
Does More Advice Help? The E�ects of Second Opinions in
AI-Assisted Decision Making
ZHUORAN LU, Purdue University, USA
DAKUO WANG, Northeastern University, USA
MING YIN, Purdue University, USA

AI assistance in decision-making has become popular, yet people’s inappropriate reliance on AI often leads to
unsatisfactory human-AI collaboration performance. In this paper, through three pre-registered, randomized
human subject experiments, we explore whether and how the provision of second opinionsmay a�ect decision-
makers’ behavior and performance in AI-assisted decision-making. We �nd that if both the AI model’s decision
recommendation and a second opinion are always presented together, decision-makers reduce their over-
reliance on AI while increase their under-reliance on AI, regardless whether the second opinion is generated
by a peer or another AI model. However, if decision-makers have the control to decide when to solicit a
peer’s second opinion, we �nd that their active solicitations of second opinions have the potential to mitigate
over-reliance on AI without inducing increased under-reliance in some cases. We conclude by discussing the
implications of our �ndings for promoting e�ective human-AI collaborations in decision-making.
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1 INTRODUCTION
With its rapid development in recent years, Arti�cial Intelligence (AI) technology has been in-
tegrated into many industries, such as business [39, 41, 79, 96, 98], healthcare [45, 46, 100, 115],
education [117], transportation [65], and more. A commonway for AI to augment human work�ows
in various domains is through AI-assisted decision-making, that is, an AI-based decision aid
provides decision recommendations to humans while humans make the �nal decisions. As humans
and AI may each possess unique intelligence that is complementary to each other, the human-AI
collaboration [97] in this decision-making scenario has the potential to utilize the best of humans
and AI and realizes a joint performance beyond what can be achieved by each party alone.

In reality, however, the joint decision-making performance of the human-AI team is often not as
good as expected. One primary reason underlying such unsatisfactory human-AI collaboration is
that humans often rely on the AI recommendations inappropriately. Humans may not trust an AI
model and hence avoid adopting its recommendations even when the recommendations are highly
accurate, resulting in under-reliance on AI [21]. On the other hand, sometimes humans also show
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a degree of over-reliance on AI, as they blindly accept the recommendations of an AI model even
when it makes sizable mistakes [8, 14, 74]. To help people establish a more appropriate level of
reliance on AI and improve the human-AI joint decision-making performance, researchers and
practitioners have explored a wide range of methods, such as enhancing humans’ understandings
of the rationale underlying AI recommendations [5, 81, 82, 106, 110], enforcing people to engage
in careful deliberation [8, 71], and communicating to people the importance of their decisions [1].
However, mixed results have been reported regarding the e�ectiveness of these methods.
This challenge of humans inappropriately relying on suggestions provided by some “advisors”

is not new. Indeed, in the classical paradigm of “Judge-Advisor System” in the advice taking
research [7], where a human “judge” receives suggestions from another human “advisor” before
making their �nal judgement on a decision-making problem, it is also observed that the judge may
inappropriately discount the advisor’s suggestions [108] or over-utilize the advisor’s low-quality
advice [87]. Interestingly, a common intervention adopted in these scenarios to improve the human
judge’s decision-making quality is to introduce advice from a second advisor, so that the judge
can explore di�erent perspectives and suggestions to make a better �nal decision [9, 42, 107, 109].
Naturally, one may wonder if similar methods will also bene�t AI-assisted decision-making—If
second opinions from other human peers are presented to a decision-maker in addition to the AI
recommendation, can they help the decision maker rely on AI more appropriately and achieve a
higher level of decision-making performance? As a motivating example, consider an investor who is
assisted by an AI model in deciding their stock trading strategies [47, 73, 95, 105]: when the investor
is about to buy/sell a stock given an AI model’s recommendation, will the presence of a second
opinion from other investors (e.g., from online discussion forum wallstreetbets in reddit [6, 56])
help them make better investment decisions (or the opposite)? Thus, our �rst goal in this study is
to answer the following question:

• RQ1: How do second opinions from human peers a�ect decision-makers’ reliance on the
AI model (e.g., over-reliance, under-reliance, and appropriate reliance) and in�uence their
decision-making performance (e.g., decision accuracy, time and con�dence)?

