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Abstract— Glucose prediction can greatly benefit people with
diabetes by allowing them to anticipate and proactively manage
changes in their glucose levels. In this paper, we propose a novel
glucose prediction mechanism that works with wearable devices to
accurately predict a person’s glucose levels in real-time without
sending sensitive personal glucose data to a third-party cloud.
This distributed, lightweight, personalized glucose prediction
mechanism works with IoT devices, such as continuous glucose
monitoring system, to analyze patterns in glucose levels, insulin
doses, and food intake to provide predictions of future glucose
levels. Specifically, we applied a personalized federated deep
learning algorithm that can train the model on multiple IoT
devices, while keeping personal and sensitive glucose data on each
device and avoiding the centralization of sensitive data. Moreover,
a personalization component is integrated into the federated
learning model to allow for the creation of personalized models for
each individual user. This can be particularly useful in the context
of diabetes management, where individual differences in insulin
sensitivity, food preferences, and physical activity can impact
glucose levels in unique ways. Finally, the algorithm is optimized
for IoT devices that have limited processing power, memory, and
battery life. Experimental results on simulated data justify the
performance of the proposed system.

Keywords—edge Al, artificial neural network, recurrent neural
network, deep learning, federated learning, diabetes management,
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I.INTRODUCTION

Diabetes is a chronic health condition characterized by
impaired insulin production or utilization, leading to elevated
blood glucose levels. Diabetes affects people all over the world,
including in the United States. According to the Centers for
Disease Control and Prevention, in the US, approximately 37.3
million people, or 11.3% of the population, have diabetes [1].
This number has been steadily increasing over time and is
projected to continue to rise in the coming years.

There are two main types of diabetes: type 1 and type 2. Type
1 diabetes is an autoimmune condition in which the body's
immune system attacks and destroys the cells that produce
insulin. People with type 1 diabetes require regular insulin
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injections to regulate their glucose levels. Type 2 diabetes is the
most common form of diabetes and is characterized by insulin
resistance, meaning that the body's cells are not able to
effectively use the insulin that is produced. This can lead to
elevated levels of glucose in the blood. High levels of glucose
in the blood over an prolonged period can lead to serious health
complications, such as heart disease, stroke, kidney failure,
blindness, and amputations [2]. Therefore, it is important to
maintain tight control of glucose levels for people with both type
1 and type 2 diabetes. Deep learning (DL) has become a popular
choice in research; however, it often requires large amounts of
data to achieve optimal performance. Nonetheless, the privacy
and safety of patient data are paramount, as sharing sensitive
information can lead to serious safety and security concerns,
especially in healthcare.

In this context, Edge Al, which refers to the use of artificial
intelligence algorithms on the edge of a network, rather than
relying solely on the cloud or a central server. It offers a
promising solution to address the challenge of data dependency
in DL models while also enhancing data privacy and enabling
personalized models. However, one of the major challenges of
edge Al is the limited computing power of loT devices, which
can affect the performance and accuracy of machine learning
algorithms. This can make it difficult to process large amounts
of data and make accurate predictions in real-time. In addition,
since IoT devices are often battery-powered their ability to
analyze and make predictions in real-time using complex
energy-intensive algorithms is restricted.

To address these problems, we propose a personalized
federated learning (FL) model that allows people’s devices, such
as continuous glucose monitoring (CGM) or smartwatch, to
collaboratively make glucose predictions and improve the
accuracy of machine learning models. Individual devices collect
and analyze data locally, and the data remains on each device
without being shared or combined. Instead, findings (in the form
of model parameters) are sent to the cloud, where they are
aggregated to update and improve the global machine learning
model. In this way, we can address privacy concerns while still



allowing for the development of powerful and effective machine
learning models.

The federated prediction model exploits the computational
power of all users and is trained over a larger set of data points.
However, this model generates a common prediction for all the
users without adapting to different individuals. This can be a
problem in the context of diabetes management, as individual
differences in insulin sensitivity, food preferences, and physical
activity can impact glucose levels in unique ways. To solve this
problem, we introduce a personalized learning component to the
FL model, so that individual device can adapt their prediction
model based on their local dataset. This personalized federated
predictor keeps all the benefits of the FL while leading to a more
personalized model for each individual user.

The rest of the paper is organized as follows. In Section II,
we review research and applications related to our study. In
Section III, we explain the detailed methodology of the proposed
approach. We present the evaluation results in Section IV and
conclude the paper in Section V.

