
Commun. Comput. Phys.
doi: 10.4208/cicp.OA-2023-0078

Vol. 35, No. 5, pp. 1194-1228
May 2024

A Causality-DeepONet for Causal Responses of
Linear Dynamical Systems

Lizuo Liu1, Kamaljyoti Nath2 and Wei Cai1,*

1 Department of Mathematics, Southern Methodist University, Dallas, TX 75275,
USA.
2 Division of Applied Mathematics, Brown University, Providence, RI 02912, USA.

Received 23 March 2023; Accepted (in revised version) 26 December 2023

Abstract. In this paper, we propose a DeepONet structure with causality to represent
causal linear operators between Banach spaces of time-dependent signals. The theo-
rem of universal approximations to nonlinear operators proposed in [5] is extended
to operators with causalities, and the proposed Causality-DeepONet implements the
physical causality in its framework. The proposed Causality-DeepONet considers
causality (the state of the system at the current time is not affected by that of the fu-
ture, but only by its current state and past history) and uses a convolution-type weight
in its design. To demonstrate its effectiveness in handling the causal response of a
physical system, the Causality-DeepONet is applied to learn the operator representing
the response of a building due to earthquake ground accelerations. Extensive numer-
ical tests and comparisons with some existing variants of DeepONet are carried out,
and the Causality-DeepONet clearly shows its unique capability to learn the retarded
dynamic responses of the seismic response operator with good accuracy.

AMS subject classifications: 65R20, 65Z05, 78M25

Key words: Neural network, universal approximation theory of nonlinear operator, DeepONet,
Causality-DeepONet.

1 Introduction

Computing operators between physical quantities defined in function spaces have many
applications in forward and inverse problems in scientific and engineering computations.
For example, in wave scattering in inhomogeneous or random media, the mapping be-
tween the media physical properties, which can be modelled as a random field, and the

∗Corresponding author. Email addresses: lizuol@smu.edu (L. Liu), kamaljyoti nath@brown.edu (K. Nath),
cai@smu.edu (W. Cai)

http://www.global-sci.com/cicp 1194 ©2024 Global-Science Press

L. Liu, K. Nath and W. Cai / Commun. Comput. Phys., 35 (2024), pp. 1194-1228 1195

wave field is a nonlinear operator, which represents some of the most challenging compu-
tational tasks in medical imaging, geophysical and seismic problems. A specific example
comes from earthquake safety studies of buildings and structures, the response of struc-
tures to seismic ground accelerations gives rise to a causal operator between spaces of
highly oscillatory temporal signals.

Structural dynamic analysis has always been one of the crucial problems in the civil
engineering field. Traditionally, researchers in this field analyzing structural dynamic re-
sponse focus on constructing proper mathematical models like ordinary or partial differ-
ential equations and utilizing grid-based numerical methods to solve them. The finite el-
ement method [50] is one of the popular methods considered for the solutions along with
an appropriate time integration scheme like Newmark’s-Beta method [6, 36]. Alterna-
tively, system identification-based methods, as an attempt to construct a surrogate model
by mapping the input signals to the output responses directly, have shown their superior
capability in accelerating the computations. A comprehensive review of this approach
was provided in [42, 19]. Meanwhile, recently learning time sequential response opera-
tor between input and output signals [23] has been studied using recurrent neural net-
work (RNN) [11,24], long short-term memory neural network (LSTM) [17], WaveNet [37],
the one-step ResNet approximation [40] and the multi-step recurrent ResNet approxima-
tion [40]. The RNN and its variant LSTM are ubiquitous network structures for pre-
dicting time series in financial engineering, machine translation, and sentiment analysis
and so on in the natural language processing field. In particular, LSTM has been shown
to have the potential to predict building responses excited by seismic ground accelera-
tions [20, 46]. The one-step ResNet approximation and the multi-step recurrent ResNet
approximation, provide the approximation to the integral form of the dynamical system
and have been demonstrated effective equation recovery for linear and nonlinear dynam-
ical systems [12, 40].

Deep neural networks (DNNs), as one of the most intuitive frameworks for model re-
ductions with its superior ability to approximate general high dimensional functions [7],
have been considered recently in learning mappings whose closed forms are not known.
So far, DNNs have shown much promise in solving problems from scientific and engi-
neering computing, including initial and boundary value problems of ODEs and PDEs
[4, 10, 15, 18, 30, 41, 47, 28]. Soon after universal approximation theorems to functions by
neural networks was proposed [7], Chen & Chen [5] proved that there also exists a frame-
work that could give universal approximations to nonlinear operators between Banach
spaces. Based on this theory, the DeepONet [32] was constructed for learning operators
where trunk net functions are used as basis and the branch net functions as mappings
from the input functions to some hidden manifolds. The DeepONet replaced the one-
hidden layer networks in the original proposal in Chen & Chen’s paper [5] by two deep
neural networks, which has been shown to have the potential to break the curse of dimen-
sionality from the input space. In the meantime, other approach for learning operators
based on a graph kernel network [26] for PDEs has also been proposed. The nonlin-

1196 L. Liu, K. Nath and W. Cai / Commun. Comput. Phys., 35 (2024), pp. 1194-1228

ear operator is decomposed by composing nonlinear activation functions with a class
of integral operators with a trainable kernel. The Fourier neural operator has been pro-
posed [25] by replacing the integral operator with the Fourier transform and a trainable
mask in frequency domain. Both the graph kernel neural network and the Fourier neural
operator show the capability to approximate specific operators with very good accuracy
and efficiency.

In this paper, we will study the DeepONet specifically for time-dependent operators
from a physical system such as those encountered in a building seismic wave response
problems. The Causality-DeepONet will be proposed to ensure the causality of the re-
tarded Green’s function of the underlying differential equation between the input seis-
mic ground accelerations and the output building responses. In addition to the causality
consideration, the time homogeneity of a dynamic system will also be used in the de-
sign of the neural network by encoding the convolutional nature of the retarded Green’s
function in the choice of the network weights. The proposed DeepONet with built-in
causality allows us to learn, accurately and with minimum requirement of training data,
the mapping between the ground accelerations and the corresponding displacements of
the building at the roof level excited by the seismic ground accelerations.

It could be noted that the term causality is also used in fields such as causal infer-
ence [31, 34] and causal interpretability of neural network [35], or applying the neural
network to solve problem like causal reasoning [14]. Those works are referring to the
logical cause-effect relationships between data. However, in our setting we focus on the
physical concept of temporal causality, i.e., the state of the system at the current time
is not affected by that of the future, but only by its current state and past history. For
this reason, we name our framework Causality-DeepONet. In a study of crack propaga-
tion [13], past histories of tensile energies were provided as input to the branch net of a
variational energy-based DeepONet with convolution to predict the growth of fracture
under quasi-static loading conditions. This approach is similar to implicit time discretiza-
tion of nonlinear time evolution equation commonly used for time dependent Navier-
Stokes equations where the state(s) of the system at previous time step(s) act as a forcing
term for the linear system to be solved for the state of the current time.

The rest of the paper is organized as follows. In Section 2, we state the problem con-
sidered in the present study. In Section 3, we give a short review of the universal approx-
imation theory of nonlinear operator by neural networks, and its recent development
DeepONet. Further, we provide a review of a multi-scale neural network introduced to
handle high frequency functions and the POD-DeepONet for efficient basis functions in
the trunk net of DeepONet. Fourier neural operator is also reviewed in this section. In
Section 4, we propose two extensions of the DeepONet, one is the multi-scale DeepONet,
the other is the Causality-DeepONet. In Section 5, a comparison of the results with all
the mentioned frameworks will be carried out. The conclusion and future works are
included in the Section 6.

L. Liu, K. Nath and W. Cai / Commun. Comput. Phys., 35 (2024), pp. 1194-1228 1197

2 Problem statement: Calculation of building response due to
seismic load

The problem under study is the prediction of the dynamic response of a multi-story
building due to seismic loading. The equation of motion, after a finite element type
discretization, for the building due to ground motions during an earthquake could be
written as a dynamic system of differential equations [6],

Mẍ+Cẋ+Kx= f (t), (2.1)

where M, C and K are the mass, damping and stiffness matrices of the system from the
finite element discretization. f (t) the applied force, for our case, is due to ground motions
during an earthquake and could be written as

f (t)=Mιüg, (2.2)

where üg is the ground acceleration due to the earthquake and ι is the influence vector.
The interested reader may refer [6] for more details on formulation and solution methods.

Ground accelerations due to earthquakes are recorded at different recording stations.
In the present study, we consider ground accelerations due to earthquakes for differ-
ent earthquakes recorded at different stations and taken from the database of the Pacific
Earthquake Engineering Research Center (https://ngawest2.berkeley.edu/) (https:
//peer.berkeley.edu/) †. One of the typical records of ground accelerations is shown
in Fig. 1. The earthquake record at different stations may be recorded at different sam-
pling rates (different δt). Earthquake records recorded at finer δt < 0.02 sec are filtered
using a Butterworth filter with frequency (0.1-24.9) Hz then re-sampled to δt= 0.02 sec
and after that amplified to match with original PGA level. Figures before and after pro-
cessing for the mentioned earthquake record in Fig. 1 are shown in Appendix C.1. The
building is considered at rest initially with the initial condition{

x(0)=0,
ẋ(0)=0.

(2.3)

Our objective is to evaluate an operator operating on the ground acceleration and pre-
dict the response of the building. Thus, it is a mapping from ground acceleration to the
response of the top floor of the building.

R : üg(t)−→ x1(t). (2.4)

Detailed numerical study is carried out for a six-storied reinforced cement concrete (RCC)
building. A 3D model of the building is generated in openseespy [48]. Apart from the

†The earthquake ground acceleration considered are taken from the Pacific Earthquake Engineering Re-
search Center (PEER: https://ngawest2.berkeley.edu/, https://peer.berkeley.edu/)

1198 L. Liu, K. Nath and W. Cai / Commun. Comput. Phys., 35 (2024), pp. 1194-1228

0 50 100 150 200

Time (s)

−0.025

0.000

0.025

A
c
c
e
le
ra

ti
o
n
s
(g

)

PGA

(a)

0 10 20 30 40 50

Frequency (Hz)

10
−2

A
m

p
li
tu

d
e

(b)

Figure 1: A typical ground acceleration of due to earthquake: The ground acceleration is due to 14383980
earthquake recorded at station North Hollywood, 2008 (a) time history of the acceleration (b) frequency spec-
trum. The absolute maximum acceleration is indicated which is also known as Peak Ground Acceleration (PGA)
of the earthquake.

dead load (beam, column, slab, wall etc.), the live load is also considered on each floor
and roof. Generally, in seismic analysis of building, a full dead load and a reduced live
load are considered. In the present study, the lumped mass is calculated based on a full
dead load and 50% of the live load at floor level and 25% at roof level. The damping
matrix of the building is calculated using model damping for 5% model damping for all
the modes. The matrix size of M,C,K is 504×504 since there is 504 degree of freedom of
the building model after applying support (boundary conditions) at the foundation level.
Ground acceleration is applied in the major direction. The records obtained from PEER
contain 3 different directions. The vertical ground accelerations are not considered. The
other two horizontal ground accelerations are considered one at a time and applied only
in the major direction.