There are reasons to conjecture the answer to this question either way. On the one hand, it is
possible that the decision-maker (e.g., the investor) may perceive the AI model to be more competent
than their human peers (e.g., AI has the “expert power” or authority) [38, 43]; if so, the presence
of second opinions from peers may hardly change how they interact with the AI model. On the
other hand, after observing potential disagreements between the AI model and the peers on some
decision-making cases, decision-makers may evaluate the AI recommendations more critically and
incorporate them into their �nal decisions more intelligently, which may result in an improvement
in their decision-making accuracy. In this sense, perhaps second opinions from those who oppose
the AI more frequently can lead to a larger accuracy improvement [18]. Another possibility is that
the decision-maker may leverage the level of agreement between the AI recommendations and
the second opinions from peers as a heuristic to gauge the trustworthiness of the AI model and
adjust their reliance strategies accordingly. However, how changes in the decision-maker’s reliance
on AI translate to changes in their decision-making accuracy is not clear in this case. Finally, we
note that beyond decision accuracy, decision-making performance can also be evaluated by other
metrics, such as how e�ciently the decisions are made (e.g., decision time) and the degree that the
decision-makers’ subjective perceptions of their decisions (e.g., decision con�dence) are calibrated;
it’s thus necessary to examine how the provision of second opinions from human peers will a�ect
these aspects of performance to obtain a comprehensive understanding.
In addition, suppose second opinions from human peers have signi�cant impacts on decision-

makers’ reliance behavior and performance in AI-assisted decision making, a natural follow-up
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question to ask is whether these impacts are caused by the content of the second opinions or the
stated source of the second opinions. As one could have solicited second opinions from another AI
model instead of human peers in AI-assisted decision making, the second research question we
aim to answer in our study is:

• RQ2: Do the impacts of second opinions on decision-makers’ reliance on AI and performance
in AI-assisted decision making change, when the second opinions are claimed to be solicited
from another AI model rather than human peers?

To obtain a thorough understanding of these two questions, we conducted two pre-registered,
randomized human-subject experiments (Experiment 1: # = 428, Experiment 2: # = 516) on
Amazon Mechanical Turk (MTurk). In these experiments, subjects were asked to complete a series
of sentiment analysis tasks to decide whether a movie review is positive or negative, with the
decision recommendations provided by an AI model.
Speci�cally, in Experiment 1, we created four treatments by varying whether second opinions

generated by human peers were presented to subjects on each decision-making task, and if so, how
frequently they agreed with the AI recommendations. This design, thus, enabled us to understand
whether the e�ects of peer-generated second opinions on decision-makers’ reliance behavior and
performance in AI-assisted decision making are moderated by the level of agreement between
the peers and the AI model. Our results showed that when second opinions from human peers
are always presented to decision-makers, they result in signi�cant decreases in decision-makers’
over-reliance on the AI model but also trigger signi�cantly increased level of under-reliance. These
changes are especially salient as the peers disagree with the AI model more frequently. Overall,
we do not �nd the presence of peer-generated second opinions signi�cantly changes decision-
makers’ accuracy in AI-assisted decision making, but it does result in signi�cant increases in
decision-makers’ decision time and their con�dence in their correct decisions.
For Experiment 2, we set up �ve treatments: a control treatment where second opinions were

never presented to decision-makers, and four experimental treatments where second opinions were
always presented to decision-makers on every task. In addition, the four experimental treatments
were arranged in a 2 by 2 factorial design varying along two dimensions—the frequency of agreement
between the second opinions and the AI model (i.e., low vs. high), and the stated source of the second
opinions (i.e., human peers vs. another AI model). We observed similar results in this experiment
as those obtained in Experiment 1, regardless of the stated source of the second opinions. This
means that the impacts of second opinions on decision-makers are mainly due to the content of
the second opinions rather than their sources.

