
Rotary: A Resource Arbitration Framework for
Progressive Iterative Analytics

Rui Liu
University of Chicago
ruiliu@cs.uchicago.edu

Aaron J. Elmore
University of Chicago

aelmore@cs.uchicago.edu

Michael J. Franklin
University of Chicago

mjfranklin@uchicago.edu

Sanjay Krishnan
University of Chicago
skr@cs.uchicago.edu

Abstract—Increasingly modern computing applications em-

ploy progressive iterative analytics, as best exemplified by two

prevalent cases, approximate query processing (AQP) and deep

learning training (DLT). In comparison to classic computing

applications that only return the results after processing all the

input data, progressive iterative analytics keep providing approx-

imate or partial results to users by performing computations on a

subset of the entire dataset until either the users are satisfied with

the results, or the predefined completion criteria are achieved.

Typically, progressive iterative analytic jobs have various com-

pletion criteria, produce diminishing returns, and process data at

different rates, which necessitates a novel resource arbitration that

can continuously prioritize the progressive iterative analytic jobs

and determine if/when to reallocate and preempt the resources.

We propose and design a resource arbitration framework, Rotary,

and implement two resource arbitration systems, Rotary-AQP

and Rotary-DLT, for approximate query processing and deep

learning training. We build a TPC-H based AQP workload

and a survey-based DLT workload to evaluate the two systems,

respectively. The evaluation results demonstrate that Rotary-AQP

and Rotary-DLT outperform the state-of-the-art systems and

confirm the generality and practicality of the proposed resource

arbitration framework.

Index Terms—scheduling, deep learning, approximate query

processing, progressive analytics, model training, query execution

I. INTRODUCTION

A growing concern for organizations is high resource usage
in data analytics [1]–[4]. The concerns have become par-
ticularly acute over the last two years where a confluence
of factors, including supply chain shortages and a waning
Moore’s law, have discouraged organizations from simply
scaling out to cope with the ever-increasing analytics demands.
In this resource-limited world, every organization needs to
determine how to partition and share computing infrastructure
to adequately support all of its analytics users [5]–[9]. Despite
this importance, existing scheduling and resource allocation
approaches do not adequately support modern data analytics
workloads.

From aggregate statistics to machine learning, modern data
analytic jobs embrace approximation and uncertainty. They are
often progressive, where an iterative loop repeatedly refines an
answer until the desired completion criterion is met. In this
setting, job completion is a matter of user opinion, where a
user-defined rule has to be used to terminate the job when the
answer is deemed sufficiently accurate or unchanged.

A traditional job scheduler places an immense level of
trust in a user’s ability to decide when to terminate these
progressive iterative analytic jobs appropriately, which may

bring disastrous consequences. For example, consider a user
training a convolutional neural network for a fixed time of
500 epochs. Suppose the model actually converges in accuracy
after only 100 epochs; then 80% of this model’s training time
is a wasteful block on system resources. Similarly, the same
problem can occur in approximate query processing systems.
Suppose a user has been given a time budget of three minutes
to complete a reporting query over a data warehouse, but the
query result is precise enough for the application after one
minute. For these progressive iterative analytic jobs, overly
ambitious completion criteria can block key resources from
other users for an extended amount of time.

An ideal scheduler for progressive iterative analytic jobs
needs introspection into the convergence progress of each job
in the queue to be able to detect and preempt such anomalies
adaptively. These decisions need to consider a job’s prioriti-
zation, specified completion criteria, the available resources,
and other jobs waiting for the resources — a problem we call
resource arbitration, which is a novel adaptive and completion
criteria-aware scheduling paradigm. We identify two widely-
used applications that fit this resource arbitration paradigm: ap-
proximate query processing (AQP) and deep learning training
(DLT). In AQP, one executes queries on a subset of the overall
dataset or a data stream to return an approximate answer within
a user-specified error. In DLT, one updates the parameters of
the neural network-based model with a variant of gradient
descent repeatedly until the desired objective (e.g., accuracy or
convergence) is reached. In both of these scenarios, one needs
a resource arbitration system that can pause a running job at
the risk of dequeuing it in a partially complete state, in favor
of jobs that could better use the same resources, especially in
resource-constrained environments.

This strategy is only useful in a setting where an interme-
diate result has significant utility to a user, as is the case in
progressive iterative analytic jobs. We plot the progress curve
of sample AQP and DLT jobs in Fig. 1 to demonstrate this
trait. As the job progresses (and consumes more resources),
the incremental utility of each additional processing-second
spent decreases. These diminishing returns have to be factored
into the scheduling algorithm, especially if there is another
job in the queue that could make more significant progress if
allocated those same resources.

Motivated by the unique traits of progressive iterative an-
alytic jobs, we propose a resource arbitration framework that
adaptively prioritizes and schedules progressive iterative ana-
lytic jobs in a resource-limited environment. The framework

2140

2023 IEEE 39th International Conference on Data Engineering (ICDE)

2375-026X/23/$31.00 ©2023 IEEE
DOI 10.1109/ICDE55515.2023.00166

20
23

 IE
EE

 3
9t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(I

C
D

E)
 |

97
9-

8-
35

03
-2

22
7-

9/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

D
E5

55
15

.2
02

3.
00

16
6

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on July 19,2024 at 18:13:23 UTC from IEEE Xplore. Restrictions apply.

(a) Online aggregation progress of Query 5, 7, 19 of TPC-H.
The percentage of data processed achieves 100% when the queries
received and processed the entire TPC-H dataset (SF=1) in batches
from a data source.

(b) Evaluation accuracy of five well-tuned popular convolutional
neural network models on CIFAR-10 with batch 128 and learning
rate 0.01.

Fig. 1: Progress curves of AQP and DLT jobs
can interrupt (or preempt) a currently running job in favor
of another based on progress introspection and estimation.
For instance, for some short-running jobs expected to achieve
substantial progress and complete quickly, Rotary can preempt
resources to process them instead of some long-running jobs.
The need for a resource arbitration framework arises for
two reasons: (1) from the perspective of single jobs, it is
reasonable to sacrifice precision for a quicker result; (2) from
the perspective of the overall workload, it is beneficial to
dynamically allocate and preempt resources to different jobs,
for example, giving more resources to more promising jobs
and constraining the resources for jobs stop progressing.

We believe that resource arbitration and traditional schedul-
ing systems [10]–[22] solve different but complementary prob-
lems. Scheduling systems are generally designed to optimize
the execution and placement of the jobs according to the
users’ resource requirements and ensure the jobs can be
completed on time. By contrast, resource arbitration systems
are responsible for continuous resource allocation and pre-
emption, determining when to start (or resume) and stop (or
checkpoint) the progressive iterative analytic jobs based on
the processing progress, available real-time resources, and
users’ completion criteria. In particular, as shown in Fig. 2,
resource arbitration must consider a job’s completion criteria
and respond adaptively – something no prior scheduling sys-
tem does. For example, consider an application scenario of
hyperparameter optimization [23] for deep learning models,
where a set of hyperparameter configurations are sampled
from a hyperparameter space and formed a number of training
trails that run iteratively and keep returning intermediate
training results. Such a process is executed repeatedly until
the best-performed hyperparameter configurations are selected.
Thus, resource arbitration could stop the trials that contain
unpromising hyperparameter configurations prematurely and
allocate more resources to the promising ones so that the best-

performing hyperparameters can be discovered sooner.

Completion Criterion
No Yes

Yes

No

A
da

pt
iv

e

Progress-aware Scheduling:
ReLAQS [32]

(accuracy-oriented)

Resource Arbitration:
Rotary

Time-Sharing Scheduling:
Round-robin

Resource-oriented Scheduling:
Rayon[11], TetriSched[12],
Trident[13], Optimus[14],
HiveD[18], HaLoop[26]

Dynamic Priority Scheduling:
Earliest-Deadline-First
Least-Accuracy-First

Fig. 2: Work Positioning
To realize this framework, we implement two prototype

systems, Rotary-AQP and Rotary-DLT, for approximate query
processing and deep learning training applications. For Rotary-
AQP, we first extend a single-user progressive query pro-
cessing system based on Apache Spark [24] and modify it
to a multi-tenant AQP system. Then, we build the resource
arbitration system on top of the multi-tenant AQP system.
We evaluate Rotary-AQP using the TPC-H benchmark, and
the evaluation results show that Rotary-AQP outperforms the
state-of-the-art system and other baselines by allowing more
TPC-H queries to reach their goals within the same amount
of time. For Rotary-DLT, we build the system on top of
TensorFlow [25] and conduct an evaluation using the work-
loads derived from a survey of 30 deep learning researchers
across multiple research organizations. The evaluation results
demonstrate that Rotary-DLT is superior to three dynamic
priority-based baselines across a variety of optimization objec-
tives. The two system implementations and their outstanding
performance confirm the generality and practicality of our
resource arbitration framework.

To summarize, our primary contributions include: (1) defin-
ing resource arbitration as a novel and specialized scheduling
paradigm for progressive iterative analytic applications; (2)
proposing a general resource arbitration framework, Rotary,
and a new cost model that leverages the estimation of progress
and resource consumption for job prioritization and preemp-
tion; (3) implementing two resource arbitration systems for
approximate query processing and deep learning training,
following the proposed framework.

II. RELATED WORK

To the best of our knowledge, Rotary is the first resource
arbitration system for AQP and DLT. Thus, we broadly review
the related works and position our work.

