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ARTICLE INFO ABSTRACT

Communicated by Radu Balan It is frequently observed that overparameterized neural networks generalize well. Regarding
such phenomena, existing theoretical work mainly devotes to linear settings or fully-connected
neural networks. This paper studies the learning ability of an important family of deep neural
networks, deep convolutional neural networks (DCNNs), under both underparameterized and
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Benign overfitting overparameterized settings. We establish the first learning rates of underparameterized DCNNs
Learning rates without parameter or function variable structure restrictions presented in the literature. We
Overparameterized network also show that by adding well-defined layers to a non-interpolating DCNN, we can obtain some

interpolating DCNNs that maintain the good learning rates of the non-interpolating DCNN. This
result is achieved by a novel network deepening scheme designed for DCNNs. Our work provides
theoretical verification of how overfitted DCNNs generalize well.

1. Introduction

Neural networks are computing systems with powerful applications in many disciplines, such as data analysis and pattern and
sequence recognition. In particular, deep neural networks with well-designed structures, numerous trainable free parameters, and
massive-scale input data have outstanding performances in function approximation [32,18], classification [19,11], regression [30],
and feature extraction [23]. The success of deep neural networks in practice has motivated research activities intended to rigorously
explain their capability and power, in addition to the literature on shallow neural networks [26].

In this paper, we study an important family of neural networks known as convolutional neural networks. Given that neural
networks, in general, are powerful and versatile, researchers have been working to improve their computational efficiency further.
When the data dimension is large such as the AlexNet [19] of input dimension about 150,000, fully-connected neural networks are
not feasible. Structures are often imposed on neural networks to reduce the number of trainable free parameters and get feasible deep
learning algorithms for various practical tasks [20]. The structure we are interested in is induced by one-dimensional convolution
(1-D convolution), and the resulting networks are deep convolutional neural networks (DCNNs) [31]. The convolutional structure of
DCNNs reduces the computational complexity and is believed to capture local shift-invariance properties of image and speech data.
Such features of DCNNs contribute to the massive popularity of DCNNs in image processing and speech recognition.

In recent years, there has been a line of work studying overparameterization in deep learning. It is frequently observed that
overparameterized deep neural networks, such as DCNNs, generalize well while achieving zero training error [6]. This phenomenon,

* Corresponding author.
E-mail address: tzhou306@gatech.edu (T.-Y. Zhou).

https://doi.org/10.1016/j.acha.2023.101582

Received 12 May 2022; Received in revised form 29 July 2023; Accepted 8 August 2023
Available online 16 August 2023

1063-5203/© 2023 Elsevier Inc. All rights reserved.


https://doi.org/10.1016/j.acha.2023.101582
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/acha
http://crossmark.crossref.org/dialog/?doi=10.1016/j.acha.2023.101582&domain=pdf
mailto:tzhou306@gatech.edu
https://doi.org/10.1016/j.acha.2023.101582

T.-Y. Zhou and X. Huo Applied and Computational Harmonic Analysis 68 (2024) 101582

known as benign overfitting, seems to confront the classical bias-variance trade-off in statistical theory. Such a mismatch between
observations and classical theory sparked avid research attempting to understand how benign overfitting occurs. Theoretical work
studying benign overfitting was initiated in [4], where a linear regression setting with Gaussian data and noise was considered.
It presented conditions for minimum-norm interpolators to generalize well. In a non-linear setting induced by the ReLU activation
function, benign overfitting is verified for deep fully-connected neural networks in [22]. On top of that, a recent work [10] shows
that training shallow neural networks with shared weights by gradient descent can achieve an arbitrarily small training error.

In this paper, we study the learning ability of DCNNs under both underparameterized and overparameterized settings. We aim
to show that an overparameterized DCNN can be constructed to have the same convergence rate as a given underparameterized one
while it perfectly fits the input data. In other words, we intend to prove that interpolating DCNNs generalize well.

The main contributions of the paper are as follows. Our first result rigorously proves that for an arbitrary DCNN with good
learning rates, we can add more layers to build overparameterized DCNNs satisfying the interpolation condition while retaining
good learning rates. Here, “learning rates” refers to rates of convergence of the output function to the regression function in a
regression setting. Our second result establishes the learning rates of DCNNs in general. Previously in [33], convergence rates of
approximating functions in some Sobolev spaces by DCNNs were given without generalization analysis. Moreover, learning rates of
DCNN:ss for learning radial functions were given in [24], where the bias vectors and filters are assumed to be bounded, with bounds
depending on the sample size and depths. More recently, learning rates for learning additive ridge functions were presented in [14].
Unlike these existing works, the learning rates we derive do not require any restrictions on norms of the filters or bias vectors, or
variable structures of the target functions. Without the boundedness of free parameters, the standard covering number arguments do
not apply. To overcome such a challenge, we derive a special estimate of the pseudo-dimension of the hypothesis space generated
by a DCNN. Previously, a pseudo-dimension estimate was given in [3] for fully-connected neural networks, using the piecewise
polynomial property of the activation function. We shall apply our pseudo-dimension estimate to, in turn, bound the empirical
covering number of the hypothesis space. In such a way, we can achieve our results without restrictions on free parameters.

Combining our first and second results, we prove that for any input data, there exist some overparameterized DCNNs which
interpolate the data and achieve a good learning rate. The third result provides theoretical support for the possible existence of
benign overfitting under the DCNN setting.

The rest of this paper is organized as follows. In Section 2, we introduce notations and definitions used throughout the paper,
including the definition of DCNNs to be studied. In Section 3, we present our main results that describe how a DCNN achieves benign
overfitting. The proof of our first result is given in Section 4, and the proofs of our second and third results are provided in Section 5.
In Section 6, we present the results of numerical experiments which corroborate our theoretical findings. Lastly, in Section 7, we
present some discussions and compare our work with the existing literature.

2. Problem formulation

In this section, we define the DCNNs to be studied in this paper and the corresponding hypothesis space (Subsection 2.1). Then,
we introduce the regression setting with data and the regression function (Subsection 2.2).

2.1. Deep convolutional neural networks and the corresponding hypothesis space

To begin with, we formulate the 1-D convolution. Let w = {w /}7:’_00 be a filter supported in {0,1,...,s} for some filter length

s €N, which means w; # 0 only for 0 < j <s. Suppose x = {x; };.r:iw is another sequence supported in {1,2,...,d} for some d €N and
is denoted as an input vector x = (x1, ..., x,;)T € R? for networks in the following. The 1-D convolution of w with x, denoted by wxx,
is defined as

d
(wsx); = Z Wi_j X = Z W;_; X, ieZ. (2.1)
kez k=1

We can see, from (2.1), the convoluted sequence ws=x is supported in {1,2,...,d + s} and can be expressed in the following matrix
form

[(wex)] 25 = Tx, (2.2)

i=1 =

where
(T =wy, ifi=1,2,....d,
(T*)ipri=wy, ifi=1,2,....d,
(2.3)
Ty =wy, ifi=1,2,....d,

Ty, ;=0 otherwise.
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TY is a (d + s) X d sparse Toeplitz-type matrix often referred as the “convolutional matrix.” The sparsity of T* can be attributed to the
large number of zero entries. This approach is known as “zero-padding,” where we have expanded the vector x € R? to a sequence
on Z by adding zero entries outside the support {1,2,....d}.

Now we define DCNNs by means of convolutional matrices. We take the ReLU activation function ¢ : R — R given by o(u) =
max{0,u}. It acts on vectors componentwise.

Definition 1. A DCNN of depth J € N consists of a sequence of function vectors {h¥) : R? — R% }1{:1 of widths {d; :=d + js}f=O
defined with a sequence of filters w = {wV)}’_ each of filter length s € N and a sequence of bias vectors b = {b¥) € R% } by h®(x) = x

Jj=1
and iteratively
W (x)=0 (TORVD(x) - D),  j=12,....J, 2.4

isa (d;_; +s)xd;_; convolutional matrix. The hypothesis space generated by this DCNN

where TV :=T%Y = [w’@k

] 1<i<d;_y+s,1<k<d;_,
is given by

Hy,=span{c-h(x)+a:c€RY, acR,wb}. (2.5)

We often take the bias vector ») of the so-called “identical-in-middle” form

b =[by, - .,b

S—l’bs’""bs’bd/—s+2’""bd/]T (2.6)
——
d;-2s+2

with d; —2(s — 1) repeated entries in the middle. This special shape of the bias vector bV, together with the sparsity of the convolu-
tional matrix T, tells us that the j-th layer of the DCNN involves only (s + 1) + (2s — 1) = 3s free parameters.
To reduce data redundancy, we introduce a downsampling operator D,, : RK — RIX/"] with a scaling parameter m € N by

D, =X/, verk, 2.7)

where |u| denotes the integer part of u > 0. In other words, the downsampling operator D,, only “picks up” the m-th, 2m-th, ...,
| K /m|m-th entries of v.

Definition 2. A downsampled DCNN of depth J with downsampling at layer J; € {1,...,J — 1} has widths d, =d and

di_;+s, if j#J,,
4= - if =, (2.8)
! { ;. +9)/d], ifj=Jy,
and function vectors {h0) : RY — R} 7_, given by A®(x) = x and iteratively
. TORU=D(x) — b(j)) if j#J
Wiw={ T ; L 2.
e { o (Dy (TYRVD(x)) = bD), if j=1J,. (2.9)

In other words, the downsampling operation aims to reduce the width of a certain layer of DCNN while preserving information
on data features. The hypothesis space is defined in the same way as (2.5).

In this paper, we take bias vectors b to satisfy (2.6) for j =1,2,...,J — 1. If no additional constraints are imposed, the number
of free parameters for an output function from the hypothesis space (including filters and, biases, coefficients) equals

J-1
Z(s+1+2s—1)+(s+1)+d,+d,+1=3s(J— D4+s+2+2d;. (2.10)
j=1

DCNNs considered in this paper are based on a “zero-padding” approach and have increasing widths. In the literature, DCNNs
without zero-padding have also been introduced [15,19], and they have decreasing widths, leading to limited approximation abilities
and the necessity of channels for learning. Moreover, DCNNs induced by group convolutions were studied with nice approximation

properties presented in [28].