Both Experiments 1 and 2 suggest that simply providing second opinions on all decision-making
tasks may fall short in helping improve decision-makers’ accuracy in AI-assisted decision making.
Interestingly, in the exploratory analysis of both experiments, we found that a key reason that
potentially limits the bene�ts of providing second opinions is the frequent presence of disagreeing
second opinions on tasks where the AI recommendation is correct. This observation sparked a
natural idea—Instead of always presenting second opinions, we can allow decision-makers to
actively request for second opinions only when they need it. Ideally, we hope decision makers may
have some capability in di�erentiating the correctness of AI recommendation, thereby decreasing
the solicitation of second opinions on tasks where the AI recommendation is correct. This leads to
our �nal research question:

• RQ3: How does having the option to solicit second opinions a�ect decision-makers’ reliance
on the AI model and in�uence their performance in AI-assisted decision making?

To answer this question, we conducted a third pre-registered, randomized human-subject experi-
ment (Experiment 3, # = 336) on MTurk, again having subjects complete AI-assisted sentiment
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analysis tasks. In this experiment, instead of presenting a second opinion on every task, we provided
subjects in some treatments with the option to actively request for a second opinion if they needed
it. Results we obtained from all subjects of this experiment, regardless of whether they had ever
requested for any second opinions on any task, showed a similar trend as the results in the �rst two
experiments, except that the option of soliciting second opinions no longer increases decision time.
Nevertheless, when we focused on the comparisons between those subjects who had requested
for second opinions at least on some task and the comparable subjects in the control treatment
who never saw any second opinions, we found that decision-makers’ active solicitations of second
opinions may result in a decrease in over-reliance without inducing higher levels of under-reliance;
however, this is only observed in the treatment where the level of agreement between the second
opinion and the AI model’s recommendation is relatively high.

Taken together, our results highlight the promise of introducing second opinions as an interven-
tion in the AI-assisted decision-making work�ows to help people rely on AI more appropriately and
eventually improve their AI-assisted decision-making performance. Meanwhile, the e�ectiveness of
this intervention is shown to be dependent on both the ways that the second opinions are presented
and the characteristics of the second opinions. We conclude by discussing the design implications
and limitations of our work.

2 RELATEDWORK
2.1 AI-assisted Decision-Making
The increasing prevalence of AI assistance has sparked great interest in the research community
to empirically understand how people interact with, trust, and rely on AI models during this
collaborative decision making process [48, 100]. Early studies focus on understanding human
decision-makers’ preferences between decision recommendations made by humans or AI models.
Human subjects in these studies were often asked to explicitly choose to receive recommendations
from either humans or AI, or be presented with the same recommendation that was labeled
as from either humans or AI. Interestingly, both the phenomenon of “algorithm aversion” (i.e.,
recommendations from humans are used more than those from AI) [21, 24, 111] and “algorithm
appreciation” (i.e., recommendations from AI models are used more than those from humans) [55]
are observed in di�erent contexts. More recently, researchers start to identify a wide range of factors
that can a�ect people’s reliance on AI’s decision recommendations. For example, performance
indicators and feedback of the AI model, such as its accuracy [50, 112, 113], con�dence [75, 116],
and the expectation and �rst impressions of the model competency [44, 67, 69, 92, 92], are shown
to signi�cantly impact people’s willingness to rely on the AI model. When performance-related
information is absent, it is found that people may utilize other heuristics or cues to determine how
to rely on the AI model, including how frequently the AI recommendations align with their own
judgments [58] and their mental models of the AI model’s error boundaries [3, 4].
Meanwhile, despite it is believed that human-AI collaborations in AI-assisted decision-making