A. Scheduling for Data Analytics

The existing iterative data processing scheduling works are
related to our framework. One of the most important early
works in this area is HaLoop [26]. The goal of HaLoop is
to support iterative programs on Hadoop and optimize their
execution by making the task scheduler loop-aware and by
adding various caching mechanisms. Extending the line of
HaLoop, SQLoop [27] is proposed to allow SQL to express
iterative computations and schedule the SQL execution for
potential parallel execution.

2141

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on July 19,2024 at 18:13:23 UTC from IEEE Xplore. Restrictions apply.

Progressive data processing, which is best exemplified by
approximate query processing [28], [29], is also relevant to
our resource arbitration framework. However, there is a lack
of work exploring adaptive job preemption based on diverse
completion criteria. One approach, iOLAP [30], returns in-
termediate results by processing the input data a batch at
a time rather than running the query on the entire dataset.
iOLAP partitions the input data into mini-batches, schedules
the delta update query on each batch, and collects query
results. It also can schedule recomputing jobs to recover the
query result when a failure is detected. S-AQP [31] is similar
work to iOLAP lies in this area. However, they mainly focus
on scheduling query plans.

For scheduling AQP jobs, ReLAQS [32], which serves as
one of the baselines in our experiments, is state-of-the-art. It
can preempt the AQP jobs according to the estimation and
try to help more jobs achieve their objectives. However, our
framework has additional contributions: (1) Rotary is a general
framework that can apply to other areas, such as deep learning
training; (2) ReLAQS only schedules CPU cores, Rotary-
AQP, our implementation for AQP under Rotary, further con-
siders memory consumption when preempting resources; (3)
Compared with ReLAQS, Rotary-AQP can support adaptive
running cycling for short-running and long-running AQP jobs;
(4) Estimation of ReLAQS only uses real-time results to
predict the progress of each AQP job for the next running
epoch, the estimators in Rotary-AQP jointly utilize historical
and real-time data to make predication which can overcome
some issues such as cold-start or data bias.

B. Scheduling for Machine Learning

We consider scheduling systems for machine learning as
related works. MArk [33] allows users to specify the response
time for machine learning model serving and schedules by
selecting between AWS EC2 and AWS Lambda to support
unpredictable workload bursts. Some works like Tiresias [16]
and Optimus [14] schedule machine learning jobs with time
constraints. Gandiva is a cluster scheduling framework that
utilizes the cyclic predictability of intra-batch in a DLT job
and the feedback of early training to improve training latency
and efficiency in a GPU cluster [15]. Philly analyzes a trace
of machine learning workloads run on a cluster of GPUs
in Microsoft and schedules the jobs according to a trade-
off between locality and GPU utilization [17]. HiveD [18] is
designed to be a Kubernetes scheduler extension for Multi-
tenant GPU clusters, which can guarantee resource reservation
for DLT jobs. PipeDream [34] is a deep learning training sys-
tem that schedules computation by pipelining execution across
multiple machines to accelerate the training process. AntMan
[35] is a large-scale deep learning multi-tenant infrastructure
in Alibaba, which utilizes the spare GPU resources to co-
execute multiple jobs on a shared GPU and dynamically scales
memory and computation. Pollux [20] is resource-adaptive
deep learning (DL) training and scheduling framework which
optimizes inter-dependent factors both at the per-job level and
at the cluster-wide level.

As we emphasized before, scheduling systems and our
resource arbitration framework, Rotary, solve different but
complementary problems. The scheduling systems pay more
attention to resource reservation and job placement according
to jobs’ requirements. However, Rotary addressed the issues
about adaptive resource allocation and job preemption for
diverse completion criteria.

C. Priority Scheduling

Priority scheduling is a method of scheduling processes that
is based on priority, which is widely used in operating systems
for CPU scheduling. These scheduling methods are either non-
preemptive or preemptive [36]. Rotary shares a similar princi-
ple with preemptive priority scheduling: we should interrupt a
lower-priority task in favor of some task with a higher priority
if it is beneficial to do so. There have been plenty of works
in this area over the past decades [37]–[40].

Although Rotary sounds analogous to preemptive priority
scheduling if the completion criteria are treated as custom-
defined priorities, the crucial differences between them are: 1)
task priorities in preemptive priority scheduling generally is
fixed, while Rotary considers priorities of each task is dynamic
according to various completion criteria and diminishing re-
turns; 2) Rotary can model the change of the task priorities in
the resource arbitration framework.

III. RESOURCE ARBITRATION FRAMEWORK

A. Terminology and Setup

First, we define a common set of terms to describe progres-
sive iterative analytic jobs. In a progressive iterative analytic
job, data are processed in batches, where each batch is a subset
of the entire dataset or a data stream that is progressively
sampled from the overall data, each batch has the (approxi-
mately) same batch size. A progressive iterative analytic job
moves one step when it finishes processing a single batch.
After a fixed number of such steps (called an epoch), the job’s
performance can be evaluated based on convergence metrics
on the returned results. Convergence metrics are usually some
proxy for result accuracy. One progressive iterative analytic
job typically runs for multiple epochs until the user is satisfied
with its convergence or reaches some user-defined completion
criteria such as running time.

Example 1. Approximate Query Processing in SQL: Ap-
proximate query processing can provide quick, approximate
results to users by running queries on a subset of the overall
dataset or a data stream. One technique to realize AQP is
online aggregation [28]. Online aggregation systems process
data iteratively using data batches, and each progressive sam-
pling of the data is a batch and processes roughly the same
amount of data, as they are each of approximately the same
size. Online aggregation systems calculate error bounds, such
as confidence intervals, after each batch is processed so that
users can decide whether to continue processing. In AQP, a
batch and an epoch can be synonymous, and the convergence
metric is the size of the confidence interval.

2142

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on July 19,2024 at 18:13:23 UTC from IEEE Xplore. Restrictions apply.

Example 2. Deep Learning Training: A typical DLT job
consists of a neural network model (e.g., ResNet [41] or Bi-
LSTM [42]), a dataset for training and evaluation, and a set
of hyperparameters (e.g., batch size, learning rate, optimizer,
etc.). During the training process, the training dataset is
iteratively sampled in batches, and each training step is one
optimization step updating the parameters (or gradients) of the
neural network model based on the batch. In the context of
DLT, an epoch normally is a complete pass of the training
data. Once the neural network model has been trained for
one epoch, it will be evaluated on the evaluation dataset in
terms of convergence metrics, which can be either training loss
or validation set accuracy. This process is applied repeatedly
until the desired convergence target is achieved. As models
have become more complex, DLT largely relies on specialized
hardware devices like GPUs and TPUs.

B. User-defined Completion Criteria
Rotary allows users to define their own completion criteria,

and herein we take three types of completion criteria based
on the common practice of DLT and AQP as examples. As
presented in Fig. 3, there are 1 accuracy-oriented completion
criteria, 2 convergence-oriented completion criteria, and 3
runtime-oriented completion criteria. Essentially, such com-
pletion criteria are add-ons to the regular query and training
commands and should be orthogonal to the execution of AQP
and DLT without modifying the original command parsers.

Fig. 3: Templates of user-defined completion criteria
Fig. 4 shows three completion criteria examples following

the templates. The left one illustrates how to add a completion
criterion of achieving at least 95% accuracy within 3600
seconds, the middle one defines a completion criterion for
training a ResNet model until reaching the convergence of
0.001 within 30 epochs, the right one will train the MobileNet
model for 2 hours and return the training results anyway.

Fig. 4: Examples of user-defined completion criteria
1 Accuracy-oriented completion criteria are widely used

and allow users to explicitly specify an expected accuracy
within maximum training epochs. In the above example,
we use ACC (i.e., training accuracy), which is a common
metric, but other user-defined metrics, such as F1 score and
Perplexity, are supported as well. Additional error bounds,
such as confidence interval, are optional as well. The deadline
could be expressed in epochs or time units.

2 Convergence-oriented completion criteria are also typ-
ical, especially for DLT jobs. With these criteria, a job is
considered “complete" once its performance is found to no
longer increase. In the middle example of Fig. 4, ACC is used
for measuring convergence, but other metrics, such as LOSS

[43], can be used for convergence. The convergence-oriented
criteria also allow users to specify a deadline, which means a
job will be terminated if it fails to converge until the deadline.

3 Runtime-oriented completion criteria are proposed for
users who want to execute their progressive iterative analytic
jobs for a while without any explicit objective or threshold. As
the WITHIN predicate we have in the other two completion
criteria, the runtime can be the number of epochs or a period
of time, such as training a model for 100 epochs or running
a query for 6 hours.

C. Framework Architecture
We identify three opportunities to address the resource

arbitration problem.
First, the diverse completion criteria of progressive iterative

analytics bring the opportunity to allocate various amounts of
resources to different jobs while still achieving their objectives.
For example, it makes more sense to give fewer resources to
a job that only needs to achieve an effortless objective.

Second, diminishing returns of progressive iterative analytic
jobs indicates that the value of two data batches to a user
may be completely different. This makes iterative resource
allocation and preemption practical and valuable. For instance,
it may be beneficial in some situations when a data batch
that provides more valuable results to users can be processed
completely sooner if more resources are allocated continu-
ously. This leads to a cost model which should balance the
progress improvement (i.e., providing more valuable results)
and resource consumption (the cost to improve the progress
or produce the results). An example of this can be seen in
Fig. 1b, where we show that the earlier training epochs could
improve the deep learning models’ accuracy more significantly
than the older ones, and the users could get a decent trained
model more quickly if more resources are given to the jobs
with more potential for improvement; however, the trade-
off between performance improvement and the models’ GPU
memory requirements need to be addressed as well.

