¢ is drawn from a Gaussian distribution centered at 
with width σcolor. We then rank order all mock galaxies by ¢ ,
rank order the original distribution of mock colors  , and
assign the ordered original color distribution to the mock
galaxy catalog ordered by ¢ .
For mock LRGs (both optical and IR) from the z-band

model, as well as mock IR LRGs from the W1-band model, the
clustering amplitude decreases with increasing σcolor until σcolor
is sufficiently large that model colors are effectively assigned at
random, at which point the decrease in clustering amplitude
levels off at a constant value that still overpredicts ωp(rp)
relative to the data. The exception to this is the predicted
clustering of mock optical LRGs from the W1-band model,
which largely agrees with the data with no scatter in the
color–zstarve relation. Additionally, σcolor> 0 in this instance
does not affect the predicted clustering amplitude of mock
optical LRGs. This implies that color is uncorrelated with halo
age for LRGs, which we discuss further in Section 4.1, and
motivates our decision to proceed with two versions of our
models (rather than introduce and constrain σcolor as an
additional parameter): (1) a “default” age distribution model,
in which galaxy color increases monotonically with increasing
halo zstarve at fixed luminosity (i.e., σcolor= 0), and (2) a
“random color” model, in which there is no correlation between
galaxy color and halo zstarve. Both models yield magnitude-
limited mock galaxy catalogs with identical color–magnitude
distributions that reproduce the target distribution of the
relevant data; the only difference is whether the galaxy color
is maximally correlated (default model) or entirely uncorrelated
(random color model) with halo zstarve.

3.5. Selecting Mock LRGs

DESI LRG target selection (see Section 2.3) is entirely a
function of apparent g, r, z, and W1 (and zfiber) magnitudes. As
such, it would be ideal to have mock galaxy catalogs with each
of these model magnitudes for every galaxy; mock LRG
samples could then be obtained simply by applying the DESI
LRG target selection functions (Equations (4a) and (5a)) to the
full mock for each redshift bin. However, the SHAM and age
distribution matching techniques we employ create mock

Table 3
Luminosity Bins Used to Constrain the Magnitude Dependence of Model Parameters

0.4 < zphot < 0.5 0.5 < zphot < 0.6 0.6 < zphot < 0.7

Luminosity Bin Ngal Luminosity Bin Ngal Luminosity Bin Ngal

z-band
−21.60 > 0.43Mz > −21.85 2,458,920 −21.60 > 0.52Mz > −21.85 2,304,853 −21.85 > 0.63Mz > −22.10 2,040,336
−21.85 > 0.43Mz > −22.10 1,880,295 −21.85 > 0.52Mz > −22.10 1,732,820 −22.10 > 0.63Mz > −22.35 1,512,940
−22.10 > 0.43Mz > −22.35 1,317,269 −22.10 > 0.52Mz > −22.35 1,205,545 −22.35 > 0.63Mz > −22.60 1,039,573
0.43Mz < −22.35 1,919,594 0.52Mz < −22.35 1,855,014 0.63Mz < −22.60 1,401,662

W1-band
−22.25 > 0.43MW1 > −22.55 2,324,816 −22.85 > 0.52MW1 > −23.15 1,771,554 −23.15 > 0.63MW1 > −23.45 1,634,860
−22.55 > 0.43MW1 > −22.85 1,837,859 −23.15 > 0.52MW1 > −23.45 1,245,107 −23.45 > 0.63MW1 > −23.75 1,273,814
−22.85 > 0.43MW1 > −23.15 1,277,192 −23.45 > 0.52MW1 > −23.75 754,154 −23.75 > 0.63MW1 > −24.05 798,012
0.43MW1 < −23.15 1,565,914 0.52MW1 < −23.75 693,491 0.63MW1 < −24.05 685,799

Table 4
Best-fit Values for SHAM Model Parameters

Redshift Bin Model σmag sLOS σLOS,0

0.4 < zphot < 0.5 W1-band 0.66 −22.3 −439.2
z-band 0.57 −11.4 −181.5

0.5 < zphot < 0.6 W1-band 0.76 21.3 584.0
z-band 0.76 60.9 1435.6

0.6 < zphot < 0.7 W1-band 0.80 31.2 839.4
z-band 0.77 50.8 1248.4
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galaxy catalogs with absolute z- or W1-band magnitudes and
corresponding r− z or r−W1 colors.