may enable the human-AI team to outperform either party alone in their joint decision-making
performance, it is widely observed in empirical studies that achieving such human-AI complemen-
tarity is quite challenging [5, 36]. A key limiting factor is that in their interactions with AI models,
humans often exhibit a degree of inappropriate reliance on AI. For example, people may fail to reject
incorrect AI recommendations, resulting in over-reliance on AI [5, 55, 68, 85], while there are also
times that human decision-makers do not adopt highly accurate AI recommendations, resulting in
under-reliance on AI [21, 58, 94].
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2.2 Approaches to Promote People’s Appropriate Reliance on AI
In light of people’s inappropriate reliance on AI in AI-assisted decision-making, in recent years,
a wide range of approaches have been developed to help people rely on AI more appropriately
and improve the decision accuracy of the human-AI team. For example, a simple indicator of AI
con�dence may help people calibrate their reliance on the AI model [61, 116]. Another commonly
used intervention is to provide AI explanations along with the decision recommendations, which
allow people to probe into the AI model’s rationale before determining whether to rely on its
recommendations [5, 12, 13, 23, 49, 53, 99, 106, 116]. However, the e�ectiveness of AI explanations
in promoting appropriate reliance on AI is inconclusive [27]. For instance, Carton et al. [11] found
that the feature-based explanation does not help people detect online toxic content more accurately
when they are assisted by toxic text classi�ers, but the same type of explanation was shown to
improve people’s accuracy in AI-assisted recidivism risk assessments [31]. Researchers also found
that the e�ectiveness of di�erent types of explanations on helping people calibrate their reliance
on AI varies, and sometimes the provision of certain kinds of explanations may even result in
signi�cant over-reliance on AI models for some people [5, 10, 16, 80, 102, 106]—Scha�er et al. [80]
showed that showing explanations to people who reported higher familiarity with the decision
making tasks led to automation bias, while detailed explanations were also found to lead users to
develop over-reliance on AI [10, 72]. A recent meta-analysis reports that people’s decision making
performance does not have signi�cant di�erences between the cases that they are assisted by an
AI model with or without the explanations [82], suggesting that overall, the e�ects of current AI
explanations on promoting appropriate reliance is somewhat limited.
Beyond various approaches to change the ways AI recommendations are communicated, addi-

tional interventions have been designed to promote appropriate reliance on AI through in�uencing
humans [72, 103]. For instance, cognitive forcing functions [8] have been used to encourage people
to engage with the AI recommendations more cognitively, which are shown to reduce people’s
over-reliance on AI signi�cantly. Frameworks have been proposed to monitor people’s trust and
reliance on AI and use cognitive cues to prompt them to re-calibrate their trust and reliance when
needed [70]. It is also found that before people start their interactions with AI models, carefully
designed training can help to enhance people’s AI literacy and their overall understanding of
the AI model’s behavior [14, 15, 25, 35, 35, 49], which result in a decrease in people’s inappropri-
ate reliance on the AI model during the actual interactions. Most recently, researchers have also
explored the use of computational approaches to model and predict people’s interactions with
AI models [51, 52, 57, 101], which inform the designs of adaptive interfaces to improve people’s
appropriate reliance on AI [59].
For a more comprehensive review on people’s inappropriate reliance on AI (especially over-

reliance) and mitigation methods, please see [72]. We note that the existing approaches for promot-
ing people’s appropriate reliance onAI are rarely panaceas—some interventions reduce over-reliance
with the price of increasing under-reliance (e.g., cognitive forcing functions), while the success of
other approaches (e.g., AI literacy interventions) is only observed for people with certain character-
istics. Nevertheless, all of these studies contribute important insights into what may or may not
work, and when they can work, when it comes to mitigating inappropriate reliance on AI.

2.3 Advice Taking
How humans take advice from others in their decision making has been studied for decades in
psychology [7]. This research often adopts a particular advice structure called “Judge–Advisor
System” (JAS) that is very similar to the structure of AI-assisted decision-making—in JAS, the
advisor provides advice to the judge, while the judge is responsible for making the �nal decision.
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It is found that judges often have some capability in perceiving the quality of the advice; hence
they utilize good advice more than bad advice [33, 33, 108]. However, judges’ utilization of advice
is often not optimal. For instance, due to their egocentric bias, judges may associate a very high
weight with their own opinions and, therefore, signi�cantly discount advice that is distant from
their own opinions [108].
To help further improve the decision quality of judges, advice from multiple sources is often

