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Advanced persistent threats (APTs) are organized prolonged cyberattacks by sophisticated attackers
with the intent of stealing critical information. Although APT activities are stealthy and evade detection
by traditional detection tools, they interact with the system components to make progress in the
attack. These interactions lead to information flows that are recorded in the form of a system log.
Dynamic Information Flow Tracking (DIFT) has been shown to be an effective way to detect APTs
using information flows. A DIFT-based detection mechanism dynamically performs security analysis
on the information flows to detect possible attacks. However, wide range security analysis using DIFT
results in a significant increase in performance overhead and high rates of false-positives and false-
negatives. In this paper, we model the strategic interaction between APT and DIFT as a non-cooperative
stochastic game. The game unfolds on a state space constructed from an information flow graph (IFG)
that is extracted from the system log. The objective of the APT in the game is to choose transitions
in the IFG to find an optimal path in the IFG from an entry point of the attack to an attack target.
On the other hand, the objective of DIFT is to dynamically select nodes in the IFG to perform security
analysis for detecting APT. Our game model has imperfect information as the players are unaware of
the actions of the opponent. We consider two scenarios of the game (i) the false-positive and false-
negative rates of DIFT (i.e., transition probabilities of the game) are known and (ii) the false-positive
and false-negative rates are unknown. For case (i), we propose a value iteration-based algorithm and
prove that the solution converges to the optimal solution (Nash equilibrium). Case (ii) translates to
an incomplete information game with unknown transition probabilities. For case (ii), we propose a
supervised learning-based algorithm, referred to as Hierarchical Supervised Learning (HSL) algorithm.
HSL integrates a neural network, to predict the value vector of the game, with a policy iteration
algorithm to compute an approximate equilibrium. We implemented our algorithms for cases (i)
and (ii) on real attack datasets for nation state and ransomware attacks and validated the performance
of our approach. We compared the performance of the HSL algorithm when the transition probabilities
are unknown with instances with known transition probabilities and demonstrated that HSL algorithm
converges to a solution close to optimal (i.e., optimal value vector) while the value vector obtained
using greedy does not converge to optimal for 44.4% of the states and the mean absolute error is
almost 200 times that of the HSL.
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1. Introduction
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Advanced persistent threats (APTs) are sophisticated and pro-
longed cyberattacks that target specific high value organizations
in sectors such as national defense, manufacturing, and the fi-
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nancial industry (Jang-Jaccard & Nepal, 2014; Watkins, 2014).
APTs use advanced attack methods, including exploits of zero-
day vulnerabilities, as well as highly-targeted spear phishing and
other social engineering techniques to gain access to a network
and then remain undetected for a prolonged period of time. The
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attacking strategies of APTs are stealthy and are methodically
designed to bypass conventional security mechanisms to cause
more permanent, significant, and irreversible damages to the
network.

Interaction of APTs with the network introduce information
flows in the form of control flow and command flow commands
which get recorded in the system log. Analyzing information
flows is thus a promising approach to detect presence of APTs (Ji
et al.,, 2017). Dynamic information flow tracking (DIFT) (Suh, Lee,
Zhang, & Devadas, 2004) is a widely used defense mechanism to
detect APTs. DIFT tags information flows originating from suspi-
cious input channels in the network and tracks the propagation
of the tagged flows. DIFT then initiates security check points,
referred to as traps, to analyze the tagged flows and verify the
authenticity of the flows. Since the ratio of the malicious flows to
the benign flows is very small in the network, implementation of
DIFT introduces significant performance overhead on the network
and generates false-positives and false-negatives (Ji et al., 2017).
Thus there is a need to selectively choose the security check
points of DIFT.

This paper models detection of APTs using a DIFT-based detec-
tion mechanism. The effectiveness of detection depends on both
the security policy of the DIFT and also on the actions of the APT.
This strategic interaction motivates a game theoretic modeling as
it allows us to investigate the trade-off between detection proba-
bility of the attacker and false-positive and false-negative rates of
DIFT. We model the strategic interaction between APTs and DIFT
as a stochastic game. The game unfolds on a state space that is
defined using the information flow graph (IFG) constructed from
the system log. The objective of the DIFT is to select locations
in the system, i.e., nodes in the IFG, to place the security check
points while minimizing the errors due to generation of false-
positives and false-negatives. On the other hand, the objective of
the APT is to choose an attack path starting from an entry point to
a target node in the IFG. We note that, while APTs aim to achieve
a reachability objective, the aim of DIFT is an optimal node
selection. The APT-DIFT game has imperfect information structure
as APTs are unaware of the locations at which DIFT places security
check points and DIFT is unaware of the path chosen by the
APT for the attack. We consider two scenarios of the game:
(i) when the false-positive and false-negative rates are known to
both players and (ii) when the false-positive and false-negative
rates are unknown to both players. While case (i) is a complete
information game, case (ii) is an incomplete information game
with unknown transition probabilities.

We make the following contributions in this paper:

e We formulate a constant-sum stochastic game with total
reward structure that models the interaction between the
DIFT and APT. The game captures the information asymme-
try between the attacker and the defender, false-positives,
and false-negatives generated by DIFT.

e When the transition probabilities are known, we present a
value iteration algorithm to compute equilibrium strategy
and prove convergence and polynomial-time complexity.

e When the transition probabilities are unknown, we pro-
pose HSL (Hierarchical Supervised Learning), a supervised
learning-based algorithm to compute an approximate equi-
librium strategy of the incomplete information game. HSL
integrates a neural network with policy iteration and uti-
lizes the hierarchical structure of the state space of the
APT-DIFT game to guarantee convergence.

e We implement our algorithms on attack data, of a nation
state attack and a ransomware attack, collected using Re-
finable Attack INvestigation (RAIN) system, and show the
convergence of the algorithm.
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This paper is organized is as follows: Section 2 summarizes the
related work. Section 3 elaborates on information flow graph, and
the attacker and defender models. Section 4 presents the formula-
tion of the stochastic game between APT and DIFT.
Section 5 discusses the min-max solution concept used for solv-
ing the game. Section 6 presents the value iteration algorithm
for the model-based approach and the supervised learning-based
approach for the model-free case. Section 7 illustrates the re-
sults and discussions on the experiments conducted. Section 8
concludes the paper.

2. Related work

Stochastic games model the strategic interactions among mul-
tiple agents or players in dynamical systems and are well
studied in the context of security games (Lye & Wing, 2005),
economic games (Amir, 2003), and resilience of cyber-physical
systems (Zhu & Basar, 2011). While stochastic games provide a
strong framework for modeling security problems, often solving
stochastic games are hard. There exists dynamic programming-
based approaches, value-iteration and policy iteration, for com-
puting Nash equilibrium (NE) strategies of these games. However,
in many stochastic game formulations dynamic programming-
based approaches do not converge. Refs. Ahmadi et al. (2018) and
Ahmadi, Viswanathan, Ingham, Tan, and Ames (2020) modeled
and studied the interaction between defender and attacker in
a cyber setting as a two-player partially observable stochastic
game and presented an approach for synthesizing sub-optimal
strategies.

Multi-agent reinforcement learning (MARL) algorithms have
been proposed in the literature to obtain NE strategies of zero-
sum and nonzero-sum stochastic games, when the game infor-
mation such as transition probabilities and payoff functions of
the players are unknown. However, algorithms with guaranteed
convergence are available only for special cases (Hu & Wellman,
1998, 2003; Najim, Poznyak, & Gomez, 2001; Prasad, Prashanth,
& Bhatnagar, 2015). A Nash-Q learning algorithm is given in Hu
and Wellman (2003) that converges to NE of a general-sum
game when the NE is unique. The algorithm in Hu and Wellman
(2003) is guaranteed to converge for discounted games with
perfect information and unique NE. A multiagent Q-learning al-
gorithm is presented in Hu and Wellman (1998) for discounted,
constant-sum games with unknown transition probabilities when
the players have perfect information. An adaptive policy approach
using a regularized Lagrange function is proposed in Najim et al.
(2001) for zero-sum games with unknown transition probabilities
and irreducible state space. A stochastic approximation-based
algorithm is presented in Prasad et al. (2015) for computing NE
of discounted general-sum games with irreducible state space.
While there exist algorithms that converge to NE of the game
for special cases, there are no known algorithms to compute
NE of a general stochastic game with incomplete information
structure (Hu & Wellman, 1998; Prasad et al., 2015).

Detection of APTs are analyzed using game theory in the litera-
ture by modeling the interactions between APT and the detection
mechanism as a game (Rass, Konig, & Schauer, 2020). A dynamic
game model is given in Huang and Zhu (2019) to detect APTs
that can adopt adversarial deceptions. A honeypot game theoretic
model is introduced in Tian et al. (2019) to address detection of
APTs.

