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Abstract

With the rapid development of AI-based decision aids, differ-
ent forms of AI assistance have been increasingly integrated
into the human decision making processes. To best support
humans in decision making, it is essential to quantitatively
understand how diverse forms of AI assistance influence hu-
mans’ decision making behavior. To this end, much of the
current research focuses on the end-to-end prediction of hu-
man behavior using “black-box” models, often lacking inter-
pretations of the nuanced ways in which AI assistance im-
pacts the human decision making process. Meanwhile, meth-
ods that prioritize the interpretability of human behavior pre-
dictions are often tailored for one specific form of AI assis-
tance, making adaptations to other forms of assistance dif-
ficult. In this paper, we propose a computational framework
that can provide an interpretable characterization of the influ-
ence of different forms of AI assistance on decision makers
in AI-assisted decision making. By conceptualizing AI assis-
tance as the “nudge” in human decision making processes,
our approach centers around modelling how different forms
of AI assistance modify humans’ strategy in weighing differ-
ent information in making their decisions. Evaluations on be-
havior data collected from real human decision makers show
that the proposed framework outperforms various baselines
in accurately predicting human behavior in AI-assisted deci-
sion making. Based on the proposed framework, we further
provide insights into how individuals with different cognitive
styles are nudged by AI assistance differently.

Introduction
As AI technology advances, AI models are increasingly in-
tegrated into the human decision making process spanning
various domains from healthcare to finance. This has created
a new paradigm of human-AI collaboration—Given a deci-
sion making task, AI provides assistance to humans while
humans make the final decisions. To fully unlock the po-
tential of AI-based decision aids in enhancing human deci-
sion making, a growing line of research has been developed
in the human-computer interaction community to develop
different forms of AI assistance to better support decision
makers (Lai et al. 2023). Each form of AI assistance shows
different impacts on human decision makers. For instance,
the most intuitive type of AI assistance is to directly provide
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the decision maker with an AI model’s decision recommen-
dation on a task (Passi and Vorvoreanu 2022; Wang, Liang,
and Yin 2023), though it is found that such assistance some-
times foster a degree of over-reliance on the AI recommen-
dation (Ma et al. 2023). In contrast, the delayed recommen-
dation paradigm, another form of AI assistance where hu-
mans are first required to deliberate on a task before receiv-
ing the AI model’s decision recommendation, has the poten-
tial to mitigate this over-reliance, but possibly at the cost of
increased under-reliance (Buçinca, Malaya, and Gajos 2021;
Fogliato et al. 2022). Thus, to best utilize diverse forms of
AI assistance and to determine when and how to present the
most suitable type of AI assistance to humans, it is critical
to quantitatively understand and predict how these AI assis-
tance influences humans on different decision making tasks.

A few existing studies have worked on modeling and pre-
dicting human behavior in AI-assisted decision making (Ku-
mar et al. 2021; Bansal et al. 2021), but they come with sev-
eral limitations. For example, some research focuses on pre-
dicting humans’ interaction with AI assistance in an end-to-
end manner using black-box models (Subrahmanian and Ku-
mar 2017). While these methods can be effortlessly adapted
to various forms of AI assistance, the black-box nature of the
model makes it challenging to unpack the cognitive mech-
anisms driving humans’ decision behavior under AI influ-
ence. Meanwhile, other studies that aim for interpretability
propose computational models based on economics or psy-
chology theories. For instance, Wang, Lu, and Yin (2022)
employed the Cumulative Prospect Theory (CPT) to under-
stand how humans decide whether to adopt AI recommen-
dations by analyzing the utility and cost of different deci-
sion options. However, these models are typically tailored
for one specific form of AI assistance, making generaliza-
tions to other forms of AI assistance a challenging task that
requires significant methodology adaptation.

