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Abstract— Long wavelength light detection and ranging (Li-
DAR) sensors have emerged as an essential component for
increasing the accuracy and range of perception of autonomous
vehicles because they employ directed lasers with wavelengths
longer than 1µm. However, adverse weather conditions like
fog, rain, and snow pose a major challenge. Long-wavelength
lasers generally exhibit increased absorption and scattering
by water-based ambient particles compared to those with
short wavelengths, which reduces sensor accuracy. Filtering
out ambient particles is crucial for accurately representing
the surrounding environment to ensure safe navigation. Despite
extensive research on filtering snow particles from LiDAR point
clouds, there is little documented research on long-wavelength
LiDAR. Furthermore, existing filters that can be used with long-
wavelength LiDAR sensors are limited in speed and accuracy,
impeding their implementation in autonomous vehicles. In
this paper, we propose a Network-Adjusted Reflectance Filter
(NARF), a novel two-phase, physics-informed filtering method
for long-wavelength LiDAR that outperforms the state-of-the-
art geometric filters in terms of both speed and accuracy. The
NARF first uses a physics-based range-corrected directional
reflectance (RCDR) filter for initial snow particle classification,
followed by a CNN-based RestoreNet to refine the RCDR pre-
dictions. Due to the lack of open-source datasets collected from
long-wavelength LiDAR systems, we use a custom experimental
dataset obtained during a snow event to train and validate the
proposed filter.

I. I�����������

The autonomous vehicle industry is rapidly evolving,
driving fast advancements in LiDAR sensor technology and
capacity, along with steadily decreasing costs. This makes
large-scale LiDAR deployment in the near future inevitable
[1]. However, as a laser-based sensor, LiDAR is naturally
subjected to particle light scattering physics. For vehicles,
this means that ambient particles present during adverse
weather, such as fog, snow, and rain droplets can potentially
reduce sensor accuracy. Contamination in LiDAR measure-
ments due to snow particles remains a challenge.

It is crucial to tackle the degradation of LiDAR perception
due to snow particles to achieve safer operation of au-
tonomous vehicles. The understanding of automated LiDAR
performance in snow is twofold. On one hand, historical
studies investigating the physical and optical properties of
snow particles [2] provide a guide for modeling an accurate
perception environment from LiDAR. On the other hand,
modeling LiDAR performance is indispensable to evaluating
real-world measurement. Hence, the crucial aspects to ad-
dress are: first, how to couple snow statistics with the LiDAR
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(a) Experimental setup for custom dataset

(b) Point cloud view

Fig. 1: Spatial filters are typically less capable of detecting
clustered snow

performance model; and second, how to integrate the coupled
models into the data processing.

Light scattering theory holds that scattering is affected by
parameters including particle shape, size distribution, liquid
water content, laser wavelength, etc. Mie theory accounts
for scattering where particle size is either of the same order
as the laser wavelength or much larger. Larger particles
result in a scattering diagram that is more peaked in the
forward direction [3]. Automated LiDAR utilizes the particle
back-scattered energy to differentiate observed objects from
background noise. In [4], [5], rain droplet shape and size
distribution are modeled, which are then used to characterize
laser attenuation in a simulated environment. The correlation
between LiDAR reflected intensity and rain intensity is eval-
uated through experimental studies [6]. Another experimental
study quantified the actual laser attenuation at different
wavelengths (785 nm and 1550 nm) in fog [7]. Dust particles
have a comparable size to snow particles. When dust is
present, four levels of LiDAR return signal degradation are
derived, observed, and characterized in [8].

Commercially available LiDAR systems typically em-
ploy directed lasers with wavelengths of 905 nm (short-
wavelength) or 1550 nm (long-wavelength). Despite longer-
wavelength lasers having increased absorption by water-
based particles such as snow and fog compared to shorter
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wavelengths, there is a notable gap in the literature com-
paring the performance of long-wavelength and short-
wavelength LiDAR systems for autonomous vehicle appli-
cations in adverse weather conditions. Additionally, existing
snow-filtering methods have been developed and validated
using datasets captured by short-wavelength LiDAR systems.
This necessitates an investigation into the performance of
existing filters on data captured by long-wavelength LiDAR
systems.