provided to the judge so that the judge can aggregate multiple pieces of advice [109]. Indeed,
there is empirical evidence showing that by aggregating the opinions from di�erent advisors,
in many cases, judges can make more accurate or even optimal decisions [9, 32, 42, 107, 109].
However, how the judge incorporates multiple advice into their decision, and how exactly this
a�ects the judge’s decision quality depend on many factors [22, 29, 40, 86, 91]. For instance, one
relevant factor is the degree of “con�ict” between advisors (i.e., the level of disagreement between
advisors’ opinions) [76, 89, 90]. In the ideal scenario, con�icts among advisors could result in
improvement in the judge’s decision performance because the judge’s blind trust in any single
advisor is decreased [77]. It is found that integrating multiple independent pieces of advice is
particularly helpful for increasing the judge’s decision accuracy gain [7, 107]. These promising
�ndings inspire us to investigate that, in AI-assisted decision-making, how the provision of second
opinions generated independently by human peers or another AI model in addition to the AI
recommendation will a�ect people’s reliance on AI. More generally, we wonder how the potential
agreement and disagreement between two independent advisors’ opinions a�ect people’s behavior
and performance in AI-assisted decision making.

3 EXPERIMENT 1: PEERS’ SECOND OPINIONS ALWAYS PRESENTED
To understand how the presence of second opinions from human peers a�ect people’s behavior
and performance in AI-assisted decision-making, and how these e�ects vary with the agreement
level between the peers and the AI model, we recruit human subjects from Amazon Mechanical
Turk (MTurk) and conduct our �rst randomized experiment.

3.1 Experimental Task
Choice of decision-making task. In our experiment, we asked subjects to determine the sentiment
of movie reviews with the help of an AI model. Speci�cally, in each task, subjects were presented
with a movie review taken from the IMDB movie review dataset [60], and the length of the review
was controlled to be between 280 and 300 words. Along with the movie review, we also showed
subjects an AI model’s binary prediction of the review’s sentiment (i.e., positive vs. negative),
while subjects in some experimental treatments also had access to the judgement of the review’s
sentiment made by a peer (i.e., a randomly selected crowd worker; see Section 3.2 for details).
After reviewing all this information, subjects were asked to make a �nal decision on whether the
sentiment expressed in the movie review was positive or negative. In total, each subject needed to
review the same set of 20 movie reviews in our experiment.
We used the sentiment analysis task in our experiment for several reasons. To begin with,

accurately analyzing sentiment is crucial in various industries, including retail [26], �nance [62],
and healthcare [118]. In the mean time, it requires no speci�c domain knowledge from our human
subjects. However, determining the sentiment in lengthy and unstructured text can be time-
consuming and laborious for humans [88, 114], while AI technologies hold promise in streamlining
this process by providing automated suggestions. Therefore, the AI-assisted sentiment analysis
task we used in this experiment re�ects the real-world scenarios where people utilize their general
human intelligence to provide sentiment labels for texts, mostly by verifying the labels produced by
automatic AI technologies. These scenarios can often been found in AI-assisted human labeling [1,
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19, 20] and human-in-the-loop machine learning pipelines [63, 64, 104]. Similar tasks have also been
used in previous studies to investigate human behavior in AI-assisted decision-making [16, 34, 84],
and to explore ways to promote humans’ appropriate reliance on AI in AI-assisted decision-
making [5].