II. RELATED WORK

Machine learning algorithms have been used for glucose
prediction for several decades. These algorithms are based on
mathematical models trained using historical glucose data to
make predictions about future glucose levels. A simple approach
is using linear regression for glucose prediction. For example,
Li et al. used a simple mathematical formula to fit a line to the
data, which can then be used to make predictions about future
glucose levels [3]. In another work, Wang et al. used multiple
linear regression to make predictions [4]. Another common
algorithm is decision trees, which involves creating a tree-like
model to represent the relationships between various factors that
impact glucose levels, such as food intake, physical activity, and
insulin dose. For instance, a recent research combines decision
trees with ensemble machine learning algorithm to predict blood
glucose levels [5]. There are many other machine learning-based
glucose predicting systems, such as support vector machines [3].
These traditional machine learning algorithms have been shown
to be effective in making glucose predictions but have
limitations, including handling complex data patterns, dealing
with missing data, and adapting to changes over time.

In recent years, there has been a growing interest in utilizing
DL techniques for glucose prediction in diabetes management.
Researchers used artificial neural networks (ANN) [6]-[8],
convolutional neural networks [9]-[11], and neural networks
(RNN) [12]-[14] to analyze CGM data and predict glucose
levels. Zhu et al. [11] addressed the glucose prediction problem
as a classification task and developed a model using casual
dilated convolutional neural network layers, employing fast
WaveNet algorithms. In another work, RNN was applied on
pre-clustered data to predict glucose levels [12].

FL enables decentralized training of models across multiple
devices. Researchers have started to apply FL in the health
domain, as it has the potential for training machine learning
models on large-scale datasets while preserving the privacy of
individuals' data. This is particularly important in healthcare,
where privacy concerns are high and sensitive personal health
information needs to be protected. For example, FL has been

proposed to connect electronic health record data from medical
institutions, allowing them to share their experiences but not
their data [15]-[18]. In addition, FL can be used to train models
on a large number of devices, such as wearable devices and
smartphones, that collect data about various health parameters.
This can result in more accurate and robust models, as the
models can be trained on a diverse range of data from a large
number of individuals. For example, researchers proposed to use
FL and IoT devices for remote health monitoring [19], [20].

FL has been extensively employed in various diabetes
research studies. It has been prominently used in analyzing
diabetic retinopathy severity based on images [21], predicting
the risk of diabetes mellitus [22], and forecasting the onset of
diabetes [23]. Additionally, researchers have explored the
application of FL in glucose prediction, achieving an average
accuracy of approximately 0.65 across six patients [24]. To the
best of our knowledge, only one study has ventured to combine
DL techniques, specifically convolutional neural network, with
the FL approach in the domain of glucose prediction. The study
conducted training and testing using a dataset spanning a
duration of five days. The results showed Root Mean Square
Error (RMSE) values of 27.45, 28.58, 51.79, and 51.79 mg/dL,
respectively, when predicting glucose levels based on the last 9,
15, 21, and 27 minutes of preceding data from a cohort of six
patients [25].

Despite progress in DL for glucose prediction, several
research gaps persist:

1. Limited access to comprehensive patient data due to privacy
concerns hinders the availability of large-scale datasets for
training DL models.

2. Patients with abundant local personal device data face
challenges in performing independent analysis due to
computational and technical barriers.

3. Previous studies on federated deep learning (FDL) for
glucose prediction often focused on a small number of
patients, potentially missing valuable insights from a more
diverse patient population. Additionally, these studies
reported relatively high RMSE values, highlighting the
need for improved prediction model accuracy.

Therefore, this study aims to address these limitations by
utilizing a personalized FDL approaches to analyze the data of
30 patients without sharing their sensitive information with a
central repository. Each patient will train a personalized model
using their own devices, leveraging the computational power
available on their end. By focusing on a limited number of days
of data, this approach ensures efficient computation while
maintaining privacy.

III.  METHODOLOGY

A. System Architecture

The proposed privacy-preserving and personalized FDL
glucose prediction system comprises two essential components:
edge devices and a centralized server. Each edge device (such as
a wearable device (CGM) or smartphone) hosts its local FDL
model, using time-series data (e.g., glucose levels, physical
activity, heartbeat) collected from the user's wearable devices to
make predictions. The local models include a personalization
component, tailoring the model to each device's unique data



patterns. The centralized server aggregates local models from
edge devices and updates the global model, which is a DL model
trained using parameters from all the local models across the
edge devices.