Third, different data processing rate of progressive iterative
analytic jobs rationalizes the adaptive running epochs; namely,
long-running jobs should be allowed to have a longer running
epoch after arbitrating and allocating resources so that they can
return expected intermediate results. This can be exemplified
by Fig. 1a, where we present that the process of query 19
increases more expeditiously than queries 7 and 19 when they
are all checked every 60 seconds; however, we can observe all
the queries will have a similar pattern of progress improvement
if query 5 and query 7 check every 120 and 180 seconds.

To exploit these opportunities, we proposed the resource
arbitration framework, Rotary. We show the framework’s ar-
chitecture and highlight the core components in Fig. 5. Rotary
allows users to submit their progressive iterative analytic jobs
along with the corresponding completion criteria. Once sub-
mitted, Rotary considers these jobs active and is ready to run
them. Rotary’s engine is responsible for resource arbitration.
It can estimate how much progress a job can achieve in terms
of completion criteria and how many resources the job will

2143

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on July 19,2024 at 18:13:23 UTC from IEEE Xplore. Restrictions apply.

consume for such progress. Rotary can prioritize jobs accord-
ing to a cost model and arbitrate the resources for them. Once
the process of resource arbitration is finished, the selected jobs
will be deployed in Rotary execution, where the resource is
allocated and preempted to the jobs so that they can run in
an execution platform (e.g., PyTorch or TensorFlow for deep
learning, Spark for query processing). When the jobs complete
the current epoch, they can be checkpointed or materialized
if they are not granted resources for the next running epoch.
Furthermore, it is beneficial to store the progressive iterative
analytic jobs and track intermediate processing results since
such information can be used to provide a better estimation.

Rotary ExecutionRotary Engine

Cost model based on
Completion Criteria & Estimation

Estimation for Progress and
Resource Consumption

User-define
Completion criteria

Progressive iterative
analytic jobs

Job Driver
Job

Checkpointer

Job Repository

Resource Resource

Resource Resource

...

...

Resource

Resource

Support estimation
ch

ec
kp

o
in

t
jo

b
s

...

Iteratively update
estimation

...

Execution Platform

Job Prioritization

Fig. 5: Framework architecture of Rotary
Rotary also can re-evaluate and schedule the jobs that have

been deferred or are currently running for the next epoch.
The advantages of this ability are three-fold. First, it provides
the resource arbitration system with a wider range of running
options for progressive iterative analytic jobs compared with
the systems that exclusively consider the current jobs. Second,
the deferred jobs can be reconsidered for running when it is
beneficial to do so, which can prevent them from waiting
for an unexpectedly long time. Third, the overhead of job
interruption, such as checkpointing to disk, can be avoided
if a job is continuously prioritized by Rotary.

D. Resource Arbitration Problem Statement

Workloads. Consider a workload W that consists of n progres-
sive iterative analytic jobs {j1, · · · , jn}, each job processes
data batch-by-batch and returns the intermediate processing
results for every epoch. Each ith job emits a time-series
per-epoch intermediate state {ins(i,0), ins(i,1), ..., ins(i,t),...}
which contains the convergence results and attainment
progress � toward its specific user-defined completion criterion
c. Thus, there is a list of criteria C = {c1, · · · , cn} associated
with jobs in the workload W . Each job in the workload will
terminate if c(ins(i,t)) == true. Once a job w reaches its
completion criteria, it is de-queued W = W \ w.
Resources. These jobs have to be assigned to a particular
“computing resource” (e.g., an available GPU or CPU hard-
ware thread). There are M such resources considered, and
they are possibly heterogeneous. These resources can only
process one job at a time and are not sub-dividable. A job
holds on to a particular resource for at least an epoch. Thus,
at any given time, the current resource usage can be modeled
as a bi-partite assignment where a subset of jobs are mapped
to unique resources assign(W,M). As these assignments

change, jobs have to be loaded to the resources and check-
pointed accordingly.
Resource Arbitration Policy. A resource arbitration policy is
a function that produces assignment decisions (and interrupts
previous assignments if necessary) based on the current state
of the queue Qt, which is the intermediate state associated
with completion criteria of all the jobs currently in the queue.

⇡ : Qt 7! assign(W,M)

The application of this policy results in a sequence of resource
assignment decisions at each time-step.
Objective. At each epoch t, attainment progress �tji denotes the
progress of job ji toward its completion criteria, At = n�|W |
quantifies the number of jobs that reach their completion crite-
ria (i.e., �tji = 100%), which is further exploited to denote the
workload’s attainment rate t =

At
n . The objective of Rotary

is to maximize a utility function that can be constrained by
fairness and efficiency. If fairness is the objective, Rotary will
maximize min�ji , 1  i  n and keep allocating resources to
the job with the lowest job attainment progress. If efficiency is
prioritized, Rotary will maximize by continuously selecting
the jobs that can achieve higher attainment progress.

E. Resource Arbitration Algorithm
We propose an algorithm sketch for addressing the problem,

as presented in Algorithm 1. For each epoch, the jobs that
are selected to run may achieve different attainment progress
toward their completion criteria. Suppose the completeness of
each job can be treated as a job priority. In that case, such
dynamic "job priority" requires Rotary to timely capture the
current attainment progress of each job (especially for the ones
with diminishing returns) and adaptively estimate the "prior-
ity" for them in each epoch based on the current progress,
estimated future progress, and their diverse completion criteria,
so that the most appropriate jobs can be selected for next
running epoch.

Algorithm 1: Algorithm Sketch for Resource Arbitration

while not all jobs reach completion criteria do

for jobs is active but not attained ji, i 1 to n do

Estimate the attainment progress �̂ji for next epoch;

Resource arbitration for active jobs based on {�̂ji |8i = 1..n};
for selected jobs do

Executing the selected job;
Observe the attainment progress for the selected job;

However, the system implementations for various applica-
tions may have different algorithms to address the problem.
Following the algorithm sketch, we design two algorithms for
AQP (§IV-A) and DLT (§IV-B).

IV. SYSTEM IMPLEMENTATION

Following the proposed framework, we illustrate how we
implement the resource arbitration prototype system for ap-
proximate query processing (Rotary-AQP) and deep learning
training (Rotary-DLT) and further discuss their similarities and
differences.

2144

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on July 19,2024 at 18:13:23 UTC from IEEE Xplore. Restrictions apply.

A. Rotary-AQP Implementation

To implement Rotary-AQP, we modify a single-user pro-
gressive query processing system based on Apache Spark [24]
and make it a multi-tenant environment by adding concurrency
control and checkpoint mechanisms. This system serves as our
execution platform to run the AQP jobs.

Rotary-AQP can take AQP jobs with pre-defined comple-
tion criteria. We take accuracy-oriented completion criteria (a
widely-used metric in AQP [4], [30], [32], [44]) as examples.
Specifically, each job is attached with an accuracy threshold
and a deadline to reach the threshold, thus the processing
progress in the framework is measured in terms of accuracy
in this implementation of AQP. Rotary-AQP processes AQP
jobs and arbitrates the resources for them so that more jobs can
reach their accuracy threshold. Rotary-AQP focuses on online
aggregation [45]. The accuracy of aggregation is calculated as
accuracy = ↵c

↵f
, where ↵c is the current aggregation result,

and ↵f is the final aggregation result. Considering the aggre-
gation operations are column-oriented, the accuracy of an AQP
job that performs multiple aggregation operations on multiple
columns can be calculated as accuracy = 1

k

Pk
i=0 ↵

k
c/↵

k
f ,

where ↵k
c is the current aggregation result on column k and

↵k
f is the final aggregation result on column k. This is based

on the assumption that all columns are of equal importance
(which is applied to our evaluation). However, Rotary-AQP
also allows the users to specify the importance of each column
by assigning weights.

We use a non-parametric confidence interval estimator to
assess convergence. The technique is based on envelope func-
tions from empirical process theory [23]. Rotary-AQP keeps
tracking the least and largest aggregation results within a
time window (e.g., t epochs) and uses this gap to determine
convergence1. Given that the aggregation will eventually con-
verge, the gap between the least aggregation result (denoted
by p) and the largest aggregation result (denoted by q) can be
substantial but should be shrunk gradually over time. Thus,
the accuracy progress can be expressed as p

q , which can
provide an approximate estimate for the accuracy progress of
an aggregation operation in the AQP jobs.