There has been some effort to model the detection of APTs by
a DIFT-based detection mechanism using game-theoretic frame-
work (Moothedath et al., 2020a, 2020b; Sahabandu et al., 2019c).
Ref. Moothedath et al. (2020a) studied a DIFT model which selects
the trap locations in a dynamic manner and proposed a min-
cut based solution approach. Detection of APTs when the attack
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consists of multiple attackers, possibly with different capabilities,
is studied in Sahabandu et al. (2019¢). We note that, the game
models in Moothedath et al. (2020a) and Sahabandu et al. (2019c)
did not consider false-negative and false-positive generation by
DIFT and are hence non-stochastic. Recently, stochastic models
of APT-DIFT games was proposed in Moothedath et al. (2020b)
and Sahabandu et al. (2019b). Ref. Sahabandu et al. (2019b)
proposed a value iteration-based algorithm to obtain an &-NE
of the discounted game and Moothedath et al. (2020b) proposed
a min-cut solution approach to compute an NE of the game.
Formulations in Moothedath et al. (2020b) and Sahabandu et al.
(2019b) assume that the transition probabilities of the game
(false-positives and false-negatives) are known.

DIFT-APT games with unknown transition probabilities are
studied in Sahabandu et al. (2019a, 2020). While Ref. Sahabandu
et al. (2019a) proposed a two-time scale algorithm to compute
an equilibrium of the discounted game, Sahabandu et al. (2020)
considered an average reward payoff structure. Moreover, the
game models in Sahabandu et al. (2019a, 2020) resulted in a
unichain structure on the state space of the game, unlike the
game model considered in this paper. The unichain structure of
the game is critically utilized in Sahabandu et al. (2019a, 2020)
for developing the solution approach and deriving the results.
Ref. Misra et al. (2019), the preliminary conference version of this
work, studied DIFT-APT game with unknown transition probabil-
ities and average reward payoff structure, when the state space
graph is not a unichain structure. The approach in Misra et al.
(2019) approximated the payoff function to a convex function and
utilized an input convex neural network (ICNN) architecture. The
ICNN is integrated with an alternating optimization technique
and empirical results are presented in Misra et al. (2019) to
learn approximate equilibrium strategies. In this paper, we do
not restrict the payoff function to be convex and hence relax the
condition for the neural network to be input convex.

3. Preliminaries
3.1. Information Flow Graph (IFG)

Information Flow Graph (IFG) provides a graphical represen-
tation of the whole-system execution during the entire period of
monitoring. We use the RAIN recording system (Ji et al., 2017) to
construct the IFG. RAIN comprises a kernel module which logs all
the system calls that are requested by the user-level processes in
the target host. The target host then sends the recorded system
recorded logs to the analysis host. The analysis host consists of
a provenance graph builder, which then constructs the coarse-
grained IFG. The coarse-IFG is then refined using various pruning
techniques. A brief discussion on the pruning steps is included in
Section 7. For more details, please refer Ji et al. (2017).

IFGs are widely used by analysts for effective cyber response
(Hossain, Wang, Sekar, & Stoller, 2018; Ji et al., 2017). IFGs are
directed graphs, where the nodes in the graph form entities such
as processes, files, network connections, and memory objects in
the system. Edges correspond to the system calls and are oriented
in the direction of the information flows and/or causality (Hossain
et al,, 2018). Let directed graph ¢ = (Vg, Eg) represent IFG of the
system, where V; = {vq,...,un} and Eg € Vg x V;. Given a
system log, one can build the corase-grained-IFG which is then
pruned and refined incrementally to obtain the corresponding
IFG (Ji et al.,, 2017).

3.2. Attacker model

This paper consider advanced cyberattacks called as APTs.
APTs enter into the system by leveraging vulnerabilities in the
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system and implement multiple sophisticated methods to con-
tinuously and stealthily steal information (Hossain et al., 2018).
A typical APT attack consists of multiple stages initiated by a
successful penetration and followed by initial compromise, C&C
communications, privilege escalation, internal reconnaissance,
exfiltration, and cleanup (Hossain et al., 2018). Detection of APT
attacks are very challenging as the attacker activities blend in
seamlessly with normal system operation. Moreover, as APT
attacks are customized, they cannot be detected using signature-
based detection methods such as firewalls, intrusion detection
systems, and antivirus software. Several different approaches
have been proposed for detecting APTs. The authors of Vance
(2014) proposed a statistical anomaly detection approach to
analyze network based communications in order to detect APTs.
While Lajevardi and Amini (2019) utilized the correlations be-
tween operating system and network events and developed a
semantic-based approach for detecting APTs, Siddiqui, Khan, Fer-
ens, and Kinsner (2016) proposed a fractal based anomaly clas-
sification mechanism. A game-theoretic approach to model a
long-term interaction between a stealthy attacker and a proactive
defender was proposed in Huang and Zhu (2020). In this work, we
utilize the information flows generated in the system to model
the interactions of the APT and consider dynamic information
flow tracking-based defense mechanism, which is discussed in
detail below.

3.3. Defender model

Dynamic information flow tracking (DIFT) is a promising tech-
nique to detect security attacks on computer systems (Clause, Li,
& Orso, 2007; Enck et al., 2014; Suh et al., 2004). DIFT tracks the
system calls to detect the malicious information flows from an
adversary and to restrict the use of these malicious flows. DIFT
architecture is composed of (i) tag sources, (ii) tag propagation
rules, and (iii) tag sinks (traps). Tag sources are the suspicious
locations in the system, such as keyboards, network interface, and
hard disks, that are tagged/tainted as suspicious by DIFT. Tags are
single bit or multiple bit markings depending on the level of gran-
ularity manageable with the available memory and resources. All
the processed values of the tag sources are tagged and DIFT tracks
the propagation of the tagged flows. When anomalous behavior is
detected in the system, DIFT initiates security analysis and tagged
flows are inspected by DIFT at specific locations, referred to as
traps. DIFT conducts fine grain analysis at traps to detect the
attack and to perform risk assessment. While tagging and trap-
ping using DIFT is a promising detection mechanism against APTSs,
DIFT introduces performance overhead on the system. Performing
security analysis (trapping) of tagged flows uses considerable
amount of memory of the system (Enck et al., 2014). Thus there
is a tradeoff between system log granularity and performance (Ji
et al,, 2017).

4. Problem formulation

This section formulates the interaction between the APT and
the DIFT-based defense mechanism as a stochastic game where
the decisions taken by the adversary (APT) and the defender
(DIFT), referred to as agents/players, influences the system be-
havior. The objective of the adversary is to choose transitions
in the IFG so as to reach the destination node set D C Vg
from the set of entry points A C V;. On the other hand, the
objective of the defender is to dynamically choose locations to
trap the information flow so as to secure the system from any
possible attack. The state of the system denotes the location of
the tagged information flow in the system. The defender cannot
distinguish a malicious and a benign flow. On the other hand, the



S. Moothedath, D. Sahabandu, J. Allen et al.

adversary does not know if the tagged flow will get trapped by
the defender while choosing a transition. Thus the game is an
imperfect information game. We consider an intelligent adversary
who is inside the system and can observe the system activities.
Hence the attacker knows the positions of the flows in the system,
and also which flows are tagged. Thus the state of the game is
known unlike in a partially observable game setting where the
state of the game is unknown. The system’s current state and
the joint actions of the agents together determine a probability
distribution over the possible next states of the system.

4.1. State space

The state of the game at a time step t, denoted as s;, is defined
as the position of the tagged information flow in the system.
Let S = {vg, vy, ..., Un, @, Ta, Tz} be the finite state space of the
game. Here, s; = ¢ denotes the state when the tagged flow drops
out by abandoning the attack, s; = 7, denotes the state when DIFT
detects the adversary after performing the security analysis, and
s; = 13 denotes the state when DIFT performs security analysis
and concludes a benign flow as malicious (false positive). Let D
be the destination (target) node set of the adversary and |D| = q.
Without loss of generality, let D = {vq, vy, ..., vq}. We assume
that both agents know the IFG and the destination set D. The state
vg corresponds to a virtual state that denote the starting point of
the game. In the state space S, v is connected to all nodes in A.
Thus the state of the game at t = 0 is 5o = vy.

4.2. Action spaces

At every time instant in the game, the players choose their
actions from their respective action sets. The action set of the ad-
versary is defined as the possible set of transitions the adversarial
flow can execute at a state. The defender has limited resources
and hence can perform security analysis only one information
flow at a time. Thus the defender’s action set is defined such that,
at every decision point, the defender chooses one node to perform
security analysis, among the possible nodes that the adversary
can transition to.

Let the action set of the adversary and the defender at a state s;
be A4(s¢) and Ap(s;), respectively. At a state s, € Vg, the adversary
chooses an action either to drop out, i.e., abort the attack, or to
continue the attack by transitioning to a neighboring node. Thus
Au(se) = {¢} U {v; : sy = v; and (v;, vj) € Eg}. On the other hand,
the defender’s action set at state s; Ap(s;) == {0} U {v; : s =
v; and (v;, vj) € Eg}, where Ap(s;) = 0 represents that the tagged
information flow is not trapped and Ap(s;) = v; represents that
defender decides to perform security analysis at the node v; € V;
at instant t.

