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Abstract— Glucose prediction can greatly benefit people with 

diabetes by allowing them to anticipate and proactively manage 

changes in their glucose levels. In this paper, we propose a novel 

glucose prediction mechanism that works with wearable devices to 

accurately predict a person’s glucose levels in real-time without 

sending sensitive personal glucose data to a third-party cloud.  

This distributed, lightweight, personalized glucose prediction 

mechanism works with IoT devices, such as continuous glucose 

monitoring system, to analyze patterns in glucose levels, insulin 

doses, and food intake to provide predictions of future glucose 

levels. Specifically, we applied a personalized federated deep 

learning algorithm that can train the model on multiple IoT 

devices, while keeping personal and sensitive glucose data on each 

device and avoiding the centralization of sensitive data. Moreover, 

a personalization component is integrated into the federated 

learning model to allow for the creation of personalized models for 

each individual user. This can be particularly useful in the context 

of diabetes management, where individual differences in insulin 

sensitivity, food preferences, and physical activity can impact 

glucose levels in unique ways. Finally, the algorithm is optimized 

for IoT devices that have limited processing power, memory, and 

battery life. Experimental results on simulated data justify the 

performance of the proposed system. 

Keywords—edge AI, artificial neural network, recurrent neural 

network, deep learning, federated learning, diabetes management, 

glucose prediction 

I. INTRODUCTION 

Diabetes is a chronic health condition characterized by 
impaired insulin production or utilization, leading to elevated 
blood glucose levels. Diabetes affects people all over the world, 
including in the United States. According to the Centers for 
Disease Control and Prevention, in the US, approximately 37.3 
million people, or 11.3% of the population, have diabetes [1]. 
This number has been steadily increasing over time and is 
projected to continue to rise in the coming years. 

There are two main types of diabetes: type 1 and type 2. Type 
1 diabetes is an autoimmune condition in which the body's 
immune system attacks and destroys the cells that produce 
insulin. People with type 1 diabetes require regular insulin 

injections to regulate their glucose levels. Type 2 diabetes is the 
most common form of diabetes and is characterized by insulin 
resistance, meaning that the body's cells are not able to 
effectively use the insulin that is produced. This can lead to 
elevated levels of glucose in the blood.  High levels of glucose 
in the blood over an prolonged period can lead to serious health 
complications, such as heart disease, stroke, kidney failure, 
blindness, and amputations [2]. Therefore, it is important to 
maintain tight control of glucose levels for people with both type 
1 and type 2 diabetes. Deep learning (DL) has become a popular 
choice in research; however, it often requires large amounts of 
data to achieve optimal performance. Nonetheless, the privacy 
and safety of patient data are paramount, as sharing sensitive 
information can lead to serious safety and security concerns, 
especially in healthcare. 

In this context, Edge AI, which refers to the use of artificial 
intelligence algorithms on the edge of a network, rather than 
relying solely on the cloud or a central server. It offers a 
promising solution to address the challenge of data dependency 
in DL models while also enhancing data privacy and enabling 
personalized models. However, one of the major challenges of 
edge AI is the limited computing power of IoT devices, which 
can affect the performance and accuracy of machine learning 
algorithms. This can make it difficult to process large amounts 
of data and make accurate predictions in real-time. In addition, 
since IoT devices are often battery-powered their ability to 
analyze and make predictions in real-time using complex 
energy-intensive algorithms is restricted. 

To address these problems, we propose a personalized 
federated learning (FL) model that allows people’s devices, such 
as continuous glucose monitoring (CGM) or smartwatch, to 
collaboratively make glucose predictions and improve the 
accuracy of machine learning models. Individual devices collect 
and analyze data locally, and the data remains on each device 
without being shared or combined. Instead, findings (in the form 
of model parameters) are sent to the cloud, where they are 
aggregated to update and improve the global machine learning 
model. In this way, we can address privacy concerns while still 
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allowing for the development of powerful and effective machine 
learning models. 