The paper is organized as follows. Prevailing particle filters
for LiDAR data are reviewed in Section II. The problem
statement is formally defined in Section III. The experimental
setup and data collection process are described in Section
IV-A. The rest of Section IV explains the proposed Network-
Adjusted Reflectance filter (NARF). Section V presents the
experimental results using the NARF and compares the
results to conventional filters.

II. R������ W���

Conventional filters capable of removing snow particles
from LiDAR point clouds include spatial or distance-based
filters, intensity-based filters, and reflectance-based filters,
which we refer to collectively as physics-based filters, and
finally, data-driven or learning-based filters.

A. Physics-based Snow Particle Detection Methods

The Radius Outlier Removal (ROR) filter counts the
number of neighbors for each point within a specified search
radius and filters out points with fewer neighbors than a
set minimum [9]. The ROR filter uses a k-d tree data
structure for efficient nearest-neighbor search. The Statistical
Outlier Removal (SOR) filter calculates the mean distance of
each point to its nearby points (the number of neighbors is
specified). Points that surpass the weighted sum of the mean
distance and standard deviation are filtered [9]. The SOR
also uses a k-d tree for efficient search operations. One of
the primary drawbacks of the ROR and SOR filters is that
their parameters are fixed and not distance-dependent. This
results in farther points having a higher probability of being
classified as outliers. To address this limitation, the authors
of [10] developed the Dynamic Radius Outlier Removal
(DROR) filter which implements a distance-dependent search
radius for the nearest neighbors search. The farther the
point is from the LiDAR, the greater the search radius. The
authors reported DROR precision and recall rates of over
90%. The authors of [11] proposed an adaptive ROR using
PCA-based dimensionality reduction to remove noise from
point clouds, outperforming other spatial and density-based
filters. Subsequently, the authors of [12] developed the Low-
Intensity Outlier Removal (LIOR) filter that classifies points
as snow based on the intensity value of the point captured
by the LiDAR and then uses a spatial filter to restore the
few incorrectly classified snow points. The authors of [13]
presented a de-snowing approach that first filtered out snow
using an intensity filter and then leveraged spatiotemporal

information from the point clouds to restore the incorrectly
filtered points.

One persistent drawback of spatial filters is their reliance
on k-d trees for nearest-neighbor searches, which can be
computationally intensive. In the context of autonomous
cars where real-time processing is crucial, de-snowing filters
should be designed for high-speed execution. Spatial filters
are also more likely to miss moving snow clusters (Fig-
ure 1b). Moreover, these filters require empirical parameter
tuning. A feature of the LIOR filter, discussed in Section
V, is that it employs an intensity model tailored for 865
nm wavelength LiDAR systems, making it unsuitable for
long-wavelength LiDAR systems. Long-wavelength LiDAR
systems typically use higher-powered lasers compared to
short-wavelength LiDAR systems. This fundamental differ-
ence may impact the performance of intensity-based filters.
Moreover, laser power also influences measurement range,
which may impact the performance of spatial filters.

B. Learning-based Snow Particle Detection Methods

Data-driven methods used for de-snowing LiDAR point
clouds include WeatherNet [14] and LiSnowNet [15], both
of which are constructed using convolutional neural networks
(CNN). The authors of [16] present 4DenoiseNet, a neural
network-based snow-denoising model that also takes in the
time dimension as input, unlike any of the previous works.
In more recent work, the authors of [17] introduced SLiDE,
a self-supervised learning method for snow point removal in
LiDAR point clouds. It uses two deep neural networks that
exploit the low spatial correlations that snow points have with
their neighbors. However, these methodologies require pro-
jecting the point clouds onto a spherical coordinate system
as range images before filtering. Our current work bypasses
this conversion and directly processes the point cloud. Fur-
thermore, unlike the predominantly black-box models used in
these approaches, our method incorporates a central physics-
based component. This hybrid approach not only ensures a
more explainable model but could also potentially provide
more robust performance in varied environmental conditions.