The absence of a unified computational framework to
quantitatively characterize how diverse forms of AI assis-
tance influence human decision making processes in an in-
terpretable way impedes the further intelligent utilization of
AI assistance. As such, decision makers often have to inter-
act with the default forms of AI assistance instead of benefit-
ing from personalized and intelligent AI assistance that can
best support them. Therefore, in this study, we aim to bridge
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this gap by proposing such a computational framework1.
Specifically, inspired by Callaway, Hardy, and Grif-

fiths (2022) that explores the designs of optimal nudges for
cognitively bounded agents, we conceptualize the AI assis-
tance as a “nudge” to the human decision making process,
which would modify how humans weigh different informa-
tion in making their decisions. Therefore, in our framework,
we first establish an independent decision model that reflects
how humans form their independent decisions without any
AI assistance. We then model the nudge of AI assistance to
humans as the alterations to their decision models. To eval-
uate the performance of the proposed framework, we collect
data on real human subjects’ decisions in AI-assisted dia-
betes prediction tasks with the aids of three common types
of AI assistance through a randomized experiment. By fit-
ting various computational models to the behavior dataset
collected, we find that our proposed framework consistently
outperforms other baseline models in accurately predicting
the human decision behavior under different forms of AI
assistance. Furthermore, the proposed framework demon-
strates robust performance in accurately predicting human
behavior in AI-assisted decision making even with limited
training data. Lastly, through a detailed analysis of the nudg-
ing effects of AI assistance identified by our framework, we
offer quantitative insights into how individuals with different
cognitive styles are nudged by AI assistance differently. For
instance, we observed that AI explanations appear to show a
larger effect in redirecting the attention of intuitive decision
makers than reflective decision makers.

Related Work
Empirical Studies in AI-Assisted Decision Making. The
increased usage of decision aids driven by AI models has
inspired a line of experimental studies that identify different
forms of AI assistance to enhance human-AI collaboration
in decision making (Lai et al. 2023). By surveying the lit-
erature related to AI-assisted decision making in the ACM
Conference on Human Factors in Computing Systems, ACM
Conference on Computer-supported Cooperative Work and
Social Computing, ACM Conference on Fairness, Account-
ability, and Transparency, and ACM Conference on Intelli-
gent User Interfaces from 2018 to 2021, we identify three
common types of AI assistance:
1. Immediate assistance: The AI model’s decision recom-

mendation on the decision making task and other in-
dicators of the recommendation are provided to deci-
sion makers upfront. Typical indicators of the AI rec-
ommendation include the AI model’s accuracy (Lai, Liu,
and Tan 2020), explanations of the AI recommenda-
tion (Poursabzi-Sangdeh et al. 2018; Cheng et al. 2019;
Smith-Renner et al. 2020; Liu, Lai, and Tan 2021; Tsai
et al. 2021; Bansal et al. 2020; Zhang, Liao, and Bel-
lamy 2020), and confidence levels of the recommenda-
1In this study, we narrow down the scope of our framework to

model the influence of AI assistance on human decision makers on
each individual decision making task. That is, we do not consider
the sequential or temporal influence of AI assistance on humans in
a sequence of decision making tasks.

tion (Green and Chen 2019; Guo et al. 2019; Zhang,
Liao, and Bellamy 2020; Levy et al. 2021), These indi-
cators may help decision makers gauge the credibility of
AI recommendation and calibrate their trust in AI. Since
various indicators of the AI recommendation serve simi-
lar purposes, aligning with prior research (Tejeda et al.
2022; Wang, Lu, and Yin 2022), we focus on model-
ing how immediate assistance influences human decision
makers when the model’s prediction confidence is used
as the indicator in this study.

2. Delayed recommendation (Park et al. 2019; Grgic-Hlaca,
Engel, and Gummadi 2019; Lu and Yin 2021; Buçinca,
Malaya, and Gajos 2021; Fogliato et al. 2022; Ma et al.
2023): Humans need to first make an initial decision on
the task before the AI model’s decision recommendation
is revealed to them; this type of AI assistance forces hu-
mans to engage more thoughtfully with the AI recom-
mendation.

3. Explanation only (Lucic, Haned, and de Rijke 2019;
Alqaraawi et al. 2020; Rader, Cotter, and Cho 2018;
Schuff et al. 2022; van Berkel et al. 2021): Only the AI
model’s decision explanation but not its decision recom-
mendation is provided to decision makers. The explana-
tion often points out important features of the task that
contribute the most to the AI model’s unrevealed decision
recommendation, aiming to highlight information that AI
believes as highly relevant for decision making.