To select mock DESI LRG targets using only these model
quantities, we first identify where the actual DESI LRG targets
reside in k-corrected color–magnitude space in each redshift bin
for both optical and IR DESI LRG targets. In each redshift bin,
we compute the fractions of galaxies that are optical and IR
DESI LRG targets in narrow two-dimensional bins in color–
magnitude space. This is shown in Figure 8.

We then use these optical and IR LRG fractions in color–
magnitude space to statistically select mock optical and IR
LRGs from our mock galaxy catalogs in the corresponding
model color–magnitude space; i.e., in each color–magnitude
bin, we draw mock galaxies and flag them as LRGs until the
LRG fraction in that bin matches the value from the data.

It is worth noting that the LRG fraction in most of color–
magnitude space is either ∼zero or ∼1 by design, especially for
optical LRGs in r− z versus Mz (i.e., optical) space and IR
LRGs in r−W1 versus MW1 (i.e., IR) space. This is clearly
shown in Figure 8.

The first and second columns of Figure 8 show the fractions of
optical and IR LRG targets, respectively, in optical space, i.e.,
r− z color versus Mz magnitude, and the red sequence is clearly
visible in each panel. For example, in the 0.4< zphot< 0.5 redshift
bin, the red sequence corresponds almost entirely to the region
where the LRG fraction is∼1, i.e., whereMz−22.5 and r− z is
between ∼0.9 and ∼1.3 (with a shift toward redder colors in
higher redshift bins).
Interestingly, the LRG fraction begins to deviate from ∼1 in

the most luminous region of optical space (Mz −23.7), and
this is true for both optical and IR LRG targets. Both selections
(Equations (4a) and (5a)) exclude some of the most luminous
red-sequence objects in optical space but not in IR space (third
and fourth columns of Figure 8).
To investigate why these luminous red-sequence objects in

the first two columns of Figure 8 are not selected as DESI LRG
targets, we looked at their positions in color–color and color–
magnitude space relative to the full set of DESI LRG target
selection cuts (Equations (4a) and (5a)). This is shown in
Figure 9, where light blue and gray contours in each panel

Figure 4. Luminosity-binned projected clustering of the W1-band absolute magnitude–limited parent galaxy samples and corresponding mock galaxy catalogs, with
different colors and line styles representing different luminosity bins as denoted by the legend in each panel. Luminosity bins are offset by 0.15 dex for clarity. Each
panel shows a different redshift bin. The shaded region at rp < 0.1 h−1 Mpc denotes measurements not used for modeling.

Figure 5. Same as Figure 4 but for the z-band parent galaxy samples and corresponding mock galaxy catalogs.
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show the distributions of all optical and IR DESI LRG targets
with photometric redshifts between 0.4 and 0.7.

The color-coded points in each panel are luminous (Mz<
−23.7) red-sequence objects in the same redshift range that are
not DESI LRG targets despite passing the stellar cut
(Equations 4(a) and 5(a); solid black line in panel (a)) and the
optical and IR color–magnitude cuts (Equation 5(c), dashed black
line in panel (e); and Equation 5(c), solid black line in panel (b)),
as well as the zfiber cut (Equations 4(d) and 5(d); not shown).

Panel (d) of Figure 9 shows that the low-redshift or blue
color cut (Equations 4(d) and 5(b)) excludes these objects from
selection as DESI LRG targets.

4. Predicted LRG Properties

In this section, we present the results of our z- and W1-band
models. We report the HOD parameters of mock LRGs and
compare the predicted clustering to the data and relevant
studies in the literature.

