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Many current malware detection methods are based on supervised learning techniques, which however have
certain limitations. First, these techniques require a large amount of labeled data for training which is often
difficult to obtain. Second, they are not very effective when there are differences in domain distribution between
new malware and known malware. To address these issues, we propose MD-ADA — a malware detection
framework that leverages adversarial domain adaptation (DA). DA allows one to adapt a training malware
dataset available at a domain, referred to as the source, for training a classifier in another domain, referred
to as the target. DA, typically used when the target has limited training malware data available, maps the
source and target datasets into a common latent space. As we use an image representation for malware binaries,
MD-ADA uses a convolution neural network (CNN) providing a lossless image embedding for the source and
target datasets. MD-ADA also employs a generative adversarial network (GAN) for malware classification that is
suitable for scenarios with few target-labeled data where the distribution of the features is similar (homogeneous)
or different (heterogeneous). We have carried out several experiments to assess the performance of MD-ADA.
The experiments show that MD-ADA outperforms the fine-tuning approach with an accuracy of 99.29% on
the BODMAS dataset, 89.3% for the Malevis dataset on homogeneous feature distribution, and 90.12% on the
CICMalMem2022 dataset (Target) and 83.23% on the Microsoft Kaggle dataset (Target) for heterogeneous feature
distribution. The observed F1-scores of 99.13% and 87.5% for homogeneous feature distributions and 91.27%
and 81.7% for heterogeneous distributions indicate that the MD-ADA performance is satisfactory for both data
distributions when the target has very few labeled data.

1. Introduction take a long time (hours to weeks, depending on how intricate the mal-

ware is) to do such an investigation manually (Anderson et al., 2014).
To address the problem of malware detection and classification,

recent approaches have used deep learning (DL) techniques with en-

couraging outcomes (Ni et al., 2018) (Cui et al., 2018) (Darem et al.,

Malicious software (malware) has been present since the earliest
days of technology, but its sophistication and innovation have grown

over time. Recent reports indicate that malware is expanding at an
alarming rate. In 2022, the SonicWall Capture Advanced Threat Protec-
tion (ATP) report (Sonic Wall Threat Report, 2023) identified 119,549
PDF-based threats, a 35% increase from 2021. The number of infected
Microsoft Office files increased marginally to 54,371. Cryptojacking and
IoT malware are the contributing attacks for the rise in malware up to
5.5 billion in 2022.

To deal with constantly evolving malware, rapid and accurate detec-
tion and classification of malware is critical. However, such activities
often require expensive manual analyses (Moser et al., 2008). It may
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2021) (Jian et al., 2021). DL can extract features automatically to elimi-
nate manual feature extraction. Some approaches employ DL to improve
malware detection by converting bytecodes into images and categoriz-
ing the images using techniques such as deep residual networks, deep
belief networks, deep convolutional neural networks, and deep recur-
rent networks (Lu and Li, 2019). The basic idea of these approaches
is to leverage the distinguishing patterns in malware images. Further-
more, by analyzing the similarities between images of malware from
the same family, the image representation helps in identifying corre-
lations between different families of malware. It is feasible for a DL
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model to automatically recognize key patterns and extract relevant fea-
tures from images that belong to the same family because these images
share similar features. Some approaches also use global and local fea-
tures to generate malware images (Zhou et al., 2020). By supplying
an entire image to a pre-trained model and aggregating the outputs of
intermediate layers, global features (image shape, size, and color) are
extracted. Instead of characterizing the entire image region, local fea-
tures (objects, edges, and points) describe subregions of the image.

In order to train a DL model for malware image classification, local
and global regions representing malware features must be identified.
However, a tremendous amount of labeled data is needed for train-
ing DL models to accurately detect malware. Also, in some scenarios,
it is necessary to update models regularly to prevent erroneous de-
tection due to the evolution of malware and changes in its features.
However, it may be time-consuming and expensive to collect and cat-
egorize data for many emerging malware families. The lack of labeled
data makes supervised model learning ineffective. When using methods
like SMOTE (Bhagat and Patil, 2015), oversampling techniques (Gosain
and Sardana, 2017) can frequently cause model bias and, in turn, lead to
classification errors. Additionally, labeled data from one domain might
not be suitable for DL-model training in another domain. For example,
a model trained on images of Android malware might not be able to
correctly identify IoT malware. The problem of low model performance
is made worse by an inappropriate distribution of data for testing and
training.

Such drawbacks do not only affect malware classifiers; they also af-
fect models used for other security functions, such as Network Intrusion
Detection (NID). For example, a NID model trained for the detection of
malicious flows in a conventional network may not be directly used for
detecting malicious flows in an IoT network. To address those short-
comings, Singla et al. (2020) proposed an architecture for training a
NID classifier in a minimal labeled data scenario that utilizes an Adver-
sarial Domain Adaptation (ADA) strategy. The framework is trained to
learn the mapping between the source and target domains and predict
whether the samples belong to an attack or benign class. ADA utilizes
GANSs to achieve domain-invariant mapping between source and target
datasets.

Therefore, in our work we extend the GAN approach by Singla et
al., wherein, ADA is used for mapping different malware distributions
from source and target, and an enhanced GAN architecture is used for
malware detection. The GAN takes as input a lossless encoding of the in-
put images generated by a convolutional neural network (CNN), which
transforms the images from a 2-D matrix representation into a 1-D ma-
trix representation.

The key contributions of our work are:

» We propose a framework, referred to as MD-ADA, for malware de-
tection using adversarial ADA in which the malware binaries are
represented as images.