Following the architecture in Figure 5, Rotary-AQP has
two core components for estimating the accuracy progress and
memory consumption. The accuracy progress estimator is used
for prioritizing jobs. It estimates the potential accuracy of a
job j for the next epoch if the resources are granted. Its core
idea is to fit a progress-runtime curve leveraging historical
and real-time data. The historical data are from the selected
historical jobs that are similar to job j according to query
features such as query predicates, query table and column
names, and query batch size [46]. The real-time data can be
conveniently obtained since Rotary-AQP tracks the running
AQP jobs. We further exploit weighted linear regression [47]
to learn a curve for estimation based on the collected historical
and real-time data. Specifically, the estimator selects top-k
similar historical jobs for an AQP job to fit an initial progress-

1The formal derivation of this estimator has been cut for brevity.

runtime curve that can be used for the first estimation. Then,
when the job is placed and launched, Rotary-AQP records
the real-time intermediate aggregation results and continuously
adjusts the fitted curve by adding these real-time results. Due
to the importance of real-time results, each recorded real-
time result and the combination of all the historical data will
share equal weight when fitting the progress-runtime curve.
For instance, if one recorded real-time result and a number of
selected historical data are used to fit a curve, the real-time
result will be granted 0.5 weight, and all the historical data as
a whole will get the remaining 0.5 weight. By extension, when
three real-time intermediate results are recorded for fitting the
curve, each result and the combination of all the historical
data will share 0.25 weight, respectively. This continuous
joint fitting method makes the estimated progress-runtime
curve reasonably close to the ground truth and sufficient for
estimating the progress.

The memory consumption estimator can make sure there
will be sufficient memory to support jobs. It predicts the
memory consumption of the AQP jobs based on each batch’s
table and column statistics and query plans in the AQP, which
has been well-studied. In our implementation, we exploit
Apache Spark’s CBO [48] to obtain memory consumption
before running the AQP jobs. Rotary-AQP also tracks the
number of table rows scanned, filtered, and aggregated. The
memory consumption estimator also supports adaptive run-
ning epochs by determining the length of the running epoch
(e.g., the number of batches in an epoch). We observe that
the AQP jobs that consume larger memory usually take a
(proportionally) longer time to process a batch, and these jobs
deserve a longer running epoch accordingly. Thus, Rotary-
AQP makes the length of the running epoch of every AQP job
proportionate to the estimated memory consumption.

Rotary-AQP can arbitrate computing resources for the jobs
based on estimated accuracy progress and memory consump-
tion, as presented in Algorithm 2. During each epoch, Rotary-
AQP will first allocate one hardware thread to each active job
that can fit in memory. Rotary-AQP further ranks these active
jobs and allocates extra computing resources to the ones that
can achieve higher progress toward their completion criteria.

B. Rotary-DLT Implementation

Rotary-DLT follows the architecture in Figure 5. Compared
to Rotary-AQP, Rotary-DLT has the following differences: (1)
a training epoch estimator (TEE) to predict the number of
training epochs to achieve a specific accuracy, and a training
memory estimator (TME) to predict the memory usage of
a deep learning model; (2) a training time recorder (TTR)
to measure the time of a training epoch; (3) GPU resource
arbitration for the DLT jobs; and (4) TensorFlow is deployed
as the execution platform to run the DLT jobs. Furthermore,
Rotary-DLT stores the information of the historical DLT jobs
in a repository so that the system can provide more accurate
estimates for attainment progress and memory consumption.
All the completed jobs’ information are stored, including

2145

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on July 19,2024 at 18:13:23 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: Resource Arbitration for AQP
Input : Workload W = {j1, · · · , jn}

Completion Criteria C = {c1, · · · , cn}
Total CPU hardware threads D, Total memory M

//All jobs are placed in an active queue when arriving
for job ji 2W that arrives do

Mark job ji as active and place it to the active queue AQ;
//Resource arbitration for the jobs in the waiting queue
while AQ 6= ? do

Initialize priority queue PQ;
for active jobs ji, i 1 to n do

Estimate the memory consumption m̂ji ;
Assign running epoch eji for job ji;
Estimate the progress �̂ji toward their completion criteria;
Place job ji in PQ due to �̂ji ;

RESOURCEARBITRATION(active jobs);
Run active jobs, and mark them as running;
for active jobs ji, i 1 to n do

if ji finish one epoch eji then

Observe the accuracy progress �ji for current epoch;
if job ji meets cji then remove from AQ ;
Mark job ji as active;

Function RESOURCEARBITRATION(jobs):

for job jk in jobs do

if m̂jk M then

Allocate 1 hardware thread to job jk;
D = D � 1, M = M � m̂jk ;

else

if job jk in PQ then remove jk from PQ ;

for job jk in PQ & D 6= 0 do

Allocate extra 1 hardware thread to job jk , D = D � 1;

model architecture, training hyperparameters, training epochs,
and evaluation accuracy.

A key feature of Rotary-DLT is to estimate the number
of epochs for training DLT jobs to achieve specific accuracy,
which is accomplished by TEE. Considering that DLT jobs
always center on the accuracy metric, TEE is beneficial for
Rotary-DLT to know whether it should allocate or preempt
resources for the scheduled jobs. When estimating the number
of needed epochs for job j to achieve a specific training
accuracy, TEE first selects top-k similar historical DLT jobs to
job j in terms of the metadata of training dataset and training
hyperparameters such as learning rate, training batch size,
and optimizer [49], and then extract the data pair (accuracy,
epoch) from the historical job. TEE also captures the pair
(accuracy, epoch) during the training process of job j. Similar
to the progress estimator of Rotary-AQP, TEE fits an accuracy-
epoch curve by jointly using historical and real-time data using
weighted linear regression, and every recorded real-time data
and the combination of the historical data share equal weight.

TME is another key component and can predict the max-
imum GPU memory usage of the models in the jobs so that
DLT jobs can be launched on a target GPU with sufficient
memory. As we mentioned in §III-A, the training batch size
remains the same for each training iteration, and it directly
decides how much data will be transferred from the host
memory to GPU during each batch. Moreover, all the learnable
parameters in a deep learning model require space in mem-
ory, and these parameters where historic gradients are being

calculated and used also accumulate in memory. Thus, it is
viable to estimate the memory usage of deep learning models
if the training batch size and model parameter information
are given. We fit a batch size-memory curve by leveraging
the data from historical jobs for TME. When estimating the
memory usage of a DLT job, TME first retrieves all the
data of historical jobs that use the same training dataset and
then computes the similarity between the target job and the
historical jobs. The similarity between the two jobs is defined
as similarity(x, y) = 1 � |x�y|

max(x,y) , where x and y are the
numbers of model parameters (i.e., model size) of the two jobs,
respectively. Afterward, TME picks top-k similar historical
jobs to fit the batch size-memory curve. We also exploit the
weighted linear regression to fit the curve but in a different
way: the more similar a historical job is, the higher weights
the job will be granted. Furthermore, we pad the estimated
memory by an additional offset to minimize the likelihood of
out-of-memory (OOM) issues.

There are two fundamental differences between AQP and
DLT, which should be considered for implementing Rotary-
DLT. First, DLT jobs can be evaluated every one or multiple
epochs using an evaluation dataset; thus, it is unnecessary for
Rotary-DLT to have a mechanism like an envelope function
in Rotary-AQP to approximately evaluate the progress of each
job. Second, the batch processing time of AQP jobs can be
quite different due to the query predicates and heterogeneous
data batch; for example, a batch may trigger numerous join
and aggregation operations, but the others may not. However,
DLT jobs usually have similar batch processing time due to
the stable model architecture and the same batch size. Thus,
Rotary-DLT has a side component, TTR, to record the training
time of a single step or an epoch. TTR records the time of a
training step or a training epoch for each DLT job on different
devices to reduce the recording overhead. Due to a CUDA
warm-up issue [49], the very first training step always takes a
longer time, so we always discard the first training step when
TTR is running and recording. Since the deep learning training
job is launched in iteration, recording the single training time
of each job is sufficient to measure the overall time of the
training process.

Following the problem statement (§III-D), we devise a
threshold-based resource arbitration algorithm for DLT (Algo-
rithm 3). As an example to balance fairness and efficiency, this
algorithm can prioritize various jobs by allocating/preempting
the available GPU resources according to a threshold T . More
specifically, for each epoch, the algorithm will prioritize the
jobs with the lowest attainment progress until all the jobs
either achieve T progress or are considered converged so
that no single job will considerably fall behind; then, the
algorithm will continuously select the more promising jobs
that can achieve higher progress in a relatively shorter period
so that more jobs can be completed quickly. Therefore, when
T = 0%, the algorithm is always efficiency-oriented since
every job achieves at least 0% progress from the beginning,
so the algorithm aims to achieve a higher attainment rate for
a workload. If T = 100%, the algorithm is fairness-oriented

2146

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on July 19,2024 at 18:13:23 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3: Adaptive Resource Arbitration for DLT
Input : Workload W = {j1, · · · , jn}

Completion Criteria C = {c1, · · · , cn}
Total GPU D, GPU memory {M1, · · · ,MD}

//All jobs are placed in an active queue when arriving
for job ji 2W that arrives do

Place job ji to the active queue AQ

while AQ 6= ? do

if all jobs from W meet T then

Create a queue PQ that prioritizes highest progress job;
else

Create a queue PQ that prioritizes lowest progress job;

for i 1 to n do

Estimate the resource consumption m̂ji for job ji;
Estimate the training progress �̂ji for job ji;
Place job ji in AQ according to �̂ji

for d 1 to D do

for job jk in AQ do

if mjk Md then

Run job jk on GPU d, Remove job jk from PQ;

for job in AQ achieves the completion criteria do

Remove job from AQ;

since it keeps allocating resources to the jobs with the lowest
attainment progress until all the jobs are finished. By tuning
the threshold, the proposed resource arbitration algorithm can
tweak fairness and efficiency.