4.1. LRG Clustering

Our z- and W1-band models yield magnitude-limited mock
galaxy catalogs from which we select mock LRGs. From these
results, we predict the clustering of DESI LRG target samples.
Figure 10 shows the predicted clustering of IR and optical

mock LRGs compared to the relevant DESI LRG target sample.
In addition to the data (black points with error bars), each panel of
Figure 10 shows the clustering of mock LRGs according to the z-
and W1-band models, with and without the addition of scatter to
the model color–zstarve relation (Section 3.4).
As shown in the top row of Figure 10, the z- and W1-band

models predict very similar clustering signals for IR LRGs. The
predicted amplitude of both the one- and two-halo terms exceeds
that of the data in the two lowest redshift bins and is in better
agreement in the highest redshift bin (z 0.628sim = ). Across all
redshift bins, the addition of scatter to the color–zstarve relation
brings the predicted clustering amplitude of IR LRGs closer to the
data, reducing the clustering amplitude of the one-halo term by
∼15%–20% and the two-halo term by ∼10%, depending on the
redshift bin. However, this reduction in the discrepancy between
the model and data is a ceiling achieved only by adding such a
high degree of scatter that color is uncorrelated with our proxy for
halo assembly history9 (zstarve).

Figure 6. Projected clustering of the z-band (top panel) and W1-band (bottom
panel) absolute magnitude–limited parent galaxy samples and corresponding
mock galaxy catalogs, with different colors and line styles representing
different redshift bins as denoted by the legend in each panel. Redshift bins are
offset by 0.15 dex for clarity.

Figure 7. Illustration of the model color assignment procedure (Section 3.4),
which equates halo zstarve with galaxy color at fixed luminosity. The dotted
purple curve is the cumulative distribution of 0.43(r − z) color for galaxies in
the −23.0 > 0.43Mz > −23.05 luminosity bin, while the solid gray curve is the
cumulative distribution of halo zstarve for mock galaxies in the same luminosity
bin. The magenta arrows indicate that a mock galaxy in this luminosity bin in a
halo with zstarve ≈ 2.6 is assigned a 0.43(r − z) color of 0.96. The faint purple
and gray curves are the galaxy color and halo zstarve distributions of additional
luminosity bins.

9 We also tested using proxies for IR and optical LRGs by selecting the N
brightest mock galaxies from the relevant magnitude-limited mock galaxy
catalog to recreate the number densities of the IR and optical DESI LRG target
samples, instead of applying the DESI LRG target selections to the magnitude-
limited mocks as described in Section 3.5. The result was a slightly larger
predicted clustering amplitude compared to the “random colors” models that do
use the DESI LRG target selections, shown in Figure 10.
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The bottom row of Figure 10 shows that the z- and W1-band
models predict different clustering amplitudes for optical
LRGs. The z-band model overpredicts the clustering amplitude
of optical LRGs to a similar degree as the overprediction for IR
LRGs. Assigning colors at random such that galaxy color is
uncorrelated with halo assembly history again reduces this
discrepancy of the one-halo (two-halo) term by ∼20%–25%
(∼10%–15%).

On the other hand, the W1-band model prediction for the
clustering of optical LRGs is in very good agreement with the
data, especially the two-halo term (the one-halo term is actually
slightly underpredicted). Additionally, adding any amount of
scatter to the color–zstarve relation has no effect on the predicted
clustering amplitude in this case.

The distributions of optical and IR LRGs in color–magnitude
space are helpful for interpreting Figure 10. As Figure 3 shows,
in optical space (Mr−Mz versusMz), both optical and IR LRGs
are largely confined to the red sequence, with the distribution
extending below it toward bluer color, especially at higher
redshift.

In contrast, in IR space (Mr−MW1 versus MW1), the galaxy
distribution does extend significantly above the red sequence.

For example, in the 0.4< zphot< 0.5 redshift bin, the red
sequence is at Mr−MW1∼ 1.6, but the distribution extends to
Mr−MW1 3.0. The IR LRGs occupy the entire region of
excess Mr−MW1 color across the full range of MW1, while
optical LRGs occupy only the part of this region that
corresponds to more luminous MW1; i.e., the optical LRG
selection excludes a population of galaxies with very red
Mr−MW1 colors and moderately luminous W1-band luminos-
ities that are included by the IR selection.
Figure 11 shows optical (r− z) versus IR (r−W1) color for

both IR and optical LRGs in the 0.4< zphot< 0.5 redshift bin,
while the top three panels of Figure 12 explore the differences
in the color distributions of optical and IR LRGs located above
the red sequence (box A in Figure 3) in r−W1 versus MW1

color–magnitude space. The bottom three panels (box B in
Figure 3) show the color distributions of optical and IR LRGs
from the same MW1 range along the red sequence.
Along the infrared red sequence, the spectral energy

distributions of the optical and IR LRGs are quite similar.
However, the two selections diverge above the red sequence.
Table 5 lists the mean, median, and skewness of each color
distribution, as well as the number of LRGs in each population.