MD-ADA employs the GAN model for malware detection for similar
(homogeneous) and distinct features (heterogeneous) distribution.
We evaluate the performance of MD-ADA when it is trained on
target samples that comprise fewer samples than source data.
MD-ADA eliminates the need for Principal Component Analysis
(PCA) to reduce the data dimensionality. This is a major improve-
ment because PCA is often used to lower the number of dimensions
in data, but it loses information and makes things more compli-
cated.

The rest of this article is organized as follows. Section 2 provides
background concepts underlying our framework. Section 3 introduces
and explains the proposed MD-ADA framework. Section 4 describes the
experimental design and datasets used to evaluate the framework’s effi-
cacy. Section 5 presents and analyzes the experimental results. Section 6
reports the performance evaluation on different datasets. Section 7 dis-
cusses related works. Section 8 compares the proposed approach with
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Fig. 1. Malware and malware family representation as grayscale images.

the state-of-art approaches. Section 9 concludes the paper with a dis-
cussion of future work.

2. Background

In this section, we first provide some background on the image rep-
resentation of malware. We then introduce ML concepts relevant to the
design of the MD-ADA framework.

2.1. Malware as images

For representing malware binaries as grayscale images, the binaries
are first converted into 8-bit unsigned vectors. These vectors are then
transformed into a 2-D array that represents a grayscale image with
pixel values between 0 and 255. Fig. 1 shows how grayscale images of
malware binaries convey information and sections similar to portable
executable (PE) file formats. It is also noteworthy how the size of the
binary files corresponds to a specific range of image widths. For exam-
ple, the image of a file with size less than 10 kB has a width of 32, the
image of a file with a size of 60-100 kB has a width of 256, and the im-
age of file with size more than 1000 kB has a width of 1024 (Nataraj et
al., 2011).

For image-based malware classification, pre-trained DL models per-
form better than non-image-based classification models (like KNN) (Bho-
dia et al., 2019). The models compute the image texture features for
classification, identifying areas with less texture and more texture
(noisy) information as malicious. The region with less texture has a
lower entropy, whereas the regions that contain malware code are con-
sidered to be noisy and have higher entropy. Images generated from
static features are used to find malware variants from the same family
by identifying visually similar patterns. Even though the texture infor-
mation is helpful for obtaining the static features, it is essential to collect
information about how the malware operates in the context of the en-
vironment in which it is being executed. Therefore, in a behavior-based
technique, the behavior of malware is turned into images by building
a behavior-to-color mapping based on the captured behavioral features
(API calls, sequences, etc.) and assigning each captured behavior a spe-
cific color in the range [0,255]. The images created from the static or
dynamic features are used to discover variants of malware by looking
for patterns that are visually similar and originate from the same family
of malicious software (Shaid and Maarof, 2014).

2.2. Generative adversarial networks (GANs) and adversarial domain
adaptation

During the training phase of GAN, the generator module creates false
or fake image samples that look realistic (like real images). The discrim-
inator module learns to recognize the generator’s fake image samples.
Therefore, the performance of the GAN depends on how well the dis-
criminator is trained to distinguish the fake and real image samples.
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The training of the discriminator depends on how it learns on the la-
beled data provided. Therefore, training the model in case of minimum
or limited labeled data is a challenge and also labeling the unlabeled
data in a target domain is challenging. Even with a small amount of un-
labeled or sparse data, the transferability of a machine-learning model
can be improved through the process of domain adaptation (DA). For
this, some related information about the data is required to handle the
data distribution of target and source data over the sample space or do-
mains. A classifier is able to modify its conclusions in order to improve
its ability to generalize by using the information that is available. The
impacts of domain shifts to avoid biased classification are mitigated by
domain adaptability. The most recent approaches to DA either combine
both domains into a common feature space or reconstitute the target do-
main using relevant information. Domain shift parameters such as mean
discrepancy or correlation distances can be decreased by improving the
representation of the domain samples.

The relevant DA concepts underlying the design of our MD-ADA
framework can be summarized as follows.

Definition 1 (Domain). The feature space ‘ y’ and the marginal distribu-
tion P constitute the whole of a domain D denoted by D = { y, P(X)}.

Assume to have a feature space ‘y’ of color images of size 32*32,
each pixel in the range [0-255], the training set is represented by ‘X’
where

X = {x(i)}il ,xPe x (€D)

The training set follows a certain probability distribution, denoted
by P(X) or Py (x). If the dataset ‘X’ contains RGB color images, for in-
stance, the probability of all-black images should be rather low.

Definition 2 (Task). A task 7 is composed of a label space Y
and a probability decision function f(x): P(Y|X), such that, {7 =
Y, P(Y|X)}. The decision function f is assumed to be implicit and learns
from the sample data.

Our label space, Y, includes possible labels for samples in our prob-
lem. For example, Y = {0, 1} in binary classification denotes the mali-
cious class with ‘0’ and the normal class with ‘1°.

We also have the set of labels for our dataset represented as Y:

Y={yO}\  yPey @

We want to learn the target function y = f(x) and from a probabilistic
perspective learn P(J|x)

Therefore, based on Definition 1 and Definition 2, we can define the
domains and tasks for source and target (Pan and Yang, 2009) as:

Definition 3 (Source domain and task). A source domain is defined by
Dg={xg,P(Xg)} and source learning task as 7 = { Vg, P(Y¢|Xg)}.