The architecture of personalized federated learning (FL) is
depicted in Figure 1, illustrating the system's components and
interactions. The system operates as follows:

e Data Collection: Edge devices collect data and use their local
models to make predictions based on the collected data.

e Model Parameters Transfer: Edge devices transmit their
local model parameters to the centralized server.

e Global Model Training: Centralized server aggregates the
received local model parameters to update the global model.

e Model Parameters Update: Centralized server sends the
updated global model parameters back to the edge devices .

e Personalization: edge devices use the updated global model
parameters to update their local models, incorporating the
personalized component.
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Fig. 1. System architecture

This decentralized and scalable approach enables continuous
updating of the global model based on data collected by
numerous edge devices . Importantly, it preserves individual
data privacy and allows for personalized predictions.

B. Learning Models

This study explores two popular DL models, ANN and
RNN, for glucose prediction, lerveraging their distinct strengths
in handling time-series data. The decision to use either ANN or
RNN depends on the characteristics of the data and the
complexity of temporal dependencies. If the temporal
dependencies are relatively short-term and the sequence length
is not excessively long, ANN might be sufficient and
computationally efficient. On the other hand, if the data exhibits
long-term temporal dependencies and requires modeling
complex sequences, RNN would be more appropriate due to
their ability to capture and utilize information from past
observations. After using the ANN or RNN model, we employ
Federated Learning (FL) to facilitate collaborative and privacy-
preserving model training across multiple devices.

Artificial Neural Network

ANN has been widely used to solve the regression problems
through a learning process by adjusting the values of the
connection weights among the neurons [26]. This study used the
multilayer perceptron, which is the most widely adopted ANN
model in different industries [27]. A multilayer perceptron may
have one or more hidden layers and finally an output layer. It is

described as being fully connected, with each node connected to
every node in the next and previous layer [28]. After conducting
multiple tests, two hidden layers were considered in this study,
as this configuration led to efficient processing and satisfactory
performance for the ANN.

Recurrent Neural Network

RNN can effectively model sequential data by capturing
temporal dependencies through recurrent connections [29]. This
unique architecture allows RNN to maintain an internal state or
memory of previous inputs, enabling them to consider the
context and history of the input sequence when making
predictions [30]. This makes RNN well-suited for tasks such as
time series analysis, where the current input relies on the
information from previous inputs. In this study,we utilized an
RNN with two hidden layers as shown in Figure 2. Again, the
choice of two hidden layers for RNN was based on extensive
testingas it strikes a balance between complexity and efficiency,
making it the most suitable choice for the task.

Recurrent network

Input layer

Hidden layer 1

Hidden layer 2 QOutput

Fig. 2. RNN architecture with two hidden layers.

Federated learning

To achieve collaborative learning while preserving data
privacy, the proposed personalized FDL glucose prediction
system uses FL with the standard Federated Averaging
(FedAvg) algorithm, as proposed by McMahan et al. [31]. The
FL process involves two key components: 1) local model
updates on edge devices with local model personalization; and
2) model aggregation on the centralized server using the FedAvg
algorithm.

Local Model Personalization: After receiving the global
model parameters from the centralized server , each of the K
edge device maintains its local FDL model, allowing for
personalized predictions. The personalization component tailors
the local models during training, capturing individual data
patterns and characteristics specific to each edge device's data
through fine-tuning. This fine-tuning process enables the local
models to adapt to the nuances and specific patterns in the local
data, enhancing prediction accuracy for individual patients and
accommodating variations in glucose dynamics.



FedAvg Algorithm: The FedAvg algorithm orchestrates the
collaborative learning process between the edge devices and the
centralized server. At round ¢ of training:

a. Local Model Updates: Each edge device k (k=0 to K)
conducts local stochastic gradient g, with respect to their
model parameters w, .

b. Model Parameter Transfer: After local updates, each edge
device transmits the latest model parameters wy,,* to the
centralized server. In which,

Wt+1k = Wtk + N Gek (D

where w,* is the local model parameter maintained in the k"
device at the t*" round, 7 is the learning rate.

c. Model Aggregation: The centralized server receives the
updated model parameters from active devices and aggregates
them using a weighted average. The weight for each edge
device's model parameters is determined by the ratio of its data
points n,, to the total (n) across all devices (K) as equation 2:

_ VK Mk k
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d. Broadcast and Global Update: The averaged global model
parameters w;,; are broadcasted back to all edge devices,
serving as the updated global model.