For more details of the literature review, please see the sup-
plementary material. In this study, we focus on building
a computational framework to characterize how different
forms of AI assistance, such as the three types identified
above, impact humans in AI-assisted decision making.
Modeling Human Behavior in AI-assisted Decision Mak-
ing. Most recently, there has been a surge of interest among
researchers in computationally modeling human behavior
in AI-assisted decision making (Bansal et al. 2021; Ku-
mar et al. 2021; Tejeda et al. 2022; Pynadath, Wang, and
Kamireddy 2019; Li, Lu, and Yin 2023; Lu et al. 2023).
Many of these studies build their models on economics
frameworks (Wang, Lu, and Yin 2022), which explain hu-
man decision making behavior under uncertainty, or on psy-
chological frameworks that describe the relationship be-
tween human trust and reliance on automated systems (Aje-
naghughrure et al. 2019; Li, Lu, and Yin 2023). However,
most existing works are either tailored to one specific form
of AI assistance or lack interpretations of how AI assistance
influences human decision making processes. Inspired by
the recent research in computationally modeling the effects
of nudges (Callaway, Hardy, and Griffiths 2022), we take a
different approach in this paper and build a framework to
characterize diverse forms of AI assistance as nudges in the
human decision making process.

Methods
Problem Formulation
We now formally describe the AI-assisted decision making
scenario in this study. Suppose a decision task can be char-
acterized by an n-dimensional feature x ∈ Rn, and y is
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the correct decision to make in this task. In this study, we
focus on decision making tasks with binary choices of de-
cisions, i.e., y ∈ {0, 1}, and each feature xi of the task x
is normalized to fall within the interval of [0, 1]. We use
M(x;wm) to denote the AI model’s output on the deci-
sion task (wm are model parameters), and it is within the
range of [0, 1]. Given M(x;wm), the AI model can pro-
vide a binary decision recommendation to the human deci-
sion maker (DM), i.e., ym = 1(M(x;wm) > 0.5). The AI
model’s confidence in this recommended decision is cm =
max{M(x;wm), 1 − M(x;wm)}. Following explainable
AI methods like LIME (Ribeiro, Singh, and Guestrin 2016)
and SHAP (Lundberg and Lee 2017), the AI model could
also provide some “explanations” of its decision recommen-
dation, e = E(M(x;wm)), e ∈ Rn, by highlighting the
“important” features that contribute the most to the decision
recommendation. Here, ei ∈ {0, 1}, where ei = 1means the
feature xi is highlighted as important, while ei = 0 means
the feature xi is not highlighted. In addition, we assume that
the human DM also independently forms their own judg-
ment of the decision task, which is characterized by the func-
tion H(x;wh) whose output is in the range of [0, 1]. Thus,
yh = 1(H(x;wh) > 0.5) represents the human DM’s inde-
pendent binary decision.

We consider the setting where the human DM is asked to
complete a set of T decision tasks with the help of the AI
model. For each task t (1 ≤ t ≤ T ), the human DM is given
the feature vector xt and the AI assistance. As discussed
previously, we focus on studying the following three forms
of AI assistance:
• Immediate assistance: The AI model’s binary decision
recommendation ym,t and its confidence cm,t are imme-
diately provided to the DM along with the task xt.

• Delayed recommendation: The DM is required to first
make an initial independent decision yh,t on the task. Af-
ter that, the AI model’s binary decision recommendation
ym,t will be revealed to the DM.

• Explanation only: The DM is only provided with the AI
model’s explanation et, which highlights the important
features of the task that contributes the most to the AI
model’s unrevealed decision recommendation.

The DM’s independent judgement on the task is yh,t—this
is observed as the DM’s initial decision when AI assistance
comes in the form of delayed recommendation, but is unob-
served (thus requires inference) when AI assistance comes
in the other two forms. Given both their own judgement and
the AI assistance, the DM then makes a final decision ŷt

on the task. The goal of our study is to quantitatively char-
acterize how the DM is “nudged” by different forms of AI
assistance in making their final decision on each task.