Figure 8. The LRG fractions in color–magnitude space used to select optical and IR LRG samples from our magnitude-limited mock galaxy catalogs. The first and
second columns show optical and IR LRG targets, respectively, in r − z color vs.Mz magnitude space. The third and fourth columns show optical and IR LRG targets,
respectively, in r − W1 color vs. MW1 magnitude space. Each row shows a different redshift bin. Note that the distributions of optical LRGs in the z-band model (first
column) and IR LRGs in the W1-band model (fourth column) are compact by design; i.e., the fraction of galaxies that are LRGs is either ∼zero or ∼1 nearly
everywhere in color–magnitude space. In contrast, the distributions of IR LRGs in the z-band model (second column) and optical LRGs in the W1-band model (third
column) have a broader gradient between zero and 1, especially toward fainter magnitudes. The boxed region in each panel marks the luminous end of the red
sequence, where essentially all galaxies are expected to be LRGs. The LRG fraction in this boxed region is at least 98% for the W1-band model (third and fourth
columns) but only 92%–94% for the z-band model (first and second columns).
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Above the red sequence, IR LRGs have bluer r− z and g− r
colors than optical LRGs in the same region of color–
magnitude space, while IR LRGs have redder r−W1 colors
than their optical counterparts from the same color–magnitude
region. The same general trend is seen along the red sequence,
but the color differences between the optical and IR LRG
selections are smaller; i.e., along the red sequence, IR LRGs
also have bluer r− z and g− r colors than optical LRGs but by
only half as much as above the red sequence. Similarly, IR
LRGs along the red sequence have redder r−W1 colors than
their optical counterparts, but the color difference is two to
three times smaller than for IR and optical LRGs above the red
sequence.

Activity from active galactic nuclei (AGNs) may artificially
inflate the observed IR (W1-band) luminosities and redden the
r−W1 colors of some galaxies that pass the IR LRG selection
(e.g., Webster et al. 1995; Georgakakis et al. 2009; Banerji
et al. 2012; Glikman et al. 2012; Kim & Im 2018; Klindt et al.
2019; Rivera et al. 2021) relative to galaxies with comparable
IR luminosities and r−W1 colors but no AGN activity. The
bluer r− z colors of the IR LRG targets cause these objects to
be excluded by the optical LRG selection (e.g., panel (e) of
Figure 9). Our IR (W1-band) model would assign mock IR
LRGs with artificially red r−W1 colors and high IR
luminosities due to AGN activity to halos with higher bias
than if their r−W1 colors and W1-band magnitudes were not
influenced by AGN activity. This could explain why our W1-
band model overpredicts the clustering amplitude of IR LRGs
relative to optical LRGs, as shown in Figure 10.

The influence of AGN activity may also explain the lack of
correlation between IR and optical color when assigning colors
to mock galaxies based solely on a proxy for halo age (here
zstarve). This modeling assumption attributes galaxy color
entirely to halo mass accretion history and does not account
for how baryonic effects such as AGN activity may contribute
to galaxy color. In other words, optical color is not necessarily
a reliable proxy for IR color. This is also illustrated by
Figure 11, which shows optical (r− z) versus IR (r−W1)
color for both IR and optical LRGs in the 0.4< zphot< 0.5
redshift bin. The optical and IR colors of optical LRGs are
more closely correlated than for IR LRGs, but in both cases,
there is considerable scatter in r−W1 at fixed r− z. Xu et al.
(2022) also found a lack of correlation between halo assembly
properties and galaxy color using an SAM.

4.2. The LRG–Halo Connection

We compute the mean central and satellite halo occupation
statistics as a function of halo mass directly from the mock
galaxy catalogs and halo abundances from the MDPL2
simulation. The results are shown in Figure 13. Each panel of
Figure 13 shows 〈N|Mvir〉 for optical and IR LRGs in purple
and orange, respectively.
The key conclusions of Figure 13 are summarized in

Table 6, which gives the peak value of 〈Ncen〉 for optical and IR
LRGs predicted by both the z- and W1-band models, as well as
the mean value of 〈Ncen〉 for the most massive halos, which is
universally less than the corresponding peak value.