In the case of a classical damped system [6], the displacement x(t) may be decom-
posed as the superposition of the modal contributions of undamped system x(t) =Φq,
Φ= [φ1,φ2,··· ,φn], q= [q1,q2,··· ,qn]T. ql and φl are the modal coordinates and the corre-
sponding modes, respectively, for natural frequency ωl . The responses (displacement)
x(t) of the system for ground accelerations üg(t) may be represented as

x(t)=
∫ t

0
üg(τ)h(t−τ)dτ, (2.5)

where h(t) =−∑n
�=1 φ�

Γ�
ω�D

e−ξ�ω�t sinω�Dt is the unit impulse response, also known as,

the Green’s function and fundamental solution, Γ�=
φT
� Mι

φT
� Mφ�

and ι is the influence vector,

ω�D =ω�

√
1−ξ2

� with ξ� as the damping ratio.

In the case of a non-classical damped system [6], the responses (displacement) x(t) of
the system due to ground accelerations üg(t) may be represented as

x(t)=−
n

∑
�=1

[
γ̃δ
�ωN

� D� (t)+αδ
�Ḋ� (t)

]
, (2.6)

L. Liu, K. Nath and W. Cai / Commun. Comput. Phys., 35 (2024), pp. 1194-1228 1199

where

D� (t)=
∫ t

0
üg(τ)H�(t−τ)dτ, Ḋ� (t)=

∫ t

0
üg(τ)Ḣ�(t−τ)dτ. (2.7)

H�(t)=− 1
ωN
�D

e−ξN� ωN
� t sinωN

�Dt is the Green’s function of the non-classical damped system,

with ωN
�D=ωN

�

√
1−(ξN�)2 and ωN

� = |λN
� |, ξN� =−Re(λN

�)
|λN

� | where λN
� is the eigenvalues of

the system of first-order differential equations reduced from Eq. (2.1). ωN
� is a function

of the amount of system damping.
Further,

γ̃δ
�=

(
ξN� αδ

�−
√

1−(ξN�)2γδ
�

)
, αδ

�=Re(2βδ
�ψ�),

γδ
�= Im(2βδ

�ψ�), βδ
�=

−ψT
� Mι

2λN
� ψT

� Mψ�+ψT
� Cψ�

,

where ψ� is the corresponding eigenvector of λ�.
The discussion above of Eqs. (2.5) and (2.6) infers and inspires us to consider two

phenomena in formulating an operator, the first one is that the responses at the present
state is not influenced by the future ground acceleration, we understand it as causality
of the system, meaning the state of system at current time should not be affected by
the future, but only by its past history of the ground acceleration. The second one is
the convolution nature of the Green’s function kernel. As shown in many works with
convolutional neural networks [1,38,44,49], the convolution function as a specific domain
knowledge for neural network to learn about the target operator. With these two insights
we will construct an operator in the DeepONet framework to address both causality and
convolution kernel in Section 4.2, and name it as Causality-DeepONet.

3 Background / preliminary

In this section, first we will discuss the universal approximation theorem for operators
by neural networks. Then in Section 3.2 we will review the DeepONet. Multi-scale deep
neural networks and POD-DeepONet will be described in Sections 3.3 and 3.4, respec-
tively. Furthermore, we discuss Fourier Neural Operator (FNO) in Section 3.5

3.1 Universal approximation theory

The universal approximation theory of neural networks is one of the mathematical basis
for the broad applications of neural network, which justifies approximating functions or
operators by weighted compositions of some functions, whose inputs are also weighted.
The parameters, i.e., the weights and bias, could be obtained by minimizing a loss func-
tion with optimization algorithms such as stochastic gradient descent and its variants.
Thus, neural network learning turns an approximation problem to one of optimization

1200 L. Liu, K. Nath and W. Cai / Commun. Comput. Phys., 35 (2024), pp. 1194-1228

with respect to the parameters. In this section, we focus on the approximation of opera-
tors.

The work of [5] gives a constructive procedure for approximating nonlinear operator
G between continuous functions G (f)(x) in a compact subset of C(X) with X ⊆Rd and
continuous functions f (x) in a compact subset of C(F) with F ⊆Rd

G : f (x)∈C(F)→G(f)(x)∈C(X), (3.1)

where C(X) and C(F) are the continuous function spaces over X and F , respectively,
and X and F are compact subsets of Rd, the Euclidean space of dimension d. The uni-
versal approximations with respect to operators are based on the two following results:

• Universal Approximation of Functions [5]: Given any ε1>0, there exists a positive
integer N, {wk}N

k=1 ∈Rd,{bk}N
k=1 ∈R, such that functions G(f)(x) selected from a

compact subset U of C(X) could be uniformly approximated by a one-hidden-layer
neural network with any Tauber-Wiener (TW) activation function σt∣∣∣∣∣G(f)(x)−

N

∑
k=1

Jk (G(f))σt (wk ·x+bk)

∣∣∣∣∣< ε1, ∀ x∈X , (3.2)

where Jk (G(f)) is a linear continuous functional defined on V (a compact subset
of C(F)), and all wk,bk are independent of x and f (x). A Tauber-Wiener activation
function is defined as follows.

Definition 3.1. Assume R is the set of real numbers. σ : R→R is called a Tauber-
Wiener (TW) function if all the linear combinations g(x) = ∑I

i=1 ciσ(wix+bi) are
dense in every C [a,b], where {wi}I

i=1, {bi}I
i=1, {ci}I

i=1∈R are real constants.

• Universal Approximation of Functionals [5]: Given any ε2 >0, there exists a posi-
tive integer M, m points

{
xj
}m

j=1∈F with real constants ck
i ,Wk

ij,B
k
i ∈R, i=1,··· ,M, j=

1,··· ,m, such that a functional Jk (G(f)) could be approximated by a one-hidden-
layer neural network with any TW activation function σb∣∣∣∣∣Jk (G(f))−

M

∑
i=1

ck
i σb

(
m

∑
j=1

Wk
ij f
(

xj
)
+Bk

i

)∣∣∣∣∣< ε2, ∀ f ∈V , (3.3)

where the coefficients ck
i ,Wk

ij,B
k
i and nodes {xj}m

j=1 and m,M are all independent of
f (x).

Combining these two universal approximations, the authors of [5] proposed the uni-
versal approximations of nonlinear operators by neural networks when restricted to the
compact subset V of the continuous function space C(F) defined on a compact domain

L. Liu, K. Nath and W. Cai / Commun. Comput. Phys., 35 (2024), pp. 1194-1228 1201

F in Rd. Namely, given any ε>0, there exists positive integers M,N, m points
{

xj
}m

j=1 ∈
F⊆Rd with real constants ck

i ,Wk
ij,B

k
i ∈R, i=1,··· , M, j=1,··· ,m, {wk}N

k=1∈Rd, {bk}N
k=1∈R

that are all independent of continuous functions f ∈V ⊆C(F) and x∈X ⊆Rd such that∣∣∣∣∣G(f)(x)−
N

∑
k=1

M

∑
i=1

ck
i σb

(
m

∑
j=1

Wk
ij f
(

xj
)
+Bk

i

)
σt (wk ·x+bk)

∣∣∣∣∣< ε. (3.4)

3.2 DeepONet

Based on the universal approximation of nonlinear operator, Lu et al. [32] proposed the
Deep Operator Network (known as DeepONet) by replacing the two one-hidden-layer
neural networks in Eq. (3.4) with two deep neural networks. For a general operator
G(f)(x), DeepONet has form

G(f)(x)∼
N

∑
k=1

σBr,k

({
f
(

xj
)}m

j=1

)
︸ ︷︷ ︸

Brk

σT,k (x)︸ ︷︷ ︸
Tk

, (3.5)

where σBr (·) with a signal
{

f (xj)
}m

j=1 as input is a deep neural network with N outputs,
named as the branch net, σT (·) with input x is also a deep neural network with N outputs,
called the trunk net. The branch net takes the input function as input and the trunk net
takes the coordinates as input at which the output function need to be approximated. The
schematics are shown in Fig. 2. The DeepONet has already been shown it is able to learn
not only explicit mathematical operators like integration and fractional derivatives, but
also PDE operators [3, 8, 9, 27, 32].

3.3 Multi-scale Deep Neural Network (MscaleDNN)

Multi-scale Deep Neural Network (MscaleDNN) [30] is a specific framework for prob-
lem whose output function is highly oscillatory. Since the highly oscillating feature of the
responses of buildings excited by ground accelerations due to earthquakes, we also pro-
pose the multi-scale DeepONet that incorporates the multi-scale neural network into the
DeepONet. The general fully connected neural network could learn the low frequency
content of the data quickly, but the learning process will be stalled when higher frequency
components are involved in the data. This frequency bias phenomenon is considered as
the Frequency Principle studied in [45]. To remedy the frequency bias in terms of learn-
ing convergence, Liu et al. [30] introduced a MscaleDNN to accelerate the convergence of
neural network for fitting problems of highly oscillating data. The MscaleDNN contains
several sub-neural networks, for each of which a different frequency scaling is introduced
by scaling the inputs accordingly, to arrive at the following form for the MscaleDNN,

fθ(x)∼
S

∑
i=1

wi fθi (Six), (3.6)

1202 L. Liu, K. Nath and W. Cai / Commun. Comput. Phys., 35 (2024), pp. 1194-1228

N outputs

N outputs

Input
Dim: m

Branch Net
Trunk Net N

∑
k=1

BrkTk

When x= x1When x= x2 When x= xm⎡
⎢⎢⎢⎢⎢⎣

f (x1)
f (x2)

...
f (xm−1)

f (xm)

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

f (x1)
f (x2)

...
f (xm−1)

f (xm)

⎤
⎥⎥⎥⎥⎥⎦ . . .

⎡
⎢⎢⎢⎢⎢⎣

f (x1)
f (x2)

...
f (xm−1)

f (xm)

⎤
⎥⎥⎥⎥⎥⎦

x

Brk

Tk

Figure 2: Schematic Diagram of the DeepONet: A schematic diagram of DeepONet showing branch and the
trunk net along with the input data and output. The number of the input neurons of the branch net is equal
to the number of sensor points in the input signals. The trunk net takes the input point x at where the output
function need to be evaluated. Thus, the number of input neurons of trunk net is equal to the dimension of
the problem. In the present study, it is the time point x= t at which the output needs to be evaluated. Note
for different time point t, the corresponding input of branch net is the same.

where Si are the custom scales and { fθi (·)}S
i=1 are the distinct sub-fully connected neural

networks. Eq. (3.6) shows a multi-scale neural network with S scales. The final output
of multi-scale deep neural network is the weighted sum of the outputs of the sub-neural
networks with trainable weights wi. The MscaleDNN has already shown its power for
solving fitting problems and PDEs with high frequencies in [29, 30, 43].