2.2. Data and regression function

Consider a training sample D := {z/ = (x', )/ )}, drawn independently and identically distributed from an unknown distribution
pon Z :=Qx Y. Throughout this paper, we assume that Q is a closed bounded subset of R¢ and Y = [-M, M] for some M > 1.

The regression function f, is given by conditional means f,(x) = E[y|x] = fy ydp(y|x) of the conditional distributions p(-|x) at
x € Q. Since |y| < M almost surely, we have |f,(x)| = |E[y|x]| < M. So, it is natural to project function values onto the interval
[-M, M] and define the truncation operator r,, for any real-valued function f by
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foo, iflf)l<M,
Ty f)=3M, if f(x)> M, (2.11)
-M, if f(x)<—-M.

Moreover, we denote by H,, ;, the set of all output functions f € H, ; from the hypothesis space H, ; (2.5) satisfying the
following interpolation condition

feh=y, i=l,...n (2.12)

When downsampling is used in the DCNN, we use the same notation to denote the set of interpolating output functions generated
from the downsampled DCNN.

3. Main results

In this section, we state our main results. The corresponding theorems will be proved in Sections 4 and 5.

Here, we introduce our first result. Our first result shows that a good generalization ability of any given non-interpolating
DCNN (“teacher DCNN”) can be maintained by some interpolating output function f € H,, ;; of a “student DCNN” obtained by
adding well-defined layers to the given DCNN. The learning and approximation ability is measured in regression by the L, norm
Ir0s={/y |f(x)|2dﬂg}l/2 for f e L%Q with respect to the marginal distribution pg, of p on Q.

Theorem 1. Let 2 <d €N and S <d /2. Assume that po has no positive mass at any point x € Q. Suppose that the hypothesis space H, s
defined by (2.5) generated by a DCNN of depth J, € N with filter length .S can approximate the regression function f, within accuracy
{E;, >0} ,en as follows

fei}ilfzs ””Mf—ff’uz <Ep» (3.1)

then there exists a downsampled DCNN of depth J, + J, + J; with filter length s = 2.5, downsampling at the J,-th layer where J, = [%],

N-1d
and J; = [(%] for some odd N > 3n, such that

inf “an - prZ <E,. (3.2)

S €M int gy 40y 3.8

The additional number of free parameters of an output function from the deepened DCNN equals

dypyes, T8 +2)+3.

More specifically, suppose we are given a DCNN of depth J,, which approximates f, sufficiently well. Theorem 1 states that, by
adding J; + J; well-defined convolutional layers to this given DCNN, we obtain some f € H,,; j, +,+4,.s Which interpolates the data
and, at the same time, possesses the same generalization error bound as the given DCNN.

The main tool of proving Theorem 1 is a network deepening scheme, which adds well-defined layers to a given DCNN such that
the deepened student DCNN interpolates the input data. The detailed proof is given in Section 4.

To verify the benign overfitting of DCNN, it is necessary to show that an interpolating DCNN can achieve a good learning rate.
The phrase “learning rate” here refers to the convergence rate of the excess generalization error (excess error), which will be defined
shortly. We now turn our attention to finding learning rates of a DCNN of depth J and filter length s. It will act as a teacher DCNN
later in Theorem 3. Such a DCNN generates the hypothesis space 7, ; defined in (2.5). We are interested in a global minimum of the
following empirical risk minimization (ERM) problem

Ip,gs i=argmingg, ep(f), 3.3)

where e,(f) = %Z".’ZI( f(x') — y)? is the empirical risk of function f € C(Q), the space of continuous functions on Q with norm

I/ lc@) = supxeq | f (I
To analyze the performance of learning algorithms for regression, we consider the generalization error defined by

()= / (f() =) dp.
z
It is minimized by the regression function f,, and the excess generalization error (excess error) equals the error norm square

ef)—e(f,)=1f =13 (3.4)

and can be used in regression analysis [17].
Here, we present our second result. Our second result establishes the learning rates of DCNNs in general. Remarkably, we do not
give any restrictions on norms of the filters and bias vectors or variable structures of the regression function f,. The Sobolev space

4
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W] (Q) with an integer index r consists of restrictions to Q of F from the Sobolev space Wz’(Rd) on R? meaning that F and all its
partial derivatives up to order r are squared integrable on R?.

Theorem 2. Let2< .S <d, M >1,n>3, and Q C [-1,1]¢. Assume |y| < M almost surely and f, €W(Q) with an integer index r > 2+d /2.
Define f, ; ¢ by the ERM scheme (3.3) with the DCNN of depth J stated in Definition 1 with “identical-in-middle” bias vectors satisfying
(2.6) for layers 1,2, ... J — 1. The number of free parameters of this DCNN is Py, ; ¢ <5dJ +2. For any 0 < § < 1, we have with probability
at least 1 — 6,

n \/; J

(3.5)

2 log(2/6 1 J2(log J log J
”ﬂMfDJ,S—fpuzSCM,r’fpd(logd)<1+ 0g 2/ )><(0gn) (og/) 1 log )

n

where Cy, . 3 is a constant independent of n,é or d.
Specifically, when J = [n*] with any 0 < « < 1/2, the number of free parameter is P, [« s < 5d [n*] + 2. With probability at least 1 - 5, we
have

(3.6)

pmin{1-2a,a} ’

[ fp1|§ <max {802,6C,,., } doga) < - 10g(2/5)> (logn)?

\/;

Theorem 2 establishes learning rates of DCNNs explicitly in terms of the dimension of the input data d and size » of the training
sample. It states that when J = [n*] for any 0 < « < 1/2, the DCNN output function 7, fp ; ¢ converges to the regression function

f, with high probability. In particular, with the choice of J = [n%], the rate of convergence is of order O((logn)?n~'/3). To our best
knowledge, this is the first result presenting learning rates of DCNNs for learning a general function without any variable structure
assumption. It differs from the existing learning rates of DCNNs for learning functions with variable structures such as additive ridge
functions [14] and radial functions [24]. This is also the first learning rate of DCNNs without parameter restrictions presented in the
literature. The proof of Theorem 2 is given in Section 5.

Next, we present our third result. According to Theorem 2, for any 0 < « < 1/2, an underparameterized, non-interpolating DCNN
with O(n®) free parameters converges to the regression function with a learning rate of order @((logn)*n~'/3). In this paper, we refer
to “underparameterized neural networks” [5] as networks that have the number of trainable free parameters of order o(n). Next, by
applying the results in Theorem 1, we can deepen this underparameterized DCNN to an interpolating, overparameterized one. The
following theorem suggests that this overparameterized DCNN with @O(n!*®) free parameters can not only interpolate any input data,
but also achieve the same learning rate as the underparameterized DCNN.

Theorem 3. Under the assumption of Theorem 2 and that p has no positive mass at any point x € Q, for any 0 < a < 1/2, there exists a
downsampled DCNN of depth J, + J, + J; with even filter length s satisfying 4 < s < d, downsampling at the J,-th layer, where J, = [%],

4"<dJ1 +s[n”}) . .
Jy=[n"], and J; = | —————= |, such that for any 0 <5 <1, with probability 1 - 5, we have

inf

S € int gy +dy+d3.

(3.7)

pmin{1-2a,a} ’

2
| f - f,,Hz < max {8M2 +1,6Cy .y + 1 } d(logd) <1 + lOg(2/5)> (logn)

Jn

The number of free parameters of this DCNN is of order O(n'*+%).

Theorem 3 tells us that there exists an interpolating DCNN that generalizes well. This result provides theoretical support for the
possible existence of benign overfitting in the DCNN setting. At this point, we are unable to derive learning rates of DCNN with
J = [n¥] layers for 1/2 < a < 1. The challenge is mainly due to an upper bound of pseudo-dimension stated in Theorem 4 below (an
extension to a previous result in [3]), which does not cover the case 1/2 < « < 1. It would be interesting to develop new approaches
to estimate the pseudo-dimension of DCNNs, which in turn estimates the covering number. Furthermore, it is worth noting that
the learning rates we obtained (for both underparameterized and overparameterized DCNNs) do not achieve the minimax rate of
convergence for least squares regression [30]. Whether one can obtain a minimax rate of convergence of DCNNs remains an open
problem.

4. Achieving interpolation condition by deepening DCNNs

In this section, we present a network deepening scheme for proving Theorem 1. Here, we first give an outline of the proof.

Suppose we are given a non-interpolating DCNN that outputs a function f*. Theorem 1 tells us that we can construct a larger
DCNN that interpolates any data while maintaining the generalization ability of f*. The proof is carried out by means of an interpo-
lator of the form

FO= 0+ Y (0 = 1) de(x) with ¢,(x)=¢ (17¢- (x=x")), (4.1)
£

=1

where n* € {1,—1} is a sign number, ¢ € R? is a nonzero vector, and ¢ = ¢© : R — R given with some ¢ > 0 by
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A given DCNN

TR — |opepin fy | H (@) €RO

Fie 1 r & 7

§T1I (H2)(x)),
z :
I (HU) ()

0
J DCNN of H DCNNof | : DCNNof | f(@)
reRY — depth J; |~ | : depth J; 0 77| depth J3 =
Zd (H(2))p,,
0 0 fl@) =y
0 0 Vo=l n
\ L0 . J

|

Interpolating DCNN of depth J; + ], + J3

Fig. 1. Given an input x € R’ and a given non-interpolating DCNN of depth J,, the figure illustrates the process of constructing an interpolating DCNN of depth
I+ 0+ 75

) = é {foute)—oW)—(cw)—o—e)}

1+%u if —e<u<O,

l—éu if0<u<e,

0 if |u| > €.

We can see that ¢ is a hat function vanishing outside [—e, €], equal to 1 at 0, and linear on [—¢,0] and on [0, ¢]. When € is small
enough, the basis function ¢, in (4.1) takes the form

s 1=
x/) =
‘ 0 ifj#e,

leading to the desired interpolation property (that is, f(x') =y’ for all i) while maintaining the generalization abilities of f*. Our
goal is to construct a DCNN that produces this function f. The construction of such a DCNN can be divided into three steps.

First, we use a group of convolutional layers to realize linear features £ - x in the basis functions ¢, for an arbitrary & € R?
(Subsection 4.1). Then, we introduce a network deepening scheme for any given DCNN (Subsection 4.2). It doubles the widths of
the given DCNN, maintains its learning rate, and at the same time embeds the linear features ¢ - x. This is the key novel idea in our
deepening scheme. Lastly, we use ridge functions to construct DCNN interpolators (Subsections 4.3 and 4.4). The overview of this
network construction is illustrated in Fig. 1.