Definition 4 (Target domain and task). A target domain is defined by
Dy ={yr,P(X7)} and target learning task as 7 = {Vr, P(Yr | X1)}.

Therefore, Transfer Learning(TL) is associated with the learning of
the target function P(Y;|X7) using knowledge of the source domain
(Dg) and source tasks (Ts) when Dg # Dy or Tg # Ty with the con-
straint of minimal or no label on the target domain.

In our work, we consider the two different cases of homogeneous
and heterogeneous feature spaces with minimal labeled data in the tar-
get domain.

Case 1: In the case of homogeneous transfer learning, Xr = X and
Yr =Y denote that the feature space and label space are similar. The
aim is to minimize the information gap between these two domains,
P(Xp)# P(Xg) or P(Y7| X 1) # P(Yg|X).
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Case 2: Since the source and target domains may not share some
features or labels, heterogeneous TL involves feature spaces X # X g
(often non-overlapping) or Yy # Y.

Heterogeneous TL approaches transform the initial problem into a
homogeneous TL problem by bridging the gap that exists between the
two feature spaces. In this new problem, the only divergences that need
to be adjusted are those that persist in the distribution being either
marginal or conditional.

A set of loss functions is employed to train our Generative Adver-
sarial Network (GAN) framework. Specifically, we utilize the domain
loss (D;,,,) and classification loss (C; ), which are mathematically
defined in equations (3) and (4). The domain loss function quantifies
the variance between the actual domain values and the predicted val-
ues generated by the discriminator during domain prediction. The term
“domain prediction” pertains to the computational procedure of esti-
mating the likelihood that a particular data sample originates from
either the source distribution or the target distribution. The classifi-
cation loss function operates in a manner akin to the D; . function,
with the distinction that the C; ,, pertains to the disparity between the
true value and the value anticipated by the classifier (class prediction).
In this context, “class prediction” refers to the likelihood that a given
data sample belongs to either the malware or benign category.

The domain loss is calculated as:

D 455(G, D)= —Ey [logD(G(X s))] — Ex, [log(1 — D(G(X7))] €]

Here, Ex, and Ey_ demote the predicted values of source and
target domain samples, respectively. D(G(X)) is the probability that
the discriminator will correctly identify the source domain sample.
D(G(X7)) is the probability of discriminator for a target domain sam-
ple. The classification loss is calculated as:

Closs(G) = _EX

o 10g(G()] ~ E,  [log(1 ~ G(x))] )
where the predicted values of malware and normal samples for true
data distributions are denoted by Ey “and Ey ., respectively.
G(x) is the generator probability of classifying a sample as malicious
and 1 — G(x) is the probability for the generator determining a sample
to be normal over the total distribution. Therefore, the model is trained
with a goal to minimize the discriminator loss (Dy,,,) and classifier
loss (Cy ) simultaneously. The categorical cross-entropy function is a
built-in function in the tensor-flow package, and it is used in the evalu-
ation of the loss functions that are used by the model. The next section
describes in detail all the components of the MD-ADA framework.

normal

3. The MD-ADA framework

MD-ADA operates in two main phases, namely, malware image
preparation and malware Detection (see Fig. 2). The first phase in-
volves the collection of malware binaries, the conversion of binaries
to malware images, and the pre-processing of these images for malware
detection. The second phase trains the GAN architecture that uses TL
to classify the images based on their labels and domains. The trained
model is then used to make predictions on the test data that have not
yet been seen in the training set.

3.1. Malware image preparation

This phase is responsible for providing an image embedding com-
patible with the GAN architecture. It comprises the following stages:

+ Collection and creation of raw malware images: At this stage,
we collect the malware binaries and convert them into 8-bit un-
signed vectors. These vectors are then transformed into a 2-D array
representing the grayscale images with pixel values ranging in the
interval [0-255]. Since these images are very large and variable
in size, ranging from 600 pixels to 1000 pixels, they are intricate
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Fig. 2. Overview of the MD-ADA framework.
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Fig. 3. Preparation of image data by source generator and target generator through the CNN-based Training Model.

to handle. Thus, we use image scaling and image resizing tech-
niques as our image pre-processing method to obtain images of
width 224*224. These images are then forwarded to the CNN for
creating image embeddings for the main generator of GAN archi-
tecture.

CNN Model Training: At this stage, we create processed images for
malware detection as shown in Fig. 3. The CNN is integrated into
both of the generators, source_gen, and target_gen, in order to pre-
pare the image embeddings. Our CNN architecture contains three
convolution layers, one flattened layer, three fully connected dense
layers, and an output layer. The first convolution layer consists of
16 channels, the ReLu activation function, and the max-pooling
layer with a size of 4. The second and third convolution layers
are similar to the first layer except that the second layer contains
32 channels and the third layer contains 64 channels. The flat-
tened layer transforms the existing data into a 1-D array that is
forwarded to the dense layers. Dense layers process the received 1D

array to produce the 1*512 image embeddings. Each of the three
dense layers contains 512 neurons, 1024 neurons, and 512 neurons,
respectively. In all the dense layers, we use the ReLu activation
function. These embeddings are then fed to the main generator ar-
chitecture.

3.2. Malware detection

This phase is responsible for malware detection using the enhanced

GAN architecture that receives 1*512 image embedding created using
source_gen and target_gen. As shown in Fig. 2, the architecture com-
prises three generators (source, target, and main), a discriminator, and
a classifier. The source (source_gen) and target generators (target_gen)
accept the source data and target data, respectively. Both generators re-
ceive as input data from the different domains, i.e., the source domain
and the target domain. The corresponding output from the two genera-
tors is utilized as the input for the main generator, which subsequently
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Fig. 4. Detailed Architecture of MD-ADA.

generates images for both the classifier and discriminator through the
implementation of domain mapping operation.