The FL approach enables continuous updating of the global
model by collecting local model parameters from multiple edge
devices. Each device uses its local data to generate a
personalized model, ensuring data privacy without centralizing
sensitive patient data. This privacy-preserving framework
enhances glucose prediction accuracy for individual patients by
leveraging collective knowledge.

Performance Measurement

To assess the predictive ability of the proposed personalized
FDL models, this study used RMSE as a metric. RMSE
quantifies the average magnitude of the differences between
predicted and actual values, providing a measure of prediction
accuracy. It considers both the direction and magnitude of
errors, allowing for meaningful comparisons between different
models. The RMSE value is produced by [32]:

M o~ _ 2
RMSE = 2m=ilin= Tm) 3)

where Y, and Y, are the predicted and actual values for
observation m, with a total of M oberseataions.

IV. EVALUATION

We have performed extensive experiments to evaluate the
performance of the proposed approach. In this part, we
demonstrate our experimental results.

A. Data Generation

Due to the limited patient data availability, many studies on
glucose prediction have utilized simulators like the
UVA/Padova Type 1 diabetes simulator, approved by the Food
and Drug Administration [33]. In this study, we used a Python
implementation of the UVa/Padova Simulator developed by Xie
[34]. This custom simulator, based on the UVa/Padova
Simulator (2008 version), allowed us to conduct experiments

and analysis effectively. The simulator consists of thirty virtual
patients, with ten patients in each of the three age groups: adults,
adolescents, and children. Each virtual patient is equipped with
a unique glucose-insulin response model, basal-bolus control
model, and glucose sensor model. While the simulator allowed
for automatic generation of food intake and insulin amounts,
researchers can also customize parameters to simulate various
scenarios and adapt treatment to indivisual virtual patients.
However, the default scenario of random meals, food amount,
and timing generation may not accurately represent real
patients’ typical eating habits and variations.

To address this limitation and create a more realistic
simulation, this study defined food intake parameters,
includeing number of meals, food amount, and timing. This
customization allowed for better representation of real-world
dietary patterns and individual patient habits. The predefined
meal schedule consisted of breakfast, lunch, dinner, and snacks,
accounting for 30%, 45%, 25%, and 5% of the total daily food
intake, respectively. Time and food amount variations, ranging
from 1 to 30 minutes and 5%, respectively, were introduced to

accurately simulate real-world scenarios and individual patient
habits.

For each patient, this study generated 5 days of data,
capturing glucose, insulin, and food intake (represented as
carbohydrates (CHO)) values at 3-minute intervals. CHO values
remained zero except during designated time slots for food
intake, and insulin values remained constant until 3 minutes
after CHO intake, when additional insulin was administered to
counteract the anticipated increase in glucose levels. Figure 3
presents the glucose, CHO, and insulin values of patient
adult#001 simulated over a 5 days using self-designed food
intake and time inputs. The first day's data is displayed within a
24-hour timeframeThe y-axis on the left represents the scale for
glucose, while the y-axis on the right represents the scales for
insulin and CHO. The RNN employed a window slide of 3 hours
to predict glucose levels 30 minutes in advance, while the ANN
used a single data point for the same prediction timeframe.
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B. Model Setup

Our model setup involves the following steps: Initially, we
use a small dataset consisting of 5 patients' blood glucose data
spanning 5 days each to train the initial global model. Once the
initial global model is trained, it is distributed to 25 individual
patients participating in the FL process. These individual patient
then train their local models using the initial global model as a
starting point and adapt them to their personalized data and
device. Through FL, their models continuously improve and
adapt based on the unique characteristics of their individual
blood glucose data. The improvements from the individual
models are periodically aggregated to update and enhance the
global model. The iterative process of local model training,
aggregation, and global model updates is repeated to refine the
predictions over multiple rounds.

ANN and RNN- based DL models were utilized for glucose
prediction 30 minutes ahead. The ANN model considers
glucose, CHO, and insulin values at a single time point to predict
the glucose value 30 minutes later. In contrast, the RNN model
used a 3-hour window slide of time series data to predict the
glucose value. This allows the RNN model to capture temporal
dependencies for improved accuracy. Both models have two
hidden layers with 64 and 32 neurons, respectively, and a batch
size of 32. The models were trained using 80% of the data, while
the remaining 20% was used for testing.