Before we get into these three steps, we first introduce a proposition. Suppose we have any given sequence W and network input
U(x), where U € (C(Q)X with norm ||U||,, = sup,eq ITUX)|| ¢=®K)- This proposition suggests that we can construct a DCNN that
outputs T% U(x), where T" is a convolutional matrix induced by W. Later in constructing linear features (the first step) and ridge
functions (the third step), we will apply this result to produce some special vectors truncated from a sequence W.

Denote 1x =(1,...,1) € RK. Recall the “identical-in-middle” bias vector introduced in (2.6):

p9) = [bys-+,by_y, by, -, by, bd,—s+1a e bd,]T-
——
dj-25+2

Proposition 1. If W = (Wir _, is a sequence supported in {0,...,V}, K € N is the input dimension, and 2 < s < K, then there exist filters
{w”’}j{il each supported in {0, ...,s} with J* = [%] such that the convolutional factorization W = w ) sw =Dy .. 5@ 40D holds.
The filter w” induces a (K + is) X (K + (i — 1)s) convolutional matrix T® given by (2.3).

Consider a DCNN {h9)(x) : RK — RK”S}LO satisfying hY)(x) = ¢ (TWRU=D(x) — bY). If the input layer h©) is given by U (x) + C with
C eRX and ||U|,, < B for some B >0, and the bias vectors are given by b = TWC — ||wD ||, BO1, ,, and

j-1 J
b = {H ], } BOTD 1y — {H w11, } B0y i j=2.07 -1, (4.2)
i=1 i=1

6
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then b\ satisfy the “identical-in-middle” condition (2.6) for j =2,...,J* — 1, the following expressions hold

;
RO ) =TOTID . TOU () + {H oIl } By e j=lo 0 =1, (4.3)
i=1
and
J*-1
T(J')IA’L(J*_I)(X)ZTWU(x)+ { H ”w(i)”1 } BOTU™) (1K+(J*—1)s)’ 4.4)
i=1

where TW = [W,_;],, € RE+T"9XK_ Moreover, if C = Cly for some C > 0, then (2.6) is also satisfied for j = 1.
The expression (4.4) will be applied in the first and third steps of our construction, with different choices of W'.

Remark 1. The convolutional matrix 7% is a (K + J*s) X K Toeplitz-type matrix induced by W and is given by

W, 0 e 0
w, W, - 0
Wk o - Wy W
We - “ W,
™ — : R (4.5)
Wok-1 Wik - Wk
Wy,
0 Wi
| 0 0 Wiy |

If we apply the downsampling operator Dy : RK+/"s  RUK+/"9)/K] in (2.7) to the last layer of DCNN proposed in Proposition 1,
we get

Wk_i W Wy
o Wak-1 Wik = Wk
Dy (T(J )h(J"l)(x)) =| Wik, Wok—r - Wk U(x) + b, (4.6)
Wiikes/k) — 1 - Wik

where b is some constant vector. We see that all matrix entries in (4.6) are potentially different. Later, we use this important
observation to generate specific features using DCNNs.

Before we prove Proposition 1, we first introduce two supporting Lemmas.

Lemma 1 was stated as Theorem 3 in [33]. It suggests that any sequence W can be factorized into convolutions of some smaller

sequences. The filters {w") }j{; in Proposition 1 are generated according to this result.

Lemma l. If W = (W) _

is supported in {0, ..., V), then there exist filters {1w") }I’f:] each supported in {0, ..., s} with p < [%] satisfying
a convolutional factorization

W = 0P s0P D orr 0@ 0D

A nice property stated in the following lemma (Lemma 2) is that products of convolutional matrices H{Zl T® are still convolu-
tional matrices but induced by the convoluted sequence of larger support. The proof of Lemma 2 is given in Appendix A.1.

Lemma 2. Let {w") }{; be filters supported in {0, ..., s}, then for j=1,...,J*, we have
j . .
H TO =%, 4.7)
i=1
Where H,L [ TO=TOTU=D ... TV, and T™ := [Wf(’_)k] is the (K + js)x K convolutional matrix induced by the convoluted

£=1,.. K+jsk=1...K
sequence W = wWDswl=Dsx ... s supported in {0, ..., js).

Now we are in a position to prove Proposition 1.
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Proof of Proposition 1. We apply Lemma 1 and find filters {w" )};; | with p<J* = [%] satisfying W = w®sxw® D .. se00@ 50D,
When p < J*, we choose each _ﬁlter w wi_th j=p+1,...,J* to be the delta sequence which takes the value 1 at 0 and the value 0 at
any other integers (that is, wé’) =1 and wl(.’ )=0fori # 0). Then the desired convolutional factorization follows.

Note that the Toeplitz-type matrix 7V) induced by the filter ) has the form

r wg) 0 0 e 0 0 ]
W(SD w90 - 0 0
0 w(!) w(f) 0 0
) s 0
7O = : o . (4.8)
0 e e 0 wd wéj)
K 0 0 0 wﬁf) ]

We made an important observation that the entry sum of each row in the middle of TV equals Y} _, wg). Then, we see that the
choice (4.2) of the bias vector bV is indeed a “identical-in-middle” bias vector satisfying (2.6) for j =2,...,J* — 1. It is also satisfied
for j=1if C = C1y for some C > 0.

Then we prove the expression (4.3) by induction. Since the row sums of the Toeplitz-type matrix T is bounded by |w||; =
> lwl, we know that |T%vll,, < [lwll,|lvlle, for any v e RK. The case j =1 holds because TWhO(x) - b = TOU(x) +
lw® ], BO1,  has nonnegative entries due to the fact that each component of T(VU (x) is bounded by [|w® ||| U )|l < D], BO.

If (4.3) is valid for j — 1, that is,

j-1
h(/_l)(x) —TU-D... T(I)U(x) + {H ||w(1)||1 } B(O)lkﬂj—l)sv

i=1

then

J
T(j)il(j—l)(x) —_p9) =7O0-D .. T<1)U(x) + {H “w(i)”1 } B(O)IKJrjs

i=1

has nonnegative entries since

J
ITOTID - TOU )l < {H 1, } BY.

i=1

Hence,

il(j)(x) =c (T(i)il(ifl)(x) _ b(/'))

J
=c <T<f'>T<f‘“ - TOU(x) + {H Il } B“”lm,-s)

i=1

i=1

j
=T7OTU-D..TOy(x) + {H w1, } BN,

This completes the induction procedure and verifies (4.3). The expression for T VA" ~D(x) follows easily. The proof of Proposition 1
is complete. [

4.1. The first step: realizing linear functions by DCNNs

The first step described in this subsection shows how to realize a linear feature ¢ - x, i.e., the inner product of vectors & and
x, by the first J; layers of a DCNN. In this step, we apply Proposition 1 and the downsampling operation. This idea of generating
linear features has been introduced for DCNNs in [33] and for periodized DCNNs using circular weight matrices in [28]. We choose
a special sequence W such that the output of this step is a function vector containing ¢ - x and x;.

By choosing K =d, [W,;_; -+ W, W] to be the vector & and [W,;,,_; -~ Wigy1 Wiyl to be the i-th basis vector ¢; fori=1,...,d,
we can make the function vector on the right-hand side of (4.6) to have components ¢ - x and x;.

Proposition 2. Let 2< s <d, J, = [2‘12—_1], £eRY, Q be a closed bounded subset of RY. Take a constant B©® > max,cq [|x||,- Then there

s—1
exist filters {w) };‘:] each supported in {0, ..., s} such that with bV = —[lw® ||, BO1,, , {bV },{]:;l given by (4.2) with K =d,J* = J;,BO =

B and
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Ji-1 Ji
= { IT 1w } oy <1d+(J1—1)s> " {H el } B
i=1 =1

the first J layer of the DCNN {hV)(x) : R? - R% }jio defined by (2.9) with J, = J, produces

T

A (x) = &+%,x1,0,%,,0,x3,0, -+ ,x,, 0,0,:,0 +B(JI)II+LJ15/(1J’ xeQ.

|Jys/d]-2d+1

Here {wY), {bU)};;] and the constant BY1D 1= {H‘J:‘1 lw®]l, } B© depend on &,d, s, Q. The bias vectors {b(")}:.':1 are “identical-in-middle”
satisfying (2.6). The number of free parameters of the first J, layers equals J,(s +2) + 1.

Proof. Denote the standard basis of R? by {e,;}% . and the zero vector in R¢ by 0,. Note that {e; }L , and 0, are column vectors. Let

i=1

W be a sequence supported on {0, 1,...,2d% — 1} given by
[(Wagz_ys - Wo| = [e]:005e]_ 500 13500 5] 58T (4.9)
2d%-1
s—1

convolutional factorization W = wD w1~ Ds ... 0@ 0D, Each filters w') induces a (K + js) X (K + (j — 1)s) convolutional matrix
TW,

Take K =d,U(x) =x, C= 0,J* = J;. Then the conditions of Proposition 1 are satisfied, and the chosen bias vectors satisfy (2.6).
By the expression (4.4) in Proposition 1, the resulting DCNN {#¥(x) : R? - R% }/J; , defined by (2.9) satisfies

Then by Proposition 1 with ¥ = 2d% — 1, there exist filters {w(")};‘:1 each supported in {0,...,s} with J; = | satisfying a

Ji-1
TR D) =TW x + { T 1w } BOTY (1d+m—1)s)'
=1

We apply the downsampling operator D, in the J;-th layer and obtain
BV =Dy (TUD D) = 690) =Dy (TW x4 BV, ).

Note that T% = [W,_],_, d+Jysk=1....d
{0,1,...,2d% — 1} given by (4.9). As we remarked for the downsampled Toeplitz-type matrix (4.6), the first component of D, (T Wx)
is the product of the d-th row [W,_; -+ W] =& of T" with x and identical to the linear feature é”x = ¢ - x. The 2i-th component of
D, (TWx) for i=1,....d is the product of the 2id-th row [Wy;,_;, - ,Wy_y4] =e! of T with x and is exactly e/ x = x;, while the
(2i — 1)-th component is given by the (2i — 1)d-th row which is a zero row and thereby vanishes. The (id)-th row of T with i >2d +1

is [Wig_1. = . W_1)q] which is also the zero vector. It follows that

is the (d + J;s) x d convolutional matrix induced by the sequence W supported on

AV (x) = Dy(TW x) + Dy(BYV 1y 4, )
T
=|&-x,%;,0,%,,0,+,x4, 0,0,-+,0 + B(J])11+ljls/dJ'
LJys/d)~2d+1
This yields our desired expression of h1¢/1)(x).