Figure 9. The color-coded points in each panel are bright (Mz < −23.7) red-sequence objects with photometric redshifts between 0.4 and 0.7 that are not DESI LRG
targets, i.e., objects with Mz < −23.7 in the first two columns of Figure 8 that cause the LRG fraction at the bright end of the red sequence to be <1. The dashed and
solid black lines in panels (a), (b), (d), and (e) are the various color–color and color–magnitude cuts that define the optical and IR DESI LRG target samples
(Equations (4a) and (5a), respectively). The light blue and gray contours show the distributions of all optical and IR DESI LRG targets with photometric redshifts
between 0.4 and 0.7.
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The z-band model does not predict significant differences
between the populations selected by the IR and optical LRG
selection functions. According to this model, the central LRG
halo occupation fraction peaks at ∼90% at z∼ 0.43 and drops
to ∼70% at the largest halo masses, while by z∼ 0.63, 〈Ncen〉
peaks at 82%–84% and falls to ∼35% for the most massive
halos regardless of LRG selection function.

In contrast, the W1-band model does predict a different
LRG–halo relationship for IR versus optical LRGs. In all
redshift bins, this model has 〈Ncen〉 for IR LRGs peaking at
around 92% and remaining at 75% for the most massive
halos, while 〈Ncen〉 for optical LRGs peaks at 85%–92% and
falls as low as 62% (z∼ 0.43) to 69% (z∼ 0.52) at the largest
halo masses, although it remains at 92% for the highest redshift
bin (z∼ 0.63).

We fit a standard five-parameter HOD model to each optical
and IR mock LRG sample (Tables 7 and 8). For ease of
comparison with their results, we use the same functional form
as Zhou et al. (2021), who derived HOD parameters from
clustering measurements of DESI LRG targets using photo-
metric redshifts in bins that approximately match the redshift
bins we use. This parameterization is described in detail in
Zheng et al. (2005, 2007). Briefly, the probability 〈Ncen〉 that a
halo of virial mass Mvir hosts a central galaxy is given by

⎛
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where the parameter ( )Mlog min is the minimum halo mass for
hosting a central galaxy, and the parameter Mlogs defines the
steepness of the transition of 〈Ncen〉 from ∼zero at low Mvir to
∼1 at high Mvir.
The mean number of satellite galaxies, 〈Nsat〉, hosted by a

halo of virial mass Mvir is approximated by a power law given
by
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where M0, M1, and α are the remaining free parameters of the
HOD fit. The HOD fits of Zhou et al. (2021) incorporate a sixth
nuisance parameter to account for photometric redshift
uncertainty, which in this work is addressed by the magni-
tude-dependent line-of-sight scatter parameter, σLOS
(Equation (14)). Table 7 gives the prior interval for each
HOD parameter. The best-fit HOD parameters and the satellite
fraction of each mock LRG sample are given in Table 8.

4.3. Comparison with Other DESI-like LRG Studies

There are two main studies of the LRG–halo connection of
DESI-like LRGs suitable for comparison with our results. Zhou
et al. (2021; who provided the photometric redshifts used here)
measured the clustering of LRGs at 0.41< zphot< 0.93 selected
from DECaLS DR7 photometry using the optical target
selection (Equation (4a)) and fit a standard five-parameter
analytic HOD model in five redshift bins.

Table 5
Statistics of Distributions of r − z, g − r, and r − W1 Colors of Optical and IR LRGs Selected from above (Box A) and along (Box B) the Red Sequence in IR Color–

Magnitude Space (r − W1 vs. MW1)

Box A (LRGs above Red Sequence) Box B (LRGs along Red Sequence)

0.4 < zphot < 0.5

(r − z) (g − r) (r − W1) (r − z) (g − r) (r − W1)

Mean 1.04 1.10 1.64 1.74 2.30 2.18 Mean 0.98 1.01 1.72 1.78 1.74 1.68
Median 1.06 1.10 1.65 1.74 2.25 2.14 Median 0.98 1.00 1.78 1.80 1.73 1.67
Skewness −1.86 0.44 −0.36 1.15 1.44 1.30 Skewness −0.63 0.33 −1.20 −0.73 0.12 −0.02