The federated prediction model exploits the computational 
power of all users and is trained over a larger set of data points. 
However, this model generates a common prediction for all the 
users without adapting to different individuals. This can be a 
problem in the context of diabetes management, as individual 
differences in insulin sensitivity, food preferences, and physical 
activity can impact glucose levels in unique ways. To solve this 
problem, we introduce a personalized learning component to the 
FL model, so that individual device can adapt their prediction 
model based on their local dataset. This personalized federated 
predictor keeps all the benefits of the FL while leading to a more 
personalized model for each individual user.  

The rest of the paper is organized as follows. In Section II, 
we review research and applications related to our study. In 
Section III, we explain the detailed methodology of the proposed 
approach. We present the evaluation results in Section IV and 
conclude the paper in Section V. 

II. RELATED WORK 

Machine learning algorithms have been used for glucose 
prediction for several decades. These algorithms are based on 
mathematical models trained using historical glucose data to 
make predictions about future glucose levels. A simple approach 
is using linear regression for glucose prediction. For example, 
Li et al. used a simple mathematical formula to fit a line to the 
data, which can then be used to make predictions about future 
glucose levels [3]. In another work, Wang et al. used multiple 
linear regression to make predictions [4]. Another common 
algorithm is decision trees, which involves creating a tree-like 
model to represent the relationships between various factors that 
impact glucose levels, such as food intake, physical activity, and 
insulin dose. For instance, a recent research combines decision 
trees with ensemble machine learning algorithm to predict blood 
glucose levels [5]. There are many other machine learning-based 
glucose predicting systems, such as support vector machines [3]. 
These traditional machine learning algorithms have been shown 
to be effective in making glucose predictions but have 
limitations, including handling complex data patterns, dealing 
with missing data, and adapting to changes over time. 

In recent years, there has been a growing interest in utilizing  
DL techniques for glucose prediction in diabetes management. 
Researchers used artificial neural networks (ANN) [6]–[8], 
convolutional neural networks [9]–[11], and neural networks 
(RNN) [12]–[14] to analyze CGM data and predict glucose 
levels. Zhu et al. [11] addressed the glucose prediction problem 
as a classification task and developed a model using casual 
dilated convolutional neural network layers, employing fast 
WaveNet algorithms.  In another work, RNN was applied on 
pre-clustered data to predict glucose levels [12].  

FL enables decentralized training of models across multiple 
devices. Researchers have started to apply FL in the health 
domain, as it has the potential for training machine learning 
models on large-scale datasets while preserving the privacy of 
individuals' data. This is particularly important in healthcare, 
where privacy concerns are high and sensitive personal health 
information needs to be protected. For example, FL has been 

proposed to connect electronic health record data from medical 
institutions, allowing them to share their experiences but not 
their data [15]–[18]. In addition, FL can be used to train models 
on a large number of devices, such as wearable devices and 
smartphones, that collect data about various health parameters. 
This can result in more accurate and robust models, as the 
models can be trained on a diverse range of data from a large 
number of individuals. For example, researchers proposed to use 
FL and IoT devices for remote health monitoring [19], [20]. 

FL has been extensively employed in various diabetes 
research studies. It has been prominently used in analyzing 
diabetic retinopathy severity based on images [21], predicting 
the risk of diabetes mellitus [22], and forecasting the onset of 
diabetes [23]. Additionally, researchers have explored the 
application of FL in glucose prediction, achieving an average 
accuracy of approximately 0.65 across six patients [24]. To the 
best of our knowledge, only one study has ventured to combine 
DL techniques, specifically convolutional neural network, with 
the FL approach in the domain of glucose prediction. The study 
conducted training and testing using a dataset spanning a 
duration of five days. The results showed Root Mean Square 
Error (RMSE) values of 27.45, 28.58, 51.79, and 51.79 mg/dL, 
respectively, when predicting glucose levels based on the last 9, 
15, 21, and 27 minutes of preceding data from a cohort of six 
patients [25]. 

Despite progress in DL for glucose prediction, several 
research gaps persist: 

1. Limited access to comprehensive patient data due to privacy 
concerns hinders the availability of large-scale datasets for 
training DL models. 

2. Patients with abundant local personal device data face 
challenges in performing independent analysis due to 
computational and technical barriers. 