The number of free parameters from filters equals J, (s + 1), whereas the number of free parameters from biases equals J; + 1. The
proof is complete. []

Note that J;s/d > 2":—;13 >2d — 1. Hence the width of AUV(x) equals d; =1+ |J;5/d] > 2d. Also, we have [|£]l; < [W]; <
T, 11w®],. So we have [|¢ - x|, < BYD.

4.2. The second step: deepening a given DCNN

Now we continue to the second step of our construction. In this subsection, we introduce a novel network deepening scheme.
Applying this scheme to a given DCNN, we can construct a deeper and wider DCNN that embeds the linear feature & - x while
preserving the output of the given DCNN.

Suppose we are given a DCNN (as a teacher net) { HV(x) : RY - R }j{io with input HO(x) = x € Q, depth J, €N and filter
length S < d /2 satisfying D; =d + jS. Each layer of this DCNN has the form

NO) o)
H<f'>(x)=a<T HUDx)-b ) i=12,...,J, (4.10)
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o) L) 2 . SO\ 2 N0 ¢
where < T =T% are the convolutional matrices generated by the filter sequence w = <w ) andb=< b eRD is
1
J

j=1 = =1

a bias vector sequence.
2
Now we construct a student DCNN with filter length s =25 and depth J, + J,, where J, = [z‘j_;l 1, J, € N to be determined later.
The first J; layers are exactly the DCNN described in Proposition 2. For j=J, + 1,...,J; + J,, we denote

Jj=h

dy=d; +G-Jps, BY=]]
i=1

JL(”H BYY.
1

We define the filter w" supported in the set of even integers {0,2.4,...,25 = s} by

( wW

N o (=J1)
v) -

=w
i=0
Taking the filter to be supported on the set of even integers and identical to that of the teacher net is our novelty. The special form

of this filter gives a convolutional matrix TV = [wi’_) t’] as

[ o G=J1)

w, 0 0 0

o (j=J1)
0 w, 0 . 0
o (J=J1) o (J=J1)
w, w, 0. e 0

TW =| oG- 0 G=d1) ' . (4.11)

w, 0 w, 0

o (=J1) o (J—=J1)
0 w;, 0 w,

i i—-1

0 0 0 wi™v

It implies an essential property of our novel construction: the even entries of the student net output capture all the output entries
. ) _ oli=J))

of the teacher net. We can see that when the even entries of hU~D(x) and b are identical to those of HU=/1=D(x) and b

respectively, the even entries of h)(x) are kept the same as those in HU=/1)(x). The odd entries are made zero by taking large

iy, o .
enough biases except for the first entry, which is kept in the form <l‘[f_zlj "w, > &-x+ BY, by means of the special form of the first

1, ifj=k

row in (4.11). This leads to the following proposition. We denote §; , = {O if 4k
, ifj#k.

Ji+J,
j=Ji+1

Proposition 3. Define the CNN layers { hV)(x) : RY - R% } by (2.4), where
b =6; 5 BT, +pY0 j=ai LI+,

with the vector ) € R given by

o (=J1) 1 ) )
(1—5].,,1)% BUD_BU),  ifi=1,
0 o(j=J1) .
B =3b, ifie{2.4.6....20,_ }.
o (j=J1) . ;
w o0 +289, ifig{1.2.46...2D,_ }.
1 o

Then for j=J, +1,...,J, + J,, we have

. iy, o . . .
9 (x) = [<nj=l’1 w, >.§-x+B(’), (HY™V (), .0, (HI™ (), .

T
0, (H(i—m(x))yo,... ,0,(HU’J1)(x))D , ,0, - ,0] .
=N

No new free parameters are required for constructing J, + 1, ..., J; + J,-th layers.
Proof. We prove by induction that for j=J,,J; +1,...,J; + J,,
A (x) = [<Hf;1!‘ ﬁ;?) £ox+ (1 -5, ) BY, (HU(), .0, (HIV(x),,
0, (HU™"(x)),.,0,- .0, (HU'—Jl)(x))DHl , 0, - ,O]T +8, B<f)1d1. (4.12)

10
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The case j = J; is trivial by Proposition 2 and the input layer H®(x) = x of the teacher net.
Suppose the claim is true for j — 1 with j > J; + 1. Then we see in either of the two cases j — 1 =J, and j — 1 > J; that the first
component of AU~V (x) is (RU~D(x)), = <H’ e > & x+ BU~D, The matrix form (4.11) tells us that the first row of T¢) has only
. o (G=J1)
one nonzero entry, the first entry w;, , so we know that

o (G—=J1)

cU=I) [y _jo® .
(TYRID(x)), = w, <nj_=1" ): x+w, BYD.

) oU=J1) . ]
From the choice of the bias vector b, we find that in both cases j —1=J, and j — 1> J;, b(/ ) w,  BYTY - B, 1t follows that

. o G=I1) NG
(h(f)(x))1=0'<w0 ] <Hj 1ty >.§ x+B<f>> <H{. i, )5 x+BY),

<H’ T ) £ x' < BY), This verifies the first entry of (4.12).

where we have used the fact that i1

Now we consider the even entries of (4.12). Observe from (4.11) that the 2i-th row of TU) has all odd entries to be zero. Then
[ o (i=J1) .
(To)hu_l)(x))zi = z Wi g ] (h(J_l)(X))zk
1<k<d;_, /2
For i =1,2,....D;_; =d + (j — J))S, we see from 2(d+(—J)S) =2d + (- J)s <d;_, and the hypothesis assumption

(hu—l)(x) ~ 5,5, BU01, )Zk = (HU=/1=D),that

(TORID(x) = b9),, = (Tm (h(j’b(x) —6, 1, B(’;l)ld,,l ) _ ﬁ(j))Z'
1

-2

J
o U=I1) (HU=5-1) ﬂ(n

o(] =)
It follows from ﬂ(’ ) b, that the 2i-th entry of h{)(x) equals

, 0 (=J1) oG=J1)
(W), =T  HY1 D) b

which is exactly (HU‘JI)(x))i.
Fori>D; ;, =d+(j—J))S, we have

D;_ o (=1,
(TORIDx) = bD) Z (’ v

H(j—-’l—l))k _ ﬂ;j)
1)

o (J=J1)
The first term on the right-hand side is bounded by l

”HU‘JI‘”H . Hence by the choice of ﬂg) we obtain (hY)(x)),, =0.
1 o0

This verifies (4.12) for the even entries.
As for the other odd entries with indices 2i + 1 and i > 1, we notice that the corresponding row of TV has all even entries to be
zero. But the only nonzero odd entry of AU~0 —5;_, ; BU=V1, _ is the first one. Hence

(TYRI D) = bD),,, | = (To‘) (hU*“(x) 8,150,897, ) _ ﬂm)

2i+1
o (J=J1) o( . .
- J=h=1 -1 ()
=uw; <<H, LW >5 x+(1_5j—leJ>B(j )>_ﬂzé+1'
Note that the first term on the right-hand side is bounded by 2BY). By the choice of ﬂgl] , we see that (hY)(x)),, =0
Combining all the above three cases verifies our claim for j, and proves the proposition. []
At the end of the second group of layers, the width is d; ., =d; + J,s and
o T
A1) () = [( n’2 >§-x+B(‘,1+‘,2),(H(‘,2)(x))l,0,"',0,(H(12)(X))DJ ,0,--,0] . (4.13)
2

4.3. The third step: expanding DCNN to replicate linear feature

To this end, we have constructed a DCNN of depth J, + J, where the (J; + J,)-th layer is given by AV1*/2) in (4.13). For
convenience, we denote

11
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C=[BU+, 0,0 eRYi+h, (4.14)

Then the function vector
U(x) 1= i *2(x) - € (4.15)
o (i)
has the linear feature H,leo & - x as the first component and the entries of H2)(x) as some even components. Recall that

o (i) o (i) ~
(H.Jz w, > x< (HZIWO > BYD = BU1+2)_ All the components of U (x) are bounded uniformly by

B ;= max { BYI+), “H(Jz)”00 } > 0. (4.16)

In this subsection, we shall apply Proposition 1 to replicate the linear feature £ - x for N times by expanding our DCNN to have
depth J, + J, + J3, where J; is a positive integer to be determined later. To do so, we choose a sequence W so that it induces a
convolutional matrix T% (given in (4.5)) that consists of N blocks of the identity matrix as

1
1
.| (4.17)
1
where I denotes the d; ,;, Xd,, ., identity matrix. With this matrix, the function vector T% §(x) contains the linear feature & - x in
N components and can be later used to generate ridge functions ¢ (#*& - x — ;) required in our interpolating scheme (4.1). To obtain
our desired form of T" given by (4.17), we can define the sequence W as follows.
Let N be an odd integer to be determined later. Take a sequence W supported on {0,...,(N — 1)d; ,,, } given by

1, ifiefkdy N1,
W, = 1#+72 k=0 4.18
! { 0, otherwise. ( )

We define its symbol W as a polynomial on C given in the wavelet literature [13] by

— had oo N d 1 = N0

Wn=Ywgz =Y m="t—— zecC
L - 1= z9+n
Jj=0 k=0 Z

It has (N - 1)d,, ,,, complex roots

. £+jN

‘2”’\"1;]+J — P

e =1 N1, j=0,...d, 1

appearing in complex conjugate pairs. Applying the procedure for convolutional factorization described in Lemma 1, with an even

) . . . . ) P . . N-1d
filter length s, we can find explicit expressions for the filters {w(f)}jgljﬂzjil supported in {0,...,s}, with J; = [(%W and
lwP]]; > 1 such that

W= w4 ) g 124 1+ T2+ (4.19)

Recall that D, =d + J,S and d;, ., =d;, +Jp522d + 1 +2J,8 > 2D, . For j > J, + J,, denote
W= (11 (p) (0)
B = (I8, el ) 5.