NIR 170,492 NIR/Nopt = 3.44 NIR 313,311 NIR/Nopt = 0.60
Nopt 49,517 Nopt 521,970

0.5 < zphot < 0.6

(r − z) (g − r) (r − W1) (r − z) (g − r) (r − W1)

Mean 1.18 1.29 1.71 1.87 2.64 2.53 Mean 1.13 1.18 1.71 1.80 2.14 2.11
Median 1.20 1.30 1.73 1.88 2.61 2.49 Median 1.16 1.20 1.79 1.81 2.16 2.12
Skewness −0.99 −1.17 −0.60 0.23 1.11 1.68 Skewness −0.83 −0.82 −1.30 −1.14 −0.46 −0.41

NIR 179,348 NIR/Nopt = 3.51 NIR 441,691 NIR/Nopt = 0.67
Nopt 51,093 Nopt 660,486

0.6 < zphot < 0.7

(r − z) (g − r) (r − W1) (r − z) (g − r) (r − W1)

Mean 1.39 1.47 1.77 1.90 2.96 2.90 Mean 1.35 1.41 1.69 1.79 2.56 2.54
Median 1.42 1.48 1.79 1.90 2.92 2.87 Median 1.40 1.43 1.76 1.81 2.59 2.56
Skewness −1.31 −0.84 −0.39 0.04 1.36 1.90 Skewness −1.43 −1.23 −0.88 −0.61 −0.85 −0.74

NIR 249,983 NIR/Nopt = 1.88 NIR 748,591 NIR/Nopt = 0.72
Nopt 132,656 Nopt 1,044,175

Note. The boxed regions A and B are shown for the 0.4 < zphot < 0.5 redshift bin in Figure 3, and the color distributions are shown in Figure 12. The mean, median,
and skewness of each distribution are shown for IR (optical) LRGs in bold (plain) text.
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Zhou et al. (2021) found little to no evolution of HOD
parameters for LRGs across 0.4 z 0.8. Our results are
consistent with a lack of HOD parameter evolution across the
subset of this redshift range that we model, although some of our
predicted parameter values themselves differ from those of Zhou
et al. (2021), particularly Mlogs . Zhou et al. (2021) found a very
steep transition from 〈Ncen〉∼ 0 to 1 ( 0Mlogs ~ –0.28; see their
Figure 13), while our models predict a more gradual transition,
with 1Mlogs ~ .

Figure 14 compares our predicted LRG halo occupation
statistics at z∼ 0.63 with the best-fit HOD parameterization of

Zhou et al. (2021) in the relevant redshift bin from their study
(0.61< zphot< 0.72). Of the redshift bins Zhou et al. (2021) used
that overlap with this work, this is the bin in which they found the
greatest deviation of 〈Ncen〉 from a step function, although we also
select this bin for Figure 14 to enable comparison with an
additional study, discussed later in this section.
Our HOD predictions for satellite LRGs agree with those of

Zhou et al. (2021) at halo masses below ( )M h Mlog 14vir
1 ~-

 ,
and our overall satellite fractions of fsat∼ 0.14–0.15 across both
model bands and LRG selections is consistent with Zhou et al.
(2021), who found fsat∼ 0.13–0.16, depending on redshift.
Zhou et al. (2021) obtained best-fit parameters for the

analytic forms of central and satellite LRG HODs
(Equations (15) and (16)), which will necessarily correspond
to 100% of massive halos containing a central LRG due to the
functional form of Equation (15) (this is also the case for
analytic HOD fits to our mock LRG samples, shown in
Table 8). Enforcing 100% halo occupation at the high-mass end
by LRGs also suppresses accounting for potential contamina-
tion by lower-mass halos.
As Figure 13 shows, our models do not predict that central

LRG halo occupation reaches unity, instead peaking at 82%–

96% and falling in most cases to ∼60%–77% for the most
massive halos ( ( )M h Mlog 14, 75vir

1 -
 ), although this

depends on both model band (z or W1) and LRG selection
(IR or optical; see Table 6).

Figure 10. Predicted clustering of IR (top row) and optical (bottom row) mock LRGs compared to the clustering of the relevant LRG target samples from the data
(black points in each panel). Dotted purple lines in each panel show mock LRGs from the default z-band model (monotonic correspondence between r − z color and
zstarve at fixed luminosity), while solid purple lines show LRGs from the z-band model with randomized colors. Dashed orange lines in each panel show mock LRGs
from the default W1-band model, and solid orange lines show LRGs from the W1-band model with randomized colors. Each column shows a different redshift bin.