The game originates at t = 0 with state s9 = wvg with
Aa(vg) := A and Ap(vg) := 0. The definition of action sets at
v captures the fact that the adversarial flow originates at one
of the entry points. Performing security analysis at entry points
cannot detect the attack as there are not enough traces to analyze.
Moreover, the game terminates at time t if the state of the game
s¢ € {¢, ta, 13} U D. The set of states {¢, 14, 75} U D are referred
to as the absorbing states of the game. For s; € {¢, 7, 73} U D,
Ap(st) = Aa(st) = @. At a non-absorbing state, the players
choose their actions from their respective action set and the game
evolves until the state of the game is an absorbing state.

4.3. Transitions

The transition probabilities of the game are governed by the
uncertainty associated with DIFT. DIFT is not capable of per-
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forming security analysis accurately due to the generation of
false-positives and false-negatives. Consider a tagged flow incom-
ing at node v; € V; at time t. Let the action chosen by the
defender and the adversary at s; be d; and a;, respectively. If
defender chooses not to trap an information flow, then the flow
proceeds to the node in G chosen by the adversary. That is, if
d¢ = 0, then s;1 = a;. If the defender chooses to trap the node
at which the adversary also decides to transition to, then the
adversary is detected with probability 1 — FN(d;) and the flow
transition to the node in G corresponding to the action of the
adversary with the remaining probability. That is, if d; = a; = v;,
then s;,1 = 7, with probability 1 — FN(d;) and s;11 = a; with
probability FN(d,). If the defender decides to trap a node which
is not the node the adversary decides to transition to, then the
defender generates a false-positive with probability FP(d;) and
the flow transition to the node in G corresponding to the action
of the adversary with the remaining probability. That is, if d; # 0
and d; # a, then s, = 7z with probability FP(d;) and s;11 = a;
with probability 1 — FP(d;).

Let P(s;, S, d¢, St+1) denote the probability of transitioning to
a state sq,¢ from a state s, under actions a; and d;. Then,

1, Sey1 =0, ifdi=0
EN(d,), Sep1 =0, ifdi=a

P(st, ar, di, Sey1) = { 1 = FN(de),  Sey1 =71, ifde =@ (N
FP(d,), Sey1 =T, ifdi #a;
1—FP(d;), Sey1 =0, ifd #a;

The transition probabilities FN(v;), FP(v;), for v; € Vg, denote the
rates of generation of false-negatives and false-positives, respec-
tively, at the different nodes in the IFG. We note that, different
nodes in IFG have different capabilities to perform security anal-
ysis and depending on that the value of FN(-) and FP(-) are
different. The numerical values of these transition probabilities
also depend on the type of the attack. As APTs are tailored
attacks that can manipulate the system operation and evade
conventional security mechanisms such as firewalls, anti-virus
software, and intrusion-detection systems, FN(-)'s and FP(-)’s are
often unknown and hard to estimate accurately.

4.4. Strategies

A strategy for a player is a mapping which yields probability
distribution over the player’s actions at every state. Consider
mixed (stochastic) and stationary player strategies. When the
strategy is stationary, the probability of choosing an action at
a state depends only on the current state of the game. Let the
stationary strategy space of the attacker be P, and that of the
defender be Pp. Then, P, : S — [0, 1]*4l and P, : S — [0, 1]4!,
Let p, € P, and pp € Pp. Here, pp = [pp(vg+1)s - - -, Po(vn)], where
po(v;) denotes the probability distribution over all the actions of
the defender at state v;, i.e., out-neighboring nodes of v; in IFG
and not trapping' For Pa = [PA(UO)s PA(UtHl)v LR pA(UN)]! pA(Ui) is
a probability distribution over all possible out-neighbors of the
node v; in the IFG and ¢. We note that, A,(s;) = Ap(st) = 0, for
St € {¢, T, T3} U D. Also, Ap(vg) = @.

4.5. Payoffs

In the APT-DIFT game, the aim of the APT is to choose transi-
tions in the IFG in order to reach destination by evading detection
by DIFT. The aim of DIFT is to select the security check points
to secure the system from the APT attack. Recall that APTs are
stealthy attacks that undergo for a long period of time with the ul-
timate goal of stealing information over a long time. The destruc-
tive consequences of APTs are often unnoticeable until the final
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stages of the attack (Bencsath, Pék, Buttyan, & Felegyhazi, 2012).
In this paper we consider the payoff functions of the APT-DIFT
game such that players achieve reward (8) when their respective
aim is achieved. Such a reward structure is used various classes
of security games, including interdiction games (Zhang, Guo, An,
Tran-Thanh, & Jennings, 2019), network security games (Wang,
Perrault, Mate, & Tambe, 2020), and patrolling games (Vorob-
eychik, An, & Tambe, 2012). DIFT achieves the aim under two
scenarios: (1) when the APT is detected successfully and (2) when
APT drops out the attack. We note that, in both cases (1) and (2),
DIFT secures the system from the APT attack and hence is re-
warded B. On the other hand, APT achieves the aim under two
scenarios: (i) when APT reach destination and (ii) when a benign
flow is concluded as malicious, i.e., false-positive. We note that,
when a benign flow is concluded as malicious, DIFT no longer
analyzes the flows (as it believes APT is detected) and hence the
actual malicious flow evades detection and can achieve the aim.
Thus in both cases (i) and (ii) APT achieves the aim and receives
a reward of 8.

Let the payoff of player k at an absorbing state s; be rk(s;),
where k € {A, D}. At state 7, DIFT receives a payoff of § and APT
receives 0 payoff. At state 7z the APT receives a payoff of 8 and
DIFT receives O payoff. At a state in the set D = {vq, v2, ..., vg},
APT receives a payoff of 8 and DIFT receives O payoff. At state ¢
DIFT receives a payoff of 8 and APT receives 0 payoff. Then,

B, st €D
, St =T (2)
, otherwise

r(s) =

r’(s;) =

, Se=¢ (3)

, otherwise

B
0
ﬂ? St =Ta
B
0

At each stage in game, s; at time t, both players simultaneously
choose their action a; and d; and transition to a next state ;.
This is continued until they reach an absorbing state and receive
the payoff defined using Eqs. (2) and (3).

Let T denote termination time of the game, i.e., s,y 1 = s; for
t > T. At the termination time sy € {¢, 14, T3} U D. Let U, and U,
denote the payoff functions of the adversary and the defender,
respectively. As the initial state of the game is vy, for a strategy
pair (p,, pp) the expected payoffs of the players are

T
Us(¥o, P Po) = Evg.pup [Z r*‘(st)] = Ewppns|[60)]s (@)

t=0

T
UD(v07 Pa, pD) = Evo,pA,pD {Z rD(Sf )i| = Evo,p/\,pp I:rD(ST )]7 (5)
t=0
where E,, ,, 5, denotes the expectation with respect to p, and p,
when the game originates at state vg. The objective of APT and
DIFT is to individually maximize their expected total payoff given
in Egs. (4) and (5), respectively. Thus the optimization problem
solved by DIFT is

max Up(vg, Pa, Pp)- (6)

pp€Pp

Similarly, the optimization problem of the APT is
max Uy(vo, Pa, Pp)- (7)
pAc€Py

To bring out the structure of the payoffs well, we let R, (s) be
the cumulative probability with which the state of the game at
the termination time is s, when the game originates at so. With
slight abuse of notation, we use Ry, (D) to denote the cumulative
probability with which the state of the game at the termination
time lies in set D, when the game originates at sq. At the time of
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termination, i.e.,, t = T, the state of the game satisfies one of the

following: (i) st = 14, (ii) St = 13, (iii) St € D, and (iv) st = ¢.
Using these definitions Eqs. (4) and (5) can be rewritten as

Us(vo. pas po) = (Ra(D) + Ro()) B (®)

Uo(vo. P Po) = (Re(T) + R (@) B. (©)

Using the reformulation of the payoff functions, we present
the following property of the APT-DIFT game.

Proposition 4.1.
game.

The APT-DIFT stochastic game is a constant sum

Proof. Recall that APT-DIFT game has absorbing states ¢, t,, 73
and D. At the termination time of the game, i.e., t = T, the state
of the game s € {¢, 14, 13} U D. This implies

Ry, () + Rsy(Ta) + Rsy(15) + Ryo (D) = 1.