C. Contributions

Our contributions are as follows: (1) We propose a novel
range-corrected directional reflectance (RCDR) filter for fil-
tering out snow particles from long-wavelength LiDAR point
clouds. (2) We propose a Network-Adjusted Reflectance Fil-
ter (NARF), a novel, two-phase framework that uses a neural
network, RestoreNet, to improve the baseline performance of
the proposed RCDR filter.

III. P������ D����������

Within the context of de-snowing LiDAR outputs, a point
cloud is defined as a set of 4-dimensional points {Pi|i =
1, 2, .., n}, where each point Pi 2 <4 contains the 3-
dimensional (3D) Cartesian coordinates and the reflectance
value of the point. The number of points in a point cloud, n,
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may vary depending on the environment. Given an unordered
set of points comprising a point cloud P , a snow filter should
return a processed point cloud Q = {Qi|i = 1, 2, ..,m},
where Qi 2 <4 are the non-snow points from P . The
objective is to find Q with high accuracy and precision.
To function in a practical setting, filters should ideally be
input order invariant (or permutation invariant) and have
low computational time complexity to enable fast real-time
processing.

IV. M����������

A. Data Collection and Annotation

A stationary experiment was conducted to study LiDAR
performance during a natural snow event. The LiDAR sensor
used in this work is a prototype product manufactured by
Luminar Technologies Inc. with a 1.55 µm wavelength. The
sensor is capable of scanning 120� and 30� in the horizontal
and vertical directions, respectively. The system can acquire
approximately 880 ⇥ 64 data points at 10 Hz sampling
frequency, achieving an angular resolution of roughly 0.136�
and 0.47� in the horizontal and vertical directions, respec-
tively. An outdoor test with the LiDAR mounted on top of
a test vehicle resulted in snow accumulation on the laser
lens leading to heavily contaminated snapshots. Since this
can be circumvented only by systems like a heating unit or
a shield-wiper and not by algorithmic post-processing, the
LiDAR was placed indoors on a portable table facing the
target vehicle approximately 10 meters away (Figure 1a). In
addition to snow accumulated on objects, the LiDAR was
also able to capture snow suspended in the air, similar to
what a vehicle-mounted LiDAR would capture in the absence
of intervening objects. This makes the setting a suitable
representation of real-world driving.

The LiDAR sensor reported the 3D Cartesian coordinates
and reflectance of the captured points. The reflectance value,
or RCDR, is the ratio of the total received energy to the
total incident energy of each laser beam. The RCDR value
is scaled to be one at any range if the reflector is a
Lambertian (isotropic) target. About 2837 LiDAR snapshots
were collected during the snow event, out of which 200
consecutive snapshots were selected for training and testing
the neural network. A two-step approach was adopted to
annotate the dataset. Firstly, if the RCDR is below or equal to
0.02, the LiDAR sample point is labeled as snow, otherwise,
it is labeled as non-snow. The threshold of 0.02 was derived
theoretically as described in the next section. The second step
is to manually annotate the snow particles to re-label the false
positives on hard targets and the obvious true negatives.