3. Previous studies on federated deep learning (FDL) for 
glucose prediction often focused on a small number of 
patients, potentially missing valuable insights from a more 
diverse patient population. Additionally, these studies 
reported relatively high RMSE values, highlighting the 
need for improved prediction model accuracy. 

Therefore, this study aims to address these limitations by 
utilizing a personalized FDL approaches to analyze the data of 
30 patients without sharing their sensitive information with a 
central repository. Each patient will train a personalized model 
using their own devices, leveraging the computational power 
available on their end. By focusing on a limited number of days 
of data, this approach ensures efficient computation while 
maintaining privacy.  

III. METHODOLOGY 

A. System Architecture 

The proposed privacy-preserving and personalized FDL 
glucose prediction system comprises two essential components: 
edge devices and a centralized server. Each edge device (such as 
a wearable device (CGM) or smartphone) hosts its local FDL 
model, using time-series data (e.g., glucose levels, physical 
activity, heartbeat) collected from the user's wearable devices to 
make predictions. The local models include a personalization 
component, tailoring the model to each device's unique data 



patterns. The centralized server aggregates local models from 
edge devices and updates the global model, which is a DL model 
trained using parameters from all the local models across the 
edge devices. 

The architecture of personalized federated learning (FL) is 
depicted in Figure 1, illustrating the system's components and 
interactions. The system operates as follows: 

• Data Collection: Edge devices collect data and use their local 
models to make predictions based on the collected data. 

• Model Parameters Transfer: Edge devices transmit their 
local model parameters to the centralized server. 

• Global Model Training: Centralized server aggregates the 
received local model parameters to update the global model. 

• Model Parameters Update: Centralized server sends the 
updated global model parameters back to the edge devices . 

• Personalization: edge devices use the updated global model 
parameters to update their local models, incorporating the 
personalized component. 

time-series data

Users  Edge devices

local DL model

On-device learning

Cloud servers

Global DL 

model

time-series data

local DL model

time-series data

local DL model

Centralized learning

 

Fig. 1. System architecture 

This decentralized and scalable approach enables continuous 
updating of the global model based on data collected by 
numerous edge devices . Importantly, it preserves individual 
data privacy and allows for personalized predictions. 

B. Learning Models 

This study explores two popular DL models, ANN and 
RNN, for glucose prediction, lerveraging their distinct strengths 
in handling time-series data. The decision to use either ANN or 
RNN depends on the characteristics of the data and the 
complexity of temporal dependencies. If the temporal 
dependencies are relatively short-term and the sequence length 
is not excessively long, ANN might be sufficient and 
computationally efficient. On the other hand, if the data exhibits 
long-term temporal dependencies and requires modeling 
complex sequences, RNN would be more appropriate due to 
their ability to capture and utilize information from past 
observations. After using the ANN or RNN model, we employ 
Federated Learning (FL) to facilitate collaborative and privacy-
preserving model training across multiple devices. 

Artificial Neural Network  

ANN has been widely used to solve the regression problems 
through a learning process by adjusting the values of the 
connection weights among the neurons [26]. This study used the 
multilayer perceptron, which is the most widely adopted ANN 
model in different industries [27]. A multilayer perceptron may 
have one or more hidden layers and finally an output layer. It is 

described as being fully connected, with each node connected to 
every node in the next and previous layer [28]. After conducting 
multiple tests, two hidden layers were considered in this study, 
as this configuration led to efficient processing and satisfactory 
performance for the ANN.  

Recurrent Neural Network 

RNN can effectively model sequential data by capturing 
temporal dependencies through recurrent connections [29]. This 
unique architecture allows RNN to maintain an internal state or 
memory of previous inputs, enabling them to consider the 
context and history of the input sequence when making 
predictions [30]. This makes RNN well-suited for tasks such as 
time series analysis, where the current input relies on the 
information from previous inputs. In this study,we utilized an 
RNN with two hidden layers as shown in Figure 2. Again, the 
choice of two hidden layers for RNN was based on extensive 
testingas it strikes a balance between complexity and efficiency, 
making it the most suitable choice for the task. 

 

Fig. 2. RNN architecture with two hidden layers. 