The classifier classifies the generated images into binary classes i.e.,
malware image or benign software image. The role of the discriminator
is to identify the source and the target domain of the images. It up-
dates the weights via back-propagation. When a sample is processed,
its output is mapped to establish whether it comes from the source do-
main or the target domain. The adversarial learning component is only
trained on the target data, while the distribution of the source data is
held constant throughout the process. This concept can be contrasted
to the model in which the real data distribution is preserved while the
generated data distribution is trained.

Fig. 4 shows the detailed GAN architecture. Here, the main genera-
tor, the classifier, and the discriminator consist of three parts: an input
layer, an output layer, and a pair of fully connected layers. For the main
generator, the first dense layer is composed of 64 neurons, the second
layer and the third layer include 128 neurons, the fourth layer has 256
neurons, the fifth layer has 512 neurons, and the sixth layer (output
layer) has 1024 neurons. Each layer uses ReLu activation function.

The classifier receives the input from the main generator and per-
forms class prediction and label prediction. Its architecture is similar to
the architecture of the main generator with an additional softmax layer
for classification. It consists of six dense layers and one output layer,
where the ReLu function is used for dense layers and the softmax func-
tion is used for the output layer to classify the data that include both
malicious and normal classes.

The discriminator is responsible for domain prediction. It contains
five dense layers including one output layer. The first layer contains 64
neurons, the second and the third layer contain 128 neurons, the fourth
layer contains 256 neurons, and the fifth layer (output layer) contains
2 neurons for domain discrimination. The ReLu activation function is
used for dense layers and softmax for the output layer.

4. Experimental details

For our experiments, we have deployed MD-ADA on a T4 GPU with
16 GB of memory and a 1.59 GHz clock speed and delivers 8.1 times
the performance of a dual-core CPU with 12 GB of RAM, and 512 giga-
bytes of storage space. The model is trained on both homogeneous and
heterogeneous distribution of images. To achieve this the data loaders
for the mini-batch training are created with a batch size of 16, and a
random seed value of 123.

Table 1
Representation of different classes and distribution (%) of
samples in the Malevis dataset.

Malware Distribution Malware Distribution
Class (%) Class Name (%)
Name

Ad- 3.47 Injector 3.47
poshel

Agent 3.30 InstallCore 3.51
Allaple 3.36 MultiPlug 3.50
Amone- 3.49 NeoreKlami 3.51
tize

Androm 3.51 Neshta 3.49
AutoRun 3.46 Regrun 3.40
Browse- 3.46 Sality 3.50
Fox

Dinwod 3.50 Snarasite 3.51
Elex 3.51 stantinko 3.51
Expiro 3.52 VBA 3.51
Fasong 3.51 VBKrypt 3.48
Hack- 3.50 Vilsel 3.48
KMS

HLUX 3.51 other (Normal) 12.87

4.1. Dataset description and pre-processing

In our experiments, we have used two datasets: Malevis (2013) and
Microsoft-Kaggle (2023). Malevis, used for experiments on the homoge-
neous case, has image representations for 26 classes, where 25 classes
are malicious classes and 1 class is designated as benign. These images
are used to create homogeneous malware datasets. There are two differ-
ent image sizes in the data, measuring in at width 224x224 pixels and
300x300 pixels. From a pool of 25 malware families, 15 were chosen as
the source, while the remainder contributed to the target data. Source
and target each received half of the benign class data. There are a total
of 5,814 images in the source, while the target has 3,875 images. Ta-
ble 1 provides information on the types and distribution of samples in
the Malevis dataset.

In the case of heterogeneous feature space, Malevis is used as the
source data, and Microsoft-Kaggle as the target data. There are 5,814
images in the source dataset and 1,099 image samples in the target
dataset. The corrupted images and lower-sized images were eliminated
from the data collection as they were unfit for the model. After fil-
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tering the corrupted images from the dataset, the remaining images
were downsized to 320x320 and 240x240 without losing any informa-
tion. Here, huge-size images were examined using the GANSs, starting
at 320x320 and scaling up to 600x600, while previous efforts only
evaluated 32x32-sized images. The pre-processing of datasets has been
performed for image datasets, w.r.t. homogeneous and heterogeneous
sources. For both the feature spaces, images were handled specifically.
Firstly, the PE binaries are converted to images. The images were con-
verted from csv through the OpenCV python library (OpenCV Python
Library, 2023), after which the images were resized for the model. The
model processes the specific size of images. For this, the process in-
volves mapping each bit to a pixel value between 0 and 255. When
a pixel’s value is 0, the corresponding bit value is 0, and when it’s
1, the corresponding bit value is 255. The bits are transformed into
a grayscale image by first arranging the n-pixel dots in a matrix. Then
this matrix is transformed into a specific image by allocating appropri-
ate grayscale pixel value to the image. The image structure is preserved
by performing the pixel allocation row-by-row (Bensaoud et al., 2020).
After attaining the image, additional image enhancement is done by
noise reduction and image resizing.