B. RCDR-based filtering

In [18], a formula is established to model the RCDR of
1.55 µ wavelength laser from ambient snow particle:

I ⇠ Pr

Pi

L
2

O(L)
=

h
c⌧

2
A⌘

i
⇥ �b ⇥ e

�2�e (1)

where Pr, P0 are the received and incident power respec-
tively. L is the distance from receiving aperture to a certain
snow particle. The term O(L) is the LiDAR geometric factor
and the first term on the RHS is LiDAR system factor [19].
These two factors can be treated as constant once the LiDAR
is deployed. � is the laser wavelength of 1.55 µm. Usually
for a cluster of snow particles, back-scatter coefficient �b and
extinction coefficient �e can be defined as:

�b =

Z 1

0
Qbck(x,m)⇡r2n(r) (2)

�e =

Z 1

0
Qext(x,m)⇡r2n(r) (3)

where r is the radius of the snow particle, assuming a
spherical shape, and n(r) is the number of particles with
an equivalent radius of r. x is defined as a unit-less ratio
x = 2⇡r

� and m is the refractive index of snow, which can
be approximated as 1.33 [2]. Qbck and Qext are a function
of snow particle size distribution. The analytical solution of
Qbck and Qext as a function of size parameter x can be
computed from the software Mieplot [20].

For an individual snow particle, the RCDR can be reduced
to a Beer-Lambertian approach as:

I ⇠ Const.⇥Qbck(x,m)e�2Qext(x,m) (4)

To model the snow size distribution, we adopt the Gunn-
Marshall distribution as [21]:

n(Dm) = nmexp(��mDm) (5)
Noted that nm and � are defined by following results in [22]:

nm = 2500R�0.94
s (6)

� = 22.9R�0.54
s (7)

Rs is the precipitation rate and Dm is the diameter of a
water drop to which a snow particle melts. According to
[21], the former can be interpolated by using the extinction
coefficient as input. The visibility sensor measures the snow
extinction coefficient at a fixed sampling spot. And assuming
the homogeneity of snow distribution the precipitation rate
of snow is estimated to be around 0.3 mm/hr.

In order to simulate the distribution of n(Dm), we first
sample snow particle diameter Dx from 0.01 mm to 1 mm

uniformly. Based on the Equation 5, an inverse transform
sampling technique is performed.

rinv =
1

�2�
log(

Dx

nm
) (8)

where rinv is the simulated snow particle radius randomly
sampled by following the Gunn-Marshall distribution. We
obtain and substitute Qext and Qbck value back to Equation
4 to finally compute the simulated snow particle RCDR.
The Constant in Equation4 can be set to one without loss
of generality. Comparing the histogram of RCDR from the
simulation and the experimental data in Figure 2, a strong
agreement is observed. More importantly, both simulated
RCDR and experimental data present the same cut-off value
at 0.02, which is then set to be the threshold for RCDR-
based filtering. The distribution plot for the experimental
data for RCDR values larger than 0.02 can be noisy with
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multiple local peaks, which can make the determination of
an appropriate threshold difficult. This supports the need for
a physics-based simulation to determine the cut-off value.

Fig. 2: Histogram of simulated and experimental RCDR
values

It was observed that the RCDR filter exhibited varying
classification capabilities based on the RCDR values of the
points in the cloud. The filter has high accuracy above the
0.02 threshold, which means high confidence in predicting
non-snow points. The relatively low accuracy of the RCDR
filter below the threshold of 0.02 calls for a second filtering
method specifically to re-classify the detected snow particles
to correct false positives.

Fig. 3: Visualization of the RCDR filter’s output. False
positives were detected on the rear side of the vehicle due
to the high angle of incidence of laser beams

A notable observation from the output in Figure 3 is the
nature of the false positives detected by the RCDR filter.
Surfaces like the rear wheel arc of the vehicle are oriented
such that the angle between their normal and the line of
sight from the LiDAR is high. Such spatial orientations
result in the laser beams hitting the surface with high angles
of incidence because of which the intensities of the beams
returning to the sensor are low. This causes the RCDR filter
to classify such points as snow. Hence, it is necessary to use
a secondary filter that restores the false positive points back
into the original point cloud.