3.4 POD-DeepONet

Instead of modeling the basis of output data by training the trunk net, Lu et al. [33]
proposed the POD-DeepONet based on the work of Bhattacharya et al. [2]. The trunk
net in the vanilla DeepONet is replaced by the basis obtained from proper orthogonal
decomposition (POD) of the outputs of training data after subtracting the mean. Thus,
the outputs of branch net are the coefficients of the precomputed basis vectors

G(f)∼
p

∑
k=1

σBr,k

({
f
(

xj
)}m

j=1

)
Bk+B0, (3.7)

L. Liu, K. Nath and W. Cai / Commun. Comput. Phys., 35 (2024), pp. 1194-1228 1203

where B0 is the mean of the output of training data, {Bk}p
k=1 are the selected p ba-

sis vectors obtained by SVD or POD of the zero-mean outputs of training data, and
σBr(

{
f
(

xj
)}m

j=1) is the branch network with p outputs whose kth output corresponds to

the kth singular value. In [33], it was shown that POD-DeepONet is more effective than
the vanilla DeepONet.

3.5 Fourier Neural Operator (FNO)

Li et al. [25] proposed the framework Fourier neural operator where the integral kernels
are parameterized in Fourier space directly. The input function is first lifted to a higher
dimension, generally using a linear transformation. Then the iterative update to the rep-
resentation from the input of l-th layer vl to the output of l-th layer vl+1 is considered
as,

vl+1(x) :=σ(Wvl(x)+(K(a;φ)vl)(x)) (3.8)

given input function a(x), where W :Rdl →Rdl+1 is a linear transformation, and σ :R→R

is a non-linear activation function which is defined component-wise.
The kernel integral transformation is parameterized in the Fourier space

(K(φ)vt)(x)=F−1(Rθ ·F (vt))(x), (3.9)

with (F f)j(k)=
∫

D fj(x)e−2iπ〈x,k〉dx and (F−1 f)j(x)=
∫

D fj(k)e−2iπ〈x,k〉dk the Fourier trans-
form and inverse Fourier transform respectively. Rθ is the trainable parameter. For each
kernel integral transformation, only specific m modes will be kept. Zero-padding after
the kept modes is required to recover the same size as input for the output of each layer.
The output is projected to the target dimension using a neural network. From the im-
plementation level, the Fourier transform and inverse Fourier transform are realized by
fast Fourier transform and inverse fast Fourier transform. The FNO is discretization-
invariant and has shown the efficiency for learning PDE operators and so on, as shown
in the paper [25].

4 Methodologies

4.1 Multi-scale DeepONet

As shown in Fig. 1, the spectrum of a typical earthquake signals contains not only low
frequency components, but also high frequency components, therefore, we introduce the
multi-scale DeepONet to handle the oscillatory information. Since the oscillatory features
are function of time t, it is natural that we replace the fully connected trunk net by the

1204 L. Liu, K. Nath and W. Cai / Commun. Comput. Phys., 35 (2024), pp. 1194-1228

MscaleDNN with S scales.

G(f)(t)∼
N

∑
k=1

σBr,k

({
f
(
tj
)}m

j=1

)
σT,k (t),

σT (t)=
S

∑
i=1

wiσθi (Sit),

(4.1)

where {σθi (·)}S
i=1 are S distinct fully connected neural networks with N outputs.

4.2 Causality-DeepONet

The DeepONet proposed in [32] is based on a proven theorem of universal approximation
for nonlinear operators, as introduced in the Section 3.1. We will apply the universal ap-
proximation theory to a nested subspaces of continuous functions indexed by the output
time, which will provide a heuristic argument for the form of the Causality-DeepONet to
be proposed. Rigorous mathematical justification though is still to be derived.

For a ground acceleration dynamic excitation üg(s), the response function R(üg)(t)
experiences a retardation effect due to the causality of the physical process. Therefore,
in order to apply the universal approximation of function (3.2) to input function space
C[0,t], we view it as a subspace of C[0,T] through an embedding by extending a function
in C[0,t] from interval [0,t] to [0,T] such that the extended function is zero in [t+δ,T]
and a linear interpolation of its value at t and zero at t+δ, δ is selected small enough to
maintain the causality of the information up to t to some accuracy, i.e.,

C[0,t] ↪−→C[0,T], ∀t∈ [0,T]. (4.2)

We have ∣∣∣∣∣R(üg)(t′)−
N

∑
k=1

Jk
(R(üg),t

)
σt
(
wkt′+bk

)∣∣∣∣∣< ε1, ∀ t′ ∈ [0,t]⊆ [0,T]. (4.3)

Comparing with the original universal approximation theorem of functions Eq. (3.2), we
require the dependence of t for the parameters Jk

(R(üg),t
)
, in which we may introduce

the Causality and Convolution. It can be assumed that for every given interval [0,t], the
approximation Eq. (4.3) is valid within the interval based on the proof in [5]. In principle,
the integer N, the parameters {wk}N

k=1 , {bk}N
k=1 ∈ R, should also have a t-dependence,

however, due to the nested property in (4.2), for practical implementations they are taken
as global parameters to be trained for all t∈ [0,T].

Following the discussion in Section 2, we extend the universal approximation of func-
tionals Eq. (3.3) to approximate the functionals with causality. The functional Jk

(R(üg),t
)

(defined on a compact subset of C[0,t]) could be rewritten as

Jk
(R(üg),t

)
=Jk

(
R(ügχ[0,t])

)
∈R, üg ∈C[0,t], t∈ [0,T], (4.4)

L. Liu, K. Nath and W. Cai / Commun. Comput. Phys., 35 (2024), pp. 1194-1228 1205

where χ[0,t] (s) is the characteristic function, such that

χ[0,t] (s)=

{
1, s∈ [0,t],
0, otherwise.

(4.5)

Then, following the similar approach as universal approximation of functionals Eq. (3.3),
we may state that given any ε2 > 0, there exists a positive integer M, m̂ equal-spaced
points

{
sj
}m̂

j=1 ∈ [0,t] with real constants ck
i ,Wk

ij,B
k
i ∈R, i= 1,··· ,M, j= 1,··· ,m̂, such that

Jk
(R(üg),t

)
could be approximated by a one-hidden-layer neural network with any TW

activation function σb∣∣∣∣∣∣Jk(R(üg),t)−
M

∑
i=1

ck
i σb

⎛
⎝� t

h�
∑
j=1

Wk
i,m̂−� t

h�+j
üg
(
sj
)
+Bk

i

⎞
⎠
∣∣∣∣∣∣< ε2, ∀üg ∈C[0,t], (4.6)

where the h is the step size and m̂ =
⌊ t

h

⌋
. For any given interval [0,t], based on the re-

sults of [5], there exists m̂∈N such that there are m̂ points
{

sj
}m̂

j=1 that could be applied
to construct the functional approximation Eq. (3.3). We further assume those points are
equal-spaced. The equal-spaced sampling could be obtained by applying some appro-
priate smoothing kernel to input and output functions for the problems that are not
equal-spaced. And likewise, the coefficients ck

i ,Wk
ij,B

k
i and nodes {sj}m̂

j=1 and m̂,M are
all independent of üg (s), however, t-dependent.

The indicator function χ[0,t] (s) Eq. (4.5), implemented by the inner upper summation
limit

⌊ t
h

⌋
in Eq. (4.6), as a discontinuous function does not belong to the continuous func-

tion space, which could be replaced by a smoothed version with a short transition at s= t
while still keeping the causality.

Causality-DeepONet: Combining these two desired universal approximations, we can
heuristically consider the following DNN representation of an operator for retarded re-
sponse for t∈ [0,T]⊂R. The basic idea is that we could find m points {si}m

i=1∈ [0,T] to ap-
proximate the functional Jk(R(üg),T) based on the universal approximation of function-
als with causality Eq. (4.6). The information to approximate the functional Jk(R(üg),t)

where [0,t]⊆ [0,T] is offered by the value of {üg(si)}�
t
h �

i=1 only. To keep the input signals of

the same length at different time point, we consider zero-padding {üg(si)}�
t
h �

i=1 as shown
in Fig. 3. Thus the coefficients ck

i ,Wk
ij,B

k
i and nodes {sj}m

j=1 are t-independent. In addition,
the convolution with respect to the input signals could be implemented by shifting the
signals, as shown in Fig. 3.

Namely, we could find positive integers M,N, m equal-spaced points
{

sj
}m

j=1 ∈ [0,T]

with real constants ck
i ,Wk

ij,B
k
i ∈R, i=1,··· ,M, j=1,··· ,m, {wk}N

k=1∈R, {bk}N
k=1∈R that are

1206 L. Liu, K. Nath and W. Cai / Commun. Comput. Phys., 35 (2024), pp. 1194-1228

N outputs

N outputs

Input
Dim: m

Branch Net
Trunk Net N

∑
k=1

ckBrkTk

When t= s1When t= s2 When t= sm⎡
⎢⎢⎢⎢⎢⎣

0
...
0
0

üg (s1)

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

0
...
0

üg (s1)
üg (s2)

⎤
⎥⎥⎥⎥⎥⎦ . . .

⎡
⎢⎢⎢⎢⎢⎣

üg (s1)
...

üg (sm−2)
üg (sm−1)

üg (sm)

⎤
⎥⎥⎥⎥⎥⎦

t

Brk

Tk

Figure 3: Schematic Diagram of the Causality-DeepONet: A schematic of the Causality-DeepONet showing
branch and the trunk net along with the input data and output. Similar to DeepONet, the number of input
neurons of branch of Causality-DeepONet is equal to the number of sensor points in the input signals. The
input signals of branch, however, will be replaced by a zero-padding signals with a shifting window to express
the causality and the convolution.

all independent to continuous functions üg ∈C [0,T] and t, such that

R(üg)(t)∼
N

∑
k=1

ck

M

∑
i=1

σb

⎛
⎝� t

h�
∑
j=1

Wk
i,� T

h �−� t
h�+j

üg
(
sj
)
+
� T

h �−1

∑
j=� t

h�
Wk

i,� T
h �−j0+Bk

i

⎞
⎠

︸ ︷︷ ︸
Brk

σt (wkt+bk)︸ ︷︷ ︸
Tk

.