As a core in the resource arbitration algorithm for DLT,
the computation of training progress � differs for various
completion criteria. For example, for the jobs with runtime-
oriented completion criteria, calculating � is trivial, which is
the ratio of current runtime (e.g., number of epochs) to the
runtime threshold. For the jobs with accuracy-oriented and
convergence-oriented completion criteria, � can be obtained
by estimating the current accuracy and comparing it with
the target accuracy. We present the computation of training
progress in Algorithm 4.

Algorithm 4: Progress Computation in Rotary-DLT
Input : Workload W = {j1, · · · , jn}

Completion Criteria C = {c1, · · · , cn}
for i 1 to n do

e⇤i job running progress (training epochs) of ji;
if ji has runtime-oriented completion criteria then

Obtain expected training epoch ei according to ci;
�i = e⇤i

ei
;

else if ji has accuracy-oriented completion criteria then

Obtain maximum training epoch emax
i according to ci;

Estimate the necessary epochs êi according to ci;
if êi > e⇤i then �i = e⇤i

emax
i

else �i = e⇤

êi
;

else if ji has convergence-oriented completion criteria then

Obtain maximum training epoch emax
i according to ci;

Obtain expected accuracy acci according to si;
Estimate the necessary epochs êi according to acci;
if êi > e⇤i then �i = e⇤i

emax
i

else �i = e⇤

ci
;

V. EVALUATION

We evaluate our two Rotary prototype systems, Rotary-AQP
and Rotary-DLT, respectively.

A. Rotary-AQP Evaluation

Our evaluation for Rotary-AQP addresses the following
questions:

• Can resource arbitration improve the number of jobs that
attain their performance objective, compared to a state-of-
the-art approach and other common baselines? (§V-A2)

• What is the overhead of resource arbitration? (§V-A3)
• How does the distribution of job resource requirements

impact the performance of Rotary-AQP? (§V-A4)
• How does the progress estimation impact the performance

of Rotary-AQP? (§V-A5)
All the experiments are conducted on a server with two Intel

Xeon Silver CPUs (2.10GHz, 12 physical cores) and 192GB
memory, running Ubuntu Server 18.04. For all experiments,
we use 20 physical cores and leave the rest for the OS (Ubuntu
18.04). We use an Apache Kafka [50] cluster on a different
machine with the same hardware configuration as the data
source for AQP queries.

We implement four baselines for comparison: ReLAQS
[32], EDF (Earliest Deadline First), LAF (Least Accuracy
First), and round-robin. As a vanilla baseline, round-robin
allocates one core to each job in turn until there are no more
cores and run them for an epoch per time until they reach their
completion criteria (either achieve the accuracy threshold or
beyond the deadline). EDF and LAF are two dynamic priority-
based baselines that always prioritize the jobs that have the
earliest deadline and least accuracy, respectively. ReLAQS is
the state-of-the-art work, which is a multi-tenant system for
AQP that aims to reduce the average latency of a workload
by scheduling CPU cores to jobs with the most potential
for improvement. In ReLAQS, the potential improvement of
each job is simply estimated according to previous processing
results. Compared with ReLAQS, Rotary-AQP considers both
CPU and memory for resource arbitration, combines historical
and real-time data to estimate the accuracy progress, and
supports adaptive running epochs for short-running and long-
running AQP jobs.

1) AQP Workload: We evaluate Rotary-AQP using the
TPC-H benchmark. Rotary-AQP supports all 22 queries and
runs them on the TPC-H dataset. Given the number of con-
current jobs and Spark’s in-memory requirement, we limit the
scale factor to 1. Larger scale factors should not affect the
performance of Rotary-AQP but require more memory to run
multiple AQP jobs simultaneously.

The workload consists of 30 AQP jobs, each of which is a
random query selected from the 22 TPC-H queries. According
to the observed memory consumption of queries, we categorize
the TPC-H queries into three groups: light, medium, and heavy
queries. The workload is a mixed collection of jobs for the
queries from the three groups, and the proportions of the
jobs in the three groups can be adjusted. In the workload,
each job is attached with an accuracy threshold and deadline,
which are both randomly selected from two parameter spaces.
Furthermore, to simulate users submitting approximate queries
to the shared cluster, the job arrives according to a Poisson

2147

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on July 19,2024 at 18:13:23 UTC from IEEE Xplore. Restrictions apply.

(a) Round-robin (b) EDF (c) LAF (d) ReLAQS (e) Rotary-AQP
Fig. 6: Evaluation of Rotary-AQP and four baselines (Round-robin, EDF, LAF, ReLAQS) on the synthetic AQP workload

Queries
Light q1, q2, q4, q6, q10, q11, q12, q13, q14, q15, q16, q19, q22

Medium q3, q5, q8, q17, q20
Heavy q7, q9, q18, q21

Completion
Criteria

Accuracy 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%

Deadline

Light Queries Deadline (sec):
360, 420, 480, 540, 600, 660, 720, 780, 840, 900
Medium Queries Deadline (sec):
1080, 1200, 1320, 1440, 1560, 1680, 1800, 1920, 2040, 2160
Heavy Queries Deadline (sec):
1440, 1620, 1800, 1980, 2160, 2340, 2520, 2700, 2880, 3060

Workload
40% AQP jobs with light queries
30% AQP jobs with medium queries
30% AQP jobs with heavy queries

TABLE I: Synthetic AQP workload. The selection of query
type, accuracy threshold, and deadline, are all random and
based on a uniform distribution. Job arrival is based on a
Poisson distribution.
distribution with a mean arrival time of 160 seconds. The
configurations of the workload are elaborated in Table I.

2) Attainment for AQP Workload: Attainment rate serves
as the most important benchmark since it measures how many
jobs reach their accuracy threshold, namely, users are satisfied
with the results. Fig. 6 shows the overall number of attained
jobs (e.g., jobs that met their convergence criteria before their
deadline) under Rotary-AQP, which exceeds those using the
four baselines. Although Rotary-AQP can attain more jobs for
light, medium, and heavy queries, it performs best for jobs
with heavy queries. This is mainly due to two reasons. First,
Rotary-AQP can provide better progress estimation by jointly
leveraging historical and real-time data to find the jobs with
the most potential for improvement. Second, Rotary-AQP can
give the proportional running epochs to various jobs according
to their job size (i.e., estimate memory consumption in the
implementation). Thus, heavy jobs, often long-running, can
return progressive results and be fairly compared with short-
running jobs during resource arbitration. Therefore, compared
with the baselines, Rotary-AQP allows the heavy jobs to have a
higher chance to gain more resources for running. Such results
confirm the efficiency and effectiveness of Rotary-AQP.

3) False Attainment and Waiting Time: We use an en-
velope function to determine when to stop the jobs, but the
envelope function can make mistakes, such as stopping the
jobs which are not supposed to be permanently terminated,
which we consider as false attainment. We present the false
attainment for Rotary-AQP and the baselines in Fig. 7a. The
envelope function can provide reliable decisions generally but
still make mistakes. This issue can be mitigated by lengthening
the time window of the envelope function.

We also tally the average waiting time of the jobs in the

(a) False Attainment (b) Average Waiting Time
Fig. 7: False attainment and waiting time of Rotary-AQP

workload, as shown in Fig. 7b. The waiting time of a single
job is calculated as the difference between its running time
under Rotary or other baselines and the time of running
it independently and isolated. Our system also outperforms
other baselines due to the adaptive running epochs. More
specifically, unlike Rotary-AQP, other baselines are in favor
of short-running jobs, which can achieve higher accuracy
progress in a short time which may defer the heavy job far
into the future and lead to an unexpectedly long waiting time
for the long-running jobs.

4) Skewed Workload: To evaluate Rotary-AQP on a bal-
anced workload, we have 40% jobs with light queries, 30%
jobs with medium queries, and 30% jobs with heavy queries.
However, it is also reasonable to fathom the performance of
Rotary-AQP on the workload with various job distributions.
For this, we deploy Rotary-AQP and the baselines in three
“extreme" cases: the workloads only consist of jobs with light
jobs, medium jobs, and heavy jobs.

As we can see from Fig. 8, Rotary-AQP can achieve the
best performance for all three skewed workloads, especially in
the workload that only contains heavy jobs. Rotary-AQP and
ReLAQS can defeat other baselines due to progress estimation,
whereas Rotary-AQP performs better than ReLAQS because
Rotary-AQP can collect more accurate real-time intermediate
results due to the adaptive running epochs to make more
reliable progress estimation for the next epoch.

Fig. 8: Attained jobs in the various workloads (30 jobs)
5) Progress Estimation Sensitivity: Since the accuracy

progress estimator serves as a core component of Rotary-
AQP, we investigate how much it affects the performance of
Rotary-AQP. Thus, we design a new baseline which is essen-
tially Rotary-AQP, but their accuracy progress estimator will
randomly return the estimated progress following a uniform
distribution from 0 to 1. Such artificial progress estimation
is misleading, and Rotary-AQP may make unwise resource

2148

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on July 19,2024 at 18:13:23 UTC from IEEE Xplore. Restrictions apply.

arbitration accordingly.
Fig. 9b displays the number of attained jobs under such

artificial estimation, which is slightly better than round-robin
(Fig. 6a) and almost tied to EDF (Fig. 6b) and LAF (Fig.
6c). The artificial estimation attains fewer light jobs than EDF
and LAF but outperforms them according to the attainment
rate of medium and heavy jobs. Such results indicate that (1)
the accuracy progress estimator is vital to Rotary and (2) the
adaptive running epochs can help some medium and heavy
jobs to attain their goals.