The following proposition tells us that we can add J; well-defined convolutional layers to our previously obtained DCNN to get a
DCNN of depth J; + J, + J3. This DCNN shall output a vector that contains & - x in N components.

Proposition 4. Letn €N, N >3n be an odd integer, t; <t, < - <t3,, and W be the sequence given by (4.18) with V =(N —1)d,, ,.;,. Take

(N=1)dj, 4+
K=djy,, J*=J3 = [—2

B given by (4.16). Construct the CNN layers {h¥)(x) : R? - R% }

1, the initial layer h©(x) = U(x) + C (with U(x) given by (4.15), C given by (4.14)) and the constant
T+t

=iyt in Proposition 1 with the last bias vector

U1+t = U LD Ui+t )
J1+Ip+i3-1

given in terms of the vector § € R%1+02+73 by

3n % 3n
i = w [.]
[ﬁ(’ 1)dJl+Jz+]],'=1 [l I i=1

and

12
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DJZ

—BUithat)3), ifie {2k}k:1 ,
Dy,

B =
i BUI+h+3), ifig {Zk}k=1 U {(i — 1)d11+12 4 1}

3n
s
i=

where w := H[_Jil w, . Then we have
iw|o <sgn(;))§~x—tk), if i=(k=1)dy, .z, +1 withk € {1,...,3n},
(h(Jl+J2+J3)(x))i = (H("Z)(X))k + B(J|+Jz+13)’ ifi =2k withke{1,... ’DJz I
0, otherwise.

There is only one free parameter B© = max { BUI+), ‘H (J2>” } in this construction.
(s}

Proof. Observe that BY) > (Hi=11+]2+1 ||w(‘”)||1) ”?Iul“”uw forj=J,+J+1,....d, +Jp + J5.
Consider U(x) + € = hU1+)(x) given by (4.13) and the filters {1+t explicitly constructed above satisfying (4.18) and

j=dy+dy+1
T+ 4T3

P with these filters and bias vectors are chosen to be

(4.19) with N. Define the CNN layers {hV)(x) : RY — Rdj}

pJi++h) — T(‘]1+"2+1)6 _ B(.Il+.12+l)1d
I+l

{b”l”zﬂ)}fi;l given by (4.2) with D=d; ,,,.J* = J5, B0 given by (4.16) and b1+/2+73) defined above.
According to Proposition 1, we have

TUHLHI) (RO () = TW £ (x) + B(J]+J2+J3—1)T(.ll+.I2+.I3)1djl+12+1371‘
Putting the choice of b/1+/2*/3) and the special form (4.17) of the matrix T" into the above expression, we obtain
ROIHIAI) () = TUPH ) (U431 () — pUi+Da+)
~ ~ ~ T
=[0@" G’ - 0| -p.

A~ D 3n
Observe that each component of U(x) is bounded by B® < BU1t2+J3) and g, = BU1+/2+J3) for i ¢ {Zk}kj u {(i = Ddy 4y, +1 } o

i=
we know that (h/1+2%73)(x))  with such an index i is zero.
For ke {1,2,..., D}, (R +2+3)(x)),, is
o ((HY2(x)) + BY1+2+99) = (HUD(x)), + BY1+/2+7),
Forie {1,2,...,3n}, we have

* *
(;,l(ll-¢—lz+la)(x))(I__l)djlﬂz+l =|w|c (Sgn(w)é Lx = ,i) .

This verifies the stated expression for (A/1*/2473)(x)) . The proof is complete. []
4.4. Achieving interpolations using ridge functions
The hypothesis space induced from the DCNN of depth J; + J, + J; constructed above is

H* = span{c RO () 4 g e e RV g R}

% 3n D
= {a-H(Jz)(x)+y~ (a(sgn(w)tf~x—tk>)k R a€R ’2,7€R3",a€R}.
The number of free parameters of an output function from this hypothesis space equals

Ay s T1+016+2D+ 1+ 1

We are now in the position to prove Theorem 1. Let us first recall what Theorem 1 suggests. Suppose that there is a DCNN
{H(x): RY > RP; }ino of depth J, with filter length S € N given in Section 4.2 satisfies the following (same as (3.1)):

inf ”71' - ” <E,,
it s = 1., <E,

where {E;, >0} ¢y is an error sequence achieved by this CNN, which may depend on the confidence level. Theorem 1 shows that
this bound of excess generalization error can be maintained by some f € H* (DCNN of depth J; + J, + J3), while satisfying the
interpolation condition (2.12).

13
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Proof of Theorem 1. Since a convolutional neural network depends on the filter sequence continuously, we know that the general-
ization error bound (3.1) can be achieved by an output function f*(x) = ¢* - HY2)(x) + a* with ¢* € R, a* € R produced by a DCNN
{HYx) : RY > RS }j{io of depth J, satisfying

o ()
wy, #0,  Vi=1,...J,.

Under this condition, we have w= H,_Jil ;)g) +0.
From the assumption that pg has no positive mass at any point x € Q, we know that the points in the set {xi};l:]
almost surely.
When {x"}:?:1 are distinct, we see that for any i # j € {1,...,n}, (x' — x/)* is a subspace of R? of co-dimension 1, where for a
nonzero vector n € R?, nt = {x e R : - x =0} denotes the subspace of R? perpendicular to #. Also, for each i € {1,...,n}, the set
x' +nt has p, measure 0 for almost every n € R? with respect to the Lebesgue measure. Therefore, there exists some nonzero vector

£ € R? such that

are distinct

sgn()E - (x' —xI)#£0,  Vi#je(l,....n)

and
. . AL
p9<x’+<sgn(w)§)>20, vie(l,... n).

This implies that the set {u; := sgn(zz))éj - xt };':] contains distinct real numbers.

Now we can construct an interpolator f satisfying the condition f(x') =), Vi=1,...,n. Denote
f— mi Ly iy }
= min {3l =l
For e € (0,¢*), recall the hat function ¢ = ¢© : R = R given by
¢(u)=é{6(u+€)—6(u))—(a(u)—o(u—e)}. ueR.

It is supported on [—¢, €] and equal to 1 at 0. The interpolator is given by

FE= 1@+ Y (= 116N) b (sgnig x -y ). (4.20)
=1

From the definition of the hat function ¢, we can see that f € H* with {r, : i=1,....3n} ={u, —e : £=1,....n}U{u, : £=1,...,n}u
{uto+e = 1,...,n}.
The function f is an interpolator satisfying f(x") = ' Vi and thereby lies in H,,, ;, ., ,,.s because for each i € {1,...,n}, we have

sgn(u*;)f -x! =u; implying that
¢(sgn(fy)§.xf-u)—¢(u —uy) = L ifi=?, fell,....n)
‘ e 0 ifi#?, B
Hence, we have f(x') = f*(x')+y — f*(x') =
Finally, we estimate the excess generalization error of z,, /. Notice that the function ¢ (sgn(;;;).f SX = uf) is zero unless sgn(;;).f .
x —uy € (—¢,¢). It follows that the function

n

T =) ¢ (sgnwre - x—uy )

=1

on the right-hand side of (4.20) is supported on the set

<e}.

Hence we find from the expression (4.20) of f that x), f(x) = 7, f*(x) for x & X, while |z, f(x) — 73 f*(x)] <2M for x € X,.. Thus,
we have

X i=U)_, {erRd : Sgn(lz)é'(x—xf)

1/2

s f = £, = /|an(x)—erf*(x)|2dpQ <2M {pq (X.)}'"?
XE

. 1 1/2
—~2M {pg (u;zl {xf + (sgn(w)é) }) } =0

14
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as ¢ — 0. Then, our estimate follows from the triangle inequality ”:er - f/’”,, <|zmf —7m f*||p + HnM fr- f/’“,, and (3.1) for f*.

The proof of Theorem 1 is complete. []

Now that we completed the proof of Theorem 1, let us move on to the proof of Theorem 2.
5. Learning rates of DCNNs

In this section, we derive learning rates of DCNNs for proving Theorem 2. In other words, we establish an upper bound of the

excess error £(my fp ys) = €(f,) = H;rM fpas—1 {,”z. Our analysis is based on an error decomposition (Subsection 5.1), followed by
bounding the approximation error and the sampling error, respectively (Subsection 5.2). Afterward, we bound the number of layers
and achieved the desired learning rates (Subsection 5.3). Our method is different from the approaches in the existing literature of
generalization analysis of DCNNs [24,14]. By using a pseudo-dimension estimate of the induced hypothesis space, we no longer
require the free parameters to be bounded. Lastly, by applying the results in Theorem 2, we are able to derive the proof of Theorem 3
(Subsection 5.4).

Note that the filter length specified in Theorem 2 is 2 <.5 <d.

5.1. Error decomposition and estimating the approximation error

We aim to find the upper bounds of the excess error:

2
ey fpa.s) =)= ||rufoss =1, = / (ar fp.0.5() = £,02 d,
z

where 7, fp ;5 is the truncated global minimizer of (3.3) and f, is the regression function. Let f3;, . be any function in the
hypothesis space }; ¢ defined by (2.5). To find such an upper bound, we adopt the following error decomposition.

Lemma 3. Let fp ; ¢ be defined by (3.3) and f3,, ; be any function in the hypothesis space H s defined by (2.5). Then there holds

ey fpys)—ef,) < {(expfpss) - e(f,))—(papfprs)— ED(f,;))} (5.1)
+{Enl, )= e ) = €, ) =) b+ { e, ) = ()} =1 A+ Ay + 4.

Proof. We express the excess error by inserting empirical error terms as follows

ey fpys)—e(f)={e(mp fpys)—e(f)} —{ep@pfpys) —ep(f)}
+{ep(pfpys)—ep(f)} = {5D(fH,'S) —ep(f)}

+1epUpy o) = €U D) = (e, ) = €U+ elfy, ) — ().

As both y' and ), fp, ; s(x') are values on the interval [-M, M] for each i, we know that (zy fp s ¢(x') — y")2 < (fpss) - y")2
which yields e (7 fp s,s) < €p(fp, g s)- Note that both fp; ¢ and f;, . lie in the space M s. By definition, fj ; ¢ minimizes the
empirical risk £ ,(f) over H; . It follows that ’

50(71'Mf1),],5) —ED(f,,) - {ED(fH,'S) —ED(f,,)} :Eo(ﬁmfp,_l,s) _6D(fHJ‘S) <0.