(4.7)

4.3 Loss function and error calculation

In the present study, we consider two loss functions depending on the method consid-
ered. Assuming x̂�(θ) are the predicted response by neural network for the �th earth-
quake ground acceleration ü(�)

g with the corresponding true value x�, where θ are train-
able variables of the neural networks, including the weights and bias. The first loss func-

L. Liu, K. Nath and W. Cai / Commun. Comput. Phys., 35 (2024), pp. 1194-1228 1207

tion considered is the MSE loss function

L(θ)= 1
n

n

∑
�=1

‖x�− x̂�(θ)‖2

=
1
n

n

∑
�=1

[
1
m

m

∑
i=1

(x(i)� − x̂(i)� (θ))2

]
, (4.8)

where n is the number of samples (different earthquake accelerations) considered and
‖·‖2 is the MSE error for one sample, m is the number of points in each of the earthquake
acceleration.

The second loss function considered is a weighted MSE loss function and defined as,

L(θ)= 1
n

n

∑
�=1

1
max|x�|2 ‖x�− x̂�(θ)‖2

=
1
n

n

∑
�=1

1
max|x�|2

[
1
m

m

∑
i=1

(x(i)� − x̂(i)� (θ))2

]
. (4.9)

The penalty is set to be the reciprocal of the square of maximum of the absolute value
of the response. This act as a normalization factor when the responses have different
magnitude for different earthquakes. The larger penalty is considered to the responses
whose magnitude is smaller, thus it is expected that the neural network could predict the
response whose magnitude is smaller accurately.

In order to check the accuracy of the predicted results we consider relative L2 error,

Relative L2 Error=
1
n

n

∑
�=1

‖x�− x̂�(θ)‖
‖x�‖

=
1
n

n

∑
�=1

√√√√√√√
m
∑

i=1
(x(i)� − x̂(i)� (θ))2

m
∑

i=1
(x(i)�)2

, (4.10)

and for the error with respect to the �th case, we consider the relative error,

Err=
maxi

∣∣∣x(i)� − x̂(i)� (θ)
∣∣∣

maxi

∣∣∣x(i)� ∣∣∣ . (4.11)

The parameters θ which include both weights and biases are optimised using the Adam
optimizer [21] in a Pytorch [39] environment,

θ∗=arg min
θ

L(θ). (4.12)

Once the optimized parameters of the networks (weights and biases) are obtained, these
may be used for the prediction of the response of the system for an unknown input signal
(earthquake ground acceleration).

1208 L. Liu, K. Nath and W. Cai / Commun. Comput. Phys., 35 (2024), pp. 1194-1228

5 Numerical results and discussion

In this section, we will present the numerical results of multi-scale DeepONet (MS-
DeepONet) and Causality-DeepONet for the prediction of response of the multistoried
building discussed in Section 2. We will also have a comparison study of the results with
a few other DeepONet methods and Fourier neural operator. First, we will study the pre-
diction of the response with different DeepONet methods and the results of multi-scale
DeepONet. Then, we will present predicted responses with Fourier neural operator, and
Causality-DeepONet. We also study the different methods with different network sizes
and training samples, which are discussed in subsequent sections. To avoid overfitting,
dropout [16] is considered during training for a few of the cases but is disabled during
evaluation. Further, we consider a 0 displacement at 0 time instant to enforce the solution
satisfying the initial conditions for all the numerical examples in this section.

The testing dataset consists of different earthquakes which are not included in the
training dataset. The test dataset is considered from 22 different earthquakes. One of
them is recorded at three different stations. Two of them are recorded at the same station.
Thus, the testing dataset consists of 44 ground accelerations (2 horizontal directions) from
different earthquake recording stations. The training dataset consists of different earth-
quakes not considered in the testing dataset. The training dataset may be from the same
earthquake recorded at different stations or different earthquakes. The record series num-
ber (RSN) for the training and testing dataset are listed in Appendix A. Details about the
training and testing dataset are shown in Table 5 in Appendix B.

5.1 DeepONet, POD-DeepONet, and Multi-scale DeepONet

First, we will present the predicted results with the DeepONet, POD-DeepONet, and
Multi-scale DeepONet method. We use the notation [N1]-[N2]×L-[N3] to represent a neu-
ral network with the input size of N1, L hidden layers with N2 neurons in each layer, and
the output dimension of N3 neurons. The notation [N1]-S×{[N2]×L}-[N3] represents a
multi-scale neural network with the input size of N1, and S sub-neural networks that
contain L hidden layers with N2 hidden neurons in each layer. The output dimension is
N3.

The network structures considered is [4000]-[200]×3-[200] for branch and [1]-[200]×3-
[200] for trunk for the DeepONet case. As for the POD-DeepONet, since there is no trunk
net, the network structure considered is [4000]-[200]×3-[100]. The reason that POD-
DeepONet has 100 output neurons is the basis we considered contains 100 basis vector.
For the multi-scale DeepONet case, we consider the branch net size [4000]-[200]×3-[200]
and trunk net size [1]-20×{[10]×3}-[200]. To keep the number of neurons as the same as
previous cases, the number of hidden neurons for each subnet at each layer are divided
by 20, the number of scales. In the present study we consider an MscaleDNN in the trunk
with 20 equally spaced scales [1,1+40π,··· ,1+40nπ,··· ,1+760π]. In the meantime, the
time t is scaled to t∈ [0,1] for multi-scale DeepONet case. All the neural networks in this

L. Liu, K. Nath and W. Cai / Commun. Comput. Phys., 35 (2024), pp. 1194-1228 1209

Table 1: Relative L2 error for training and testing dataset using DeepONet(DON), POD-DeepONet(PDON),
and Multi-scale DeepONet(MSDON).

Case Branch Trunk
Loss Eq. (4.8) Loss Eq. (4.9)
Train Test Train Test

DON [4000]-[200]×3-[200] [1]-[200]×3-[200] 1.0 0.999 1.0 0.999
PDON [4000]-[200]×3-[100] None 0.448 1.213 0.035 1.003

MSDON [4000]-[200]×3-[200] [1]-20×{[10]×3}-[200] 0.13 0.87 0.10 0.83

section are trained up to 20000 epochs with Adam optimizer.
The activation considered for three network structures are slightly different. For the

DeepONet and POD-DeepONet case, we consider ReLU(x) activation function. For the
multi-scale DeepONet case, we consider sin(x) activation function, according to the re-
sults in [29, 43].

The training of DeepONet is considered with a learning rate of 10−4 in the first 1000
epochs, then 10−5 in the 1000 to 3000 epochs, and 10−6 for the remaining epochs. In order
to avoid overfitting, we consider using dropout with a rate of 0.01 for the branch net and
L2 weight regularization with 3×10−5 coefficient for weights of the branch net as well.

Instead, for the multi-scale DeepONet case, we assign the dropout rate of 0.10 for the
trunk net. The learning rate considered is 3×10−4 in the first 1000 epochs, then 1.5×10−4

in the 1000 to 2500 epochs, and 7.5×10−5 for the rest of the epochs up to 5000.
To avoid the overfitting of the training of POD-DeepONet, we consider L2 weight

regularization with coefficient 10−6. The learning rate considered is 10−3 in the first 5000
epochs, then 10−4 in the 5000 to 10000 epochs, and 10−5 for the rest of the epochs up to
20000.

As discussed in Section 4.3, we consider two different loss functions given by
Eqs. (4.8) and (4.9) for all the cases. The training samples for all 3 models are 100 samples.
The training and testing results are shown in Table 1. It could be observed that the errors
in predicted responses are high for both training and testing dataset for DeepONet(DON)
from Table 1. Though the POD-DeepONet (PDON) and the multi-scale DeepONet (MS-
DON) have some improvements for the training data, the errors in the testing dataset are
still large. A further observation is that the training relative L2 errors with Loss Eq. (4.9)
are smaller comparing with the training relative L2 error with loss Eq. (4.8).

The relative L2 errors for the POD-DeepONet case and multi-scale DeepONet case
are smaller compared to DeepONet for the training dataset. However, the performance
of the network is poor in the case of the testing dataset shows that 100 training samples
could not offer enough information for the target response space. The predicted response
for the best training and testing cases are shown in Appendix C.2, Appendix C.3, and
Appendix C.4, respectively. The performance of POD-DeepONet highly relies on the
quality of the training data. If the training dataset covers a large enough region of the
space of interest, then the POD-DeepONet could have very good performance. It could

1210 L. Liu, K. Nath and W. Cai / Commun. Comput. Phys., 35 (2024), pp. 1194-1228

be also observed the proposed multi-scale DeepONet is not desired based on the results
of testing cases, though it accelerated the convergence for the training process.

5.2 Fourier Neural Operator(FNO)

In the previous section, we discussed the results of DeepONet, POD-DeepONet and
multi-scale DeepONet. We observed that the results were not satisfactory. In this sec-
tion, we will present and discuss the results of the Fourier neural operator(FNO). The
FNO considered in this example is implemented using the python package available at
https://github.com/neuraloperator/neuraloperator. As introduced in Section 3.5,
we consider 4 Fourier integral operator layer and 1000 modes will be kept. The activa-
tion function, the number of lifting channel, the number of projection channel and the
skip connection considered are GeLU(x), 256, 256 and soft-gating, respectively, all of
which are the default settings of the neuraloperator package.

We only consider the loss function given by Eq. (4.9) since in the previous cases, the
loss function Eq. (4.9) offers better performance in the training cases, comparing with
loss function Eq. (4.8). Like the previous studies, we provide the initial conditions as
additional data point {0,x(t1),x(t2),··· ,x(tm)} for every response in the training dataset
to force the FNO satisfy the initial conditions. Further, to ensure the prediction of FNO
satisfy another condition, R(0)(t)= 0,∀t, i.e., the response will be 0 if the input signals
are 0, we add the zero signal pair (0,0) to the training dataset. It is observed that this
additional zero pair data improves the accuracy of the results for the FNO case.

Fig. 4 shows the evolution of relative L2 error for the training and testing dataset for
a Fourier Neural Operator trained up to 20000 epochs. The final relative L2 error is 3.4%
for testing cases. The training dataset size considered is 10. Fig. 5 and Fig. 6 show the
worst and the best predictions, respectively, using FNO for the test dataset. To avoid
overfitting, we consider L2 weight regularization with a coefficient 1×10−4. The learning
rate considered is 10−3 in the first 1000 epochs, then 10−4 in the 1000 to 3000 epochs, and
10−5 for the rest of the training up to 20000 epochs. It could be observed that FNO can
predict the responses with good accuracy, though the error for the worst case is large.

0 5 10 15 20

Epoch ×10
3

1.11

10.00

×10
−1

Train(0.038)

Test(0.034)

Figure 4: Relative L2 Error for Training and Testing Dataset when Using Fourier Neural Operator: The
plot shows the relative L2 error for training and testing dataset when using Fourier neural operator.