(a) Rotary-AQP (b) Rotary-AQP with estimation
Fig. 9: Impact of progress estimation

B. Rotary-DLT Evaluation

We implement Rotary-DLT on top of TensorFlow 1.15 [25].
All the experiments are conducted on a server with Intel Xeon
Silver CPU (2.10GHz), 192GB memory, and 4 GPUs (RTX
2080 8GB graphic memory), running Ubuntu Server 18.04. All
the evaluation results are averaged over 3 independent runs.

1) Survey-based DLT Workload: To evaluate Rotary-
DLT, we surveyed 30 experienced deep learning researchers
across the following affiliations listed alphabetically: Mi-
crosoft Research, National University of Singapore, Northeast-
ern University, Singapore Management University, University
of California-Berkeley, University of Chicago, University of
Illinois at Urbana-Champaign, and University of Toronto.
According to their responses about training infrastructure,
model architecture, running time, and completion criteria, we
synthesize a DLT workload. The elaborate configurations of
the synthetic workload are presented in Table II. We implement
a number of representative deep learning models in Computer
Vision (CV) and Natural Language Processing (NLP) with
randomized hyperparameters and completion criteria. We use
the small batch sizes to train the CV models due to the
empirical study [51] but choose bigger sizes for NLP models
due to common practice [52]. We follow the design in their
original paper for other specific hyperparameters of some
models (e.g., the growth rate for DenseNet). We also have
pre-trained versions of BERT, VGG, and ResNet since the
jobs of fine-tuning pre-trained models are also common.

For the models with multiple variants like ResNet,
DenseNet, ShuffleNet, VGG, BERT, we use the shrunk vari-
ants (e.g., ResNet-18, ResNet-34, DenseNet-121) to fit them
on a single GPU.

2) Attainment for DLT Workload: We consider fairness
and efficiency as two vital but opposite optimization objec-
tives. Achieving fairness can guarantee that no single job
is stalled due to a myriad of jobs being in front of it or
some upfront jobs taking an unexpectedly long time. Efficiency
focuses on completing more jobs in a shorter time if possible,

and this objective can only be achieved by always picking up
the jobs that can be finished faster. If we stick with fairness,
the jobs that can be completed quickly may have to wait a
long time. On the contrary, concentrating on efficiency can
result in zero progress in some jobs (they are never triggered).

We define three metrics of attainment progress for DLT jobs
with various completion criteria.

• Accuracy-oriented attainment progress: Similar to attain-
ment progress �, this shows the completion percentage
of a job with accuracy-oriented completion criteria but
from the perspective of accuracy, which is defined as

current accuracy
completion criteria . For instance, if a job has an accuracy
target of 80% and obtains 56% accuracy after training one
epoch. The current attainment progress is 56%

80% = 70%.
• Convergence-oriented attainment progress: We measure

the attainment progress of jobs with convergence-oriented
completion criteria in terms of epochs. When retrospect-
ing the training process, if the jobs converged before
the max training epochs, we mark the epoch as the
convergence-line when the model converged and define
the attainment progress as current epoch

convergence-line . For the jobs that
failed to converge, we use current epoch

max epochs instead.
• Runtime-oriented attainment progress: The runtime-

oriented attainment progress is denoted as current epoch
completion criteria ,

which is further exemplified by the following case. If
a job has a runtime-oriented completion criterion of 15
epochs, and the attainment progress is 5

15 = 33.3% after
training 5 epochs.

We evaluate the Rotary-DLT against three baselines:
(a) Shortest Runtime First (SRF): it always runs the jobs with

the shortest runtime completion criteria first and handles
the other jobs following a round-robin strategy.

(b) Biggest Convergence First (BCF): it always runs the jobs
with the biggest convergence completion criteria first and
handles the other jobs following a round-robin strategy.

(c) Lowest Accuracy First (LAF): it always runs the jobs with
the lowest accuracy completion criteria first and handles
the other jobs following a round-robin strategy.

We demonstrate all the results in Fig. 10 using violin
plots. In Fig. 10a, Rotary-DLT is adaptive, which fuses the
fairness and efficiency policy. It starts with the pure-fairness
policy that always selects the jobs with the lowest �. Once
all the jobs in the workload either achieve at least 50%
progress toward their completion criteria or are considered
converged, adaptive Rotary-DLT switches to an efficiency-
centric policy, which starts to pick up the jobs with the
highest �. Fig. 10b and 10c demonstrate the performance of
two Rotary-DLT variants that optimize fairness and efficiency
objectives, respectively. Rotary-DLT variants outperform the
three baselines. The threshold T is predefined in the evaluation
to show the performance of Rotary under different scenarios;
designing a sophisticated mechanism to choose T is out of the
scope of this paper.

3) Impact of Training Epoch Estimation: Training epoch
estimation is positioned at a vital place in developing and

2149

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on July 19,2024 at 18:13:23 UTC from IEEE Xplore. Restrictions apply.

Model

Architecture
Inception [53], MobileNet [54], MobileNetV2 [55], SqueezeNet [56], ShuffleNet [57],
ShuffleNetV2 [58], ResNet [41], ResNeXt [59], EfficientNet [60], LeNet [61], VGG [62], AlexNet
[63], ZFNet [64], DenseNet [65], LSTM [66], Bi-LSTM [42], BERT [67]

Batch size
Computer vision models: 2, 4, 8, 16, 32 [51]
Natural language processing models: 32, 64, 128, 256

Optimizer SGD, Adam, Adagrad, Momentum
Learning rate 0.1, 0.01, 0.001, 0.0001, 0.00001

Dataset
Computer vision models: CIFAR-10 [68]
Natural language processing models: UD Treebank [69], Large Movie Review Dataset [70]

Completion Criteria

Convergence-oriented criteria (delta accuracy) 5%, 3%, 1%, 0.5%, 0.3%, 0.1%, 0.05%, 0.03%, 0.01%, 0.005%, 0.003%, 0.001%
Accuracy-oriented criteria (final accuracy) 70%, 72%, 74%, 76%, 78%, 80%, 82%, 84%, 86%, 88%, 90%, 92%

Runtime-oriented criteria (epoch)
From scratch 5, 10, 30, 50, 100
Pre-trained (Fine-tuned): 1, 2, 3, 4, 5

Maximum epoch for criteria 1, 5, 10, 15, 20, 25, 30

Workload Synthetic workload
60% DLT jobs with convergence-oriented completion criteria
20% DLT jobs with accuracy-oriented completion criteria
20% DLT jobs with runtime-oriented completion criteria

TABLE II: Synthetic DLT workload. The selection of model architecture and proportion of jobs with various completion criteria
distribution are based on the responses to our survey, and the selection of other hyperparameters and the parameters about
completion criteria follow the uniform distribution.

(a) Adaptive Rotary-DLT (T = 50%): Rotary-DLT is pure-fairness from 0 to 120~180 minutes and can push the minimum attainment
progress of the workload. Rotary-DLT becomes more aggressive on efficiency and completes more jobs starting from 180~240 minutes since
all the jobs either make substantial attainment progress (50%) or are considered converged.

(b) Fairness Rotary-DLT (T = 100%): Rotary-DLT always picks up the jobs with the lowest � and can maximize the minimum attainment
progress of all jobs in the workloads considerably faster than other baselines. For example, Fairness Rotary-DLT and SRF achieve the same
minimum attainment progress for all jobs using 120 minutes and 300 minutes.

(c) Efficiency Rotary-DLT (T = 0%): Rotary-DLT always selects the jobs with the highest � and makes more jobs meet their completion
criteria (achieving a higher attainment rate) in a relatively short period. Considering the results at 120 minutes, Efficiency Rotary-DLT
completes more jobs than the other baselines.

Fig. 10: Evaluation of Rotary-DLT variants and three baselines (BCF, LAF, SRF) on the synthetic DLT workload

evaluating Rotary, and it is critical to understand its effect of it.
We conduct a micro-benchmark workload with 8 DLT jobs and
track the job placement under efficiency Rotary-DLT with and
without accurate epoch estimation. Among eight jobs, job4 is

for BERT, job 5 is for Bi-LSTM, and job 6 is for LSTM. To
evaluate how the epoch estimation impacts the performance,
we remove all the historical jobs about NLP models in the
repository of Rotary-DLT so that the estimation for jobs 4,

2150

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on July 19,2024 at 18:13:23 UTC from IEEE Xplore. Restrictions apply.

(a) With Reliable Estimation (b) With Erroneous Estimation

Fig. 11: Job placements under efficiency Rotary-DLT.
5, and 6 are unreliable and even erroneous (e.g., the number
of epochs for meeting the completion criteria is 2, but an
erroneous estimate can be 100 epochs).

We demonstrate the placements for eight jobs in Fig. 11.
Each rectangle denotes a job placement, and the one with
hatches means the job meets the completion criteria. Fig. 11a
presents the job placement under efficiency Rotary-DLT with
the accurate epoch estimation. In light of the accurate epoch
estimate, jobs 4, 5, and 6 are triggered to run after the trial
phase in Rotary-DLT and complete early. However, as shown
in Fig. 11b, the epoch estimate is inaccurate, and the placement
is inefficient accordingly. For example, job 4 can reach the
complete criteria in 2 epochs, but the inaccurate estimate for
that is 125 epochs, so its progress � is much lower than others
and cannot be placed as it should be. Therefore, jobs 4, 5, and
6 are finished later than those under accurate estimation.