C. Restoring False Negatives

Inspired by the accuracy of WeatherNet [14], we imple-
ment a CNN-based framework called RestoreNet (Figure 4)
that restores false positives detected by the RCDR filter back
into the filtered point cloud. Carrying forward the definitions

from the authors of [23], a set of points in <n that make up
a point cloud has the following important properties:

1) The points are unordered. Hence, any class of filter that
is applied on such point clouds needs to be input order
invariant, i.e., a change in the order of the input must
not result in a different point-wise output.

2) Neighboring points form meaningful local representa-
tions. Points that are close to each other are more likely
to share geometric and optical properties than points
that are far from each other.

(a) Input transform architecture

(b) RestoreBlock architecture

(c) RestoreNet architecture

Fig. 4: Illustration of the individual components of Re-
storeNet inspired by WeatherNet architecture [14]

Considering the two properties, it was necessary to trans-
form the input point cloud to a canonical order before
allowing the network to learn local representations. The input
transform block in Figure 4 predicts a Cartesian transforma-
tion matrix (labeled as T-Matrix in Figure 4a) that transforms
the raw input cloud into a canonical order. The transformed
point cloud is then fed into a series of RestoreBlocks that
form the building blocks of RestoreNet. The RestoreBlocks
consist of convolutional filters and transform input point
sets from size N ⇥Mi to N ⇥Mi+1. The architectures of
the RestoreBlock and RestoreNet are case-specific variants
of LiLaBlock and LilaNet [24]. The complexities of the
respective architectures are reduced, given that the purpose of
the RestoreNet is to correctly reclassify false positive snow
particles. A dropout regularization layer is added after the
second RestoreBlock to prevent overfitting. The output of
the RestoreNet is a set of logits {Si|i = 1, 2, .., N}, where
Si 2 <N⇥1 represents the probability that the ith point being
a snow particle.
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Algorithm 1: Network-Adjusted Reflectance Filter
Input: P = {[Pix, Piy, Piz, Pir]|i = 1, 2, .., N}, rthres
Output: S, NS

1 NS  ; // Points classified as non-snow
2 S  ; // Points classified as snow
3 for p in P do
4 if Pir  rthres then
5 S  S [ {p}
6 else
7 NS  NS [ {p}

8 logits Run RestoreNet(P )
9 for p in S do

10 if logits[p] < 0.5 then
11 S  S \ {p} // Remove from S
12 NS  NS [ {p} // Restore to NS

D. RestoreNet training

Network hyperparameters were optimized using grid
search with 3-fold cross-validation. The dropout layer prob-
ability was set to 0.3. The batch size b for training was set
to 10. The learning rate was scheduled with an exponential
decay rate of 0.9 for every 150 epochs. The Adam solver
was used for the training process, with the suggested default
values �1 = 0.9,�2 = 0.999, and " = 10�8 [25]. The dataset
is split into a training set (75%) and a test set (25%). The
loss function used for forward pass evaluation was binary
cross entropy as the network is a point-wise binary classifier.
Since the dataset consists of point clouds with stationary
objects and non-stationary snow particles, we implemented
a data augmentation technique in which each point cloud was
subjected to 3D axis translation to prevent overfitting.

P
0 = P + d

d ⇠ U(�D,D)
(9)

The translation can be mathematically represented by
Equation 9, where P is the original point cloud, P 0 is the
augmented point cloud, and d is a random number generated
from a uniform distribution with upper and lower bounds �D

and D respectively. The value of D for the training process
was set to 5 meters. Additionally, the raw point clouds
were padded with dummy points positioned at the origin to
ensure all the point clouds to had the same number of points
(N=22000), ultimately aiding in the training process.