Model Decision Makers’ Independent Judgement
To characterize how AI assistance nudges human DMs in
AI-assisted decision making, it is necessary to first under-
stand how human DMs form their independent judgement
without being nudged by AI. That is, we need to quan-
tify human DMs’ independent decision model H(x;wh).
Since each DM may have their own unique independent de-
cision making model with different model parameters wh,

given a training dataset of the DM’s independent decisions
D = {xi, yhi }Ni=1, we adopt a Bayesian approach and set out
to learn from the training dataset the posterior distribution
of model parameters for a population of diverse DMs, i.e.,
P(wh|D), instead of learning a point estimate. As directly
computing this posterior P(wh|D) is intractable, we lever-
age variational inference to approximate it using the param-
eterized distribution qφ(wh) = N (wh;µφ,Σφ) and mini-
mize the KL divergence between qφ(wh) and P(wh|D):

KL(qφ(wh)‖P(wh|D)) =

∫

wh

qφ(wh) log
qφ(wh)
P(wh|D)

dwh

=

∫

wh

qφ(wh)(log
qφ(wh)
P(wh)

− logP(D|wh) + logP(D))dwh

= KL(qφ(wh)‖P(wh))− Eqφ(wh)[logP(D|wh)− logP(D)]
(1)

where P(wh) is the prior distribution of wh and P(D) is a
constant2. Given the learned qφ(wh), and without additional
knowledge of a human DM’s unique independent decision
making model, we can only postulate that the DM follows
an average model to make their decision:

yh,t = 1(Eqφ(wh)[H(xt;wh)] > 0.5) (2)

Moreover, after we possess additional observations of the
human DM’s decision making behavior (e.g., the initial de-
cision yh,t that they make), we can update our belief of the
DM’s independent decision making model from the general
parameter distribution qφ(wh) in order to align with the ob-
served human behavior:

q̂φ(wh) ∝ qφ(wh) · 1(1(H(xt;wh) ≥ 0.5) = yh,t) (3)

Without loss of generality, in this study, we assumed that hu-
mans’ decision making model H(xt;wh) follows the form
of logistic model:

H(xt;wh) = sigmoid(wh · xt) (4)

Quantify the Nudging Effects of AI Assistance
Inspired by a recent computational framework for under-
standing and predicting the effects of nudges (Callaway,
Hardy, and Griffiths 2022), in this study, we introduce a
computational framework to provide an interpretable and
quantitative characterization of the influence of diverse
forms of AI assistance on human decision makers, which
enables us to predict human behavior in AI-assisted decision
making. The core idea of this framework is to conceptualize
the AI assistance as a “nudge” to the human decision making
process, such that it can modify how the human DM weighs
different information in their decision making and alter their
independent decision model accordingly. Depending on the
type of AI assistance used, this alternation could be oper-
ationalized as the human DM changing their belief in the
relevance of certain task feature to their decisions, or as the
human DM redirecting their attention to certain task feature
when making their decisions.

2In this study, P(wh) is set to be N (wh;0, In).
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Figure 1: The illustration of how immediate assistance
nudges human decision makers.

Immediate Assistance. As shown in Figure 1, in this
scenario, human DMs are directly presented with the AI
model’s decision recommendation ym,t and confidence cm,t

before they deliberate on the task trial xt. Human DMs may
consciously or unconsciously incorporate the AI recommen-
dation into their final decisions. The specific influence of AI
on a human DMmay largely vary with the DM’s inherent at-
titudes towards AI. For example, DMs with a high tendency
to trust AI may simply adopt AI’s recommendation while
skeptical DMs may simply adopt the opposite decision than
what AI suggests. In less extreme cases, DMs are not simply
trust or distrust the AI recommendation, but the AI recom-
mendation may change their belief of the relevance/impor-
tance of different task features so that they can either align
more with the AI recommendation ŷt, or deviate more from
the AI recommendation ŷt. The magnitude of this adjust-
ment may be controlled by the AI model’s confidence level
cm,t. Therefore, given any human DM whose independent
decision making model is decided by wh ∼ qφ(wh), with
the information ym,t and cm,t, the DM’s final decision ŷt

would be nudged by ym,t and cm,t as:

ŷt = 1(Eqφ(wh)[H(xt;wh + (2ym,t − 1)cm,tδdirect)] > 0.5)
(5)

where δdirect ∈ Rn (δdirect,i ·δdirect,j ≥ 0, ∀i, j ∈ {1, . . . , n})
represents the updates in the DM’s belief of the relevance of
different task features after receiving the immediate AI as-
sistance. Note that δdirect,i > 0 indicates that the DM has
a disposition to trust the AI (hence they update their belief
of task features’ relevance to align more with the AI rec-
ommendation), whereas δdirect,i < 0 suggests that the DM
has a tendency to distrust AI (hence they update their belief
of task features’ relevance to deviate more from the AI rec-
ommendation). cm,t moderates the magnitude of the update,
and ym,t controls the direction of the update. For example,
if ym,t = 1, δdirect,i > 0 (or δdirect,i < 0) increases (or de-
creases) the chance of the final decision ŷt being 1 compared
to that of the DM’s independent decision yh,t. Conversely,
If ym,t = −1, δdirect,i > 0 (or δdirect,i < 0) increases (or de-
creases) the chance of the final decision ŷt being −1 com-
pared to that of the DM’s independent decision yh,t.

Delayed Recommendation. As shown in Figure 2, in
this scenario, human DMs are required to deliberate and
make their initial decision yh,t on task trial xt before the

Figure 2: The illustration of how delayed recommendation
nudges human decision makers.

AI model’s decision recommendation is provided. The ob-
served human DM’s initial decision yh,t can be used to up-
date our belief of the DM’s independent decision making
model. Specifically, after observing the human DM’s initial
decision yh,t, an adjustment is made to the distribution of the
human DM’s independent decision model qφ(wh) to filter
out decision models that are inconsistent with the observed
decision, yielding q̂φ(wh) as given by Eq. 3. Then, as the
DM compares their initial decision yh,t with the AI model’s
decision recommendation ym,t, two scenarios may arise:

1. AI affirms human decision (yh,t = ym,t): For DMs who
trust AI, this agreement can boost their confidence in
their initial decision yh,t. Conversely, for DMs who are
skeptical of AI, they may become less confident in their
own judgement due to this agreement.

2. AI contradicts human decision (yh,t (= ym,t): DMs who
tend to trust AI might reflect on their initial decision and
could be inclined towards switching to ym,t. On the other
hand, DMs who are skeptical of AI may be more inclined
to stand by their own judgement yh,t.

Depending on which scenario that the DM encounters, we
model the DM’s final decision ŷt as follows:

ŷt = 1(Eq̂φ(wh)[H(xt;wh + (2ym,t − 1)(1(ym,t = yh,t)δaffirm

+ 1(ym,t #= yh,t)δcontra))] > 0.5)
(6)

Here, δaffirm, δcontra ∈ Rn (δaffirm,i · δaffirm,j ≥ 0, δcontra,i ·
δcontra,j ≥ 0, ∀i, j ∈ {1, . . . , n}) represent the updates in
the DM’s belief of the relevance of different task features
after seeing AI confirms their judgement (ym,t = yh,t) and
AI contradicts their judgement (ym,t (= yh,t), respectively.

Explanation Only. As shown in Figure 3, in this scenario,
human DMs are presented with the AI explanation et, which
highlights the critical features of the task trial xt. These ex-
planations may nudge human DMs to redirect their attention
to these highlighted features when forming their final deci-
sion ŷt. Intuitively, information that is marked as important
might be prioritized by DMs, while other information may
be overlooked. As such, the highlighted task features may
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Figure 3: The illustration of how explanation only nudges
human decision makers.

exert a more salient influence on the DM’s final decision ŷt:

ŷt = 1(Eqφ(wh)[δexpH(et $ xt;wh)+

(1− δexp)H((1− et)$ xt;wh)] > 0.5)
(7)

where) is the element-wise product. δexp ∈ [0, 1] quantifies
the degree to which the human DMs redirect their attention
to the highlighted features after seeing the AI explanation,
with larger values indicating that the DM puts a greater em-
phasis on the highlighted information.