L. Liu, K. Nath and W. Cai / Commun. Comput. Phys., 35 (2024), pp. 1194-1228 1211

0 10 20

Frequency (Hz)

10
−3

A
m

p
li
tu

d
e

(a)

0 20 40 60 80

Time (s)

−0.0005

0.0000

0.0005

D
is
p
la
c
e
m

e
n
t
(m

)

(b)

0 20 40 60 80

Time (s)

0.000

0.001

A
c
c
e
le
ra

ti
o
n
s
(g

)

(c)

0 20 40 60 80

Time (s)

0.30
0.60
0.90
1.20

E
rr
o
rs

×10
−1 (d)

True Response Predictions

Figure 5: The Worst Case of Predictions of FNO(Relative L2 Error: 0.224): The worst predictions in
testing dataset for the FNO. (a) The Amplitude of the prediction and true response in Fourier Domain, (b) The
prediction and true response, (c) The corresponding input signals(ground acceleration), (d) The relative error
Eq. (4.11).

0 5 10 15 20 25

Frequency (Hz)

10
−2

A
m

p
li
tu

d
e

(a)

0 20 40 60 80

Time (s)

−0.05

0.00

0.05

D
is
p
la
c
e
m

e
n
t
(m

)

(b)

0 20 40 60 80

Time (s)

−0.025

0.000

0.025

A
c
c
e
le
ra

ti
o
n
s
(g

)

(c)

0 20 40 60 80

Time (s)

0.40
0.80
1.20
1.60

E
rr
o
rs

×10
−2 (d)

True Response Predictions

Figure 6: The Best Case of Predictions of FNO(Relative L2 Error: 0.021) The best predictions in testing
dataset for the FNO. (a) The Amplitude of the prediction and true response in Fourier Domain, (b) The
prediction and true response, (c) The corresponding input signals(ground acceleration), (d) The relative error
Eq. (4.11).

1212 L. Liu, K. Nath and W. Cai / Commun. Comput. Phys., 35 (2024), pp. 1194-1228

Table 2: Relative L2 Error for training and testing dataset when using different sizes of Causality-DeepONet.

Case Branch Trunk Sample
Loss Eq. (4.8) Loss Eq. (4.9)
Train Test Train Test

1 [4000]-[30]×2-[30] [1]-[30]×2-[30] 10 0.055 0.089 0.017 0.018
2 [4000]-[60]×2-[60] [1]-[60]×2-[60] 10 0.023 0.040 0.014 0.015
3 [4000]-[90]×2-[90] [1]-[90]×2-[90] 10 0.030 0.051 0.015 0.016
4 [4000]-[120]×2-[120] [1]-[120]×2-[120] 10 0.018 0.033 0.016 0.017

1 The notation [N1]-[N2]×2-[N3] represents a neural network with the input size of N1, 2
hidden layers with N2 neurons in each layer, and the output dimension of N3 neurons.

5.3 Causality-DeepONet

As discussed in Section 2 and Section 4.2, both convolution and causality are considered
in the formulation of Causality-DeepONet. In this section, we will present the numerical
results and a comprehensive discussion about Causality-DeepONet for the prediction of
the responses of the problem discussed in Section 2.

Similar to the previous numerical examples, in this study as well, we consider the two
loss functions given by Eqs. (4.8) and (4.9) with different network sizes. We also study
the effect of the number of training samples on the accuracy of test results. Further, given
the fact that there are multiple choices of activation functions, we test a few of the pop-
ular activation functions with the same training dataset and the same network sizes. As
shown later, Causality-DeepONet with standard sigmoid activation functions converges
much slower. By defining a custom sigmoid function σ(x)= 1

1+e−x − 1
2 , the performance

is improved. Furthermore, to study the effect of only causality without convolution and
only convolution but without causality, we do numerical studies with causality only and
convolution only, observing that both causality and convolution are indispensable com-
ponents of the proposed Causality-DeepONet. Like the previous studies, we provide the
initial conditions as additional data pairs {üg : [0,0,··· ,0], x(0) : 0} in the training dataset
to enforce the Causality-DeepONet satisfies the initial conditions.

Fig. 7 and Fig. 8 show the worst and the best predictions using Causality-DeepONet
for the test dataset. The network is trained using 100 training samples. The network
size considered is [4000]-[120]×2-[120] for branch and [1]-[120]×2-[120] for trunk. The
activation function considered is tanh(x). To avoid overfitting, we consider L2 weight
regularization with a coefficient 1×10−4 for the branch net. The learning rate considered
is 10−3 in the first 2000 epochs, then 10−4 in the 2000 to 10000 epochs, and 10−5 for the
rest of the training up to 20000 epochs. The loss function considered for this case is
Loss Eq. (4.9). It could be observed that Causality-DeepONet can predict the responses
with good accuracy for all the cases, as the error for the worst case also is within the
satisfactory limit.

To study the effect of different network size and loss function (Eqs. (4.8) and (4.9)),

L. Liu, K. Nath and W. Cai / Commun. Comput. Phys., 35 (2024), pp. 1194-1228 1213

0 10 20

Frequency (Hz)

10
−3

A
m

p
li
tu

d
e

(a)

0 20 40 60 80

Time (s)

−0.0005

0.0000

0.0005

D
is
p
la
c
e
m

e
n
t
(m

)

(b)

0 20 40 60 80

Time (s)

0.000

0.001

A
c
c
e
le
ra

ti
o
n
s
(g

)

(c)

0 20 40 60 80

Time (s)

1.00
2.00
3.00
4.00

E
rr
o
rs

×10
−2 (d)

True Response Predictions

Figure 7: The Worst Case of Predictions of Causality-DeepONet(Relative L2 Error: 0.008): The worst
predictions in testing dataset for the Causality-DeepONet. (a) The Amplitude of the prediction and true
response in Fourier Domain, (b) The prediction and true response, (c) The corresponding input signals(ground
acceleration), (d) The relative error Eq. (4.11).

0 5 10 15 20 25

Frequency (Hz)

10
−1

A
m

p
li
tu

d
e

(a)

0 20 40 60 80

Time (s)

−0.05

0.00

0.05

D
is
p
la
c
e
m

e
n
t
(m

)

(b)

0 20 40 60 80

Time (s)

−0.025

0.000

0.025

A
c
c
e
le
ra

ti
o
n
s
(g

)

(c)

0 20 40 60 80

Time (s)

0.80
1.60
2.40
3.20

E
rr
o
rs

×10
−4 (d)

True Response Predictions

Figure 8: The Best Case of Predictions of Causality-DeepONet(Relative L2 Error: 0.00030) The best
predictions in testing dataset for the Causality-DeepONet. (a) The Amplitude of the prediction and true
response in Fourier Domain, (b) The prediction and true response, (c) The corresponding input signals(ground
acceleration), (d) The relative error Eq. (4.11).

1214 L. Liu, K. Nath and W. Cai / Commun. Comput. Phys., 35 (2024), pp. 1194-1228

0 5 10 15 20

Epoch ×10
3

0.37

3.33

×10
−1 (a)

Train(0.055)

Test(0.089)

0 5 10 15 20

Epoch ×10
3

1.11

10.00
×10

−1 (b)

Train(0.023)

Test(0.04)

0 5 10 15 20

Epoch ×10
3

0.37

3.33

×10
−1 (c)

Train(0.03)

Test(0.051)

0 5 10 15 20

Epoch ×10
3

0.37

3.33

30.00
×10

−1 (d)

Train(0.018)

Test(0.033)

0 5 10 15 20

Epoch ×10
3

1.11

10.00
×10

−1 (e)

Train(0.017)

Test(0.018)

0 5 10 15 20

Epoch ×10
3

1.11

10.00

×10
−1 (f)

Train(0.014)

Test(0.015)

0 5 10 15 20

Epoch ×10
3

1.11

10.00
×10

−1 (g)

Train(0.015)

Test(0.016)

0 5 10 15 20

Epoch ×10
3

1.11

10.00

×10
−1 (h)

Train(0.016)

Test(0.017)

Figure 9: Relative L2 Error for Training and Testing Dataset when Using Causality-DeepONet with
Different Branch and Trunk Sizes: The plots (a), (b), (c), (d) are the cases corresponding to Case-1 to
Case-4 of Table 2, respectively, with Loss function Eq. (4.8). Similarly, the plots (e), (f), (g), (h) are the cases
corresponding to Case-1 to Case-4 of Table 2, respectively, with Loss function Eq. (4.9).

we consider different network sizes with the same number of training dataset. The acti-
vation function considered for all the cases is tanh(x). To avoid overfitting, we consider
L2 weight regularization for the branch net with a coefficient 10−4. The learning rate con-
sidered is 10−3 in the first 2000 epochs, then 10−4 in the 2000 to 10000 epochs, and 10−5

for the rest of the epochs up to 20000 epochs. The relative L2 errors for both training and
testing dataset after completion of training is shown in Table 2 and the corresponding
relative L2 error with epoch is shown in Fig. 9. It could be observed that the proposed
Causality-DeepONet shows a good accuracy in both the case of loss functions. The MSE
loss function given by Eq. (4.8) is more sensitive to the network size as relative L2 errors

L. Liu, K. Nath and W. Cai / Commun. Comput. Phys., 35 (2024), pp. 1194-1228 1215

Table 3: Relative L2 Error for training and testing dataset when using Causality-DeepONet with different
activation functions.

Case Activation Sample
Relative L2 Error Eq. (4.10)
Train Test

1 tanh(x) 10 0.016 0.017
2 sin(x) 10 0.011 0.016
3 Sigmoid(x) 10 0.142 0.111
4 ReLU(x) 10 0.014 0.028
5 Custom Sigmoid (Eq. (5.1)) 10 0.02 0.024

for both training and testing are reduced with an increase in network sizes. The weighted
loss function given by Eq. (4.9) is less sensitive to the network sizes for this numerical
study. Further, it is also observed that the relative L2 error in the case of loss function
Eq. (4.9) is less than that of relative L2 error in the case of loss function Eq. (4.8). Thus,
we conclude that the additional penalty terms in the loss function remove the bias from
the magnitude of output functions/data in the present study. For the further numerical
studies conducted, we consider with loss function given by Eq. (4.9) only.