V. R������ ��� D���������

A threshold-based RCDR filter was first implemented on
the custom dataset. Since the RCDR filter is not a spatial
filter and operates on individual points, it remains effective
regardless of the LiDAR’s angular resolution. RestoreNet was
then trained on the dataset to restore false positives back
into the filtered point cloud with hyperparameters optimized
as discussed in Section IV-D. Figure 5 shows the bin-wise
accuracy of RestoreNet, where each bin is 0.025 units long
in the output probability space and the bins span the whole
output range: [0.0, 1.0]. It was observed that RestoreNet was
least confident when it classified a point with a probability in

Table I: Performance Metrics Comparison

Metric DROR [10] LIOR [12] RCDR NARF (proposed)

Accuracy 0.6910 0.9444 0.9517 0.9879
Precision 0.9105 0.8740 0.8767 0.9814

Recall 0.0421 0.9660 0.9887 0.9808
IOU 0.0419 0.8480 0.8680 0.9629
TNR 0.9980 0.9341 0.9342 0.9912
FPR 0.0019 0.1391 0.0658 0.0088
FNR 0.9578 0.0160 0.0112 0.0192
MFT 0.5946 0.3769 0.0005 0.1957

Table II: Effect of shuffled input

Shuffle % 0% 25% 50% 75% 100%

Accuracy 0.9886 0.9809 0.9740 0.9675 0.9579

the ranges [0.4, 0.475) and [0.525, 0.625). However, it was
observed that predictions in these ranges were predominantly
for points that are not snow particles, for which the RCDR
filter exhibited high accuracy. Figure 7 provides a visual
comparison between the outputs of the NARF and the RCDR
filter. It can be observed that the false positives that were hard
targets on the rear of the vehicle are restored back into the
point cloud.

Input order invariance is an important constraint for the
NARF. An input transform block, as shown in Figure 4a,
was used to transform the input points to a canonical form.
To test the robustness of the algorithm to changes in input
point order, a random point cloud in the test dataset was
shuffled to four progressively more extensive degrees: 25%,
50%, 75%, and 100% of points. For each of these scenarios,
and the non-shuffled case, the accuracy of the NARF was
calculated as reported in Table II. The accuracy dips slightly
as the extent of shuffling increases, and the accuracy falls by
3.07% on average when all points are shuffled, showing that
the algorithm is fairly robust to changes in input point order.

A. Performance Metrics

Three preliminary performance metrics, four key perfor-
mance metrics, and a time complexity metric are used to
compare the different de-snowing methods. The preliminary
performance metrics used are the True Negative Rate (TNR),
False Positive Rate (FPR), and False Negative Rate (FNR).

Fig. 5: Accuracy of RestoreNet for output bins
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(a) Snow classification using LIOR filter (b) Snow detected by RCDR filter (c) Classification using NARF

Fig. 6: Comparison of snow particle classification using different methods

(a) Rear view of the vehicle in the output of the RCDR filter

(b) Rear view of the vehicle in the output of the NARF

Fig. 7: Visualization of the capability of the RestoreNet in
restoring false positives back into the point cloud

The key performance metrics used for comparison are ac-
curacy, precision, recall, and intersection-over-union (IoU).
The formulations for these metrics can be found in [26].

Additionally, to compare the time complexity of the fil-
tering methodologies, the Mean Filtering Time (MFT, in
seconds) is used. MFT is the average execution time for
the filtering process of the point clouds using each of the
filtering methods. The compared filtering methodologies are
implemented on the whole dataset.

B. Experimental Results

The NARF, the baseline RCDR filter, the LIOR filter
[12], and the DROR filter [10] were compared with each
other. Table I shows the performance metrics for each filter.
The DROR and LIOR filters were tuned using the grid
search technique. The standalone RCDR filter and the NARF
outperformed the DROR and LIOR filters across multiple
key metrics. The DROR filter had the lowest FPR and highest
TNR, yielding the highest precision by significantly reducing
FPs. However, DROR struggled to correctly detect snow
particles, exhibiting low recall and a high FNR. Comparing
the overall accuracy, the RCDR filter (95.17%) outperformed