Human-Subject Experiment
To evaluate the proposed framework, we conducted a
human-subject experiment to collect behavior data from real
human decision makers in AI-assisted decision making un-
der different forms of AI assistance.
Decision Making Tasks. The decision making task we used
in our experiment was to predict diabetes in patients based
on demographic information and medical history. Specifi-
cally, in each task, the subject is presented with a patient
profile encompassing six features: gender, age, history of
heart disease, Body Mass Index (BMI), HbA1c level, and
blood glucose level at a given time interval. The subject was
then asked to determine whether this patient has diabetes.
The patient profiles were randomly sampled from the dia-
betes prediction dataset (Mustafatz 2023).
Experimental Treatments. We created four treatments in
this experiment. One of these is an independent treatment
where human subjects complete decision making tasks with-
out any AI assistance. In the other three treatments, hu-
man subjects receive one of the three forms of AI assis-
tance as what we introduced earlier. The AI assistant used in
the experiment was based on a boosting tree model trained
on the diabetes prediction dataset. The accuracy of the AI
model was 87%. In the Explanation only treatment, we used
SHAP (Lundberg and Lee 2017) to explain the predictions
of the boosting tree model. The two most influential features
are highlighted as the AI model’s explanation.
Experimental Procedure. We posted our experiment on
Amazon Mechanical Turk (MTurk) as a human intelligence
task (HIT) and recruited MTurk workers as our subjects.
Upon arrival, we randomly assigned each subject to one of

the four treatments. Subjects started the HIT by completing
a tutorial that described the diabetes prediction task that they
needed to work on in the HIT and the meaning of each fea-
ture they would see in a patient’s profile. To familiarize sub-
jects with the task, we initially asked them to complete five
training tasks. During these training tasks, subjects made di-
abetes predictions without AI assistance, and we immedi-
ately provided them with the correct answers and the end of
each task. The real experiment began after the subject com-
pleted the training tasks. Specifically, subjects were asked to
complete a total of 30 tasks, which were randomly sampled
from a pool of 500 task instances. After subjects completed
all 30 tasks, subjects were asked to undertake a 3-item Cog-
nitive Reflection Test (CRT) (Frederick 2005), intended to
assess the subject’s tendency in engaging with intuitve vs.
reflective thinking. We offered a base payment of $1.2 for
the HIT. The HIT was open to US-based workers only, and
each worker can complete the HIT once.We further included
an attention check question within the HIT, where subjects
were required to select a randomly determined option. Data
collected from subjects who successfully passed the atten-
tion check were considered valid for our study (see the sup-
plementary materials for more details of the human-subject
experiment).

Evaluations
After filtering the inattentive subjects, we obtained valid data
from 202 subjects in our experiment (Independent: 53, Im-
mediate assistance: 50, Delayed recommendation: 53, Ex-
planation only: 46). Below, we conduct our evaluation using
the behavior data collected from these valid subjects.

Model Training and Baselines
We first learned the general parameter distribution qφ(wh)
of human DMs’ independent decision making model utiliz-
ing the data collected in the Independent treatment. Through
5-fold cross-validation, we found the average accuracy in
predicting an average human DM’s independent decision us-
ing qφ(wh) and Eq. 2 is 0.673. In the following evaluations,
we used qφ(wh) to reflect the human DM’s independent de-
cision making model, and used the maximum likelihood es-
timation to learn how different forms of AI assistance nudge
each individual human DM to modify their decision making
model.

Specifically, to evaluate the performance of the proposed
framework, for each human subject, we randomly split the
behavior data collected from them into training (50%) and
test (50%) sets. We computed the average negative log-
likelihood (NLL) to measure how well different models cap-
ture the likelihood of subjects making their final decisions
under the influence of AI assistance, and we averaged the
NLL values across all subjects in each treatment. A lower
mean NLL indicates a better prediction performance. In ad-
dition, we also employed F1-score and Accuracy scores to
evaluate the performance of different models. For both these
metrics, higher scores denote better performance. To ensure
the robustness of evaluations, all experiments were repeated
5 times, and the average performance across these repeti-
tions was reported.
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Treatment
Immediate assistance Delayed recommendation Explanation only

NLL ↓ Accuracy ↑ F1 ↑ NLL ↓ Accuracy ↑ F1 ↑ NLL ↓ Accuracy ↑ F1 ↑
Logistic Regression 0.522 0.753 0.789 0.446 0.809 0.782 0.549 0.728 0.767