5. Result analysis and discussion

To evaluate the performance of MD-ADA, we compare it with a TL
approach based on fine-tuning applied to the images obtained from the
PE binaries. The models are evaluated for both homogeneous and het-
erogeneous feature spaces. The accuracy and F1-score metrics are used
to evaluate the performance:

» Accuracy: The accuracy measures the overall correctness of our
classification model by considering both true positive and true neg-
ative predictions:

TP+TN
TP+FP+TN+FN
+ Precision: Precision quantifies the ratio of correctly predicted pos-
itive observations to the total predicted positives:
TP
TP+ FP
+ Recall (Sensitivity): Recall calculates the ratio of correctly pre-
dicted positive observations to the total actual positives:
TP
TP+ FN

» Fl-score: The Fl-score is the harmonic mean of precision and re-
call, providing a balanced evaluation of the model’s performance:

Accuracy =

Precision =

Recall =

Precision X Recall

Fl-score =2 X —
Precision + Recall

Here, the terms are defined as follows:

» TP (True Positive): Instances correctly predicted as positive.
 FP (False Positive): Instances incorrectly predicted as positive.

» TN (True Negative): Instances correctly predicted as negative.

» FN (False Negative): Instances incorrectly predicted as negative.

Fine-Tuning Approach.

The fine-tuning approach uses the CNN-based ResNet-50 model
(Koonce, 2021) trained on the source dataset and then fine-tuned on the
target samples for approximately 500 epochs. We first train the ResNet-
50 with source data using Adam optimizer with a learning rate of
0.0005. Then we retrain the last two fully connected layers of ResNet50
and freeze the top layers to allow the gradient to only back-propagate
through the fully-connected layers. The back-propagation was restricted
to the fully-connected layers to learn patterns of the discriminative con-
volution layers. We fine-tune with the target data at a much lower
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Table 2
Results for the homogeneous feature space scenario.

Samples used for F1-Score

training from

Accuracy

Target Dataset Fine Tuning- ~ MD-ADA- Fine Tuning-  MD-ADA-
Target Target Target Target
100 0.59 0.865 0.47 0.845
200 0.67 0.865 0.60 0.847
500 0.72 0.857 0.69 0.853
800 0.747 0.879 0.736 0.859
1000 0.762 0.881 0.764 0.864
2000 0.791 0.885 0.784 0.867
3500 0.835 0.893 0.8413 0.875

learning rate of 0.0001 using Adam optimizer. For testing the fine-tuned
model, we randomly select 200 samples each (not included in the train-
ing set) from both source and target data.

5.1. Homogeneous feature space

Datasets. From a total of 25 malware families in the Malevis
Dataset, 15 were selected as the source classes, and 10 as the target
classes. It is done for the purpose of testing the outcomes on the source
as well as the target for homogeneous feature space data. In comparison,
the target data only has a total of 3,875 samples whereas the source data
consists of 5,814 samples. The images of different sizes are included in
the dataset ranging from 224 to 300 pixels. These images were resized
to 224*224 width for the model. We model the malware classification
as binary i.e. predicting whether the image samples of the source data
belong to malware or normal category.

Experiments. MD-ADA has been trained on the target samples up
to 450 epochs for 100, 200, 500, 800, 1000, 2000, and 3,500 target
samples since we have only 3,875 samples in the target. The learning
rate (a) for performing the experiments for homogeneous feature space
was set at 0.001. The training time was 4950 seconds. The main gen-
erator was fed with the array 1*512 generated from the CNN model
architecture representing the images of source and target generators.

Performance results on the source dataset. The experiments were
performed to test the model on the source data and achieved an accu-
racy rate of 92% and an Fl-score of 0.916 on the source data images.
The results show that MD-ADA outperforms the fine-tuning approach
in accuracy by 23% on 100 samples and 8.5% on 3,500 samples (max-
imum sample images). A significant difference in Fl-score is observed
when tested for 100 data samples obtaining a score of 0.47 with fine-
tuning approach and 0.81 with MD-ADA. In the case of 3500 target
samples, MD-ADA has a gain of 7.47% in the F1-score.

Performance results on the target dataset. When observed on the
target test samples for the variable training samples fed to the model,
the model is able to achieve a considerable accuracy of 89.3% for 3,500
target training samples. Fig. 5 shows that the model achieves a huge
gain of 27.5% on 100 samples and improves constantly with an in-
crease in the target training samples achieving the maximum accuracy
of 89.3% which is 5.8% better than the accuracy achieved from the
fine-tuning approach. The F1- score of 87.5% has a positive effect on
the performance of the target task, leading to more precise and reliable
predictions in a scenario of minimal labeled samples. When compared
with fine-tuning approach, the gain in F1-score observed is 3.37% for
3,500 samples.

5.2. Heterogeneous feature space

Datasets. For different feature spaces, the tests have been conducted
on image representations of malware using Malevis as the source data,
which has 5,814 samples, and the Microsoft-Kaggle dataset, which con-
tains 1,099 image samples, as the target data. For evaluation, the target
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Fig. 5. Performance Analysis for the homogeneous feature space scenario.
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Fig. 6. Performance Analysis for the heterogeneous feature space scenario.

Table 3
Results for the heterogeneous feature space scenario.

Samples used for F1-Score

training from

Accuracy

Target Dataset Fine Tuning- MD-ADA- Fine Tuning- MD-ADA-
Target Target Target Target
100 0.43 0.68 0.41 0.65
200 0.62 0.741 0.59 0.735
500 0.68 0.7528 0.63 0.749
800 0.71 0.763 0.67 0.771
1000 0.742 0.776 0.732 0.794
1099 0.759 0.8323 0.741 0.817

data contains a various number of samples, and the source data con-
tains 5,814 images. We performed experiments for 100, 200, 500, 800,
1000, and 1,099 samples from the target dataset.