We note that for the IMDB dataset from which we draw our decision-making tasks, the ground-
truth label for a movie review’s sentiment is decided by the reviewer’s own star rating of the movie
(on a scale of 1 to 10) associated with their review text. As described in [60], the star ratings are
converted to a binary label by mapping a review with a rating  4 out of 10 as a negative review,
while a review with a rating � 7 out of 10 as a positive review, and reviews that potentially have
ambiguous sentiment (i.e., with ratings between 4 and 7) are not included in the dataset. In other
words, the ground-truth labels of our decision making tasks are established by the reviewers of
the movie, rather than through aggregating labels generated by crowd workers in a crowdsourced
annotation e�ort1. For a complete list of 20 movie reviews that we used in our experiment and
their ground-truth sentiment labels, please see the supplemental materials.
The AI model used in the task. On each sentiment analysis task, all subjects in our experiment
were presented with the prediction given by the same AI model. In particular, to obtain this AI
model, we �ne-tuned a pre-trained RoBERTa model [54] from the Huggingface’s transformers
library—First, from the IMDB movie review dataset, we sampled a subset of 5,000 movie reviews to
be used as our training set, as well as another subset of 500 reviews as the test set. We used the
representation embeddings of the last layer of the pre-trained RoBERTa model as the input of a
multi-layer perceptron and tuned parameters of both the pre-trained model and the perceptron
based on the training data. Our �nal model achieved an accuracy of 77.6% on the held-out test set.
On the set of 20 movie reviews we used in our experiment, the model’s accuracy was 75% (i.e.,
correct on 15 tasks and incorrect on 5 tasks), which closely re�ected the model’s overall performance
on the test set. We also intentionally did not train a model with very high performance so that we
would have su�cient data to understand how subjects behave in AI-assisted decision-making both
when the AI model is correct and wrong (e.g., analyze subjects’ under-reliance and over-reliance
separately).

3.2 Experimental Treatments
In total, we created four treatments for our experiment by varying the presence of second opinions
from peers and the level of agreement between peers’ judgements and the AI model’s predictions.
Speci�cally, to enable the presence of second opinions from real human decision-makers to

ensure ecological validity, we �rst ran a pilot study in which 34 MTurk workers were recruited to
review the same set of 20 movie reviews that we selected for our experiment. These workers were
asked to determine the sentiment of each review independently, i.e., without seeing our AI model’s
prediction. For each worker, we then computed the fraction of tasks in which their independent
judgement was the same as our AI model’s prediction across all 20 tasks; we denoted this fraction
as the worker’s “level of agreement” with the AI model. After each worker’s level of agreement
with the AI model was computed, we identi�ed three subsets of workers from the entire pool of 34
workers, with each subset containing three workers—The �rst subset contained the three workers
who agreed with the AI model most frequently, and we referred to them as the “high agreement
peers”; the second subset contained three workers who agreed with the AI model on about 50%

1We acknowledge that in general, sentiment analysis tasks have a degree of subjectivity [17, 30]. However, we believe that
by asking subjects to determine the polarity of the sentiment instead of speci�c emotion contained in the review, and by
using a dataset that does not include the middle-range rated, potentially ambiguous reviews, we minimize the possibility
that the ground-truth label (i.e., the correct decision in a decision-making task) is subject to debate or unreliable.
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of the tasks, and we referred to them as the “medium agreement peers”; �nally, the last subset
contained the three workers who agreed with the AI model least frequently, whom we referred to
as the “low agreement peers”2.
Utilizing these three sets of “peers” that we identi�ed from our pilot study, we designed the

following 4 treatments:
• Treatment 1 (Control): Subjects had access to the predictions of the AI model when
completing each task. However, they did not see any judgement made by other peer workers.

• Treatment 2 (High agreement): Subjects had access to predictions made by the AI model
when completing each task. In addition, on each task, we randomly selected a worker from
the set of three high agreement peers, and presented the selected worker’s judgement on that
task to the subject as a second opinion3.

• Treatment 3 (Medium agreement): Subjects had access to predictions made by the AI
model when completing each task. In addition, on each task, we randomly selected a worker
from the set of threemedium agreement peers, and presented the selected worker’s judgement
on that task to the subject as a second opinion.

• Treatment 4 (Low agreement): Subjects had access to predictions made by the AI model
when completing each task. In addition, on each task, we randomly selected a worker from
the set of three low agreement peers and presented the selected worker’s judgement on that
task to the subject as a second opinion.