Federated learning 

To achieve collaborative learning while preserving data 
privacy, the proposed personalized FDL glucose prediction 
system uses FL with the standard Federated Averaging 
(FedAvg) algorithm, as proposed by McMahan et al. [31]. The 
FL process involves two key components: 1) local model 
updates on edge devices with local model personalization; and 
2) model aggregation on the centralized server using the FedAvg 
algorithm. 

Local Model Personalization: After receiving the global 
model parameters from the centralized server , each of the 𝐾 
edge device maintains its local FDL model, allowing for 
personalized predictions. The personalization component tailors 
the local models during training, capturing individual data 
patterns and characteristics specific to each edge device's data 
through fine-tuning. This fine-tuning process enables the local 
models to adapt to the nuances and specific patterns in the local 
data, enhancing prediction accuracy for individual patients and 
accommodating variations in glucose dynamics.  



FedAvg  Algorithm: The FedAvg algorithm orchestrates the 
collaborative learning process between the edge devices and the 
centralized server. At round t of training: 

a. Local Model Updates: Each edge device k (𝑘 = 0 to 𝐾) 
conducts local stochastic gradient  𝑔𝑡,𝑘 with respect to their 

model parameters 𝑤𝑡
𝑘. 

b. Model Parameter Transfer: After local updates, each edge 

device transmits the latest model parameters 𝑤𝑡+1
𝑘  to the 

centralized server. In which,  

   𝑤𝑡+1
𝑘 = 𝑤𝑡

𝑘 +  𝜂 𝑔𝑡,𝑘    (1) 

where 𝑤𝑡
𝑘 is the local model parameter maintained in the 𝑘𝑡ℎ 

device at the 𝑡𝑡ℎ round, 𝜂 is the  learning rate. 

c. Model Aggregation: The centralized server receives the 
updated model parameters from active devices and aggregates 
them using a weighted average. The weight for each edge 
device's model parameters is determined by the ratio of its data 
points 𝑛𝑘 to the total (𝑛) across all devices (𝐾)  as equation 2: 

𝑤𝑡+1 =  ∑
𝑛𝑘

𝑛
𝑤𝑡+1

𝑘𝐾
𝑘=1     (2) 

d. Broadcast and Global Update: The averaged global model 
parameters 𝑤𝑡+1  are broadcasted back to all edge devices, 
serving as the updated global model. 

The FL approach enables continuous updating of the global 
model by collecting local model parameters from multiple edge 
devices. Each device uses its local data to generate a 
personalized model, ensuring data privacy without centralizing 
sensitive patient data. This privacy-preserving framework 
enhances glucose prediction accuracy for individual patients by 
leveraging collective knowledge. 

Performance Measurement 

To assess the predictive ability of the proposed personalized 
FDL models, this study used RMSE as a metric. RMSE 
quantifies the average magnitude of the differences between 
predicted and actual values, providing a measure of prediction 
accuracy. It considers both the direction and magnitude of 
errors, allowing for meaningful comparisons between different 
models. The RMSE value is produced by [32]: 

R𝑀𝑆𝐸 =  
∑ (𝑌𝑚̂ −  𝑌𝑚)2𝑀

𝑚=1

𝑛
    (3) 

where Y𝑚̂  and Y𝑚  are the predicted and actual values for 
observation 𝑚, with a total of 𝑀 oberseataions. 

IV. EVALUATION 

We have performed extensive experiments to evaluate the 
performance of the proposed approach. In this part, we 
demonstrate our experimental results.  

A. Data Generation 

Due to the limited patient data availability, many studies on 
glucose prediction have utilized simulators like the 
UVA/Padova Type 1 diabetes simulator, approved by the Food 
and Drug Administration [33]. In this study, we used a Python 
implementation of the UVa/Padova Simulator developed by Xie 
[34]. This custom simulator, based on the UVa/Padova 
Simulator (2008 version), allowed us to conduct experiments 

and analysis effectively. The simulator consists of thirty virtual 
patients, with ten patients in each of the three age groups: adults, 
adolescents, and children. Each virtual patient is equipped with 
a unique glucose-insulin response model, basal-bolus control 
model, and glucose sensor model. While the simulator allowed 
for automatic generation of food intake and insulin amounts, 
researchers can also customize parameters to simulate various 
scenarios and adapt treatment to indivisual virtual patients. 
However,  the default scenario of random meals, food amount, 
and timing generation may not accurately represent real 
patients’ typical eating habits and variations. 