Experiments. We prepared the images using our CNN architecture
to a 1*512 embedding from the source and target generators and then
applied the main generator for classification and domain prediction.
The source and target data were used to train the model and tested
the source images and target images with varying target samples. We
feed the data for the source (Malevis) and target (Microsoft-Kaggle)
to MD-ADA for classifying the sample images as malware or normal.
As the fine-tuning approach works only for the data belonging to the
same feature space, we resized the source and target data to the same
dimension.

Performance results on the source dataset. MD-ADA achieves
good results on image datasets compared with the fine-tuning approach
with the accuracy on the source being 88% and Fl-score 0.866 as
depicted in Table 3. Fig. 6 presents the results on the accuracy and F1-
score for the different feature space scenarios. The MD-ADA framework
achieves a 0.004% gain in accuracy and 0.045% in F1l-score on 100
target samples as compared to the fine-tuning approach. This proves
MD-ADA is suitable for detecting the target samples and performs well
for unseen malware and from the different feature sets.

Performance results on the target dataset. Conducting experi-
ments on the target samples proved to be the most challenging aspect of
the experiment due to the limited quantity of samples available. The ob-
served accuracy for the different feature space scenario achieved is 68%
which is 2.5% better than the fine-tuning approach for 100 target sam-
ples. When fed with maximum samples the model achieved an accuracy
of 83.23% being 7.3% better than the accuracy by fine-tuning approach.
The model’s capacity to adapt and learn from the available data may be
restricted by inadequate initial sample sizes of 100 and 200 samples.
Incrementally increasing the sample size can be useful as the model
gradually adjusts and gains knowledge from additional data points. The
challenge of achieving generalization during fine-tuning arises due to
the domain shift between the two domains, leading to a decreased ac-
curacy of the fine-tuning approach. The F1-score achieved by MD-ADA
on target data on 1,099 training samples is observed to be 81.7% be-
ing 7.6% better than the fine-tuning approach. Domain discrepancies
between source and target might cause imperfect adaptation, reducing
precision and recall. This can be the reason for the lower fine-tuning
F1-score.

6. Performance evaluation on BODMAS and Malmem-2022

The model uses the BODMAS dataset (BODMAS, 2023), which in-
cludes binaries, feature vectors, and metadata for 57,293 malware files
and 77,142 benign Windows PE files, to train the model on homoge-
neous data. The BODMAS data consists of 2,381 discrete features. Dupli-
cate and missing values are checked for in the data. We further looked
for the presence of a set of defining features. We used a probability-
based sampling method to choose 90k samples for the source data and
44,435 samples for the target data. With regards to heterogeneous data
sources, We selected the CIC-MalMem-2022 (CIC-MalMem-2022, 2023)
target dataset containing 55 features and the BODMAS dataset as our
source data due to the abundance of malware samples it included. There
are a total of 58,596 records in the database, with an even split between
the two categories (29,298 records). We selected a quarter of both the
source and target datasets for our tests.
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Table 4
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Result for Homogeneous feature space-BODMAS.

Data no. of samples F1-Score Accuracy (class) Loss Accuracy (Domain)
Source 90 K 0.9913 0.9929 0.8575  0.4780
Target 44,435 0.8996 0.9507 0.8575  0.3637
Accuracy Graph for malware tabular (Homogenous) Combined Loss Graph for malware tabular (Homogenous)
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Fig. 7. Accuracy and loss rate for homogeneous tabular (non-image) data.

Table 5
Result for heterogeneous feature space.

Data no. of samples F1-Score Accuracy (class) Loss Accuracy (Domain)
Source  1,34,435 0.9127 0.9012 0.96  0.4522
Target 58,596 0.8764 0.8714 0.96  0.4203
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Fig. 8. Accuracy and loss rate for heterogeneous Feature space: CICMalmem-2022 and BODMAS.

We present the results for both homogeneous and heterogeneous
feature spaces as discussed below:

As a result of the fact that we had a significant quantity of tabular
data, we discovered that it was feasible for the model to be executed
throughout a substantial range of epochs. The conclusions drawn from
the BODMAS dataset in tabular form. The total number of epochs for
the experiments was 3500, and by the time they were through, we had
reached an accuracy of 99.29% for the source and 95.07% for the tar-
get, respectively is shown in Table 4. The Fl-score of 99.13 and 89.9,
which demonstrates how effectively our model processes data that is
imbalanced across classes. Fig. 7 shows the accuracy curve for source
and target set and the loss rate of the model for 3500 epochs. The CIC-
Mal-mem dataset had 58,596 samples that were intended to be used
as target data, whereas the BODMAS dataset comprised 57,293 mali-
cious software samples and 77,142 benign software samples to be used
as source data. When using a learning rate of 0.001 and doing experi-
ments for up to 3500 epochs, a satisfactory accuracy of 90.1% is reached
on the source data, and 87% is achieved on the target samples as pre-

sented in Table 5. The Fl-score of 0.91 on the source, and 0.87 on the
target, respectively, demonstrates the usefulness of the model across the
various feature spaces. In Fig. 8 the curves for accuracy (left image) and
loss rates (image on right) are depicted for 3000 epochs.

7. Related works

Approaches have been recently proposed that apply TL techniques
and also the fusion of GANs in different security application domains.