As discussed earlier, there are multiple choices of activation functions, and we test
the performance of Causality-DeepONet with a few popular activation functions. For
this purpose, we consider the same network sizes and training dataset and loss functions
(Eq. (4.9) for all the cases of activation function considered. The network sizes considered
are [4000]-[120]×2-[120] for branch and [1]-[120]×2-[120] for trunk. To avoid overfitting,
we consider L2 weight regularization for the parameters in branch net with a coefficient
10−4 for case 1,2,4 and without L2 regularization for branch and trunk net for case 3 and
5 in Table 3. The learning rate considered is 10−3 in the first 2000 epochs, then 10−4 in
the 2000 to 10000 epochs, and 10−5 for the rest of the epoch up to 20000 epochs. As
shown in Table 3 and Fig. 10, It could be concluded that the Causality-DeepONet with
tanh(x), sin(x) and ReLU(x) as activation functions obtains excellent predictions given
limited training samples. However, the Causality-DeepONet with sigmoid as activation
functions is not convergent as expected. By shifting the sigmoid function, we define a
custom sigmoid function

σ(x)=
1

1+e−x −
1
2

(5.1)

thus improve the results, as shown in Fig. 10(e) and case 5 in Table 3.
From the above discussion it could be observed that the proposed Causality-

DeepONet is able to predict the response of the problem considered with a good accu-
racy. We also study the effect of training samples in the accuracy of predicted response.
For this purpose we consider different samples with same network size and other hyper-
parameters. The statistical properties of the different training samples are shown in Table
5 in Appendix B. It could be noted that the training samples in datasets Train-I, Train-II,

1216 L. Liu, K. Nath and W. Cai / Commun. Comput. Phys., 35 (2024), pp. 1194-1228

0 5 10 15 20

Epoch ×10
3

1.11

10.00

×10
−1 (a)

Train(0.016)

Test(0.017)

0 5 10 15 20

Epoch ×10
3

0.37

3.33

×10
−1 (b)

Train(0.011)

Test(0.016)

0 5 10 15 20

Epoch ×10
3

3.33
10.00
30.00

×10
−1 (c)

Train(0.142)

Test(0.111)

0 5 10 15 20

Epoch ×10
3

1.11

10.00

90.00
×10

−1 (d)

Train(0.014)

Test(0.028)

0 5 10 15 20

Epoch ×10
3

1.11

10.00
×10

−1 (e)

Train(0.02)

Test(0.024)

Figure 10: Relative L2 Error for Training and Testing Dataset when Using Causality-DeepONet With
Different Activation Functions: The plots (a)-(e) correspond to cases Case-1 to Case-5 of Table 3, respectively,
with Loss function Eq. (4.9).

Train-III are exclusively different. The training samples in datasets Train-II and Train-III
are included in the dataset Train-IV. The training samples in dataset Train-I and Train-IV
are included in dataset Train-V. The training samples in dataset Train-V are included in
dataset Train-VI.

We consider a network size of [4000]-[120]×2-[120] for branch and [1]-[120]×2-[120]
for trunk. The activation function considered is tanh(x). To avoid overfitting, we con-
sider L2 weight regularization with a coefficient 1×10−4 for the branch net. The learning
rate considered is 10−3 in the first 2000 epochs, then 10−4 in the 2000 to 10000 epochs, and
10−5 for the 10000 to 20000 epochs. The relative L2 errors of different cases with different
sample in training are shown in Table 4 and Fig. 11. It could be observed that the L2
error is small even with smaller number of training set and the accuracy increases with
the increase in number of training set, though the improvements in accuracy is limited
with increase in number of samples. On the other hand, it could also be observed that the
performance of Causality-DeepONet of Case-3 in Table 4 with 10 training samples that
have larger deviation is poor comparing with Case-4 to Case-6 in Table 4. The further

L. Liu, K. Nath and W. Cai / Commun. Comput. Phys., 35 (2024), pp. 1194-1228 1217

Table 4: Relative L2 error for training and testing dataset when using Causality-DeepONet with different
numbers of training samples.

Case Sample
Relative L2 Error Eq. (4.10)
Train Test Train data set

1 7 0.006 0.01 Train-I
2 8 0.004 0.008 Train-II
3 10 0.016 0.017 Train-III
4 20 0.008 0.005 Train-IV
5 50 0.003 0.003 Train-V
6 100 0.002 0.001 Train-VI

0 5 10 15 20

Epoch ×10
3

0.12

1.11

10.00

×10
−1 (a)

Train(0.006)

Test(0.01)

0 5 10 15 20

Epoch ×10
3

0.12

1.11

10.00

×10
−1 (b)

Train(0.004)

Test(0.008)

0 5 10 15 20

Epoch ×10
3

1.11

10.00

×10
−1 (c)

Train(0.016)

Test(0.017)

0 5 10 15 20

Epoch ×10
3

0.37

3.33

30.00
×10

−1 (d)

Train(0.008)

Test(0.005)

0 5 10 15 20

Epoch ×10
3

0.12

1.11

10.00

×10
−1 (e)

Train(0.003)

Test(0.003)

0 5 10 15 20

Epoch ×10
3

0.12

1.11

×10
−1 (f)

Train(0.002)

Test(0.001)

Figure 11: Relative L2 Error for Training and Testing Dataset when Using Causality-DeepONet with
Different Number of Training Samples: The plots (a)-(e) correspond to the cases Case-1 to Case-5 in Table
4, respectively, with Loss function Eq. (4.9).

observation from Table 4 is that the training relative L2 error is greater than the testing
relative L2 error in Case-4 of Table 4, given the fact that dataset Train-IV contains Train-II
and Train-III.

1218 L. Liu, K. Nath and W. Cai / Commun. Comput. Phys., 35 (2024), pp. 1194-1228

N outputs

N outputs

Input
Dim: m

Branch Net
Trunk Net N

∑
k=1

ckBrkTk

When t= s1When t= s2 When t= sm⎡
⎢⎢⎢⎢⎢⎣

üg (s1)
0
0
...
0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

üg (s1)
üg (s2)

0
...
0

⎤
⎥⎥⎥⎥⎥⎦ . . .

⎡
⎢⎢⎢⎢⎢⎣

üg (s1)
üg (s2)
üg (s3)

...
üg (sm)

⎤
⎥⎥⎥⎥⎥⎦

t

Brk

Tk

Figure 12: Schematic Diagram of Causality-DeepONet without Convolution: A schematic of the Causality-
DeepONet without convolution showing branch and the trunk net along with the input data and output. The
number of input neurons for the branch is equal to the number of sensor points in the input signals. The input
signals for the branch, however, are replaced by a zero-padding for the future information.

As discussed in Section 2, the proposed Causality-DeepONet involves both the phe-
nomenon of causality and convolution. To evaluate the importance of convolution on the
accuracy of prediction, we study the method only with causality but without convolu-
tion. The neural network considered for this purpose has form

Rc(üg)(t)∼
N

∑
k=1

ck

M

∑
i=1

σb

⎛
⎝� t

h�
∑
j=1

Wk
i,jüg

(
sj
)
+

� T
h �

∑
j=� t

h�+1

Wk
i,j0+Bk

i

⎞
⎠

︸ ︷︷ ︸
Bk

σt (wkt+bk)︸ ︷︷ ︸
Tk

. (5.2)

The difference between the formulation given by Eq. (5.2) and the proposed Causality-
DeepONet (Eq. (4.7)) is in the difference in the weights of the branch. In the case of
the formulation without convolution, the weights are Wk

i,j, whereas in the case of the
proposed Causality-DeepONet (with convolution) the weights are Wk

i,� T
h �−� t

h�+j
.

To study the effect of convolution, we compare the results of the problem with
Causality-DeepONet and Causality-DeepONet without convolution.

A network size of [4000]-[120]×2-[120] for branch and [1]-[120]×2-[120] for the trunk
are considered in both the cases. The activation function considered for both cases is

L. Liu, K. Nath and W. Cai / Commun. Comput. Phys., 35 (2024), pp. 1194-1228 1219

0 5 10 15 20

Epoch ×10
3

1.11

10.00

×10
−1 (a)

Train(0.016)

Test(0.017)

0 5 10 15 20

Epoch ×10
3

10.00

15.00

22.50

×10
−1 (b)

Train(1.0)

Test(0.999)

0 5 10 15 20

Epoch ×10
3

9.50

193.06
376.62

×10
−1 (c)

Train(1.0)

Test(1.0)

Figure 13: Relative L2 Error for Training and Testing Dataset when Using Causality-DeepONet with or
without Convolutions: (a) Causality-DeepONet with convolution with loss function Eq. (4.9), 10 training sam-
ples. (b) Proposed Net with causality only with loss function Eq. (4.9), 100 training samples. (c) Convolutional
DeepONet with loss function Eq. (4.9), 100 training samples.

tanh(x). To avoid overfitting, we consider L2 weight regularization for the branch net
with a coefficient 10−4. The learning rate considered is 10−3 in the first 2000 epochs, then
10−4 in the 2000 to 10000 epochs, and 10−5 for the rest of the epoch up to 20000 epochs.
The case without convolution is considered to be trained with 100 training samples.
However, the case with convolution is trained with 10 training samples only. Fig. 13(a)
and (b) show the relative L2 error for both cases. It can be observed that the variant
without convolution is not able to provide satisfactory accuracy.

As further comparison, we apply the convolutional DeepONet (CNNDeepONet) but
without causality incorporated to the response problems, to show that the proposed
Causality-DeepONet requires both convolution and causality. Convolution neural net-
work (CNN) in DeepONet is considered in [22], where the authors considered CNN
along with DNN in the branch network. The convolutional neural network considered in
the present study has 3 convolutional layer with kernel size 10 with output channel size of
100 for each layer. A maxpooling layer with kernel size 3 is set between the convolutional
layer. The DeepONet components contain a branch net with size [4000]-[120]×2-[120]
and a trunk net with size [1]-[120]×2-[120]. The activation considered is ReLU(x). To
train the CNNDeepONet, the training data size considered is 100, as the same as the case
with causality only. The learning rate considered is 10−4 for the first 1000 epochs, 5×10−5

for the 1000 to 3000 epochs, and 2.5×10−5 up to 20000 epochs. To avoid overfitting, the
L2 weight regularization with a coefficient 3×10−5 is considered for the parameters in
branch net. Fig. 13(c) shows the evolution of relative L2 error for training and testing

1220 L. Liu, K. Nath and W. Cai / Commun. Comput. Phys., 35 (2024), pp. 1194-1228

dataset when using convolutional DeepONet. It could be concluded that for the problem
we considered, DeepONet only with convolution neural network along with DNN in the
branch net does not provide satisfactory results, compared with the proposed causality
DeepONet Fig. 13(a).

6 Conclusion and future works

In this paper, we have studied how to improve the accuracy of DeepONet for causal
oscillatory linear dynamical systems. Two new variants of DeepONet, the multi-scale
DeepONet and the Causality-DeepONet are proposed. As an application, we consid-
ered the problem of learning the mapping between earthquake ground accelerations and
building’s causal responses, which are both highly oscillatory. In the multi-scale Deep-
ONet, multi-scale neural networks are used in the trunk net. Meanwhile, the Causality-
DeepONet includes both causality and convolution as specific domain knowledge in its
design. Though the multi-scale DeepONet improved the training of the seismic response
operator, it failed to give satisfactory prediction results in the test cases. However, the
Causality-DeepONet is able to provide accurate predictions in the test cases as well. We
have also studied the effect of the size of networks, the number of training samples,
and the type of activation functions on the accuracy of prediction of responses using
Causality-DeepONet. It can be found that the proposed Causality-DeepONet can pro-
vide good accuracy in the prediction of response of the problem considered, comparing
with various existing neural network methods.