4) Overhead of TTR, TEE, and TME: We investigate the
overhead of recording the training epoch time of DLT jobs,
namely measuring how the overhead of TTR and TEE in
Rotary-DLT scales when the DLT workload grows. As shown
in Table III, taking the workloads with the sizes of 10, 20,
30, and 40 as examples, the overhead of TTR and TEE takes
an imperceptible proportion of the whole workload processing
time, even for the larger workload.

Workload
Size

Overall Running
Time

Overhead of
TTR

Overhead of
TEE

Overhead of
TME

10 8142s 0.225s 0.74s 0.58s
20 23790s 0.6s 1.31s 1.03s
30 34014s 0.87s 1.98s 1.49s
40 43124s 1.12s 2.56s 2.11s

TABLE III: The overall process time and overhead in Rotary

VI. DISCUSSION

We discuss implementation choices and open questions in
this section.

Implementation Choices: We faced several design trade-offs
when implementing Rotary-AQP and Rotary-DLT. However,
it should be noted that all the trade-offs are implementation-
specific and framework independent, which could be mitigated
by different implementations. We discuss two examples.

One implementation trade-off is how to persist the AQP jobs
that have been paused (i.e., deferred to future execution) due
to resource arbitration. When a job is paused, its intermediate
states and results should be persisted either in memory or disk
so that it can be resumed. Persisting AQP jobs in memory is
more efficient from the perspective of performance but may

quickly saturate the memory, which is a relatively scarce re-
source compared with disk and may lead to an out-of-memory
error. Therefore, we checkpoint the AQP jobs in disks. Such
a mechanism will bring additional overhead but allows more
jobs to run simultaneously. The same issue happened when we
implemented Rotary-DLT; however, checkpointing DLT jobs
in disks is a common practice.

Our second implementation choice assumes the AQP and
DLT jobs are executed in a single machine, even though our
framework and system implementations support distributed
execution. This is because we decide to first make a deep
investigation of a resource arbitration framework and its im-
plementations so that we can have a better understanding of
progressive iterative analytic jobs and verify our framework
design. Our system implementations, Rotary-AQP and Rotary-
DLT, and the corresponding evaluations confirm the generality
and practicality of the proposed framework. Thus, processing
distributed jobs is out of the scope of this paper.

Materialization for Progressive Iterative Analytic: Progres-
sive iterative analytic jobs need to be persisted. Such a
requirement essentially asks for a materialization mechanism
as in database systems and brings a similar trade-off between
cost and efficiency [71]. How and when to materialize the
progressive iterative analytic jobs is an interesting and pivotal
research question, and we leave the answers for future work.

Unified Resource Arbitration Framework: While we com-
pare AQP and DLT and treat them as two alike progressive
iterative analytic applications in different areas and implement
two systems for both of them, it is more interesting to have a
unified resource arbitration system on a cluster to handle AQP
and DLT jobs together. Such a system can serve more users
and enormously improve resource utilization.

VII. CONCLUSION

This paper argues that resource arbitration is vital but
neglected for progressive iterative analytic applications. We
proposed a framework, Rotary, to highlight the core features
and components for resource arbitration. It allows diverse user-
defined completion criteria, prioritizes the jobs for resources,
and supports adaptive running epochs. To realize and verify the
framework, we implement two resource arbitration systems for
AQP and DLT and evaluate them using the TPC-H benchmark
and a survey-based workload, respectively. The evaluation
results show that Rotary-AQP and Rotary-DLT outperform the
state-of-the-art and other widely-used baselines and confirm
that Rotary is an appealing solution for efficient resource
utilization for iterative applications. Our work also opens
interesting opportunities to explore the connection between
research problems in ML and DB, such as balancing accuracy
and running time in approximate query processing and deep
learning training.

ACKNOWLEDGMENT

This research was supported in part by NSF Award IIS-
2048088 and a Google DAPA Award. We would like to thank
the anonymous reviewers for their insightful feedback.

2151

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on July 19,2024 at 18:13:23 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] S. Krishnan, A. J. Elmore, M. J. Franklin, J. Paparrizos, Z. Shang,
A. Dziedzic, and R. Liu, “Artificial intelligence in resource-constrained
and shared environments,” ACM SIGOPS Operating Systems Review,
vol. 53, no. 1, pp. 1–6, 2019.

[2] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy consid-
erations for modern deep learning research,” in AAAI Conference on
Artificial Intelligence (AAAI), 2020, pp. 13 693–13 696.

[3] A. Crotty, A. Galakatos, C. Luckett, and U. Çetintemel, “The case for in-
memory OLAP on "wimpy" nodes,” in IEEE International Conference
on Data Engineering (ICDE), 2021, pp. 732–743.

[4] Z. Shang, X. Liang, D. Tang, C. Ding, A. J. Elmore, S. Krishnan, and
M. J. Franklin, “Crocodiledb: Efficient database execution through intel-
ligent deferment,” in Conference on Innovative Data Systems Research
(CIDR), 2020.

[5] A. Agrawal, R. Chatterjee, C. Curino, A. Floratou, N. Godwal, M. Inter-
landi, A. Jindal, K. Karanasos, S. Krishnan, B. Kroth, J. Leeka, K. Park,
H. Patel, O. Poppe, F. Psallidas, R. Ramakrishnan, A. Roy, K. Saur,
R. Sen, M. Weimer, T. Wright, and Y. Zhu, “Cloudy with high chance
of DBMS: a 10-year prediction for enterprise-grade ML,” in Conference
on Innovative Data Systems Research (CIDR), 2020.

[6] K. M. Hazelwood, S. Bird, D. M. Brooks, S. Chintala, U. Diril,
D. Dzhulgakov, M. Fawzy, B. Jia, Y. Jia, A. Kalro, J. Law, K. Lee,
J. Lu, P. Noordhuis, M. Smelyanskiy, L. Xiong, and X. Wang, “Applied
machine learning at facebook: A datacenter infrastructure perspective,”
in IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2018, pp. 620–629.

[7] A. Agiwal, K. Lai, G. N. B. Manoharan, I. Roy, J. Sankaranarayanan,
H. Zhang, T. Zou, J. Chen, M. Chen, M. Dai, T. Do, H. Gao, H. Geng,
R. Grover, B. Huang, Y. Huang, A. Li, J. Liang, T. Lin, L. Liu,
Y. Liu, X. Mao, M. Meng, P. Mishra, J. Patel, R. Sr, V. Raman,
S. Roy, M. S. Shishodia, T. Sun, J. Tang, J. Tatemura, S. Trehan,
R. Vadali, P. Venkatasubramanian, J. Zhang, K. Zhang, Y. Zhang,
Z. Zhuang, G. Graefe, D. Agrawal, J. F. Naughton, S. Kosalge, and
H. Hacigümüs, “Napa: Powering scalable data warehousing with robust
query performance at google,” VLDB Endowment, vol. 14, no. 12, pp.
2986–2998, 2021.

[8] Y. Fu and C. Soman, “Real-time data infrastructure at uber,” in ACM
International Conference on Management of Data (SIGMOD), 2021, pp.
2503–2516.

[9] L. A. Melgar, D. Dao, S. Gan, N. M. Gürel, N. Hollenstein, J. Jiang,
B. Karlaš, T. Lemmin, T. Li, Y. Li, S. Rao, J. Rausch, C. Renggli,
L. Rimanic, M. Weber, S. Zhang, Z. Zhao, K. Schawinski, W. Wu, and
C. Zhang, “Ease.ml: A lifecycle management system for mldev and
mlops,” in Conference on Innovative Data Systems Research (CIDR),
2021.

[10] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache hadoop
YARN: yet another resource negotiator,” in ACM Symposium on Cloud
Computing (SOCC), 2013, pp. 5:1–5:16.

[11] C. Curino, D. E. Difallah, C. Douglas, S. Krishnan, R. Ramakrishnan,
and S. Rao, “Reservation-based scheduling: If you’re late don’t blame
us!” in ACM Symposium on Cloud Computing (SoCC), 2014, pp. 2:1–
2:14.

[12] A. Tumanov, T. Zhu, J. W. Park, M. A. Kozuch, M. Harchol-Balter,
and G. R. Ganger, “Tetrisched: global rescheduling with adaptive plan-
ahead in dynamic heterogeneous clusters,” in European Conference on
Computer Systems (EuroSys), 2016, pp. 35:1–35:16.

[13] H. Herodotou and E. Kakoulli, “Trident: Task scheduling over tiered
storage systems in big data platforms,” VLDB Endowment, vol. 14, no. 9,
pp. 1570–1582, 2021.

[14] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: an efficient
dynamic resource scheduler for deep learning clusters,” in European
Conference on Computer Systems (EuroSys), 2018, pp. 3:1–3:14.

[15] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra, Z. Han,
P. Patel, X. Peng, H. Zhao, Q. Zhang, F. Yang, and L. Zhou, “Gandiva:
Introspective cluster scheduling for deep learning,” in USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI), 2018,
pp. 595–610.

[16] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon, J. Qian, H. H.
Liu, and C. Guo, “Tiresias: A GPU cluster manager for distributed deep

learning,” in USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2019, pp. 485–500.

[17] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian, W. Xiao, and
F. Yang, “Analysis of large-scale multi-tenant GPU clusters for DNN
training workloads,” in USENIX Annual Technical Conference (ATC),
2019, pp. 947–960.