C. Results

In this section, we present the outcomes of our FL approach
focusing on fine-tuning individual patient prediction models and
observing improvement over time. Due to limited data
availability, we used 10 epochs for each local and global model.
To ensure model stability and prevent overfitting, we set the
patience to 5, allowing sufficient epochs before considering
early stopping. However, we noticed instances where the RMSE
increased with more epochs, indicating possible overfitting. To
address this concern, we implemented model checkpointing,
saving the best-performing local models at different epochs.
These best localmodels are then used to create a new global
model, leveraging the best-performing models from all local
devices, thereby improving the overall performance.

The initial global models (ANN and RNN-based) were
created using data from 5 patients. Each of the 25 edge devices
received the global model and fine-tuned it with 1 to 10 epochs
to generate their first local model. Figure 4 displays the average
performance of patients in each group (adolescent, adult, child)
and the overall average RMSE for glucose prediction 30 minutes
ahead for both ANN and RNN-based DL models. The results
indicate that the ANN-based model had minor improvements in
the first 2 epochs, whereas the RNN-based models consistently
decreased in RMSE from epoch 1 to 10.

50.00

Child-ANN
Child-RNN

= == Addolescent-ANN == = A dult-ANN - = Average-ANN]

s Adoloscent-RNN —s— A duli-RNN —— Averape-RNN|

40.00

LI L el

3

2000 %‘

10.00
global 1 2 3 1 5 G 7 8 9 10
madel Epochs

RMSE (mg/dl)

Fig. 4. RMSE values for glucose predictions using ANN model and RNN model.

Table I presents the RMSE values for the ANN and RNN-
based DL models with 10 epochs for each patient (local model)
and initial global models. The percentage change (% A) in RMSE
is calculated by comparing the local models with the global
models. Through FL, substantial improvements were observed
in the prediction models for each patient. The initial global
model, distributed to the patients, served as a strong foundation
for refining their local models. As patients continued training
their models with their personalized data, the models adapted to
their unique physiological variations, leading to more accurate
and tailored predictions. For the ANN-based global model, the
percentage change ranges from 0.2% to 4.71% when fine-tuning
the first local model across the 25 devices. In contrast, the
percentage change for the RNN-based global model varies from
21.97% to 70.73% upon fine-tuning the first local model.

TABLE I. COMPARATIVE ANALYSIS OF RMSE IN ANN AND RNN-BASED DL
MODELS: LOCAL MODEL, GLOBAL MODEL, AND PERCENTAGE CHANGE.

Patients Local Global % A Local Global % A
Model Model (ANN) Model Model (RNN)
(ANN) (ANN) (RNN) (RNN)
adolescent#003  23.29 23.72 -1.82 13.94 17.87 -21.97
adolescent#004  27.64 27.99 -1.25 13.70 19.44 -29.51
adolescent#005  24.01 24.70 -2.77 13.53 17.86 -24.23
adolescent#006  26.79 27.79 -3.59 11.91 18.32 -34.99
adolescent#007  46.87 47.35 -1.02 14.53 28.19 -48.45
adolescent#008  44.70 45.30 -1.31 14.23 26.75 -46.82
adolescent#009  26.58 27.11 -1.96 13.67 18.55 -26.31
adolescent#010  16.67 17.19 -3.03 13.61 17.79 -23.50
adult#003 28.30 28.89 -2.02 13.02 18.59 -29.93
adult#004 29.07 29.74 -2.26 13.09 18.55 -29.43
adult#005 20.04 20.50 -2.22 13.20 19.14 -31.00
adult#006 19.33 19.76 -2.17 13.37 17.96 -25.55
adult#007 18.56 19.11 -2.84 12.53 17.24 -27.32
adult#008 16.83 17.16 -1.96 13.28 17.67 -24.81
adult#009 20.43 20.98 -2.61 13.36 18.82 -29.04
adult#010 29.34 29.82 -1.59 12.53 18.98 -33.96
child#002 20.26 20.51 -1.25 14.34 19.28 -25.62
child#003 45.87 46.25 -0.81 10.44 22.51 -53.64
child#004 24.14 24.63 -1.98 12.15 24.20 -49.78
child#005 12.40 12.42 -0.20 12.21 2191 -44.28
child#006 41.67 42.12 -1.08 13.04 23.45 -44.40
child#007 32.58 33.11 -1.61 13.06 24.75 -47.24
child#008 86.36 87.29 -1.07 15.18 51.86 -70.73
child#009 49.72 52.18 -4.71 13.79 34.23 -59.71
child#010 46.49 47.49 -2.11 13.07 25.99 -49.71