the LIOR filter (94.4%) and the DROR filter (69.10%), while
the NARF (98.79%) fared the best. As expected, the NARF
had a lower FPR and a higher TNR than the RCDR filter due
to the corrective capabilities of RestoreNet. Consequently, it
exhibits a 10.47% and 7.09% increase in precision from the
RCDR and DROR filters, respectively. Finally, the NARF
demonstrates a significantly lower MFT compared to DROR
and LIOR. The RCDR has a significantly lower MFT than
the NARF as RCDR filtering is the first step of the NARF.
This reduction in processing time underscores the high-speed
capabilities of the NARF, which is essential to ensure real-
time functionality of the filter is possible in autonomous
vehicle applications.

C. Bridging Physics and Learning-Based Filters

In this work, we focus primarily on physics-based or
physics-informed methods for snow detection due to their
high explainability. Black-box learning-based methods have
consistently been shown to outperform more explainable
methods, but concerns about the generalizability of black-box
methods to real-world adverse weather scenarios are worthy
of serious consideration. Indeed, in preliminary testing of
RestoreNet, when trained directly on the limited dataset
considered in this work (without input from the RCDR filter),
its accuracy marginally outperformed the NARF. However,
physics-informed methods like the RCDR filter maintain
important advantages: adaptability to new circumstances, re-
duced training data requirements, and greater explainability.

The NARF method seeks to leverage the advantages of
the physics-based RCDR filter with the high predictive
performance and flexibility of RestoreNet. The objective is
not for RestoreNet to overpower the influence of the RCDR
filter, but rather to augment its weaknesses. For example,
reflective surfaces are often falsely classified as snow by the
RCDR filter, and the optimal RCDR threshold may change
for different types of snow (e.g., particle size). RestoreNet or
a similar learning-based method may be able to correct for
such factors without overconfidently neglecting the strengths
of the RCDR filter as a physically sound baseline for identi-
fying snow particles.

D. Limitations and Prospects for Further Study

Concerns about NARF’s generalization to different adverse
weather conditions, such as rain or fog, are mitigated by its
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reliance on Mie theory, which applies Maxwell’s equations
assuming spherical particle shapes. Hence, rain, fog, and
snow can be treated similarly, except that the back-scatter
coefficient �b might be lower for fog due to smaller particle
sizes. Nevertheless, the main limitation of this work is the
lack of evidence for such generalization. This is attributed
to the limited dataset used in this study and the lack of
a diverse open-source dataset. As long-wavelength LiDAR
systems gain traction, we encourage the research community
to collect and publish more comprehensive datasets, similar
to the Winter Adverse Driving dataSet (WADS) [27], using
these systems in diverse road environments and driving
scenarios. Such data is needed to fully evaluate the novel
NARF and RCDR filters proposed in this work against state-
of-the-art learning-based methods.

If RestoreNet (or similar learning-based technique) is
capable of real-time application in autonomous vehicles, then
the overall NARF should also be suitably fast. Although the
reported MFTs show NARF to be faster than LIOR, vehicle-
in-the-loop tests should be used to validate these expectations
and ensure that filter latency falls within acceptable bounds
to maintain safe operation.

VI. C����������

In this work, we presented a novel reflectance-based
(RCDR) snow particle filter as part of a two-step method
for filtering snow from point clouds collected using long-
wavelength LiDAR. Experimental results showed the RCDR
filter had high recall, while RestoreNet, a new CNN-based
model inspired by WeatherNet [14], was used to effectively
identify and correct false positives. When tested on a limited
experimental dataset, the proposed NARF method filtered
snow while conserving points from solid objects, and im-
proved upon existing physics-informed methods both in terms
of accuracy and mean filtering time. More comprehensive
datasets from long-wavelength LiDAR systems are needed
to compare the NARF with state-of-the-art learning-based
methods, but similar models could be constructed for short-
wavelength LiDAR by replacing the RCDR filter with an
appropriate alternative.
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