[18] H. Zhao, Z. Han, Z. Yang, Q. Zhang, F. Yang, L. Zhou, M. Yang, F. C. M.
Lau, Y. Wang, Y. Xiong, and B. Wang, “Hived: Sharing a GPU cluster
for deep learning with guarantees,” in USENIX Symposium on Operating
Systems Design and Implementation OSDI, 2020, pp. 515–532.

[19] B. Wagner, A. Kohn, and T. Neumann, “Self-tuning query scheduling for
analytical workloads,” in ACM International Conference on Management
of Data (SIGMOD), 2021, pp. 1879–1891.

[20] A. Qiao, S. K. Choe, S. J. Subramanya, W. Neiswanger, Q. Ho,
H. Zhang, G. R. Ganger, and E. P. Xing, “Pollux: Co-adaptive cluster
scheduling for goodput-optimized deep learning,” in USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI), 2021.

[21] C. Lyu, Q. Fan, F. Song, A. Sinha, Y. Diao, W. Chen, L. Ma, Y. Feng,
Y. Li, K. Zeng, and J. Zhou, “Fine-grained modeling and optimization
for intelligent resource management in big data processing,” VLDB
Endowment, vol. 15, no. 11, p. 3098–3111, 2022.

[22] R. Liu, D. Wong, D. Lange, P. Larsson, V. Jethava, and Q. Zheng,
“Accelerating container-based deep learning hyperparameter optimiza-
tion workloads,” in Workshop on Data Management for End-To-End
Machine Learning (DEEM@SIGMOD), 2022.

[23] L. Li, K. G. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Hyperband: A novel bandit-based approach to hyperparameter opti-
mization,” Journal of Machine Learning Research, vol. 18, pp. 185:1–
185:52, 2017.

[24] “Apache Spark,” https://spark.apache.org, 2022, accessed: 2022-10-08.
[25] “TensorFlow,” https://www.tensorflow.org, 2022, accessed: 2022-10-08.
[26] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “Haloop: Efficient

iterative data processing on large clusters,” VLDB Endowment, vol. 3,
no. 1, pp. 285–296, 2010.

[27] S. Floratos, Y. Zhang, Y. Yuan, R. Lee, and X. Zhang, “Sqloop:
High performance iterative processing in data management,” in IEEE
International Conference on Distributed Computing Systems (ICDCS),
2018, pp. 1039–1051.

[28] K. Li and G. Li, “Approximate query processing: What is new and where
to go? - A survey on approximate query processing,” Data Science and
Engineering, vol. 3, no. 4, pp. 379–397, 2018.

[29] S. Chaudhuri, B. Ding, and S. Kandula, “Approximate query processing:
No silver bullet,” in ACM International Conference on Manageme of
Data (SIGMOD), 2017, pp. 511–519.

[30] K. Zeng, S. Agarwal, and I. Stoica, “iolap: Managing uncertainty for ef-
ficient incremental OLAP,” in International Conference on Management
of Data (SIGMOD), 2016, pp. 1347–1361.

[31] S. Agarwal, H. Milner, A. Kleiner, A. Talwalkar, M. I. Jordan, S. Mad-
den, B. Mozafari, and I. Stoica, “Knowing when you’re wrong: building
fast and reliable approximate query processing systems,” in International
Conference on Management of Data (SIGMOD), 2014, pp. 481–492.

[32] L. Stafman, A. Or, and M. J. Freedman, “Relaqs: Reducing latency
for multi-tenant approximate queries via scheduling,” in International
Middleware Conference (Middleware), 2019, pp. 280–292.

[33] C. Zhang, M. Yu, W. Wang, and F. Yan, “Mark: Exploiting cloud services
for cost-effective, slo-aware machine learning inference serving,” in
USENIX Annual Technical Conference (ATC), 2019, pp. 1049–1062.

[34] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur,
G. R. Ganger, P. B. Gibbons, and M. Zaharia, “Pipedream: generalized
pipeline parallelism for DNN training,” in ACM Symposium on Operat-
ing Systems Principles (SOSP), 2019, pp. 1–15.

[35] W. Xiao, S. Ren, Y. Li, Y. Zhang, P. Hou, Z. Li, Y. Feng, W. Lin, and
Y. Jia, “Antman: Dynamic scaling on GPU clusters for deep learning,” in
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2020, pp. 533–548.

[36] B. Andersson, S. K. Baruah, and J. Jonsson, “Static-priority scheduling
on multiprocessors,” in IEEE Real-Time Systems Symposium (RTSS),
2001, pp. 193–202.

[37] J. Y. Leung and J. Whitehead, “On the complexity of fixed-priority
scheduling of periodic, real-time tasks,” Performance Evaluation, vol. 2,
no. 4, pp. 237–250, 1982.

[38] R. I. Davis and A. J. Wellings, “Dual priority scheduling,” in IEEE
Real-Time Systems Symposium (RTSS), 1995, pp. 100–109.

2152

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on July 19,2024 at 18:13:23 UTC from IEEE Xplore. Restrictions apply.

[39] X. Yang and N. H. Vaidya, “Priority scheduling in wireless ad hoc net-
works,” in ACM Interational Symposium on Mobile Ad Ho Networking
and Computing (MobiHoc), 2002, pp. 71–79.

[40] D. Alistarh, J. Kopinsky, J. Li, and G. Nadiradze, “The power of choice
in priority scheduling,” in ACM Symposium on Principles of Distributed
Computing (PODC), 2017, pp. 283–292.

[41] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

[42] A. Graves and J. Schmidhuber, “Framewise phoneme classification with
bidirectional LSTM and other neural network architectures,” Neural
Networks, vol. 18, no. 5-6, pp. 602–610, 2005.

[43] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT Press,
2016.

[44] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica,
“Blinkdb: queries with bounded errors and bounded response times
on very large data,” in European Conference on Computer Systems
(EuroSys), 2013, pp. 29–42.

[45] J. M. Hellerstein, P. J. Haas, and H. J. Wang, “Online aggregation,”
in ACM International Conference on Management of Data (SIGMOD),
1997, pp. 171–182.

[46] S. Chaudhuri, G. Das, and V. R. Narasayya, “Optimized stratified
sampling for approximate query processing,” ACM Transactions on
Database Systems (TODS), vol. 32, no. 2, p. 9, 2007.

[47] S. Kay, Fundamentals of statistical signal processing. Prentice Hall
PTR, 1993.

[48] “Cost-based optimizer,” https://docs.databricks.com/spark/latest/spark-
sql/cbo.html, 2022, accessed: 2022-10-08.

[49] R. Liu, S. Krishnan, A. J. Elmore, and M. J. Franklin, “Understanding
and optimizing packed neural network training for hyper-parameter
tuning,” in Workshop on Data Management for End-To-End Machine
Learning (DEEM@SIGMOD), 2021, pp. 3:1–3:11.

[50] “Apache kafka,” https://kafka.apache.org, 2022, accessed: 2022-10-08.
[51] D. Masters and C. Luschi, “Revisiting small batch training for

deep neural networks,” CoRR, vol. abs/1804.07612, 2018. [Online].
Available: http://arxiv.org/abs/1804.07612

[52] Y. Bengio, “Practical recommendations for gradient-based training of
deep architectures,” in Neural Networks: Tricks of the Trade - Second
Edition, 2012, vol. 7700, pp. 437–478.

[53] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015, pp. 1–9.

[54] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” CoRR, vol. abs/1704.04861,
2017.

[55] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 4510–
4520.

[56] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and <1mb model size,” CoRR, vol. abs/1602.07360, 2016.

[57] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely
efficient convolutional neural network for mobile devices,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018,
pp. 6848–6856.

[58] N. Ma, X. Zhang, H. Zheng, and J. Sun, “Shufflenet V2: practical guide-
lines for efficient CNN architecture design,” in European Conference on
Computer Vision (ECCV), vol. 11218, 2018, pp. 122–138.

[59] S. Xie, R. B. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated
residual transformations for deep neural networks,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 5987–
5995.

[60] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for
convolutional neural networks,” in International Conference on Machine
Learning (ICML), vol. 97, 2019, pp. 6105–6114.

[61] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceeding of IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[62] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in International Conference on Learning
Representations (ICLR), 2015.

[63] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Annual Conference on
Neural Information Processing Systems (NIPS), 2012, pp. 1106–1114.

[64] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in European Conference on Computer Vision (ECCV),
vol. 8689, 2014, pp. 818–833.

[65] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017, pp. 2261–2269.

[66] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[67] I. Turc, M. Chang, K. Lee, and K. Toutanova, “Well-read students learn
better: The impact of student initialization on knowledge distillation,”
CoRR, vol. abs/1908.08962, 2019.

[68] A. Krizhevsky et al., “Learning multiple layers of features from tiny
images,” 2009.

[69] “Universal dependencies,” https://universaldependencies.org, 2022, ac-
cessed: 2022-10-08.

[70] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
“Learning word vectors for sentiment analysis,” in Annual Meeting of
the Association for Computational Linguistics ACL, 2011, pp. 142–150.

[71] D. J. Abadi, D. S. Myers, D. J. DeWitt, and S. Madden, “Materialization
strategies in a column-oriented DBMS,” in International Conference on
Data Engineering (ICDE), 2007, pp. 466–475.

2153

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on July 19,2024 at 18:13:23 UTC from IEEE Xplore. Restrictions apply.