This gives U(vo, Pa, Po) + Up(vo. P Po) = (Ri(®) + Ry(t) +

Rsy(75) + RSO(D)) B = B. Thus the game between APT and DIFT is
a constant sum game with constant equal to 5. O

5. Solution concept

The solution concept of the game is defined as follows. Each
player is interested in maximizing their individual reward in the
minimax sense. In other words, each player is assuming the worst
case for an optimal opponent player. Since the APT-DIFT game is
a constant-sum game, it is sufficient to view that the opponent
player is acting to minimize the reward of the agent. Thus DIFT
chooses its actions to find an optimal strategy pj that achieves
the upper value defined as

V(so) = max min Up(vo, Pa, Pp)- (10)

pp€Pp paEPy

On the other hand, APT chooses its actions to find an optimal
strategy p; that achieves

max min Uy(vo, pa, pp) = Max min (ﬁ - Un(vo,pA,pD))- (11)
pA€P4 pp€EPp pA€P4 pp€EPp

This is equivalent to saying that APT aims to find an optimal
strategy p; that achieves the lower value defined as

V(so) = min max Up(vo, pa, Pp)- (12)
pa€PA PpEPp

From Eqgs. (10) and (12), the defender tries to maximize and the
adversary tries to minimize Up(vg, pa, Pp)- Hence the value of the
game is defined as

V*(so) :== max Up(vo, p;, Pp) = Up(vo, P}, Pp)

pp€Pp

= min UD(U07 Da, p;) (]3)

PAEP,
The strategy pair (p}, p;,) is referred to as the saddle point or Nash
equilibrium (NE) of the game.

Definition 5.1. Let (p}, p;) be a Nash equilibrium of the APT-DIFT
game. A strategy pair (p,, pp) is said to be an e —Nash equilibrium,
for ¢ > 0, if

Up(vo, pa» Po) = Up(vo, P}, Pp) — &.

In other words, the value corresponding to the strategy pair
(pa, pp) denoted as V(sp) satisfies

V(so) = V*(so) — e.
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Proposition 5.2 proves the existence of NE for the APT-DIFT
game.

Proposition 5.2. There exists a Nash equilibrium for the APT-DIFT
stochastic game.

Proof of Proposition 5.2 is presented in the Appendix.
In the next section we present our approach to compute an
NE of the APT-DIFT game.

6. Solution to the APT-DIFT game

This section presents our approach to compute an NE of the
APT-DIFT game. Firstly, we propose a model-based approach to
compute NE using a value iteration algorithm. Later, we present a
model-free approach based on a policy iteration algorithm, when
the transition probabilities, i.e., the rate of false-positives and
false-negatives, are unknown.

6.1. Value iteration algorithm

This subsection presents our solution approach for solving the
APT-DIFT game when the false-positive and false-negative rates
(transition probabilities) are known. By Proposition 5.2, there
exists an NE for the APT-DIFT game. Our approach to compute
NE of the APT-DIFT game is presented below.

Let s € S be an arbitrary state of the APT-DIFT game. The state
value function for a constant-sum game, analogous to the Bellman
equation, can be written as

Y Qs.a,d)po(s, d), (14)

deAD(s)

V*(s)= max mm
pp(s)EPp(s) acA4(s

where the Q-values are defined as

> P(s,a.d, s V(s (15)

s'es

The min in Eq. (14) can also be defined over mixed (stochastic)
policies, but, since it is ‘inside’ the max, the minimum is achieved
for a deterministic action choice (Littman, 2001). The strategy
selected by Eq. (14) is referred to as the minimax strategy, and
given by

*(s,a,d) =

Y Qs a, d)pols, d). (16)

deAD(s)

py(s) = arg max mm
Pp(S)EPD(S) acAx(s

The aim here is to compute minimax strategy p;. Our proposed
algorithm and convergence proof is given below.

Let V = {V(s) : s € S} denote the value vector corresponding
to a strategy pair (p,, pp). The value for a state s € S, V(s), is the
expected payoff under strategy pair (p,, pp) if the game originates
at state s. Then, V*(s) is the expected payoff corresponding to
an NE strategy pair (p}, p;) if the game originates at state s.
Algorithm 6.1 presents the pseudocode to compute the value
vector of the APT-DIFT game.

Algorithm 6.1 is a value iteration algorithm defined on a value
vector V. = {V(s) : s € S}, where V(s) is the value of the game
starting at the state s. Thus V(s) = 8, fors € {¢, 74}, and V(s') = 0,
for s’ € {13} UD. The values of the states is computed recursively,
for every iteration k = 1, 2, . .., VK(s), as follows:

.3’ lfS € {¢» TA},
vW(s) = {o, if s € {xz} UD, (17)
val(s, V&&=1), otherwise,

where val(s, V1) =

maxmmZZstd (s, a,d, s VED).

PpEPp acAx(s
s'eS deAp(s)
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Algorithm 6.1 Value iteration algorithm to find NE strategy in
APT-DIFT game
Input: APT-DIFT game with state space S, destination set D, ac-
tion space Ap, A4, payoff parameter B, transition probabilities
EN(-), FP(")
Output: Value vector V and defender policy pp
1: Initialize value vector V(9(s) < 0, for all s € S and V(1)(s') <
B fors e {t, ¢}, VIV(") <~ 0 for all s” € S\ {14, ¢}, k < 0,

=0
2: while max{|V**t)(s) — V¥(s)| : s € S} > ¢ do
3: k<k+1
4: fors ¢ {¢, 14, 3} UD do
5: Vkt1)(s) «

max min > > py(s, d)P(s, a, d, s )VH(s)

PpEPp aeAA(s)S 'S de Ap(s)

6: end for

7: end while R .

8: return Vector V, where V(s) < VK)(s)

9: Compute DIFT strategy Do» Po(s) -

argmax min Y, > pp(s, d)P(s, a,d, s/)V(s/)

PpEPp acAx(s) o s'eS deAp(s)

The value-iteration algorithm computes a sequence V@, v(1),
v@, .. where for k = 0, 1,2..., each valuation V¥ associates
with each state s € S a lower bound V®)(s) on the value of
the game. Algorithm 6.1 need not terminate in finitely many
iterations (Royden & Fitzpatrick, 2010). The parameter ¢, in step 2,
denotes the acceptable error bound which is the maximum ab-
solute difference in the values corresponding to two consecutive
iterations, i.e., max{|V¥(s) = V&*(s)| : s e S}, and serves
as a stopping criteria for Algorithm 6.1. Smaller value of ¢ in
Algorithm 6.1 will return a value vector that is closer to the
actual value vector. Below we prove that as k approaches oo,
the values V¥)(s) approaches the exact values V(s) from below,
i.e., limy_, o V®(s) converges to the value of the game at state s.
Theorem 6.3 proves the asymptotic convergence of the values.

Lemma 6.1. Consider the value iteration algorithm in Algorithm
6.1. Let V&1 and V™ be the value vectors corresponding to iter-
ations k + 1 and k, respectively. Then, V*+t1(s) > v®)(s), for all
seSs.

Proof. We first prove that result for a state s € {¢, 74, 73} U D.
From Eq. (17), for every iteration k = 1,2, ... V(s) = g, for
s € {¢, 14}, and VW(s) = 0, for s € {73} UD. From the initialization
step of Algorithm 6.1 (Step 1, V(O(s) = 0 for all s € S. Thus for
any state s, where s € {¢, 14, 7} U D, V&+1)(s) > V¥)(s) for any
arbitrary iteration k of Algorithm 6.1.

For an arbitrary state s, where s € S\ {¢, ©1, 73} U D, we prove
the result using an induction argument. The induction hypothesis
is that arbitrary iterations k and k + 1 satisfy V&+1(s) > v(¥)(s),
for all s € S\ {¢, 74, 73} U D.

Base step: Consider k = 0 as the base step. Initialize V(9(s) =
Oforalls € S\ {¢, 74, 7z} U D and set V((s) = 0 for all
s € S\ {¢, 14, 15} U D. This gives VIU(s) > vO(s), for all s €
) \ {¢7 Ta» tB} UnD.

Induction step: For the induction step, assume that iteration k
satisfies V®(s) > Vk=1)(s) for all s € S\ {¢, T4, 75} U D.

Consider iteration (k 4 1). Then,

V*1(s) = max min Z Z po(s, d)P(s, a, d, s \WH(s")

PpEPp acAx(s)
D=FD s’'eS deAp(s)

: (k) TN
> min ,d)P(s,a,d, sV 18
Jmin 30 Y pyls P(s,a.d, W) (18)
s'eS deAp(s)
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: (o (k=1)
min (s,d)P(s,a,d,s' )V 19
min >0 > B WEN)  (19)
s’eS deAp(s)

= max m1nZZstd P(s, a, d, s W (s)

PpEPp acAx(s)
s’'eS deAp(s)

WV

= V() (20)

Eq. (18) holds as the value obtained using a maximizing policy
is at least as the value obtained using a specific policy p,. Eq. (19)
follows from the induction argument and Eq. (20) is from the
definition of V®)(s). This completes the proof. O

Proposition 6.2 (Monotone Convergence Theorem, Royden and Fitz-
patrick (2010)). If a sequence is monotone increasing and bounded
from above, then it is a convergent sequence.

The value of any state s € S is bounded above by B. Using
Lemma 6.1 and Proposition 6.2, we state the convergence result
of Algorithm 6.1.