For future work, the Causality-DeepONet for nonlinear problems such as nonlinear
dynamics, nonlinear electrical circuits etc, may be considered. Also future studies should
include establishing a solid mathematical foundation for the Causality-DeepONet by ex-
tending the work of [5] to the proposed framework of the Causality-DeepONet.

Acknowledgments

The authors like to thank Prof. George Em Karniadakis for suggesting this research
project. The work of W. Cai is supported by the US National Science Foundation grant
DMS-2207449. The work of K. Nath is supported by OSD/AFOSR MURI grant FA9550-
20-1-0358.

Appendices

A Dataset

In this section, we list the record series number(RSN) of the earthquake considered for
testing and training dataset from the website https://ngawest2.berkeley.edu/site.

L. Liu, K. Nath and W. Cai / Commun. Comput. Phys., 35 (2024), pp. 1194-1228 1221

The interested readers are welcomed to register and download the data. The RSN for the
training dataset is 1147, 1149, 1153, 1154, 1155, 1157, 1160, 1164, 1177, 1187, 1194, 1196,
1198, 1199, 1203, 1204, 1205, 1206, 1207, 1209, 1210, 1211, 1212, 1214, 1215, 1218, 1220,
1226, 1227,1228, 1230, 1232, 1234, 1235, 1236, 1237, 1244, 1245, 1246, 1248, 1249, 1260,
1261, 1263, 1265, 1273, 1277, 1285, 1286, 1287, 2200, 3000, 1762, 1773, 3800, 3900, 4000,
4200, 4400, 4500, 4900, 5900, 6200, 8100, 8400, 8700, 8800, 9500.

The RSN for the testing dataset is 1127, 1145, 11700, 12, 14, 142, 15, 1620, 2108, 24, 293,
323, 35, 38, 446, 53, 582, 65, 721, 9, 913, 958.

B Additional tables

In Table 5, we show the statistical properties of the training and testing dataset. The total
number of testing dataset considered is 44 earthquake ground accelerations. These test
data are considered for all the numerical examples. It is also important to note that in the

Table 5: Properties of the earthquake records considered for training and testing of neural networks.

Case Test Train-I Train-II Train-III Train-IV Train-V Train-VI
Samples 44 7 8 10 20 50 100

Mag.

Min 4.30 6.30 6.30 4.92 4.90 4.90 4.70
Max 7.90 7.62 7.62 7.62 7.62 7.62 7.62

Mean 6.58 7.27 7.21 7.07 6.85 7.01 7.10
SD 0.82 0.52 0.51 0.83 0.94 0.83 0.82

PGA
max|üg|

Min 0.00103 0.00119 0.00119 0.00245 0.00245 0.00119 0.00119
Max 0.35726 0.11473 0.11473 0.31313 0.31313 0.31313 0.31313

Mean 0.05298 0.06558 0.05768 0.10973 0.08027 0.06972 0.07277
SD 0.06428 0.03412 0.03816 0.11792 0.09269 0.07151 0.06338

Max üg

Min 0.00103 0.00118 0.00118 0.00245 0.00245 0.00118 0.00118
Max 0.35726 0.09732 0.09732 0.30114 0.30114 0.30114 0.30114

Mean 0.04883 0.05824 0.05121 0.10440 0.07439 0.06440 0.06661
SD 0.06199 0.03005 0.03370 0.11204 0.08818 0.06795 0.06008

Min üg

Min -0.27870 -0.11473 -0.11473 -0.31313 -0.31313 -0.31313 -0.31313
Max -0.00095 -0.00119 -0.00119 -0.00233 -0.00233 -0.00119 -0.00112

Mean -0.04820 -0.06006 -0.05285 -0.09849 -0.07365 -0.06312 -0.06791
SD 0.05502 0.03382 0.03695 0.10559 0.08314 0.06391 0.05899

Energy
‖üg‖2

Min 0.00020 0.00016 0.00016 0.00043 0.00043 0.00016 0.00016
Max 3.22599 1.03466 1.03466 7.31542 7.31542 7.31542 7.31542

Mean 0.38912 0.43726 0.38280 1.66238 1.03450 0.77436 0.82185
SD 0.71029 0.34597 0.35425 2.40233 1.86043 1.34532 1.22943

1222 L. Liu, K. Nath and W. Cai / Commun. Comput. Phys., 35 (2024), pp. 1194-1228

case of training, dataset Train-I, Train-II and Train-III are completely different dataset.
Training dataset Train-I is not included in training dataset Train-II, similarly, training
dataset Train-I and Train-II are not included in training dataset Train-III. However, train-
ing dataset Train-IV includes training dataset Train-III and training dataset Train-V in-
cludes training dataset Train-IV as well. The training dataset Train-VI includes all the
training data I to V. The training dataset Train-VI is used for the training of DeepONet,
DeepONet with Gaussian Normalization, POD-DeepONet, MSDeepONet. The training
dataset Train-I to Train-VI are the data used for the discussion in Section 4.2.

C Additional figures

C.1 A typical ground acceleration due to earthquake before and after
processing

Fig. 14(a)-(b) show ground acceleration due to earthquake 14383980 before and after pro-
cessing. The ground acceleration record are recorded with δt= 0.005 sec. The signal is
passed through a butterworth filter. It is also important to note that the length of the
signal is 200 second which is much higher than the other signal considered. Thus we
have not considered initial 23.56 second acceleration and we have not considered the
earthquake after 103.56 sec. The acceleration removed accounts for 0.7% of total energy.

0 50 100 150 200

Time (s)

−0.025

0.000

0.025

A
c
c
e
le
ra

ti
o
n
s
(g

)

PGA

(a)

0 10 20 30 40 50

Frequency (Hz)

10
−2

A
m

p
li
tu

d
e

(b)

0 20 40 60 80

Time (s)

−0.025

0.000

0.025

A
c
c
e
le
ra

ti
o
n
s
(g

)

PGA

(c)

0 5 10 15 20 25

Frequency (Hz)

10
−2

10
0

A
m

p
li
tu

d
e

(d)

Figure 14: Ground Acceleration: The ground acceleration due to 14383980 earthquake recorded at station
North Hollywood, 2008 (a) Time history of the acceleration. (b) Frequency spectrum. (c) The resampled
acceleration. (d) The frequency spectrum of resampled acceleration.

L. Liu, K. Nath and W. Cai / Commun. Comput. Phys., 35 (2024), pp. 1194-1228 1223

C.2 Additional results for numerical study for DeepONet

0 5 10 15 20 25

Frequency (Hz)

10
−2

A
m

p
li
tu

d
e

(a)

0 20 40 60 80

Time (s)

−0.05

0.00

0.05

D
is
p
la
c
e
m

e
n
t
(m

)

(b)

0 20 40 60 80

Time (s)

0.0

0.1

A
c
c
e
le
ra

ti
o
n
s
(g

)

(c)

0 20 40 60 80

Time (s)

2.00
4.00
6.00
8.00

E
rr
o
rs

×10
−1 (d)

True Response Predictions

Figure 15: One of the Training Samples with Predictions of DeepONet: One of the training samples of
DeepONet with Loss Eq. (4.9). (a) The Amplitude of the prediction and true response in Fourier Domain, (b)
The prediction and true response, (c) The corresponding input signals(ground acceleration), (d) The relative
error Eq. (4.11).

0 5 10 15 20 25

Frequency (Hz)

10
−2

A
m

p
li
tu

d
e

(a)

0 20 40 60 80

Time (s)

−0.02

0.00

D
is
p
la
c
e
m

e
n
t
(m

)

(b)

0 20 40 60 80

Time (s)

0.000

0.025

A
c
c
e
le
ra

ti
o
n
s
(g

)

(c)

0 20 40 60 80

Time (s)

2.00
4.00
6.00
8.00

E
rr
o
rs

×10
−1 (d)

True Response Predictions

Figure 16: The Best Case of the Predictions of DeepONet: The best predictions for the DeepONet for
testing cases with Loss Eq. (4.9). (a) The Amplitude of the prediction and true response in Fourier Domain, (b)
The prediction and true response, (c) The corresponding input signals(ground acceleration), (d) The relative
error Eq. (4.11).

1224 L. Liu, K. Nath and W. Cai / Commun. Comput. Phys., 35 (2024), pp. 1194-1228

C.3 Additional results for numerical study for POD-DeepONet

0 5 10 15 20 25

Frequency (Hz)

10
−1

A
m

p
li
tu

d
e

(a)

0 20 40 60 80

Time (s)

−0.02

0.00

0.02

D
is
p
la
c
e
m

e
n
t
(m

)

(b)

0 20 40 60 80

Time (s)

−0.025

0.000

0.025

A
c
c
e
le
ra

ti
o
n
s
(g

)

(c)

0 20 40 60 80

Time (s)

0.25
0.50
0.75
1.00

E
rr
o
rs

×10
−2 (d)

True Response Predictions

Figure 17: One of the Training Samples with Predictions of POD-DeepONet: One of the training samples
of POD-DeepONet with Loss Eq. (4.9). (a) The Amplitude of the prediction and true response in Fourier
Domain, (b) The prediction and true response, (c) The corresponding input signals(ground acceleration), (d)
The relative error Eq. (4.11).

0 5 10 15 20 25

Frequency (Hz)

10
−2

A
m

p
li
tu

d
e

(a)

0 20 40 60 80

Time (s)

−0.02

0.00

0.02

D
is
p
la
c
e
m

e
n
t
(m

)

(b)

0 20 40 60 80

Time (s)

−0.005

0.000

0.005

A
c
c
e
le
ra

ti
o
n
s
(g

)

(c)

0 20 40 60 80

Time (s)

1.50
3.00
4.50
6.00

E
rr
o
rs

×10
−1 (d)

True Response Predictions

Figure 18: The Best Case of the Predictions of POD-DeepONet(Relative L2 Error: 0.76): The best
predictions for the POD-DeepONet for testing cases with Loss Eq. (4.9). (a) The Amplitude of the prediction
and true response in Fourier Domain, (b) The prediction and true response, (c) The corresponding input
signals(ground acceleration), (d) The relative error Eq. (4.11).

L. Liu, K. Nath and W. Cai / Commun. Comput. Phys., 35 (2024), pp. 1194-1228 1225

C.4 Additional results for numerical study for Multi-scale DeepONet

0 5 10 15 20 25

Frequency (Hz)

10
0

A
m

p
li
tu

d
e

(a)

0 20 40 60 80

Time (s)

−0.25

0.00

0.25

D
is
p
la
c
e
m

e
n
t
(m

)

(b)

0 20 40 60 80

Time (s)

−0.05

0.00

0.05

A
c
c
e
le
ra

ti
o
n
s
(g

)

(c)

0 20 40 60 80

Time (s)

1.50

3.00

4.50

E
rr
o
rs

×10
−2 (d)

True Response Predictions

Figure 19: One of the Training Samples with Predictions of MS-DeepONet: One of the training samples of
MS-DeepONet with Loss Eq. (4.9). (a) The Amplitude of the prediction and true response in Fourier Domain,
(b) The prediction and true response, (c) The corresponding input signals(ground acceleration), (d) The relative
error Eq. (4.11).