Singla et al. (2020) proposed a GAN-based DA method to train DL
classification models for network intrusion detection with minimal la-
beled data in the target domain. In this approach, the features required
for training the model were selected using the principal component
analysis (PCA). However, the use of PCA has some drawbacks, namely it
requires information to be normalized and also to trade-off information
loss versus dimensionality.

To address such issues, MD-ADA does not rely on PCA. Instead, MD-
ADA uses a CNN architecture that consists of max-pooling layer (of size
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4*4) to deal with dimensionality reduction in images. The dimensions
are reduced based on the size and stride of the pooling regions. Selecting
the maximum values within each pooling region helps to extract the
most dominant features from images. It reduces the width and height of
the feature map while preserving the most important information.

A relevant approach related to malware is the Xception model (Lo et
al., 2019), which uses a DeepCNN to categorize malware families. The
Xception model is available on Keras and has been pre-trained on Ima-
geNet data. Lo et al. (2019) utilized the model to train on the Malimg
and Microsoft kaggle datasets. They use a three-layer ensemble model
that does not involve feature engineering. Their model achieves a re-
duced log loss and an accuracy of 99.94% on predictions from ‘.bytes’
and ‘.asm’ files. The major drawback of Xception is that it does not
work for unseen malware datasets. To address such drawback, Kim et
al. (2017) proposed an approach that uses a transferable deep convolu-
tional GAN to detect zero-day malware.

A deep autoencoder is used to learn the detector, which captures
malware characteristics from actual and synthetic data for stabilizing
discriminator training.

The model was utilized to analyze a Microsoft-Kaggle dataset that
had been converted into distorted-size malware images for validation
purposes. The model was able to achieve a detection accuracy rate of
95.74%. However, auto-encoders used for dimension reduction often
fail to learn the important features because of directly passing the in-
put to the output layer. Deep autoencoders are prone to overfitting,
especially when the training dataset is small or noisy, whereas, MD-
ADA proves to be an efficient model when trained with minimal labeled
data. By using binary reconstruction, malicious functionality can prob-
ably be identified. This indicates using a technique known as “Deep-
Reflect” (Downing et al., 2021) to find malware in software binaries
comprehending their inherent functioning by employing deep learning
techniques. The aforementioned procedure encompasses the extraction
of patterns, features, and behaviors from binary code identifying benign
and malicious software. To achieve effective generalization, deep learn-
ing techniques typically necessitate a substantial quantity of diverse and
accurately labeled training data.

The aforementioned techniques necessitate a significant amount of
annotated data to effectively train the model and produce desirable
outcomes. Also, the model might underperform in the case when it is
fed with different domain data, whereas the ADA technique used in
MD-ADA overcomes such limitation by performing domain adaptation
requiring only a small amount of labeled data for training.

Traditional ML algorithms are unable to withstand domain shifts
and perform poorly when data distribution changes during DA. Wang
et al. (2022) proposed an unsupervised DA model for malware detection
by correlating the malware data distribution for known and unknown
samples to address this issue. Their approach consists of two stages: the
first involves minimizing the distribution divergence between domains
through adversarial learning on the extracted features, and the second
involves aligning the pseudo-labeled target domain and class centers of
the labeled source domain to extract more information from the un-
labeled target domain, thereby minimizing class-level data divergence.
In the residual network, the self-attention mechanism is employed to
extract more accurate features. The model’s success may be compro-
mised if the distributions diverge or if there are significant differences
between known and unknown malware samples, unlike MD-ADA which
can perform in both similar and different feature distribution scenarios.

Malware detection in devices running on Android using ML tech-
niques is based on the API features and functions used by the malware.
The features of an API include features like the API’s call sequences
and access controls Fu et al. (2021). The source code and comments
present are sometimes disregarded during the examination of Android
APK, yet they are a vital step in spotting android malware. Therefore,
Huang et al. (2022) introduced AndroidSEM, which is focused on a
transformational architecture that provides source code comments for
pretraining the framework and optimizing using GANs. The linear re-
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gression model is used to get high-quality feedback related to semantic
improvement. After that, the Quantum SVM is used to categorize the
malicious android code with a classification accuracy of 99.01% with
the use of quantum feature mapping. The model performs poorly when
target classes overlap due to noise and in spaces with a high num-
ber of dimensions. The number of training instances available may
not be enough to accurately represent the underlying data distribu-
tion (Gupta et al., 2016). Therefore, MD-ADA is best suitable for such
scenarios where it is showing good accuracy in minimal labeled situ-
ations. Alotaibi’s 2022 suggested a multidimensional DeepGAN model
to identify mobile malware with an average accuracy of 96.2%. The
pattern and sequence information provided by the API is pixel-to-pixel
processed by conditional GAN inside a multi-face framework that also
makes use of a hybrid GoogleNet and LSTM. GoogleNet employs nine
inception modules, which is the maximum allowed by the framework,
to achieve optimal success in deep learning. As a model’s parameters
increase, its susceptibility to overfitting increases. The parameter ex-
plosion at the inception levels is undesirable and requires the model
to reduce feature representations for the target variable to accommo-
date within the available feature space. To encounter this, autoencoders
aid in lowering the feature dimension that may be used to distinguish
malicious software from benign software. Based on the autoencoder’s
reconstruction error, the approach by Xing et al. (2022) for DL-based
malware detection evaluates the efficacy of the malware image repre-
sentation. The malware was identified from benign training using the
multi-layer perceptron (MLP) learned by extracting high-dimensional
characteristics and using the output of the pre-trained auto-encoder-1
(AE1) with 96% accuracy. However, Smmarwar et al. (2022) devel-
oped a three-stage deep learning-based malware detection system for
IoT-based smart agriculture that makes advantage of the fusion of GAN
and discrete wavelet transform to overcome the constraint of detecting
malware variants (DWT). Characteristics are retrieved using discrete
wavelet transform, and then those features are used by a GAN to iden-
tify malicious software. In order to improve the classification accuracy,
the DWT extracts the approximation coefficients, and the detail coeffi-
cients and associates them with the generator and the discriminator,
respectively, to use the image fusion in the GAN model. Multi-class
malware family identification is achieved by using a lightweight CNN
model. While some of the prior research employs the concept of ex-
pressing the malware as images, few address the problem of domain
adaptability and the availability of low-labeled data for training, limit-
ing their usefulness for malware detection. To the authors’ knowledge,
no prior works have attempted to tackle the malware detection problem
using a unified framework that considers malware images, low-labeled
training data, and domain adaptation, without the need of PCA for han-
dling high dimensions.