The expression (5.1) is verified. []

To achieve the learning rates stated in Theorem 2, we are going to bound the three terms, A, A,, A3, on the right-hand side of

(5.1) in the following.
2 2
The last term of (5.1), A; = e(fy, ) —elf,) = HfHJS - fp”2 < “fH,S - f"“cm)’ is known as the approximation error, where the
last inequality holds due to the fact that the marginal distribution p, has measure 1. It has been estimated in [33, Theorem 2] as

follows.

Lemma 4. Let 2< S <d and QC [-1,11%. If J >2d /(S — 1) and f,=Flgqwith F € WZV(R") and an integer index r > 2 + d /2, then there
exist w, b with (2.6) valid for layers 1,2,...J — 1 and fHJS € H; 5 such that

_L1 1
A35||fHJ_S—f,;”c(gz)SC”F”Wz' logJJ 274, (5.2)

where c is an absolute constant and || F ||W2r denotes the Sobolev space norm of F.

The second term of (5.1), A, = ED(fHJ_S) —ep(f,)— {s(f,.,m) —&(f,)}, can be estimated by the Bernstein inequality [7] (see, e.g.,
[9, Lemma A.2]).
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Lemma 5. For any 0 < § < 1, with probability at least 1 — g, we have
Ay ={ep(fr, o) —ep(fp)) = {e(fr, o) —e(f,)}
<ttog (3) Vs = ol ([, = 6]+ 400) 1V

Proof. Define a random variable ¢ on (Z,p) by {(z) ={(x,y) = (fH,_S(x) . (f,(x) = y)2. We have s(fHJ‘S) —&(f,) =E[¢] and
ep(fa, ) —€ep(f,)= % ZLI {(z"). Hence, the second term of (5.1) can be expressed in terms of ¢ as

(EpU, ) = E0U D — (e, ) =) =+ 3 £ = EIEl. 5.3)

i=1

Note that | f,(x) — y| <2M because |y| < M and |f,(x)| = |[E[y|x]| < M. We have almost surely
61 = (10,59 £,69) (1, = 5+ £y =)|
<[, = 5ol (1,5 = 5] +40) =2 B
The variance o2 of ¢ can be bounded as 6> < E[¢?] < B2. Thus, by the one-sided Bernstein inequality, for any 5 > 0, there holds

len(fa, ) = en(f)) = (elfu, ) = €(f)) <

o
2(c2+nB/3)
for 5. The positive solution #* to this equation is given by

%IOg(%>+\/(%log(§>)2+8nazlog<%)

with probability at least 1 —exp ( ) Setting this confidence bound to be 1 - g, we get a quadratic equation

—___ =Jog 2
2(c2+nB/3) 5

2n
2Blog(§> 26210g(§)
< +
3n \/;
) 4Blog(§)

\/;

This verifies the desired bound and completes the proof. []
5.2. Estimating the sample error

The first term of (5.1), A = (e(xp fpy.5) — e(f,) — (ep(mp fp y.s) — €p(f,p)) is the sample error. In this subsection, we derive
an upper bound for this sampling error using a concentration inequality in terms of the empirical covering numbers. Define the
empirical L, norm with respect to the sample D by

Il =+ 2 G (5.4)
i=1

For ¢ > 0, denote by N (e, H, D) the e-empirical covering number of a set of functions H with respect to || - || (p). More specifically,
N (e, H, D) is the minimal N € N such that there exist functions {f}, ..., fy } € H satisfying

min ”f_fj”Ll(D)Sé‘, VfeH. (5.5)

1<j<N

The following concentration inequality with arbitrary parameters a, >0 and 0 < € < 1/2 can be found in [17] as Theorem 11.4.

Lemma 6. Assume |y| < M almost surely and M > 1. Let @, >0 and 0 < & < 1/2. If H is a set of functions f : R? — [-M, M, then with
probability at least

Pe e2(1 — e)an >
1-14supN| [ =—,H,D |e -, 5.6
PN <20M > xP( 214(1 + o) M* 5.6)

there holds
{8(f) —E(fp)} - {fp(f) - SD(f,,)} <e(a+p+e(f)— £(f,,)) > VfeH.
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We shall apply Lemma 6 to the function set H = {”M fifeH,; s}- To this end, we need to derive a bound for its empirical
covering number by means of its empirical packing number and pseudo-dimension.

Denote by M, (e,H, D) the e-empirical packing number of a set of functions 7 with respect to || - ||, p). More specifically,
M, (e, H, D) is the maximal N € N such that there exists functions {fi, ..., fx } € H satisfying

I1f; = fill, ) 2 €. 1<j<k<N.

A well-known relationship between e-covering numbers and e-packing numbers asserts that

M, (e, H,D)< Ny(e,H,D) < M,(e,H,D),  VYe>0. (5.7)

For a class of real-valued functions, such as those generated by neural networks, a natural measure of complexity that implies
similar uniform convergence properties is the pseudo-dimension, introduced by [29] (see, e.g., [1, Theorem 19.2]). The pseudo-
dimension Pdim(H) of H is the largest integer # for which there exist {&,...,&,} ¢ Q and {#,,...,n,} € R such that for any
(ay,...,az) € {0, 1}? there is some v € H satisfying

vé)>nea =1, Vi.

For a set H of functions from Q to [-M, M], the empirical packing numbers can be bounded in terms of the pseudo-dimension by
the following inequality found in [25, Theorem 1]:

Pdim(H)
2e M )) ’ (5.8)

Ml(e,H,D)SZ(ze—Mlog<
€

for any 0 < e < M. Observe that Pdim({zy f : f € H; s}) < Pdim(H; g).

The last tool we use is an important bound for the pseudo-dimension of a deep ReLU neural network, which can be found in
[3, Theorem 7]. This result is valid only for piecewise polynomial activation functions but is crucial in our study with the ReLU
activation function, which is piecewise linear. It asserts that for a ReLU neural network architecture with U computation units
(neurons) arranged in L layers, the pseudo-dimension of the hypothesis space is bounded by ¢ Z,L: | WilogU, where c is an absolute
constant and W, is the total number of parameters (weights and biases) at the inputs to units in all the layers up to layer i. We find
by the same proof that this bound still holds when we replace the parameters in weights and biases by free parameters. This bound
may be extended to some other neural networks with special structures. We state it as a theorem below (Theorem 4), of independent
interest, and give detailed proof in Appendix A.2.

Motivated by convolutional neural networks, which have many weight entries to be 0 and many repeated weight and bias entries,
we allow some of the parameters to be constants. We also allow some parameters within the same layer to take the same free
parameter value. Moreover, unlike the result in [3, Theorem 7], which allows neurons to have connections from any earlier layers
[16], we assume that each neuron has connections only from neurons in the previous layer. Recall that for a DCNN, a weight matrix
is a convolutional one in which each descending diagonal from left to right shares the same value (refer to (2.3) and (4.5)). Also, a
bias vector has identical entries in the middle (refer to (2.6)).

Denote by d; the width, K; the number of free parameters, AU e RK; the vector of free parameters in the j-th layer of the neural
network. For the special case of CNN, d; = d + js and K; = 3s, which consists of s + 1 free parameters in 7¢) and 2s — 1 in 6. Also,
denote by K the total number of free parameters in the neural network. The following theorem considers neural networks equipped
with piecewise polynomial activation functions with p + 1 pieces.

Theorem 4. Let §,p €N and t; <t, < --- <t, be a sequence of break points such that o : R — R is continuous and o|,,_, ;. is a polynomial
of degree at most 6 for each i=1,...,p,p+ 1 (where we set t, = —co and 41 =00). Let J €N, dj,K; € Nforje{l,...,J}, AV e RXi, and
c € RY. Denote a=[AD, ..., AY),¢c] € RK with K := K, + ... + K; + d. Consider a neural network {hY)(-,a) : RY - R% }le of depth J
and widths {d,} /J.Zl defined with a € RX by hO(x, a) = x and iteratively

R, a)=0 (TPRYD(x,a) - b)), j=1,...,J, (5.9)
where TV € R%>%-1,b0) € R% . Here, the entries of TY) and bY) can be divided into a collection of K] disjoint subsets with K| > K. For

subset £, £ = 1,...,K;, dll entries in this subset equal to the ¢-th component Ag) of AY). For ¢ > K ;» all entries in subset ¢ are equal to a
fixed constant in R. The hypothesis space generated by this network is

Hy,=span{f(x,a)=c-h"(x,a) : aeR¥}. (5.10)
Then we have

J

Pdim(H; ;) <J + 1+ <d ;+ Z(J —-j+ 2)Kj> (log,(4eR) + log,(log,(2¢R))) , (5.11)
j=1

where
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J
Ri=14+0+07++0" + D dp(1l+0+67+-+0").

i=1

Now we apply this result to our DCNN (equipped with ReLU) given in Definition 1 with the bias vectors satisfying (2.6) for layers
1,2,...J — 1. The proof of Lemma 7 is given in Appendix A.3.

Lemma 7. For the DCNN of depth J > 2 in Definition 1 with ReLU activation functions and (2.6) valid for layers 1,2,...J — 1, we have

Pdim(H; g) < co(J2S +d)log(Jd + J2S), (5.12)

where ¢ is an absolute constant.

We aim to find an upper bound on the first term of (5.1) as tightly as possible. In other words, we search for the best «, §, and ¢
to minimize the upper bound in the concentration inequality presented in Lemma 6.
The next lemma presents an upper bound.

Lemma 8. Assume |y| < M almost surely and M > 1. For the DCNN of depth J > 2 in Definition 1 with (2.6) valid for layers 1,2,...J — 1,
and any 0 < § < 1, with probability at least 1 — g, we have

Ay ={elmpfprs)—e(f)} —ep@pmfpys)—ep(f)}
1(1 C6M4 2 2 2
< 5{ (e fp.1.5) — ()} + - {log(M*n) (425 +d) log (Jd + J25) +10g (2/5)} }

where c(’) is an absolute constant.