Figure 11. The IR (r − W1) vs. optical (r − z) color for IR (left panel) and
optical (right panel) LRGs at 0.4 < zphot < 0.5.
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The other study to which we can compare our results is
Hernández-Aguayo et al. (2021), who used the GALFORM
semianalytic galaxy formation model (Cole et al. 2000) and nine
snapshots from the Planck-Millennium N-body simulation (Baugh
et al. 2018) to study the galaxy–halo connection of DESI-like
LRGs at redshifts between 0.6 and 1.0. Their LRG HOD results
for z= 0.64 are overlaid with our z 0.63sim ~ results in Figure 14.
Hernández-Aguayo et al. (2021) predicted central and

satellite LRG abundances below our model predictions,
although they noted that GALFORM underpredicts the

abundance of LRGs across the entire redshift range they
studied, with the greatest discrepancy at z∼ 0.6–0.7. The shape
of their central LRG HOD is notably similar to ours, consistent
with a gradual transition to a peak central LRG halo occupation
of less than unity that decreases at the largest halo masses.
Specifically, Hernández-Aguayo et al. (2021) found that the
〈Ncen|Mvir〉 for DESI-like LRGs reaches a maximum of ∼70%
at ( )M h Mlog 13.75vir

1 ~-
 and is as low as ∼40%

at ( )M h Mlog 14.5vir
1 ~-

 .

5. Summary and Conclusion

We have used a SHAM and age distribution matching
framework to construct magnitude-limited mock galaxy
catalogs at z∼ 0.43, 0.52, and 0.63 with r− z and r−W1
colors. From these catalogs, we select mock LRG samples
according to both the optical and IR DESI LRG target selection
functions. This work is the first application SHAM modeling in
the infrared, complimenting the few existing studies of the
galaxy–halo connection of DESI-like LRGs.
Our models reproduce the number densities, luminosity

functions, color distributions, and magnitude-dependent projected
clustering (in the luminosity range of DESI LRG targets) of the
parent galaxy samples from the Legacy Surveys DR9 photometry
that serve as the basis for DESI LRG target selection. With the
mock LRG samples selected from our magnitude-limited mock
galaxy catalogs, we predict the halo occupation statistics of both
optical and IR DESI LRGs at a fixed cosmology. We assess the
differences between these two LRG populations, as well as the
effect of using the z band versus the 3.4 μm W1 band for SHAM
and age distribution matching.
The main results of this work are as follows.

1. Both the optical and IR DESI LRG target selections
exclude some of the most luminous galaxies that would
appear to be LRGs based on their position on the red
sequence in optical color–magnitude space (Figure 8).
This is a result of the specific DESI LRG target selection
cut intended to exclude blue, low-redshift (z 0.4)
galaxies (Figure 9, Section 3.5).

2. Optical and IR LRGs occupy similar regions of optical
color–magnitude space (r− z versus Mz), where the red
sequence corresponds to the very reddest r− z colors
(Figure 3). In IR color–magnitude space (r−W1 versus
MW1), there is a sizable galaxy population at significantly
redder colors than the red sequence. The IR LRGs occupy
most of this region of excess r−W1 color, but optical
LRGs are largely excluded. This could be a result of
AGN activity artificially inflating the W1-band luminos-
ities for some of these objects (Section 4.1).

3. There are clear distinctions between the LRG samples
obtained from the optical versus IR selections that are
apparent from the data alone, namely, among their optical
(r− z versus Mz) and IR (r−W1 versus MW1) color–
magnitude distributions, clustering, and color–color
distributions. Our IR-based (W1-band) model predicts
greater differences between the halo occupation statistics
of optical and IR LRGs than the z-band model (Figure 13,
Table 6) and is therefore the preferred regime for this
comparative study of the two selections.