*unit of RMSE is mg/dL



After completing the FL approach, we compared it with
centralized learning (CL) methods. Table II presents a contrast
between the ANN and RNN-based CL (ANN-CL and RNN-
CL) and their FL counterparts (ANN-FL and RNN-FL). The
table displays the average RMSE for different patient groups
using ANN-CL, RNN-CL, ANN-FL, and RNN-FL models. or
instance, the RNN-FL model achieved an RMSE of 13.03 for
the child group, while the RNN-CL model resulted in an RMSE
of 22.77. Overall, the FDL models exhibited lower RMSE
compared to the CL models. The percentage change was -4.21%
to -11.97% for ANN-CL versus ANN-FL, and -17.72% to -
42.77% for RNN-CL versus RNN-FL.

The comparison reveals that our FL approach demonstrated
results comparable to the CL model while maintaining
decentralized patient data and ensuring data privacy. Unlike CL
methods that rely on sharing sensitive data with a central server,
our approach leveraged the knowledge from diverse individual
models without compromising patient privacy.

TABLE II. RMSE COMPARISON: ANN AND RNN-BASED CL vS. FL MODELS.

Patients Adolescent  Adult  Child  Average
ANN-CL 31.88 23.74 45.37 35.17
RNN-CL 18.75 15.86 22.77 19.83
ANN-FL 29.57 22.74 39.94 31.12
RNN-FL 13.64 13.05 13.03 13.23
ANN-CL vs ANN-FL (%)  -7.25 -4.21 -11.97  -11.52
RNN-CL vs RNN-FL (%) -27.25 -17.72 4277  -33.27

*unit of RMSE is mg/dL

We not only consider the CL approach, where all 25 patients
send their five days of data to a central server to generate one
model for all the data. We also explore the scenario where
patients prioritize privacy and prefer not to share their data. In
this case, each of the 25 devices trains an ANN and RNN-based
DL model with their 5 days of data.

Table III compares the results of the ANN and RNN models
alone to their performance with FL. Using the ANN model alone
with ANN-FL showed no significant difference, likely due to
limited data available for effective ANN training. However, the
RNN- FL demonstrates remarkable performance. Despite the
challenge of achieving low RMSE values with only 5 days of
patient data, the RNN-FL achieved substantial percentage
decreases in RMSE 39.61%, 38.83%, 56.32%, and 46.63% for
the adolescent, adult, child, and average groups, respectively,
compared to using the RNN model alone. These findings
underscore the effectiveness of FL in significantly improving
the RNN model's performance for glucose prediction tasks.

TABLE III.LRMSE COMPARISON: ANN AND RNN-BASED DL vS. FDL MODELS.

Adolescent Adult Child Average
ANN 30.23 23.25 41.16 31.93
RNN 22.59 21.33 29.83 24.79
ANN-FL 29.57 22.74 39.94 31.12
RNN-FL 13.64 13.05 13.03 13.23
ANN vs. ANN-FL (%) -2.19 -2.22 -2.95 -2.55
RNN vs. RNN-FL (%) -39.61 -38.83  -56.32  -46.63

*unit of RMSE is mg/dL

We compared the performance of FDL for each patient and
selected the best improvement among the three groups
compared to using DL alone. The percentage decrease in RMSE
between the predicted values using the RNN model alone and
the predicted values using the RNN- FL is 49.58%, 50.91%, and
72.44% for patients adolescent#007, adult#010, and child#008,
respectively. This substantial improvement highlights the
effectiveness of using FL in conjunction with the RNN model
for glucose prediction. Figure 5 displays the 12 hours real data,
the predicted glucose values from the RNN model, and the
predicted glucose values from the RNN model with FL for
patients adolescent#007, adult#010, and child#008.
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V. CONCLUSIONS

In conclusion, we have developed a system that utilizes edge
devices like CGM and smartwatches to help patients manage
diabetes effectively. Our approach employs personalized FDL,
allowing model training on multiple IoT devices while
maintaining data privacy. The integration of personalization
components tailors models to individual users, considering
unique factors affecting glucose levels. The system is optimized
for IoT devices with limited resources, and experimental results
on simulated datasets validate its performance in diabetes
management. This privacy-preserving and personalized
approach empowers patients to make informed decisions for
better health outcomes. Future work includes expanding the
research to larger patient populations and incorporating
additional edge devices to enhance diabetes management
capabilities.
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