Proof. Take the function set H = {ﬂMf i f€e HJ,S}. Combining (5.7), (5.8) with Lemma 7, for any ¢ > 0, we have

¢o(J2S+d)log(Jd+J2S)
N(e,H,D)<2 <2e—M10g zeM)
€

2¢0(J2S+d)log(Jd+J2S)
<2 ( 2eM ) )

€

Take £ = % and f = % in Lemma 6. Applying the above bound, we see that the confidence bound in Lemma 6 is

1 an
1—14supN,(——,H,D)exp| ———
up 1(40Mn ) p( 2568M4>

>1-28exp <2c0 log(80e M2 n) (JZS + d) log (Jd + JZS) - 256(;’11\44> .

We choose a > 0 such that the above confidence bound is at least 1 — g, which means

4
az 28 (26 10g(80eMn) (25 + d) log (7 + 125) +10g (2 ). (5.13)
n
This is satisfied by taking ¢ =2'3(cy + 1) and
e M*
a* =2 (log(M?n) (J25 +d) log (Jd + J2S) + log (%)) : (5.14)
n

because a* is greater than the right hand side of (5.13).
Substituting «,# and ¢ by the values we took into the concentration inequality in Lemma 6, we know that with probability at
least 1 —§/2, there holds

(e =t} ~{ep(N-ep(f} < 5 (a"+ 1 +eN)=efy),  VIEM,

1
2
which implies
1/ ., 1
(€@ fp1.5) =€) = (ep(mu fos.5) = epl} 5 (" + 5 +elrn o) =€(f,).
We verify the bound and complete the proof. []
5.3. Proof of Theorem 2: achieving learning rates by bounding the number of layers

We are now in a position to prove Theorem 2.
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Proof of Theorem 2. Recall the number of free parameters given by (2.10). Since S < d, we know that this number can be bounded
by
35U -D+S+2+42d+JS)=SGBJ =3+1+2J)+2+42d=S5EJ -2)+2d+2<d(5J =2)+2d+2=5dJ +2.

Combining Lemmas 3, 4, 5 and 8, when J > 2d /(S — 1), we obtain the following bound for the excess error in terms of the number of
layers J with probability at least 1 — é:

eipt f.1.5) — €U < 3 (e S.0.5) = €0/,
! Af4

M
+ i + C°2n (log(M?n) (J2S +d) log (Jd + J2S) +log(2/5))

2
+ \/i_ log (%) @M + D | FI2 log JJ ™4
n 2

217112 -1-2
+c||F|%, logJJ ™ 4,
| IIW2 g
which implies

| 4ciM*log(M + 1)d(logd)

et fpas) =)<~ + ((logm)J*(log J) +10g(2/5))

n

+( S tog/o)aM + 1) +2 ) 2 IFIR, tog )17
Vn ;

2
< =+ deM* og(M + Dd(logd) <7a°g ")Jn g , L) <1 4 log@/%) ‘”)

\n \/n
log<2/5>> 202 <log1>
+ B32M + 102 || FI2,, [ —==
< Vn :

n J

< (1 +4c) M*log(M + Dd(logd) + (32M + 10)c* || F |2 ) <1 +
2

(logn)J?(logJ) 1  logJ
{f * ﬁ T } :

This verifies the stated learning rates in terms of J at (3.5) with the constant C, . 7, given by

l0g(2/6)
Jn

Crry, =1 +4c) M*log(M + 1)d(logd) + (32M + 10)c* || F || .

We choose J = [n*]. When n > (2d)!/?, we see that J >2d /(S — 1) is satisfied and thereby with probability at least 1 — 5,

log(2/6)) _(logn)?
+
N

This verifies the stated learning rates in (3.6) with the constant 6C), . 1

ey fprs)—e(f,) < 6CM,,,fp <1

pmin{1-2a,a}

0 2 . .
When n < (2d)!/%, we have (l";’—n") > ﬁ. Then we can use a simple bound |7erD,J’S(x) — y| <2M and its consequence

ey fprs)—e(f)<e@mpyfprs)< 4M?,

and find that with probability at least 1 — 5,

1 2
ey 0.5~ €(f,) <8Md(logd) ~ (ogm

min{1-2a,a}

This also verifies the stated learning rates at (3.6) with the constant 8 M2. The proof of Theorem 2 is complete. []

5.4. Proof of Theorem 3: learning rate of interpolating DCNN

Combining Theorem 1 and Theorem 2, we can derive the learning rates of overparameterized DCNNs that interpolate any input
data.

Proof of Theorem 3. Take S =s/2, and the DCNN defined in Theorem 2 as a teacher DCNN here. It has J, = [n*] layers for any
0 < a < 1, with filter length S € {2,3,...,d}. Theorem 2 states that, with probability 1 —§ for any 0 < § < 1, a truncated output function
7y fp,s,s can approximate the regression function f, with accuracy
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log (2/6) (log n)?
\/; pmin{1-2a,a} '

We choose N =4n+ 1 as an odd number satisfying N > 3n. Given the learning ability of z,, fp ; 5, Theorem 1 suggests that there
exists a downsampled DCNN (student net) of depth J, + J, + J; with filter length 2.5 = 5, downsampled at the J;-th layer, where

- 4 an(dy, +s[n%]
J = [%], Jy= [(N M"”Z] = [ "d“”z] = { nds ol )1 , such that with probability 1 -6,

s fo0.s - fp(|§ <max {8M2,6C,, ;. | d(ogd) <1 +

s N N

(5.15)

2 log(2/6 log n)?
ﬂMf—fﬂ”2<max{8M2+1,6CM’,,fp+1}d(10gd)<1+ 0e 2/ )> (logn)

v

inf - .
S E€H pmin{1-2a,a}

The proof of Theorem 3 is completed. []

6. Numerical experiment

In this section, we present our results of numerical experiments on simulated data to corroborate our theoretical findings in
Theorem 2. Our purpose is to demonstrate our theoretical findings. We do not intend to perform numerical experiments with real
data.

We conduct numerical experiments for four different input data dimensions d € {10, 30,50, 100}. For each d, we simulate » training
data sets {(x, )’ )},'.’:I with n varying in {100,300, 500,700, 1000, 1500, 2000, 3000, 4000, 5000,6000}, x' € R¢ being a random vector with
entries uniformly distributed in [-10,10], and y' € R generated from the following regression model:

¥ =sin(|[x[13) + cos([|x'[[3) + €', (6.1)

where ¢’ is random noise following A(0,0.01). Corresponding to each training data set, we simulate a test data set {(x{qy, Viee) 1220

where x;est € R? has entries uniformly distributed in [-10, 10] and yiest = sin(||xiest||‘2‘) + cos(llxiestll‘z‘). This choice of the regression
function is bounded in [-2,2].

To run the experiments, we adopt the DCNNs following the structure defined in Definition 1. We fix the filter length and depth

of the network to be S=2 and J = [n%] respectively. For convenience, we neglect the special structure of the bias vector stated in
equation (2.6). We train our network using the famous Adam optimization algorithm with constant step sizes, and free parameters
(weights and bias) initialized by the default TensorFlow values.

The generalization performance of our trained DCNN is evaluated in terms of the test RMSE (Root Mean Square Error). The
experimental results are presented in Fig. 2. From Fig. 2, we observe that for each d, the test RMSE gradually decreases and converges
to some constant as the number of training samples » increases. Also, the variance of the test RMSE, as indicated by the blue error
bars, reduces significantly as n grows. This verifies our results in Theorem 2 that e(zy, fp ; 5) = €(f,) with high probability.

7. Related work, discussions, and conclusions

In this section, we discuss prior work in overparameterization in regression and the generalization ability of DCNNs.

As mentioned before, it is frequently observed that overparameterized neural networks generalize well with zero training error
for regression loss. Such a phenomenon is known as benign overfitting. Benign overfitting is characterized in [4] in linear least
squares regression with Gaussian data and noise. Sufficient and necessary conditions are presented for the input covariance matrix’s
eigenvalue patterns for the minimum-norm interpolator to generalize well. The methodology there depends heavily on the linearity
of the algorithm and the nice properties of the Gaussian random matrices induced by the Gaussian model. This methodology was
extended to a setting of two-layer linear neural networks in [12]. Benign overfitting is also verified for stochastic gradient descent in
an overparameterized linear regression setting in [34]. This study was further extended in [10] to train a shallow neural network with
shared weights by gradient descent with respect to cross-entropy loss. Such a network is equipped with polynomial ReLU activation
function ¢9(u) = max{0,u}? with g > 2:

T o7 (Werom) +0% (W 8) =0 (W_yym) = (W_18)].
Here, W_, and W_, are mxd fully-connected weight matrices shared by a signal input yu, with y € {1,—1} and a fixed vector u € R?,
and a noise vector £ € R?. When & follows a standard normal distribution N (0, aﬁ I,_,) on the orthogonal complement of u, it was
shown in [10] that the gradient descent algorithm may achieve an arbitrarily small training error ¢ > 0 when the number of iterations
is large enough, depending on the accuracy e¢.

In a non-linear setting induced by ReLU, benign overfitting is verified for deep fully-connected neural networks in [22]. This result
was achieved by a network deepening scheme where great capacity is provided by the fully-connected structure of the networks to
induce interpolations. In our setting, the convolutional structure of DCNNs gives rigid constraints, making it infeasible to apply the
network deepening scheme illustrated in [22]. We introduce a novel network deepening scheme designated for DCNNs. We double
the width of a given teacher DCNN so that the linear features and the induced hat functions are built for attaining interpolation
while the learning ability of the teacher DCNN is preserved. This is our first novelty. We would like to point out that our results
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Fig. 2. Generalization errors of simulated data sets with d = 10 (top left), d = 30 (top right), d = 50 (bottom left), d = 100 (bottom right) respectively.

theoretically verify that overparameterized DCNNs can generalize well, but we are not able to characterize benign overfitting of
DCNNs . In other words, we are not able to identify a sufficient and necessary condition for DCNNSs to achieve benign overfitting.
Despite the wide applications of DCNNs in modern learning tasks, theoretical understanding of their generalization ability has
been challenging. Promising progress has been made recently. An estimate of the approximation error of DCNNs is given in [33].
It shows that the approximation error decreases as the network depth increases. This result is an important tool we use to prove
Theorem 2. In [21], it is shown that implementing ERM on DCNNs yields universally consistent estimators without any restrictions on
free parameters. However, an explicit rate of convergence is not provided there. Moreover, for learning a radial regression function
by a DCNN followed by one fully-connected layer, a learning rate of order @(n~'/?) is obtained in [24]. This learning rate is derived
using a covering number estimate, which requires the filters and biases to be bounded, with bounds depending on the layers where
the parameters lie. More recently, for learning an additive ridge function by a DCNN followed by one fully-connected layer, a learning

—2a
rate of order © <nm log n) is obtained in [14], where 0 < a < 1. This learning rate is considered to be optimal up to a log factor.