Figure 1 shows an example of the task interface for treatments where the second opinions from
peers are presented (i.e., Treatment 2, 3, or 4). With this design, we expect that subjects in Treatment
2 will �nd the second opinions generated by peer workers agree with the AI model more frequently
than subjects in Treatment 3, who in turn will observe a higher level of agreement between the
peers and the AI model than subjects in Treatment 4. The manipulation of the level of agreement
between the AI model’s decision recommendation and the second opinion across treatments is
crucial, as it re�ects the degree of con�icts between two “advisors”. In the traditional advice-taking
literature, the con�icts between advisors have been found to have nuanced impacts on people’s
advice taking behavior, and we expect the same holds true for AI-assisted decision making settings
as well. In particular, in AI-assisted decision making, when the human decision maker receives the
second opinion solicited by the system from another random peer, it is unclear ex-ante what the
level of con�ict (or disagreement) between that peer and the AI model’s recommendation would be.
Thus, by creating three experimental treatments where the second opinion was solicited from peers
with varying levels of agreement with AI, we are able to obtain a comprehensive understanding of
how the level of con�ict exhibited between the random peer and the AI model moderates the e�ects
of the second opinion on the human decision maker’s behavior and performance in AI-assisted
decision making.

3.3 Experimental Procedure
Our experiment was posted on Amazon Mechanical Turk (MTurk) as a human intelligence task
(HIT). The HIT was open to workers in the U.S. only, and each worker could only take the HIT once.
Each HIT contained the same 20 movie review tasks, which were arranged in a random order. In
addition, we included an attention check question in our HIT, in which the subject were instructed
2For the subset of high, medium, and low agreement peers, the average level of agreement between the crowd workers and
the AI model was 76.67%, 50%, and 30%, respectively.
3While in this experiment, the second opinions presented to subjects have already been collected from crowd workers in
the pilot study, in reality, they can be solicited from peers in the real time when decision-maker is about to make their
decision on a task. We decided to collect second opinions ahead of time in this study to simplify the experimental procedure
and to enable the quanti�cation of the level of agreement between second opinions and the AI model.
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Fig. 1. An illustration of our task interface in Experiment 1. In this example, the treatment is presenting both
the AI model’s prediction (positive) and the second opinion from a peer worker (negative).

to select a pre-speci�ed option. We only considered the data generated by subjects who passed the
attention check as valid data in our analysis.

Upon arrival at the HIT, subjects were randomly assigned to one of the four treatments. Subjects
�rst received instruction on the movie review task. In order to show that they understood how
to complete the movie review tasks, subjects needed to complete a quali�cation task, in which
they were asked to review a simple movie review and determine its sentiment. Subjects could
proceed to the actual experiment only if they answered the quali�cation question correctly. In the
actual experiment, subjects were �rst asked to pick an avatar to represent themselves throughout
the experiment. Then, as we have discussed in Section 3.1–3.2, subjects completed the 20 movie
review tasks; depending on the treatment they were assigned, on each task, they saw the decision
recommendation generated by our AI model and possibly by other peer workers. In each task,
beyond making a decision on the movie review’s sentiment, subjects were also asked to indicate
how con�dent they were in their decision using a 7-point Likert scale from 1 (“not con�dent
at all”) to 7 (“extremely con�dent”). After completing all 20 tasks, subjects needed to �ll out an
exit-survey. In this survey, in addition to general demographic information questions (e.g., age,
gender, education), we also asked subjects to estimate the AI model’s, the peers’ (if applicable), and
their own accuracy in analyzing movie review sentiment across the 20 tasks in the HIT.

The base payment of our experiment is $1.2. To encourage subjects to carefully deliberate about
the decision recommendations made by the AI model and the peers, we also provided a performance-
based bonus to subjects—If the subject’s accuracy in our HIT was higher than 65%, we paid them
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an additional 5-cent bonus for each correct prediction they made; thus, subjects could earn up to $1
bonus in our experiment in addition to the base payment4.

3.4 Analysis Methods
To understand how second opinions from human peers a�ect people’s behavior and performance
in AI-assisted decision-making, we pre-registered a set of dependent variables for this experiment5.
Speci�cally, to examine how peers’ judgements change people’s reliance on AI models in AI-
assisted decision-making, and whether these changes are desirable or not, we consider the following
dependent variables:

• Overall reliance: The chance for a subject’s decision to be the same as the AI model’s
prediction.

• Over-reliance: The chance for a subject’s decision to be the same as the AI model’s prediction,
when the AI model’s prediction was incorrect.