To address this limitation and create a more realistic 
simulation, this study defined food intake parameters, 
includeing number of meals, food amount, and timing. This 
customization allowed for better representation of real-world 
dietary patterns and individual patient habits. The predefined 
meal schedule consisted of breakfast, lunch, dinner, and snacks, 
accounting for 30%, 45%, 25%, and 5% of the total daily food 
intake, respectively. Time and food amount variations, ranging 
from 1 to 30 minutes and 5%, respectively, were introduced to 
accurately simulate real-world scenarios and individual patient 
habits. 

For each patient, this study generated 5 days of data, 
capturing glucose, insulin, and food intake (represented as 
carbohydrates (CHO)) values at 3-minute intervals. CHO values 
remained zero except during designated time slots for food 
intake, and insulin values remained constant until 3 minutes 
after CHO intake, when additional insulin was administered to 
counteract the anticipated increase in glucose levels. Figure 3 
presents the glucose, CHO, and insulin values of patient 
adult#001 simulated over a 5 days using self-designed food 
intake and time inputs. The first day's data is displayed within a 
24-hour timeframeThe y-axis on the left represents the scale for 
glucose, while the y-axis on the right represents the scales for 
insulin and CHO. The RNN employed a window slide of 3 hours  
to predict glucose levels 30 minutes in advance, while the ANN 
used a single data point for the same prediction timeframe.  

 

Fig. 3. Glucose, CHO, and insulin profiles - 5 Days & Day 1 Overview 



B. Model Setup 

Our model setup involves the following steps: Initially, we 
use a small dataset consisting of 5 patients' blood glucose data 
spanning 5 days each to train the initial global model. Once the 
initial global model is trained, it is distributed to 25 individual 
patients participating in the FL process. These individual patient 
then train their local models using the initial global model as a 
starting point and adapt them to their personalized data and 
device. Through FL, their models continuously improve and 
adapt based on the unique characteristics of their individual 
blood glucose data. The improvements from the individual 
models are periodically aggregated to update and enhance the 
global model. The iterative process of local model training, 
aggregation, and global model updates is repeated to refine the 
predictions over multiple rounds.  

ANN and RNN- based DL models were utilized for glucose 
prediction 30 minutes ahead. The ANN model considers 
glucose, CHO, and insulin values at a single time point to predict 
the glucose value 30 minutes later. In contrast, the RNN model 
used a  3-hour window slide of time series data to predict the 
glucose value. This allows the RNN model to capture temporal 
dependencies for improved accuracy.  Both models have two 
hidden layers with 64 and 32 neurons, respectively, and a batch 
size of 32. The models were trained using 80% of the data, while 
the remaining 20% was used for testing. 

C. Results 

In this section, we present the outcomes of our FL approach 
focusing on fine-tuning individual patient prediction models and 
observing improvement over time. Due to limited data 
availability, we used 10 epochs for each local and global model. 
To ensure model stability and prevent overfitting, we set the 
patience to 5, allowing sufficient epochs before considering 
early stopping. However, we noticed instances where the RMSE 
increased with more epochs, indicating possible overfitting. To 
address this concern, we implemented model checkpointing, 
saving the best-performing local models at different epochs. 
These best localmodels are then used to create a new global 
model, leveraging the best-performing models from all local 
devices, thereby improving the overall performance. 

The initial global models (ANN and RNN-based) were 
created using data from 5 patients. Each of the 25 edge devices 
received the global model and fine-tuned it with 1 to 10 epochs 
to generate their first local model. Figure 4 displays the average 
performance of patients in each group (adolescent, adult, child) 
and the overall average RMSE for glucose prediction 30 minutes 
ahead for both ANN and RNN-based DL models. The results 
indicate that the ANN-based model had minor improvements in 
the first 2 epochs, whereas the RNN-based models consistently 
decreased in RMSE from epoch 1 to 10. 