This result also requires the filters and bias to be bounded.

Some neural networks with similar structures are studied in the literature. For example, periodized CNNs are studied in [28]
where convolutions on sequences on the group Z, are used to induce circular weight matrices instead of Toeplitz-type ones induced
by regular convolutions on sequences on Z. Properties of approximating translation equivariant functions by such neural networks
are discussed. Other work studying CNN-variant neural networks include ResNet-type CNNs in [27], and fully-connected networks
inducing sparsity in [8].

In this paper, we derived, in our belief, the first learning rate of DCNNs that has been presented so far without any restrictions on
free parameters or additional fully-connected layers. Such a breakthrough can be attributed to a novel sample error estimate, which
relies on a tight pseudo-dimension estimate of DCNNs with piecewise linear activation functions inspired by that in [3]. Our second
novelty is making use of this upper bound of pseudo-dimension, which no longer requires restrictions on filters and biases and can
be used to bound the empirical covering number in turn.
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Appendix A

A.1. Proof of Lemma 2

Proof. The case j =1 is trivial. Suppose that (4.7) holds for j = m with m € {1, ..., J* — 1}. That is, the (D + ms) X D matrix H[m:] 7O =
TWV-" satisfies

(T .. TO), = (T""), =W, 1<£<D+ms 1<k<D.

Now we consider the product T+ (T T®), where T"*+D is a (D + (m + 1)s) X (D + ms) matrix. The (i, k)-entry of this matrix
product (with 1 <i< D+ (m+ 1)s, 1 <k < D) equals
D+ms
(1 (1070 = 3 (1), (1010,
Df+rrlls

= 2 (™), W
/=1

Note that the sequence W™ is supported in {0,...,ms}. For £ <0, we have # — k <0 and thereby Wf(fi =0. For ¢ >d, + 1, since
k <d, we have ¢ — k > ms + 1 implying W;TI)( =0. So there holds

(o]
1 1 _ 1 (m)
(T (T T )))i,k = 2 (w0, W
=—00
This is exactly the (i — k)-th entry of the convoluted sequence w+D«W ™, This is also the (i, k)-entry of the (D + (m + 1)s) X D matrix
TY-"+1_ This proves (4.7) for j = m+ 1, which completes the induction procedure and the proof of the lemma. []

A.2. Proof of Theorem 4: pseudo-dimension of feed-forward neural networks

To prove Theorem 4, we need the following technical tool on the number of possible sign vectors attained by polynomial vectors.
It is introduced in [2, Lemma 2.1] (the proof can be found in [1, Theorem 8.3]).

Lemma 9. Let f|,..., f, be polynomials of degree at most L in k < ¢ variable. Then the number of distinct sign vectors {sgn(f,(a)),...,
sgn(fy(a))} € {1, 0}¢ that can be generated by varying a € R* is at most 2(2e/ L/x)*. Here sgn(u) = 1 if u >0 and 0 otherwise.

Proof of Theorem 4. For an arbitrary choice of # points x,, ..., x, € R¢, we wish to bound

K= {(sgn(f(x,)),...580(f (x7,a)) : a€RX} . A1)

In other words, K is the number of sign patterns that the neural network can output for the sequence of inputs (xy,...,x,). We will
derive upper bounds for K, leading us to the pseudo-dimension estimate for H. To do so, we partition the free parameter domain
RX into some non-overlapping subsets in such a way that within each subset, the functions f(x,,-), ..., f(x,,-) are fixed polynomials
of degree at most 1+ + - + 8. Fix {x,,...,x,} CR?. Let K < 7.

We will construct the desired partition by defining a sequence of partitions {S®}7 = of R¥ iteratively layer by layer with $© =
{RX} such that:

1. Foreachi=1,...,J,

=
[0 <N;i=2

<2ed,.fp(1 +9+92+--~+9f-1)>’<‘*"‘*’<' a2

K+ +K;
2. Foreach i=1,...,J + 1, on each element S of S¢~D, for each j € {l,...,#} and k € {1,...,d,}, the net input component
(T(i)h(i_l)(xj, a)— b(i))k

is a polynomial of degree at most 1+ 6 + 6% + - + 0'~! of the variables A", ..., A?. Here for i=J + | with d;,; = 1,7U+D =
T, AV*D = ¢, the only input component is the output function value f(x;,a)=c-h)(x;,q) at x; for each j € {1,...,7}.

22



T.-Y. Zhou and X. Huo Applied and Computational Harmonic Analysis 68 (2024) 101582

Note that |S©| = 1. For i = 1, the above properties for S(!) hold true because each input component

(T(l)h(o)(xj,a) _ b(l))k - (T(l)xj _ b(l))k

is an affine function of the variables AV,

Suppose that the partitions {S(")};’;O1 have been found. Let us construct S$@. By our induction hypothesis, for each j € {1,...,£}
and k € {1,...,d,}, the input component (T@h@=1(x;,a) - b@~"), restricted onto each element S of S@~! equals to a polynomial,
denoted as P, ; 5(a), of degree at most 1+ 6 + 6> + --- + 04! of the variables A", ..., A@. For § € S¥~Y, we consider a collection of
polynomials

{Pjs@—t,:ke{l,....d}.je(l,....¢),sefl,....p}}.

Since the number of variables K; + ... + K, in A1, ..., A@ is bounded by the number of functions 4,#p in the collection, applying
Lemma 9, we know that the number of distinct sign vectors achieved by this collection is at most N,. Hence we can partition RK
into at most N, non-overlapping subsets such that all these polynomials keep the signs unchanged on each subset. Intersecting these
subsets with .S gives a partition of .S into at most N, non-overlapping subsets. These partitions with § running over S@-D form a
partition of RX which is a refinement of S~ and is the desired partition S@. Obviously, (A.2) is satisfied for i = q. Moreover, on
each S’ € S@ in the partition of S € S@=D, for each j € {1,....#} and k € {1,...,d,}, the polynomials P, ; s(a) — 1, keep the signs
unchanged and thereby for all a € §’, the value P, ;.s(a) lies on the same interval [7,,7,,,) for some a € {0,...,p}. In fact, « is either
the maximum s € {1, ..., p} such that sgn(P, ; ¢(a) —1,)=1or 0 if sgn(P, ; s(a) —t)=0forall se {1,...,p+1}.
As al[,m,w) is a polynomial of degree at most 8, we know that on S’ C S, each component of h@(xj, a), with ke {1,...,d,},

(h9(x;,@), =0 (T4 V(x;,0) - b97V) ) =0 (P, s(a))

is a polynomial of degree at most 6(1 + 6 + 62 + --- + 69~!). This implies that each input component (T@DA@(x;,a) - b*D), is a
polynomial of degree at most 1 + 8 + 6% + - + 69 of the variables A, ..., A4*D on §' € S@. This verifies the desired property for
S@ and completes the induction procedure.

Thus, we have constructed a partition S¢) of RX such that on each element S of S, for each j € {l,...,#}, the function
f(xj,a)=c-h9(x;,a) is a polynomial of degree at most 1+6+62 + -+ 67 of the variables a = [AD, ..., AY), c]. Since # > K, applying
Lemma 9, we know that

2ef(1+9+92+---+91)>K

[ {(sgn(f (x,a)),...sgn(f (x,,a))) : a € S} | 52< <

Since S is a partition of RX, we see that the number of sign patterns K defined by (A.1) can be bounded as

K <|SU|2 (2061 + 0407+ +07)/K)"
K
< (L, N)2(2e(1 +0+ 6+ - +07)/K)" .
Bounding the geometric mean by the arithmetic one, with W, := K| + --- + K;, we find

K+Yl W
2et (1 FO+02 40T £ T dp(1+0+0%+ - +9"—1))

< 2J+l
- J
K+, W,

Note that the points {x,,...,x,} are arbitrarily chosen. An upper bound for the VC-dimension is then obtained by computing the
largest value of # for which the above number is at least 27, yielding

K+Yl Wi
- 2ef<1+ﬂ+ﬂ2+m+ﬁf+z{=1d,.p(1+ﬂ+ﬂ2+~-.+ﬁ"—1))
27 <2

J
K+Xio W

Then the desired bound follows by applying Lemma 10 below and noticing that

J J J i J
K+ZVV,-:dJ+ZKJ-+22Kj:dJ+Z(J—j+2)KI-2K.
i=1 j=1 i=1 j=1 j=1

This completes the proof of Theorem 4. []

Lemma 10 (Lemma 18 in [3]). Suppose that 2™ < 2'(mr/w)* for some r > 16 and m > w >t > 0. Then, m <t + wlog,(2rlog, r).
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A.3. Proof of Lemma 7

Proof. For neural network consider in Lemma 7, we have .S + 1 free parameters in each w(), and 2.5 — 1 free parameters from b") in
the j-th layers for j=1,...,J —1 and S+ 1 +d + J S free parameters in the J-th layer. In other words, we have

K; =38, forj=1,...,J -1

and

K;=S+1+d+JS.

Then, we have

J J-1
dy+ Y (J—j+DK;=d+JS+ Y (J - j+2)K; +2K,
j=1 j=1
=25 +2+3d+JS)+ %S(J+4)(J— )

=2+43d 4S5 + %JS+ %JZS.

For ReLU, we have § =1 and p=1. Then,
J
R=1+J+ ) (d+iS)i
i=1

JU+D T+ DRI+D ¢

=l+J+ =2 3
= %J3S+ %Jz(d+S)+J(% + % +1)+1.
Observe that
2+3d-4S+ §1S+ %JZSs3d+9J2S (oS22,J2>0)
and
R< %J3S+J2(d+S+ D+1<3738+J%d <3(J2S +Jd).
Hence

Pdim(H; ) < J + 1+ (3d +9J25) (log,(12e(J2S + J d)*) + log, log, (6e(J2S + T d)?))
ST+ 1+ 3d +9J29)2 (log,(12e(J>S + J d)?))
<co(J2S +d)log(Jd + J2S),

where ¢, is an absolute constant. The proof is complete. []
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