8. Comparison with state-of-art approaches

To show the efficacy of the model, MD-ADA approach is compared
with the state-of-art approaches depicted in Table 6. The study con-
ducted by Yang et al. (2021) presents DeepMal that aims to maintain
harmful attributes while training models for static malware detection
through adversarial instruction learning. DeepMal utilizes adversarial
training to produce adversarial samples that preserve malicious char-
acteristics while evading static detection algorithms. The work seeks to
overcome the constraints of current static malware detection techniques
by developing models that can accurately distinguish between benign
and malicious samples.

Muneer et al. (2022) propose a novel method that combines deep
learning techniques to find anomalies in high-dimensional data with-
out the need for labeled examples. The work aims to efficiently detect
anomalies in datasets without relying on labeled training samples. The
suggested approach integrates deep learning approaches to tackle the
difficulties given by high-dimensional data. The authors provide a com-
prehensive description of the hybrid deep learning model and its uti-



S. Bhardwaj, A.S. Li, M. Dave et al.

Table 6
Comparison of MD-ADA Approach with state-of-art approach.

Model F1-Score ~ Accuracy = PCA
needed
MD-ADA (Source) 0.9127 0.9012 X
MD-ADA (Target) 0.8764 0.8714 X
DANN +SGD (Muneer et al., 2022) 88.23 86.99 v
DeepMal Resnet Classifier (Yang et al., 2021) 0.9215 0.9213 v

lization in anomaly detection. The objective of the work is to improve
the identification of irregularities in intricate datasets by employing a
fusion of advanced deep learning and PCA.

The MD-ADA framework exhibits robust performance in both the
source and destination domains. MD-ADA demonstrates a high level of
performance in the source domain, achieving an F1-Score of 0.9127 and
an accuracy of 0.9012 on the BODMAS dataset. In the target domain, it
maintains strong performance with an F1-Score of 0.8764 and an accu-
racy of 0.8714. It is important to highlight that PCA is not necessary for
MD-ADA in any area, highlighting its effectiveness in managing high-
dimensional data without reducing its dimensions. The DANN with SGD
model, demonstrates competitive performance, achieving an F1-Score
of 88.23 and an accuracy of 86.99. Nevertheless, it necessitates the use
of PCA, indicating a dependence on dimensionality reduction methods.
Similarly, the DeepMal Resnet Classifier (Yang et al., 2021) achieves re-
markable performance, with an F1-Score of 0.9215 and an accuracy of
0.9213. However, it also requires the use of PCA. The inclusion of PCA
in these models necessitates a balance between performance and the in-
tricacy resulting from the reduction of data dimensionality. MD-ADA is
noteworthy for its efficacy in both source and target domains without
the need for PCA.

9. Conclusion

The lack of data from a wide range of malware domains is a major
limitation for supervised learning to succeed when applied to malware
detection. There is a chance that a supervised learning model falsely
identifies a threat because of the wide variety of obfuscation techniques
and lack of data used to train it. Due to the growing sophistication of
malware evasion strategies, it is essential to have accurate models that
can learn and expand over time when there is an increase in the amount
of unknown data. In order to detect novel forms of malware, researchers
have proposed GAN-based models, trained using deep learning methods
to learn and evolve over time.

In order to build a powerful discriminator and classifier that can
identify threats in real-time with greater accuracy than a supervised
learning model, we proposed a GAN framework that uses images of
malware as input. To narrow the gap between domains, we use domain
adaptation for training three generators and a discriminator. Our exper-
imental results show that our framework has superior performance in
identifying malware based on its image representations. The measures
of accuracy and Fl-score show that our proposed model works best
with low or no labeled data in both homogeneous (uniform) and het-
erogeneous feature spaces. The key differentiator of our model is that
the model does not require any PCA or dimension reduction technique
to filter the features for model training. MD-ADA is highly effective in
both the source and target domains, even when compared with state-
of-art approaches delivering impressive performance without the need
for PCA.

In future work, we plan to consider malware data from systems run-
ning Android, the internet of things (IoT), and Linux and use this data
for further experiments. Such experiments will allow us to further eval-
uate the flexibility of our framework when the source organization and
the target organization uses different data distribution formats. How-
ever, this can be a challenging task to address. Also, when malware data
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is made accessible, there is the possibility that data could be leaked to
attackers. We will thus investigate the use of data-preserving DA tech-
niques to prevent source data leakages.
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