0 5 10 15 20 25

Frequency (Hz)

10
−2

A
m

p
li
tu

d
e

(a)

0 20 40 60 80

Time (s)

−0.01

0.00

0.01

D
is
p
la
c
e
m

e
n
t
(m

)

(b)

0 20 40 60 80

Time (s)

−0.01

0.00

0.01

A
c
c
e
le
ra

ti
o
n
s
(g

)

(c)

0 20 40 60 80

Time (s)

1.50
3.00
4.50
6.00

E
rr
o
rs

×10
−1 (d)

True Response Predictions

Figure 20: The Best Case of the Predictions of MS-DeepONet(Relative L2 Error: 0.59): The best
predictions for the MS-DeepONet for testing cases with Loss Eq. (4.9). (a) The Amplitude of the prediction
and true response in Fourier Domain, (b) The prediction and true response, (c) The corresponding input
signals(ground acceleration), (d) The relative error Eq. (4.11).

1226 L. Liu, K. Nath and W. Cai / Commun. Comput. Phys., 35 (2024), pp. 1194-1228

References

[1] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. Understanding of a convolutional
neural network. In 2017 International Conference on Engineering and Technology (ICET), pages
1–6, Aug 2017.

[2] Kaushik Bhattacharya, Bamdad Hosseini, Nikola B. Kovachki, and Andrew M. Stuart.
Model Reduction And Neural Networks For Parametric PDEs. The SMAI Journal Of Compu-
tational Mathematics, 7:121–157, 2021.

[3] Shengze Cai, Zhicheng Wang, Lu Lu, Tamer A. Zaki, and George Em Karniadakis.
DeepM&Mnet: Inferring the Electroconvection Multiphysics Fields Based on Operator Ap-
proximation by Neural Networks. J. Comput. Phys., 436(C), jul 2021.

[4] Wei Cai, Xiaoguang Li, and Lizuo Liu. A Phase Shift Deep Neural Network for High
Frequency Approximation and Wave Problems. SIAM Journal on Scientific Computing,
42(5):A3285–A3312, 2020.

[5] Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural
networks with arbitrary activation functions and its application to dynamical systems. IEEE
Transactions on Neural Networks, 6(4):911–917, July 1995.

[6] Anil K. Chopra. Dynamics of Structures. Pearson, 4th edition, 2011.
[7] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Con-

trol, Signals, and Systems (MCSS), 2(4):303–314, December 1989.
[8] Beichuan Deng, Yeonjong Shin, Lu Lu, Zhongqiang Zhang, and George Em Karniadakis.

Approximation rates of DeepONets for learning operators arising from advection–diffusion
equations. Neural Networks, 153:411–426, 2022.

[9] P Clark Di Leoni, Lu Lu, Charles Meneveau, George Karniadakis, and Tamer A Zaki. Deep-
ONet prediction of linear instability waves in high-speed boundary layers. arXiv preprint
arXiv:2105.08697, 2021.

[10] Weinan E and Bing Yu. The Deep Ritz Method: A Deep Learning-Based Numerical Algo-
rithm for Solving Variational Problems. Communications in Mathematics and Statistics, 6:1–12,
2017.

[11] Jeffrey L. Elman. Finding Structure in Time. Cognitive Science, 14(2):179–211, 1990.
[12] Xiaohan Fu, Lo-Bin Chang, and Dongbin Xiu. Learning reduced systems via deep neural

networks with memory. Journal of Machine Learning for Modeling and Computing, 1(2):97–118,
2020.

[13] S. Goswami, M. Yin, Y. Yu, GE., Karniadakis. A physics-informed variational DeepONet for
predicting crack path in quasi-brittle materials. Computer Methods in Applied Mechanics and
Engineering. 2022 Mar 1;391:114587.

[14] Abbavaram Gowtham Reddy. Causality in Neural Networks - An Extended Abstract. In Pro-
ceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, AIES ’21, page 271–272,
New York, NY, USA, 2021. Association for Computing Machinery.

[15] Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential
equations using deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–
8510, 2018.

[16] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature detec-
tors. ArXiv, abs/1207.0580, 2012.

[17] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Computation,
9(8):1735–1780, 11 1997.

L. Liu, K. Nath and W. Cai / Commun. Comput. Phys., 35 (2024), pp. 1194-1228 1227

[18] Xiaowei Jin, Shengze Cai, Hui Li, and George Em Karniadakis. NSFnets (Navier-Stokes flow
nets): Physics-informed neural networks for the incompressible Navier-Stokes equations.
Journal of Computational Physics, 426:109951, 2021.

[19] Gaëtan Kerschen, Keith Worden, Alexander F. Vakakis, and Jean-Claude Golinval. Past,
present and future of nonlinear system identification in structural dynamics. Mechanical
Systems and Signal Processing, 20(3):505–592, 2006.

[20] Hyun-Su Kim. Development of seismic response simulation model for building struc-
tures with semi-active control devices using recurrent neural network. Applied Sciences,
10(11):3915, 2020.

[21] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. CoRR,
abs/1412.6980, 2015.

[22] Katiana Kontolati, Somdatta Goswami, Michael D. Shields, George Em Karniadakis, On the
influence of over-parameterization in manifold based surrogates and deep neural operators.
Journal of Computational Physics. 479, 2023, 112008.

[23] Qianxiao Li and Weinan E. Machine learning and dynamical systems. SIAM News, 11 2021.
[24] Zhong Li, Jiequn Han, Weinan E, and Qianxiao Li. Approximation and optimization theory

for linear continuous-time recurrent neural networks. Journal of Machine Learning Research,
23(42):1–85, 2022.

[25] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
differential equations. arXiv preprint arXiv:2010.08895, 2020.

[26] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for par-
tial differential equations. arXiv preprint arXiv:2003.03485, 2020.

[27] Chensen Lin, Zhen Li, Lu Lu, Shengze Cai, Martin Maxey, and George Em Karniadakis.
Operator learning for predicting multiscale bubble growth dynamics. The Journal of Chemical
Physics, 154(10):104118, 2021.

[28] Guochang Lin, Fukai Chen, Pipi Hu, Xiang Chen, Junqing Chen, Jun Wang and Zuoqiang
Shi. BI-GreenNet: Learning Green’s Functions by Boundary Integral Network. Commun.
Math. Stat. 11, 103–129 (2023).

[29] Lizuo Liu, Bo Wang, and Wei Cai. Linearized Learning Methods with Multiscale Deep
Neural Networks for Stationary Navier-Stokes Equations with Oscillatory Solutions, 2021.

[30] Ziqi Liu, Wei Cai, and Zhi-Qin John Xu. Multi-Scale Deep Neural Network (MscaleDNN)
for Solving Poisson-Boltzmann Equation in Complex Domains. Communications in Computa-
tional Physics, 28(5):1970–2001, 2020.

[31] Christos Louizos, Uri Shalit, Joris Mooij, David Sontag, Richard Zemel, and Max Welling.
Causal Effect Inference with Deep Latent-Variable Models. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems, NIPS’17, page 6449–6459, Red
Hook, NY, USA, 2017. Curran Associates Inc.

[32] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learn-
ing nonlinear operators via DeepONet based on the universal approximation theorem of
operators. Nature Machine Intelligence, 3(3):218–229, 2021.

[33] Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang Zhang,
and George Em Karniadakis. A comprehensive and fair comparison of two neural operators
(with practical extensions) based on FAIR data. Computer Methods in Applied Mechanics and
Engineering, 393:114778, 2022.

[34] Yunan Luo, Jian Peng, and Jianzhu Ma. When causal inference meets deep learning. Nature

1228 L. Liu, K. Nath and W. Cai / Commun. Comput. Phys., 35 (2024), pp. 1194-1228

Machine Intelligence, 2(8):426–427, 2020.
[35] Raha Moraffah, Mansooreh Karami, Ruocheng Guo, Adrienne Raglin, and Huan Liu. Causal

Interpretability for Machine Learning - Problems, Methods and Evaluation. SIGKDD Explor.
Newsl., 22(1):18–33, may 2020.

[36] Nathan M. Newmark. A method of computation for structural dynamics. Journal of the
Engineering Mechanics Division, 85(3):67–94, 1959.

[37] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. WaveNet: A Genera-
tive Model for Raw Audio, 2016.

[38] Keiron O’Shea and Ryan Nash. An introduction to convolutional neural networks. arXiv
preprint arXiv:1511.08458, 2015.

[39] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[40] Tong Qin, Kailiang Wu, and Dongbin Xiu. Data driven governing equations approximation
using deep neural networks. Journal of Computational Physics, 395:620–635, 2019.

[41] M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019.

[42] Hoon Sohn, Charles R Farrar, Francois M Hemez, Devin D Shunk, Daniel W Stinemates,
Brett R Nadler, and Jerry J Czarnecki. A Review of Structural Health Review of Structural
Health Monitoring Literature 1996-2001. 1 2002.

[43] Bo Wang, Wenzhong Zhang, and Wei Cai. Multi-Scale Deep Neural Network (MscaleDNN)
Methods for Oscillatory Stokes Flows in Complex Domains. Communications in Computa-
tional Physics, 28(5):2139–2157, 2020.

[44] Nick Winovich, Karthik Ramani, and Guang Lin. ConvPDE-UQ: Convolutional neural net-
works with quantified uncertainty for heterogeneous elliptic partial differential equations
on varied domains. Journal of Computational Physics, 394:263–279, 2019.

[45] Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yanyang Xiao, and Zheng Ma. Frequency Princi-
ple: Fourier Analysis Sheds Light on Deep Neural Networks. Communications in Computa-
tional Physics, 28(5):1746–1767, 2020.

[46] Ruiyang Zhang, Zhao Chen, Su Chen, Jingwei Zheng, Oral Büyüköztürk, and Hao Sun.
Deep long short-term memory networks for nonlinear structural seismic response predic-
tion. Computers & Structures, 220:55–68, 2019.

[47] Wenzhong Zhang and Wei Cai. FBSDE based neural network algorithms for high-
dimensional quasilinear parabolic PDEs. Journal of Computational Physics, 470:111557, 2022.

[48] Minjie Zhu. OpenSeesPy. https://openseespydoc.readthedocs.io/en/latest/#, 2015.
[Online].

[49] Yinhao Zhu, Nicholas Zabaras, Phaedon-Stelios Koutsourelakis, and Paris Perdikaris.
Physics-constrained deep learning for high-dimensional surrogate modeling and uncer-
tainty quantification without labeled data. Journal of Computational Physics, 394:56–81, 2019.

[50] Olek C Zienkiewicz, Robert Leroy Taylor, and Jian Z Zhu. The Finite Element Method: Its Basis
and Fundamentals. Elsevier, 2005.