 

 

 

Fig. 4. RMSE values for glucose predictions using ANN model and RNN model. 

Table I presents the RMSE values for the ANN and RNN-
based DL models with 10 epochs for each patient (local model) 
and initial global models. The percentage change (% ∆) in RMSE 
is calculated by comparing the local models with the global 
models. Through FL, substantial improvements were observed 
in the prediction models for each patient. The initial global 
model, distributed to the patients, served as a strong foundation 
for refining their local models. As patients continued training 
their models with their personalized data, the models adapted to 
their unique physiological variations, leading to more accurate 
and tailored predictions. For the ANN-based global model, the  
percentage change ranges from 0.2% to 4.71% when fine-tuning 
the first local model across the 25 devices. In contrast, the 
percentage change for the RNN-based global model varies from 
21.97% to 70.73% upon fine-tuning the first local model. 

TABLE I. COMPARATIVE ANALYSIS OF RMSE IN ANN AND RNN-BASED DL 

MODELS: LOCAL MODEL, GLOBAL MODEL, AND PERCENTAGE CHANGE. 

Patients Local 

Model 

(ANN) 

Global 

Model 

(ANN) 

% ∆ 

(ANN) 

Local 

Model 

(RNN) 

Global 

Model 

(RNN) 

% ∆ 

(RNN) 

 

adolescent#003 23.29 23.72 -1.82 13.94 17.87 -21.97 
adolescent#004 27.64 27.99 -1.25 13.70 19.44 -29.51 

adolescent#005 24.01 24.70 -2.77 13.53 17.86 -24.23 

adolescent#006 26.79 27.79 -3.59 11.91 18.32 -34.99 
adolescent#007 46.87 47.35 -1.02 14.53 28.19 -48.45 

adolescent#008 44.70 45.30 -1.31 14.23 26.75 -46.82 

adolescent#009 26.58 27.11 -1.96 13.67 18.55 -26.31 
adolescent#010 16.67 17.19 -3.03 13.61 17.79 -23.50 

adult#003 28.30 28.89 -2.02 13.02 18.59 -29.93 

adult#004 29.07 29.74 -2.26 13.09 18.55 -29.43 
adult#005 20.04 20.50 -2.22 13.20 19.14 -31.00 

adult#006 19.33 19.76 -2.17 13.37 17.96 -25.55 

adult#007 18.56 19.11 -2.84 12.53 17.24 -27.32 
adult#008 16.83 17.16 -1.96 13.28 17.67 -24.81 

adult#009 20.43 20.98 -2.61 13.36 18.82 -29.04 

adult#010 29.34 29.82 -1.59 12.53 18.98 -33.96 

child#002 20.26 20.51 -1.25 14.34 19.28 -25.62 

child#003 45.87 46.25 -0.81 10.44 22.51 -53.64 

child#004 24.14 24.63 -1.98 12.15 24.20 -49.78 
child#005 12.40 12.42 -0.20 12.21 21.91 -44.28 

child#006 41.67 42.12 -1.08 13.04 23.45 -44.40 

child#007 32.58 33.11 -1.61 13.06 24.75 -47.24 
child#008 86.36 87.29 -1.07 15.18 51.86 -70.73 

child#009 49.72 52.18 -4.71 13.79 34.23 -59.71 

child#010 46.49 47.49 -2.11 13.07 25.99 -49.71 
*unit of RMSE is mg/dL 

 

 

 



After completing the FL approach, we compared it with 
centralized learning (CL) methods. Table II presents a contrast 
between the ANN and RNN-based  CL (ANN-CL and RNN-
CL) and their FL counterparts (ANN-FL and RNN-FL). The 
table displays the average RMSE for different patient groups 
using ANN-CL, RNN-CL, ANN-FL, and RNN-FL models. or 
instance, the RNN-FL model achieved an RMSE of 13.03 for 
the child group, while the RNN-CL model resulted in an RMSE 
of 22.77. Overall, the FDL models exhibited lower RMSE 
compared to the CL models. The percentage change was -4.21% 
to -11.97% for ANN-CL versus ANN-FL, and -17.72% to -
42.77% for RNN-CL versus RNN-FL. 