Theorem 6.3. Consider the value iteration algorithm in Algorithm
6.1. Let V®(s), V*(s) be the value at iteration k and the optimal value
of state s € S, respectively. Then, as k — oo, V®(s) — V*(s), for
all s € S. Further, the output of Algorithm 6.1, pp, for & — 0, is an
optimal defender policy.

The value of any state s € S is bounded above by 3. From
Lemma 6.1 we know that the sequence V)(s) is a monoton-
ically increasing sequence. By the monotone convergence the-
orem (Royden & Fitzpatrick, 2010), a bounded and monotone
sequence converges to the supremum, ie., lim_, . V®(s) —
V*(s), for all s € S. Thus the value iteration algorithm converges
and the proof follows.

Theorem 6.4. For any ¢ > 0, Algorithm 6.1 returns an e-Nash
equilibrium of the APT-DIFT game.

Proof of Theorem 6.4 follows from Lemma 6.1, Theorem 6.4,
and Definition 5.1. By Theorem 6.3, for any small value of ¢, there
exists a large enough K such that for k > K, [v®(s) — v*+t1(s)| <
& (Cauchy sequence). We note that, the approach only guarantees
asymptotic convergence and it does not provide any guarantee on
the rate of convergence. Let us consider an alternative approach
by relaxing the problem after modifying step 2 of Algorithm 6.1
such that v*+1)(s) is updated if

i o(s, d)P(s, a, d, s V& 1 v
maxmmZZp(s YP(s, a,d, s V) > (+ﬁ) (s)

PpEPp a€A4(s)
s'eS deAp(s)

(21)

and remains unchanged otherwise. Then, we derive the following
result on the termination time.

Lemma 6.5. The update criteria in Eq. (21) converges to a value
Vector V that satisfies max{lV“‘*”(s) —VW(s)| : s € S} < & within

(N+4) maxs{log( )/log(1+ — 5 )} iterations, where v(%(s) is the

v(s)
smallest positive value of v¥(s) for k = 0,1, ..

number of nodes in the IFG.

., and N is the

Proof. From Eq. (21) and steps 2 and 5 of Algorithm 6.1, after T
iterations of Algorithm 6.1, either Eq. (22) or Eq. (23) holds.

v(s) = v s) (22)
vD(s) = (T-1)
(s)= gealzl()aglhnZZstd (s,a,d, s (s)
s’'eS deAp(s)
> (1+ %)U(T’”(s) (23)
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Thus vM(s) > (1 + %)Tv(o)(s). As a result, for each s € S,

v(s) will be updated at most max,{log( ((f( )/log(1 + — )} times.

Additionally, in every iteration of Algorithm 6.1, value of at least
one state is updated. This proves the upper bound on the number
of iterations as we have |§| = N + 4. Also, after convergence, by

Eq. (21), [v*+1(s) — v®)(s)| < Ev(k)( s) < &. The second inequality
holds as v¥(s) < B. O

Lemma 6.5 presents a trade-off between the desired accuracy
of the value vector and the number of iterations.

Theorem 6.6 presents the computational complexity of Algo-
rithm 6.1 for each iteration.

Theorem 6.6. Consider the APT-DIFT game with N number of
nodes in the IFG and q number of destination nodes. Let A, and
Ap be the action sets of APT and DIFT, respectively. Every itera-
tion of Algorithm 6.1, i.e., steps 2-7, has computational complexity
O((N — q + 17| Ay || Ap|).

Proof. Every iteration of Algorithm 6.1 involves computation
of the value vector. This involves solving, for every state s €
S\ {{¢, ta, ts} U D}, a linear program of the form:

Maximize V(s)

Subject to : (1) ZdeAD(s) po(s,d) =1
(2) po(s,d) >0, for all d € Ap(s)
(3) V(s) < ZdeAD(s) Q(s, d, a)pp(s, d), for all
a € Ax(S).

We note that |S \ {{¢, 74, 75} U D}| = N —q+ 1. The above lin-
ear program has complexity of O(N — q + 1)|A, || Apl|) (Boutilier,
Dean, & Hanks, 1999). Thus solving for all (N — q + 1) states has
a total complexity of O(N — q + 12| A, || Ap|). O

From Lemma 6.5 and Theorem 6.6, the total computational
complexity of Algorithm 6.1 to converge to an e-Nash equilibrium

is O(N + 4)maxi{log( g5 EMN = g+ 1A, || Ap])

and this presents a selection criteria for the parameter ¢.

We note that, Lemma 6.5 guarantees finite time convergence
of Algorithm 6.1 with the modification suggested in Eq. (21).
However, when the IFG is acyclic, the state space of the APT-DIFT
game is acyclic (Theorem 6.8) and a finite time convergence of
Algorithm 6.1 can be achieved even without any modification.
Henceforth, the following assumption holds.

Assumption 6.7. The IFG ¢ is acyclic.

The IFG obtained from the system log may not be acyclic in
general. However, when the IFG is a cyclic graph, one can obtain
an acyclic representation of the IFG using the node versioning
technique proposed in Hossain et al. (2018). Throughout this
subsection, we consider directed acyclic IFGs rendered using the
approach in Hossain et al. (2018) and hence Assumption 6.7 is
non-restrictive.

Theorem below presents a termination condition of the APT-
DIFT game when the IFG is acyclic.

Theorem 6.8. Consider the APT-DIFT game. Let Assumption 6.7
holds and N be the number of nodes in the IFG. Then the state space
of the APT-DIFT game is acyclic and the game terminates in at most
N + 4 number of steps.

Proof. Consider any arbitrary strategy pair (ps, pp). We first prove
the acyclic property of the state space of the game under (p,, pp).
The state space S is constructed by augmenting the IFG with
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Algorithm 6.2 Value iteration algorithm to find NE strategy for
APT-DIFT game under Assumption 6.7

Input: APT-DIFT game with state space S, destination set D, ac-
tion space Ap, A,, payoff parameter §, transition probabilities
EN(-), FP(")
Output: Value vector V* and defender strategy p;,
1: Find the topological ordering of the state space graph, S
2: Using S, obtain the set of nodes corresponding to hierarchical
levels L, Ly, ..., Ly
3: Initialize value vector V(s) < 0, for all s € S and V(s') < B
for s’ € {ta, P}, V(s ”) < Oforalls” € S\ {7, ¢}
4. forke M —1,M — ., 1} do
5: fors € L, do

6: V(s) < max min Y > py(s,d)P(s,a,d,s)V(s)
PpEPp acAq(s) ¢ g deAp(s)

7: end for

8: k<—k+1

9: end for

10: return Value vector V* < V

11: Compute DIFT strategy Pp Pr(s) <«

argmax min Y, Y. pp(s,d)P(s, a,d, s)V*(s)

PpEPp a€AA(S) ycs de Ap(s)

states vy, ¢, T4, and 7z. We note that a state s € {¢, 14, 73} UD does
not lie in a cycle in S as s is an absorbing state and hence have no
outgoing edge, i.e., Ax(s) = Ap(s) = @. The state vy does not lie in
a cycle in S as there are no incoming edges to vg. This concludes
that a state s € {vg, ¢, T4, T3} U D is not part of a cycle in S. Thus
a cycle can possibly exist in S only if there is a cycle which has
some states in vg1, ..., Uy, since D = {vq, v2, ..., Ug}. Recall that
states vy, ..., vy correspond to nodes of G. As G is acyclic, there
are no cycles in S. Since S is acyclic under any arbitrary strategy
pair (pa, pp) and the state space has finite cardinality, the game
terminates in finite number of steps. Further, since |[S| = N + 4,
T<N+4 O

From Lemma 6.5 and Theorem 6.6, the total computational
Theorem 6.8, we propose a value iteration algorithm with guaran-
teed finite time convergence. We will use the following definition
in our approach.

For a directed acyclic graph, topological ordering of the node
set is defined below.

Definition 6.9 (Kahn (1962)). A topological ordering of a directed
graph is a linear ordering of its vertices such that for every
directed edge (u, v) from vertex u to vertex v, u comes before
v in the ordering.

For a directed acyclic graph with vertex set B and edge set E
there exists an algorithm of complexity O(|B| + |E|) to find the
topological order (Kahn, 1962). Using the topological ordering,
one can find a hierarchical level partitioning of the nodes of a
directed acyclic graph. Let S be the topologically ordered set of
nodes of S. Let the number of hierarchical levels associated with
S be M, say L],Lz, PN ,LM. Then Ll = Vo, LM = {¢, Ta, 'L'B} U D.
Moreover, a state s is said to be in hierarchical level L; if there
exists an edge into s from a state s’ which is in some level Ly,
where j/ < j, and there is no edge into s from a state s” which is
in level Ly, where j” > j.

Algorithm 6.2 presents the pseudocode to solve the APT-DIFT
game using the topological ordering and the hierarchical levels,
when the IFG is acyclic.