XGBoost 0.533 0.768 0.737 0.472 0.812 0.797 0.617 0.711 0.753
MLP 0.656 0.753 0.729 0.554 0.777 0.751 0.606 0.686 0.778
SVM 0.530 0.754 0.707 0.461 0.791 0.758 0.603 0.721 0.743
Utility 0.573 0.739 0.779 - - - - - -
Ours 0.435 0.800 0.818 0.413 0.825 0.812 0.563 0.715 0.791

Table 1: Comparing the performance of proposed method with baseline methods on three forms of AI assistance, in terms of
NLL, Accuracy, and F1-score. “↓” denotes the lower the better, “↑” denotes the higher the better. Best result in each column is
highlighted in bold. All results are averaged over 5 runs. “-” means the method can not be applied in this scenario.

We consider utility-based model proposed by Wang, Lu,
and Yin (2022) and a few standard supervised learning mod-
els as baselines in evaluations, including Logistic Regres-
sion, XGBoost, Multi-Layer Perceptron (MLP), and Support
Vector Machines (SVM). These supervised learning models
directly predicts human DMs’ final decisions ŷh,t in a deci-
sion task based on various features:

1. Immediate assistance: task trial features xt, as well as
the AI model’s decision recommendation ym,t and con-
fidence cm,t in the task trial.

2. Delayed recommendation: task trial features xt, human
DMs’ initial decision yh,t, and the AI model’s decision
recommendation ym,t in the task trial.

3. Explanation only: task trial features xt and the AI expla-
nation et in the task trial.

Comparing Model Performance
Table 1 presents the comparative performance of various
models in predicting human DMs’ decisions across three
forms of AI assistance. Overall, our proposed method con-
sistently outperforms the baseline methods in the Immediate
assistance andDelayed recommendation scenarios across all
metrics by a significant margin. For instance, within the Im-
mediate assistance scenario, the NLL for our method stands
at a mere 0.435, whereas the best baseline achieves an NLL
of 0.522. In the Explanation only scenario, the performance
of our method is comparable with the best-performing base-
line model, logistic regression, in terms of NLL and Accu-
racy, and outperforms it on the F1-score.

To assess the robustness of our approach, we varied the
proportions of training and testing data and observed how
the performance of our method changes with the training
data size. Given the high performance of the logistic regres-
sion model, we selected it as the baseline model in this eval-
uation. As shown in Figure 4, our approach demonstrates
consistently superior performance compared to logistic re-
gression models across three AI-assisted decision making
scenarios particularly when the number of training instances
is limited. Specifically, the performance of our model re-
mains robust with respect to variations in the amount of
training data; it shows only a slight decrease in performance

(a) Negative Log Likelihood (b) F1-score

Figure 4: Comparing the performance of our method with
logistic regression models when changing the size of train-
ing data under three forms of AI assistance.

as the number of training instances reduces. In contrast, lo-
gistic regression models are highly sensitive to the size of
the training data. As the number of training samples de-
creases, their performance degrades significantly. In other
words, unlike the standard supervised learning models like
logistic regression—which requires retraining from scratch
for each individual human DM—our approach is endowed
with the knowledge of how human DMs in general make
decisions. This knowledge makes it possible for us to only
tune the parameters of AI’s nudging effects δ on each in-
dividual human DM with a few training instances, yet still
achieving comparable or even higher performance compared
to the supervised learning models.

Examining the Nudging Effect of AI Assistance
across Individuals
We now examine how may the AI assistance nudges de-
cision makers with different cognitive styles similarly or
differently. To do so, we compared the size of the learned
nudging effects on decision makers for three forms of AI
assistance. Specifically, we first used all behavior data col-
lected from a human DM to learn the nudging effect of AI
assistance on them (i.e., δ). We then used sign(δ)||δ|| to
represent the direction and magnitude of the nudging ef-
fects of AI assistance on the human DM (sign(δ) = 1
when ∀i, δi > 0; otherwise sign(δ) = −1). To catego-
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(a) Immediate assistance:
||δdirect||

(b) Delayed recommendation
(yh = ym): ||δaffirm||

(c) Delayed recommendation
(yh #= ym): ||δcontra||

(d) Explanation only: δexp

Figure 5: Comparing the nudging effects of AI assistance on decision makers with different cognitive styles across three forms
of AI assistance.

rize the cognitive style of each human DM (i.e., each sub-
ject), we utilized their scores in the 3-item Cognitive Re-
flection Test (CRT) in the experiment—Following previous
research (Frederick 2005), subjects scoring 3 were classi-
fied as having a reflective thinking style, those with a score
of 0 were categorized as having an intuitive thinking style,
and those scoring 1 or 2 were categorized as the moderate
reflective style.