The comparison reveals that our FL approach demonstrated 
results comparable to the CL model while maintaining 
decentralized patient data and ensuring data privacy. Unlike CL 
methods that rely on sharing sensitive data with a central server, 
our approach leveraged the knowledge from diverse individual 
models without compromising patient privacy. 

TABLE II. RMSE COMPARISON: ANN AND RNN-BASED CL VS. FL MODELS.  

Patients Adolescent Adult Child Average 

ANN-CL 31.88 23.74 45.37 35.17 

RNN-CL 18.75 15.86 22.77 19.83 

ANN-FL 29.57 22.74 39.94 31.12 
RNN-FL 13.64 13.05 13.03 13.23 

ANN-CL vs ANN-FL (%) -7.25 -4.21 -11.97 -11.52 

RNN-CL vs RNN-FL (%) -27.25 -17.72 -42.77 -33.27 
*unit of RMSE is mg/dL 

We not only consider the CL approach, where all 25 patients 
send their five days of data to a central server to generate one 
model for all the data. We also explore the scenario where 
patients prioritize privacy and prefer not to share their data. In 
this case, each of the 25 devices trains an ANN and RNN-based 
DL model with their 5 days of data. 

Table III compares the results of  the ANN and RNN models 
alone to their performance with FL. Using the ANN model alone 
with ANN-FL showed no significant difference, likely due to 
limited data available for effective ANN training. However, the 
RNN- FL demonstrates remarkable performance. Despite the 
challenge of achieving low RMSE values with only 5 days of 
patient data, the RNN-FL achieved substantial percentage 
decreases in RMSE 39.61%, 38.83%, 56.32%, and 46.63% for 
the adolescent, adult, child, and average groups, respectively, 
compared to using the RNN model alone. These findings 
underscore the effectiveness of FL in significantly improving 
the RNN model's performance for glucose prediction tasks. 

TABLE III.RMSE COMPARISON: ANN AND RNN-BASED DL VS. FDL MODELS.  

 Adolescent Adult Child Average 

ANN  30.23 23.25 41.16 31.93 
RNN  22.59 21.33 29.83 24.79 

ANN-FL  29.57 22.74 39.94 31.12 

RNN-FL  13.64 13.05 13.03 13.23 
ANN vs. ANN-FL (%) -2.19 -2.22 -2.95 -2.55 

RNN  vs. RNN-FL (%) -39.61 -38.83 -56.32 -46.63 
*unit of RMSE is mg/dL 

 

 

 

We compared the performance of FDL for each patient and 
selected the best improvement among the three groups 
compared to using DL alone. The percentage decrease in RMSE 
between the predicted values using the RNN model alone and 
the predicted values using the RNN- FL is 49.58%, 50.91%, and 
72.44% for patients adolescent#007, adult#010, and child#008, 
respectively. This substantial improvement highlights the 
effectiveness of using FL in conjunction with the RNN model 
for glucose prediction. Figure 5 displays the 12 hours real data, 
the predicted glucose values from the RNN model, and the 
predicted glucose values from the RNN model with FL for 
patients adolescent#007, adult#010, and child#008. 

(a) 

 
(b) 

 
(c) 

 

Fig. 5. Comparison of real glucose and predicted glucose (RNN and RNN-FL) 

for patient (a) adolescent#007, (b) adult#010, and (c) child#008. 

 

 



V. CONCLUSIONS 

In conclusion, we have developed a system that utilizes edge 
devices like CGM and smartwatches to help patients manage 
diabetes effectively. Our approach employs personalized FDL, 
allowing model training on multiple IoT devices while 
maintaining data privacy. The integration of personalization 
components tailors models to individual users, considering 
unique factors affecting glucose levels. The system is optimized 
for IoT devices with limited resources, and experimental results 
on simulated datasets validate its performance in diabetes 
management. This privacy-preserving and personalized 
approach empowers patients to make informed decisions for 
better health outcomes. Future work includes expanding the 
research to larger patient populations and incorporating 
additional edge devices to enhance diabetes management 
capabilities.  
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