Corollary 6.10. Consider the APT-DIFT game and let A,, A, be
the action sets of APT, DIFT, respectively. Let the IFG is acyclic
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with N number of nodes and q number of destination nodes. Then,
Algorithm 6.2 returns the value vector V*. Moreover, Algorithm 6.2
has computational complexity O(N — q + 121 A, || Apl).

Proof. Recall that under Assumption 6.7, the state space S of the
APT-DIFT game is acyclic. Thus the topological ordering S and the
hierarchical levels, Ly, ..., Ly, of S can be obtained in polynomial
time (Kahn, 1962). We note that, values at the absorbing states,
i.e.,, states at hierarchical level M, are V(s) = B for s € {w, ¢}
and V(s’) = 0 for all s' € {3} U D. Using the hierarchical levels,
the value vector can be computed in a dynamic programming
manner starting from states in the last hierarchical level. Initially,
using the values of the states at level M, the values of states at
level M — 1 can be obtained. Similarly, using values of states at
level M — 1 and level M, the values of states at level M — 2 can
be obtained and so on. By recursive computations we obtain the
value vector V* and the corresponding DIFT strategy p;.

Finding the topological ordering and the corresponding hi-
erarchical levels of the state space graph has O(|S|?) compu-
tations. The linear program associated with each state in the
value iteration involves O(N — q + 1)|44 || Ap|) computations
(See proof of Theorem 6.6). Since we need to compute values
corresponding to (N — q + 1) states, complexity of Algorithm 6.2
is O((N — g+ 17| As || Apl). O

6.2. Hierarchical Supervised Learning (HSL) algorithm

This subsection presents our approach to solve the APT-DIFT
game when the game model is not fully known. It is often un-
realistic to know the precise values of the false-positive rates
and the false-negative rates of DIFT as these values are esti-
mated empirically. More specifically, the transition probabilities
of the APT-DIFT game are unknown. The traditional reinforce-
ment learning algorithms (Q-learning) for constant-sum games
with unknown transition probabilities (Hu & Wellman, 1998)
assume perfect information, i.e., the players can observe the past
actions and rewards of the opponents (Hu & Wellman, 1998).

On the other hand, dynamic programming-based approaches,
including value iteration and policy iteration algorithms, require
the transition probabilities in the computations. When FN(-) and
FP(-) values are unknown, the optimization problem associated
with the states in step 5 of Algorithm 6.1 and step 6 of Algorithm
6.2 cannot be solved. That is, in the LP

Problem 6.11. Maximize V(s)

Subject to : (1) ZdeAD(s) po(s,d) =1
(2) po(s,d) =0, for all d € Ay(s)
3) V(s) < ZdeAD(s) Q(s, d, a)pp(s,d), forallace
Aa(s),

the Q(s, a, d) values are unknown, where

ZPsads s,

s'eS

Q(s,a,d) =

and P(s, a, d, ') is defined in Eq. (1). To the best of our knowledge,
there are no known algorithms, with guaranteed equilibrium
convergence, to solve imperfect and incomplete stochastic game
models as that of the APT-DIFT game presented in this paper.
To this end, we propose a supervised learning-based approach to
solve the APT-DIFT game. Our approach consists of two key steps.

(1) Training a neural network to approximate the value vector
of the game for a given strategy pair, and

(2) A policy iteration algorithm to compute an g-optimal NE
strategy.
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Our approach to solve the APT-DIFT game, when the rates
of false-positives and false-negatives are unknown, utilizes the
topological ordering and the hierarchical levels of the state space
graph. We propose a hierarchical supervised learning (HSL)-based
approach, that predicts the Q-values of the APT-DIFT game and
then solve the LP for all the states (Problem 6.11) in a hierarchical
manner, to approximate an NE strategy of the APT-DIFT game. In
HSL, we utilize a neural network to obtain a mapping between the
strategies of the players and the value vector. This mapping is an
approximation, using which HSL presents an approach to com-
pute an approximate equilibrium and evaluates the performance
empirically using real attack datasets.

In order to predict the Q-values of the game, we train a neural
network to learn the value vector of the game and use the trained
model to predict the Q-values. The reasons to train an NN to
learn the value vector instead of directly learning the Q-values
are: (a) while the value vector is of dimension |S| the Q-values
have dimension |S||A4||Ap| and (b) generation of data samples
for value vector is easy. The approach for data generation and
training is elaborated below.

We note that, it is possible to simulate the APT-DIFT game and
observe the final game outcome, i.e., the payoffs of the players.
For a given (pa, pp), the value at state s, V(s), is the payoff of the
defender if the game originate at state s, i.e., V(s) = Uy(S, pa, Pp)-
Training the neural network for predicting the value vector of the
APT-DIFT game consists of two steps.

(i) Generate random samples of strategy pairs, (pa, pp)

(ii) Simulate the APT-DIFT game for each of the randomly
generated sample of strategy pair and obtain the values
corresponding to all states.

The neural network takes as input the strategy pairs and
outputs the value vector. The training is done using a multi-input,
multi-output neural network, represented as F : X — Y, where
X C [0, 1]#4! x [0, 1]/ and Y < RS!. The neural network may
not compute the exact value vector, however, it can approximate
the value vector to arbitrary accuracy. Given a function f(x) and
& > 0, the guarantee is that by using enough hidden neurons it
is always possible to find a neural network whose output g(x)
satisfies |f(x) — g(x)| < &, for all inputs x (Csaji et al., 2001).
In other words, the approximation will be good to within the
desired accuracy for every possible input. However, the training
method does not guarantee that the neural network obtained at
the end of the training process is one that satisfies the specified
level of accuracy. Using the trained neural network we predict the
Q-values of the game.

Lemma 6.12. Consider the APT-DIFT game with state space S. Let a
neural network be trained using samples of strategy pairs (p,, pp) to
predict the value vector V of the game such that the mean absolute
error is within the desired tolerance of ¢ < 0.01. Then, the trained
neural network also yield the Q-values, Q(s,a,d), for all s € S,
ae Ay and d € Ap.

Proof. Consider a neural network that is trained using enough
samples of strategy pairs to predict the value vector of the game.
Thus given a strategy pair (pa, pp), the neural network predicts
V = {V(s) : s € S}. Consider an arbitrary state s. The Q-value
corresponding to state s and action pair a, d for the APT and DIFT,
respectively, is given by Q(s, a,d) = )y s P(s, a,d,s')V(s'). For a
strategy (pa, pp) With pa(s) such that p,(s, a) = 1 and pp(s) such
that pp(s, d) = 1 gives

V(s) =Y > > pals, a)pols, dP(s, a, d, S WV(s")
s’'eS acAp deAp

=Y P(s.a.d,s)V(s)

s'eS
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= Q(s, a,d).

Hence the Q-values of the game can be obtained using the neural
network that is trained to predict the value vector by inputting a
strategy pair (p,, pp) with ps(s,a) = 1 and py(s, d) = 1, for any
seS,ae Ay,andd e A,. O

Using the trained neural network we run a policy iteration
algorithm. In the policy iteration, we update the strategies of both
players, APT and DIFT, by solving the stage games in a dynamic
programming manner. The details of the algorithm are presented
below.

Algorithm 6.3 HSL Algorithm for APT-DIFT game

Input: APT-DIFT game with state space S, destination set D,

action sets Ay, Ap, payoff parameter

Output: Value vector V and defender strategy pp

: Generate random samples of (ps, pp) and value vector

: Train F using the data set from Step 1

: Find the topological ordering of the state space graph, S

: Obtain the set of nodes corresponding to hierarchical levels

Li, Lo, ..., Ly
: Initialize V(7,) < B, V(¢) < B, V() < 0, and V(s) < 0O for
seD

: Initialize randomly (A;M_U, f)gw_l))

:forke M—1,M —2,...,1} do

fors €L, do
for a € A,(s),d € Ap(s) do

10: Update (5, p%) such that p%(s,a) = 1 and
py(s. d) =1 A

11: Predict the value vector V using the neural network
FoV < 73, b)) A

12: Assign Q(s, a, d) < V(s)

13: end for R

14: Assign Q(s, a,d) < Q(s, a,d) and solve Problem 6.11
for s to obtain V(s) and pp(s)

15: Update p¥ such that p(s) < py(s)

16: Find the action corresponding to the minimum entry of
the vector Q(s, a, d) p¥'(s, d), say @