Figure 5 shows the comparison results of the nudging ef-
fects of AI assistance on DMs with different cognitive styles.
To examine whether the nudging effects of AI assistance are
different across DMs with different cognitive styles, we first
used a one-way ANOVA test 3 to determine if there are sta-
tistically significant differences in the values of sign(δ)||δ||
across different groups of DMs. If significant differences are
detected, we proceed with post-hoc pairwise comparisons
using Tukey’s HSD test 4. Overall, our findings suggest that
under the Immediate assistance and the Delayed recommen-
dation scenarios (when AI affirms human decision), AI as-
sistance exerts a larger influence on DMs with a reflective
thinking style than intuitive DMs (p < 0.05) and DMs with
moderate reflective styles (p < 0.05). One potential expla-
nation is that reflective DMs are inclined to deliberate more
extensively on tasks and the AI model’s recommendations.
Thus, through their interactions with the AI model, reflec-
tive DMs may have sensed the high performance of the AI
model (its accuracy is 87% for the task), making them more
willing to align their decisions with the AI recommendation,
especially when the AI recommendation affirms their own
independent judgement. However, when the human DM’s
initial decision differs from the AI recommendation in the
Delayed recommendation scenario, there isn’t a statistical
difference in the AI’s nudging effects across the three types
of decision makers. In fact, by comparing the AI’s nudging
effects on different groups of DMs under the two conditions
of the Delayed recommendation scenario—AI affirms hu-
man decisions or contradicts human decisions—we find that

3Analysis of Variance (ANOVA) is a statistical test for identi-
fying significant differences between group means.

4Tukey’s HSD (Honestly Significant Difference) is a post-hoc
test used to determine specific differences between pairs of group
means after a one-way ANOVA test has found significance.

reflective DMs are significantly more likely to align their fi-
nal decisions with the AI recommendation when AI affirms
rather than contradicting their initial judgement (p < 0.05).
In contrast, the intuitive and moderately reflective DMs do
not appear to be impacted by AI significantly differently un-
der these two conditions.

Finally, under the Explanation only scenario, we also ob-
serve that intuitive DMs tend to place more emphasis on
the features highlighted by the AI explanations. The nudg-
ing effect of AI explanations on intuitive DMs is found to
be significantly greater than that on moderately reflective
DMs (p < 0.05). While the nudging effect also appears to
be slightly larger for intuitive DMs compared to reflective
DMs, the difference is not statistically significant.

Conclusion
In this paper, we propose a computational framework to
characterize how various AI assistance nudges humans in
AI-assisted decision making. We evaluate the proposed
model’s performance in fitting the real human behavior data
collected from a randomized experiment. Our results show
that the proposed model consistently outperforms other
baselines in accurately predicting humans decisions under
diverse forms of AI assistance. Additionally, further analy-
ses based on the proposed framework provided insights into
how individuals with varying cognitive styles are impacted
by AI assistance differently.

There are a few limitations of this study. For example, the
behavior data is collected from laypeople on the diabetes
prediction task, which contains a relatively small number
of features. It remains to be investigated whether the pro-
posed model can perform well on tasks that involve many
more features and thus more complex. Additionally, the AI-
assisted decision scenario we examined in this study lacks
sequential or temporal feedback regarding AI performance.
Further exploration is required to generalize the propose
framework to the sequential settings. Lastly, we assumed
that the independent human decision model follows the form
of logistic regression. Additional research is needed to ex-
plore how to adapt the current ways of altering humans’ de-
cision models for reflecting the nudging effect of AI assis-
tance on human DMs to other forms of decision models.
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