4. Age distribution matching, which assumes a monotonic
correlation between halo age and galaxy color at fixed
luminosity, tends to overpredict the clustering amplitude of

Figure 12. Distributions of r − z, g − r, and r − W1 colors of optical (shaded
histograms) and IR (open histograms) LRGs from above (box A; top three
panels) and along (box B; bottom three panels) the red sequence in r − W1 vs.
MW1 color–magnitude space. The regions of color–magnitude space corresp-
onding to boxes A and B are shown in Figure 3. The mean, median, and
skewness of each distribution, as well as the number of LRGs in each
population, are given in Table 5. Optical and IR LRGs from along the red
sequence have similar distributions of each color, while optical LRGs above
the red sequence have redder r − z and g − r and bluer r − W1 colors
compared to IR LRGs in the same W1-band luminosity range.
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DESI LRGs (Figure 10). Introducing scatter into the
assumed age–color relation improves the agreement between
the predictions and the data somewhat, although the greatest
improvement comes from increasing this scatter to a level
that is equivalent to assigning colors at random. Our models
therefore suggest that either galaxy color is uncorrelated with
halo age in the LRG regime or there is some additional
model parameter that has been neglected and is possibly
related to our use of photometric redshifts.

5. Both DESI LRG target selections yield populations with
a nontrivial LRG–halo connection that does not reach

Figure 13. Predicted HODs of IR (top row) and optical (bottom row) mock LRGs from both the z-band (thicker purple lines) and W1-band (thicker orange lines)
models. Also shown in fainter purple and orange lines are the HODs of the z- and W1-band magnitude-limited mock galaxy catalogs from which mock LRGs are
selected. Solid (dotted) lines show results for central (satellite) galaxies and LRGs. Each column shows a different redshift bin. The best-fit values of a standard five-
parameter HOD model, as well as the satellite fraction, for each mock LRG sample are given in Table 8.

Table 6
Predicted Halo Occupation Completeness for Mock Central LRGs by Selection (IR or Optical)

zsim LRG Selection Peak 〈NcenMvir〉
a Min. Mvir of Peak 〈Ncen|Mvir〉

b 〈Ncen(Mvir > 1014.75 h−1 Me)〉
c

0.425 IR 0.92 0.91 14.45 14.85 0.74 0.70
Optical 0.85 0.90 14.35 14.55 0.62 0.71

0.523 IR 0.91 0.87 14.45 14.65 0.77 0.61
Optical 0.85 0.84 14.75 14.65 0.69 0.64

0.628 IR 0.96 0.82 14.85 14.55 0.96 0.31
Optical 0.92 0.84 14.95 14.55 0.92 0.38

Notes. Results for the W1-band (z-band) model are in bold (plain) text.
a Highest central occupation fraction reached across all halo Mvir.
b Minimum halo Mvir at which the highest central occupation fraction is achieved.
c Mean central occupation fraction at the largest halo masses (Mvir  1014.75 h−1 Me), which is universally less than or equal to the peak central occupation fraction.

Table 7
Prior Ranges for HOD Fit Parameters (Equations (15) and (16))

Parameter Prior Interval

( )Mlog min (11.0, 14.0)

Mlogs (0.001, 1.5)
α (0.0, 2.0)

( )Mlog 0 (11.0, 14.0)
( )Mlog 1 (11.5, 15.5)
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unity (〈Ncen〉∼ 1) for the most massive halos (Figure 13,
Section 4.2). However, the IR selection achieves greater
completeness (〈Ncen〉� 91%) than the optical selection
(〈Ncen〉∼ 85%–92%) across all redshift bins studied. Our
results of 〈Ncen〉< 1 are qualitatively consistent with the
SAM predictions of Hernández-Aguayo et al. (2021;
Figure 14, Section 4.3), although they found a lower
maximum completeness of ∼70% at z∼ 0.64.

A natural extension of this work would be to utilize
spectroscopic redshifts from the DESI BGS sample (Hahn et al.
2022) to conduct a similar study at lower redshift. The BGS10

is nearing completion and obtaining spectroscopic redshifts for
a magnitude-limited (r< 19.5) sample of over 800 galaxies
deg–2 at z< 0.4. While the LRG target selection algorithms

used in this work are designed to identify LRGs at
0.4 z 1.0, these cuts could easily be modified to select
LRGs in the same redshift range as the BGS. Mock LRGs
could then be selected from SHAM-based magnitude-limited
mock galaxy catalogs tuned to recreate the magnitude and color
distributions of the BGS sample.
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