17: Update p{* such that (s, a) « 1

18: end for

19: end for

20: return p, < p

w AW N =

Algorithm 6.3 presents the pseudocode for our HSL algorithm
to solve the APT-DIFT game. Initially we generate random sam-
ples of strategy pairs (pa, pp) and value vector V and train a neural
network. Using the trained neural network, we propose a strategy
iteration algorithm. As Assumption 6.7 holds, the state space
graph S is acyclic. Thus one can compute the topological ordering
(Step 3 and the hierarchical levels (Step 4 of S in polynomial
time. The values at the absorbing states are known and are hence
set as V(ry) = V(¢) = B, V() = 0, and V(s) = O for all
s € D. As the values of the states at level M are known, the
algorithm begins with level M — 1. Initially the strategies of APT
and DIFT are randomly set to fJE‘M”) and f)gw”), respectively. Then
we compute the Q-values of all the states using the trained neural
network, following the hierarchical order. Due to the hierarchical
structure of the state space, computation of Q-value of a state in
jth hierarchical level depends only on the states that are at levels
higher than j. Consider level M — 1 and an arbitrary state s in level
M — 1. The Q-values of s are predicted using the trained neural
network by selecting suitable deterministic strategy pairs. That is,
for predicting Q(s, a, d), choose strategies such that ﬁgM_l)(s, a) =
1 and ﬁf)Mfl)(s, d) = 1 as input to the neural network. Using the
Q-values of state s, solve the LP and obtain value vector, DIFT
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Fig. 1. An example of a multi-stage APT attack scenario (Fig. 1(a)). An illustrative
diagram of the IFG G (Fig. 1(b)) and the corresponding multi-stage IFG G,
(Fig. 1(b)) that consists of three stages of the attack, i.e.,, m = 3. The propagation
of the attack from stage j of the attack to stage (j + 1) is captured in G
by connecting the destination nodes D; in stage j to their respective nodes in
stage (j+ 1), forj=1, 2.

strategy, and the optimal action of the APT. The strategies p(M R

and p pPM=1 are updated using the output of the LP such that the

ﬁE,M U(s) and p A(M (s) corresponds to an NE strategy. Once the
strategies of both players are updated for all the states in level
M — 1, the process continues for level M — 2 and so on.

In HSL algorithm, the prediction of Q-values using the neural
network (Step 8-12) corresponding to states in a particular level
can be run parallel. To elaborate, let there are x number of states
in level L;. Then select an action pair (a, d) corresponding to each
state and run the prediction step of the algorithm. Thus, every
run of the neural network can predict x number of Q-values, for
x different states.

Remark: APT attacks typically consist of multiple stages, e.g.,
initial compromise, internal reconnaissance, foothold establish-
ment, and data exfiltration, with each stage having a specific
set of targets. To capture the multi-stage nature of the attack,
we construct a multi-stage IFG, G, from the IFG G. Consider an
attack that consists of m attack stages with destinations of stage j
denoted as D;. Then we duplicate m copies of the IFG G such that
nodes in Dj in the jth copy of G is connected to respective nodes
in Dj in the (j+1)th copy, forj € {1, ..., m}. Also, set D,, = D.The
construction of G,; guarantees that any path that originate in set
A in the first copy and terminate in D in the mth copy is a feasible
attack path. Fig. 1 shows schematic diagram of a multi-stage IFG.
For notational brevity the paper presents the single-stage attack
case, i.e,, m = 1. All the algorithm and results presented in this
paper also apply to the case of multi-stage attack using G,, as the
IFG.

7. Experiments and discussions

In this section we test and validate Algorithms 6.1, 6.2 and HSL
algorithm (Algorithm 6.3) on two real world attack datasets.
First we provide the details on the attack datasets and explain
the construction of IFGs corresponding to each attack from their
respective system log data. Then we discuss our experiments and
present the results.

7.1. Attack datasets

We use two attack datasets in our experiments. The first
dataset is built from a nation state attack (Brenner, 2009) and the
second is related to a ransomware attack (Mohurle & Patil, 2017).
Each attack was executed individually in a computer running
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Linux operating system and system logs were recorded through
RAIN system (Ji et al., 2017). System logs contain records related
to both malicious and benign information flows.

7.1.1. Nation state attack

Nation state attack (a state-of-the-art APT attack) is a three
day adversarial engagement orchestrated by US DARPA red-team
during the evaluation of RAIN system. Attack campaign was de-
signed to steal sensitive proprietary and personal information
from the victim system. In our experiments we used the system
logs recorded during the day 1 of the attack. The attack consists
of four key stages: initial compromise, internal reconnaissance,
foothold establishment, and data exfiltration. Our experiments
considered the first stage of the attack, i.e., initial compromise
stage, where APT used spear-phishing to lead the victim user to
a website that was hosting ads from a malicious web server. After
navigating to the website, APT exploited a vulnerability in the
Firefox browser and compromised the Firefox.

7.1.2. Ransomware attack

Ransomware attack campaign was designed to block access to
the files in . /home directory and demand a payment from the vic-
tim in exchange for regranting the access. The attack consists of
three stages: privilege escalation, lateral movement of the attack,
and encrypting and deleting ./home directory. Upon reaching the
final stage of the attack, APT first opened and read all the files
in the ./home directory of the victim computer. Then APT wrote
the content of the files in ./home into an encrypted file named
ransomware.encrypted. Finally, APT deleted the ./home directory.

7.2. Construction of IFG

Direct conversion of the system logs into IFG typically results
in coarse graphs with large number of nodes and edges as it
includes all the information flows recorded during the system
execution. Majority of these information flows are related to the
system’s background processes (noise) which are unrelated to the
actual attack campaign and it is computationally intensive to run
the proposed algorithms on a state space induced by such a coarse
graph. Hence, we use the following pruning steps to prune the
coarse graph without losing any attack related causal information
flow dependencies.

1. When multiple edges with same directed orientation exist
between two nodes in the coarse IFG, combine them to
a single directed edge. For example, consider a scenario
where multiple “read” system calls are recorded between
a file and a process. This results in multiple edges between
the two nodes of the resulting coarse IFG. Our APT-DIFT
game formulation only requires to realize the feasibility of
transferring information flows between pairs of processes
and files. Hence, in scenarios similar to the above example,
we collapse all the multiple edges between the two nodes
in the coarse IFG into a single edge.

2. Find all the nodes in coarse IFG that have at least one
information flow path from an entry point of the attack
to a target of the attack. When attack consists of multiple
stages find all the nodes in coarse IFG that have at least
one information flow path from a destination of stage j to
a destination of a stagej+ 1, forallj e {1,...,m — 1}.

3. From coarse graph, extract the subgraph corresponding to
the entry points, destinations, and the set of nodes found
in Step 2.
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Fig. 2. Relevant attack information of nation state attack: (a) coarse IFG and
(b) pruned IFG. Nodes of the graph are color coded to illustrate their respective
types (network socket, file, and process). A network socket is identified as the
entry points of the nation state attack. Target of the attack is Firefox process.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

4, Group all the nodes that correspond to files of a single
directory to a single node related to the parent file di-
rectory. For example, assume the resulting coarse IFG has
three files, ./home/inventory/prices.xlsx, ./home/vendors/
contacts/addresses.doc, and ./home/vendors/ledger.db, that
are uniquely identified by their respective file paths. In this
case we will group all three files, prices.xIsx, addresses.doc,
and ledger.db under one super-node corresponding to the
parent directory ./home. Incoming and outgoing edges
associated with each of the three files are then connected
to the new node ./home. If any subset of the new edges
connected to ./home induce multiple edges with same
orientation to another node in the IFG, then follow step (1).
It is also possible to group the files into respective sub-
directories such as ./home/inventory/ and ./home/vendors/
given in the example. Such groupings will facilitate much
finer-grained security analysis at the cost of larger IFGs
which require more computation resources to run the pro-
posed APT-DIFT game algorithms presented in this paper.

5. If the resulting graph after Steps 1—4 contains any cy-
cles use node versioning techniques (Hossain et al., 2018)
to remove cycles while preserving the information flow
dependencies in the graph.

Steps 2 and 3 are done using upstream, downstream, and point-
to-point stream pruning techniques mentioned in Ji et al. (2017).
The resulting information flow graph is called pruned IFG. We
tested the proposed algorithms on the state spaces of APT-DIFT
games corresponding to these pruned IFGs.

For the nation state attack, initial conversion of the system
logs into an IFG resulted in a coarse graph with 299 nodes and
404 edges which is presented in Fig. 2(a). We used steps 1 to 4
explained in Section 7.2 to obtain a pruned IFG with 30 nodes and
74 edges. A network socket connected to an untrusted IP address
was identified as an entry point of the attack and the target of the
attack is Firefox process. Fig. 2(b) shows the pruned IFG of nation
state attack. In the IFG, there are 21 information flow paths from
the entry point to the target Firefox.

For the ransomware attack, direct conversion of the system
logs resulted in a coarse IFG with 173 nodes and 482 edges which
is presented in Fig. 3(a). We pruned the resulting coarse IFG using
the steps given in Section 7.2. The pruned IFG of ransomware
attack consists of 18 nodes and 29 edges. Two network sockets
that indicate series of communications with external IP addresses
in the recorded system logs were identified as the entry points
of the attack. Fig. 3(b) illustrates the pruned IFG of ransomware
attack with annotated targets /usr/bin/sudo, /bin/bash, /home.
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Fig. 3. Relevant attack information of ransomware attack: (a) coarse IFG and
(b) pruned IFG. Nodes of the graph are color coded to illustrate their re-
spective types (network socket, file, and process). Two network sockets are
identified as the entry points of the ransomware attack. Targets of the attack
(/usr /bin/sudo, /bin/bash, /home) are labeled in the graph. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

7.3. Experiments and results

We evaluated the proposed algorithms by solving the APT-
DIFT game on the pruned IFGs of the nation state and ransomware
attacks, shown in Figs. 2 and 3, respectively. We note that, the
IFG of the nation state attack is cyclic and that of the ran-
somware attack is acyclic. We implemented Algorithm 6.1 on
the pruned IFG of the nation state attack. Fig. 4(a) shows the
convergence of the value V¥(sy) in APT-DIFT game with iteration
number k. The threshold value of the maximum absolute error,
i.e, e in Algorithm 6.1 was set to 1077. Fig. 4(b) shows that
maximum absolute error, max,es |V*(s) — V&1)(s)| where k =
1,2, ..., monotonically decreases with k. At iteration k 32,
Maxges |VO(s) — VE=1(s)| = 7.79 x 1078,

We implemented HSL algorithm (Algorithm 6.3) on the pruned
IFG of the ransomware attack and results are given in Figs. 5 and
6. We used a sequential neural network with two dense layers to
learn the value vector for a given strategy pair of APT and DIFT.
Each dense layer consists of 1000 neurons and ReLU activation
function. The dataset consist tuples of APT and DIFT strategy
pair and corresponding value vector of APT-DIFT game. In our
experiments, we generated data samples that consist of randomly
generated deterministic APT policies. We randomly generated
DIFT’s policies such that 40% strategies are stochastic (mixed)
and 60% are deterministic. For each randomly generated APT and
DIFT strategy pair, the corresponding value vector was computed.
We partitioned the generated data into three disjoint categories
(i) training data, (ii) validation data, and (iii) testing data. The
training data is used to train the model (in our case a Neural
Network), the validation data is used to fine tune the parameters
of the model, and the testing data is used to evaluate whether
the learned parameter values using the first two partitions are
‘correct’ (Mitchell, 1997). We used stochastic gradient descent
optimizer to train the neural network. In each experiment trial
the neural network was trained for 100 episodes and validation
error was set to < 1%.

Fig. 5 compares the value vector, i.e., {V(s;): for all s; € S},
computed using HSL algorithm (Algorithm 6.3) when the transi-
tion probabilities are unknown with two instances with known
transition probabilities: (i) the exact/optimal value vector and
(ii) value vector computed under a scenario in which both players
follow a greedy strategy. We know that when the transition
probabilities are known and the IFG is acyclic, Algorithm 6.2
returns the optimal/exact value vector of the game, i.e., V*. We
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Fig. 4. Fig. 4(a) plots the value of APT-DIFT game V)(sy) corresponding to pruned IFG of nation state attack given in Fig. 2, computed at iterations k = 1,2, ..., 32
in Algorithm 6.1. Fig. 4(b) plots the maximum absolute error ¢ = maxses [V*(s) — V&=1)(s)|, for k = 1,2, ..., 32. The payoff parameter is set to g = 100.
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Fig. 5. Comparison of value at each state, V(s;) for all s; € S, obtained using
HSL algorithm (Algorithm 6.3) and greedy algorithm (Greedy) with exact/optimal
value vector for the APT-DIFT game of ransomware attack data. Here, 8 = 10.
In the greedy algorithm, at each state s;, DIFT selects an action d that gives
maximum Q(s;, a,d) for any a € Au(s;j) and APT chooses an action a that
gives maximum Q(s;, a,d) for any d € Ap(s;). State ID's i = 20,21, 22, and
23 represent the states sg, ¢, T4, and 7, respectively. Values corresponding to
HSL algorithm (Algorithm 6.3) are averaged over 100 independent trials.

computed the exact/optimal value at each state, i.e., V*(s;)’s, using
Algorithm 6.2. We also implemented a greedy algorithm (Greedy)
in which at each state s;, DIFT selects an action d that attains
the maximum Q(s;, a,d) for any a € A(s;) and APT selects
an action a that yields the maximum Q(s;, a, d) for any d €
Ap(si). Values corresponding to HSL algorithm (Algorithm 6.3) are
averaged over 100 independent trials. Average standard deviation
for the 100 trials of HSL is 0.017. The mean absolute error,
ie., Zs,-es |[V*(si) — V(s;)]/IS|, for the HSL and greedy algorithms

are 0.00680 and 1.35575, respectively. The state space of the
APT-DIFT game for the ransomware attack has 23 states, out of
which 5 are absorbing states (¢, 74, g and two destinations D).
Since the values at the absorbing states are known, we need to
estimate values at 18 states. As shown in Fig. 5 the value vector
obtained using greedy does not converge for 8 states out of the
18 non-absorbing states, i.e., it does not converge for 44.4% of
the states. The solution of the HSL, on the other hand, converges
for all the 18 states. Thus our empirical results show that the
approximate value vector computed using HSL coincides with the
optimal value vector, i.e., NE. The value vector computed using
the greedy algorithm, on the other hand, does not converge to
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the optimal value for many states and the mean absolute error
for greedy is ~200 times of the HSL algorithm.

In Fig. 6(a) we analyze the sensitivity of estimated value vector
to the variations of payoff parameter, 8 by plotting the mean
absolute error p between actual value vector V and estimated
value vector V, ie, u = Y ¢ |V(s)— V(s)|/IS|, with respect to

B. In this experiment 10° training data samples were used in
the HSL algorithm. The results show that V values are close and
consistent with V values when g parameter takes smaller values
and variations between V and V is increased when g takes larger
values. A reason for this behavior can be the numerical unstability
associated with the training and estimating tasks done in the
neural network model used in HSL algorithm. In order to study
the effect of the length of training data samples on the estimated
value vector we plot u against number of training data samples
used in HSL algorithm in Fig. 6(b). S 50 was used in the
experiments. The results show that p decreases with the number
of training data samples used in HSL algorithm as the increased
number of training data samples improves the learning in neural
network model.

8. Conclusion

This paper studied detection of Advanced Persistent Threats
(APTs) using a Dynamic Information Flow Tracking (DIFT)-based
detection mechanism. We modeled the strategic interaction be-
tween the APT and DIFT as a non-cooperative stochastic game
with total reward structure. The APT-DIFT game has imperfect
information as both APT and DIFT are unaware of the actions
of the opponent. Also, our game model incorporates the false-
positives and false-negatives generated by DIFT. We considered
two scenarios of the game (i) when the transition probabilities,
i.e,, rates of false-positives and false-negatives, are known to both
players and (ii) when the transition probabilities are unknown
to both players. For case (i), we proposed a value iteration-based
algorithm and proved convergence and complexity. For case (ii),
we proposed Hierarchical Supervised Learning (HSL), a supervised
learning-based algorithm that utilizes the hierarchical structure
of the state space of the APT-DIFT game, that integrates a neural
network with a policy iteration algorithm to compute an approx-
imate equilibrium of the game. We validated our results using
real attack datasets for nation state attack and ransomware attack
collected using the RAIN framework. We compared the perfor-
mance of the HSL algorithm when the transition probabilities
are unknown with instances with known transition probabilities
and demonstrated that HSL algorithm converges to a solution
close to optimal (i.e., optimal value vector) while the value vector
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Fig. 6. Fig. 6(a) shows the mean absolute error x between actual value vector V and estimated value vector 1% (using neural network) for different payoff parameter
values 8 = 5,10, ..., 100. We used 10° training data samples in the HSL algorithm (Algorithm 6.3). Fig. 6(b) shows variation in x with respect to the number of
training data samples used in HSL algorithm. In this experiment 8 = 50. Each data point in both cases are calculated by averaging results over 10 independent trials.
Bars in each data point shows the standard errors associated with the u values obtained in the different trials. Pruned IFG corresponding to the ransomware attack

in Fig. 3 was used in both cases.

obtained using greedy does not converge to optimal for 44.4% of
the states and the mean absolute error is almost 200 times that
of the HSL.
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Appendix

Proof of Proposition 5.2. It is known that the class of zero-
sum, finite, stochastic games with nonzero stopping (termination)
probability has Nash equilibrium in stationary strategies (Shap-
ley, 1953). Note that, the APT-DIFT game is a stochastic game
with finite state space and finite action spaces for both players.
Moreover, the transition probabilities in the game FP(-) and FN(-)
are such that 0 < FP(-) < 1 and 0 < EN(-) < 1. Thus the
stopping probabilities of the APT-DIFT game are nonzero, for all
strategy pairs (p,, pp) except for a deterministic policy in which
the defender does not perform security analysis at any state.
However, such a policy is trivially irrelevant to the game as the
defender is idle and essentially not participating in the game. As
the result for zero-sum games also hold for constant-sum games,
from Shapley (1953) it follows that there exists an NE for the
APT-DIFT game. O
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