• Under-reliance: The chance for a subject’s decision to be di�erent from the AI model’s
prediction, when the AI model’s prediction was correct.

• Appropriate reliance: The chance for a subject’s decision to be the same as the AI model’s
correct prediction or di�erent from the AI model’s incorrect prediction; this e�ectively
represents the subject’s decision accuracy.

A subject’s overall reliance quanti�es the subject’s reliance behavior in AI-assisted decision-
making without di�erentiating whether such reliance is desirable. We then used over-reliance,
under-reliance, and appropriate reliance to understand whether the reliance behavior that the
subject exhibited was desirable or not. Intuitively, a desirable reliance behavior requires lower
levels of over-reliance and under-reliance, and higher levels of appropriate reliance6.
In addition, to understand how second opinions from peers a�ect people’s performance in AI-

assisted decision-making beyond their decision accuracy (i.e., appropriate reliance), we included a
few more dependent variables related to subjects’ decision time and decision con�dence:

• Decision time: The amount of time that a subject spent on a task7.
• Con�dence in correct decisions: The average level of con�dence subjects reported in a
task if the subject’s decision on that task was correct; this was computed for each of the 20
tasks.

• Con�dence in incorrect decisions: The average level of con�dence subjects reported in a
task if the subject’s decision on that task was incorrect; this was computed for each of the 20
tasks.

4The median time that subjects spent on Experiment 1 was 176 seconds, leading to a median hourly payment of $24.5.
5The pre-registration document can be found at: https://aspredicted.org/36J_RHS. All of our experiments were approved by
the IRB of the authors’ institution.
6We acknowledge that recent studies have introduced more sophisticated metrics for measuring appropriate reliance on
AI, such as “ relative self-reliance” (RSR) and “relative AI reliance” (RAIR) [81, 83]. However, we did not use these metrics
in our study for several reasons. First, our study concerns a AI-assisted decision making setting commonly used in the
real life (especially in AI-assisted labeling pipelines) where decision makers are presented with the AI model’s decision
recommendation upfront, without having to register their independent decisions �rst. However, the computation of RSR
and RAIR requires the knowledge of these independent human decisions. Second, RSR and RAIR focus on quantifying the
appropriateness of reliance for only those cases where humans’ independent decision disagrees with the AI recommendation.
One may argue that whether humans accept the AI recommendation when it agrees with their own independent judgement
also carries important information (e.g., if humans decide to switch away from this agreement, it may imply a very high
level of distrust to AI). RSR and RAIR cannot capture this information, but the metrics we used can.
7As per our pre-registration, decision times that were longer than the 95% percentile of the decision time distribution
obtained from all subjects on all tasks were treated as outliers and removed from the analysis; for example, in Experiment 1,
419 decision time records were excluded from a total of 8,560 records.
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Holding everything else equal, we may consider a subject’s performance to be better if they spend
less time on the task, and become more con�dent in their correct decisions while less con�dent in
their incorrect decisions.

Based on our pre-registration, for dependent variables related to reliance and decision time, we
conducted the one-way analysis of variance (ANOVA) to examine whether there are any signi�cant
di�erences in them across the 4 experimental treatments. When a signi�cant di�erence was found,
we used the Tukey HSD tests to conduct post-hoc pairwise comparisons. For dependent variables
related to decision con�dence, since they were aggregated on each of the 20 tasks8, we used
repeated measures ANOVA to examine whether a signi�cant di�erence exists across experimental
treatments, and pairwise paired t-tests with Bonferroni corrections were used as our post-hoc
analysis to identify pairs of treatments that exhibit signi�cant di�erences.

3.5 Experimental Results
In total, 428 subjects took our experiment HIT and passed the attention check (56.8% self-identi�ed
as male, 41.1% self-identi�ed as female, and the most frequent age group reported by subjects was
25-34). To begin with, for the three treatments with peer judgements (i.e., Treatments 2–4), we
checked the level of agreement between the AI model and the actual peer judgements presented to
subjects. The average fraction of tasks in which the peer worker’s judgement agreed with the AI
model was 0.77, 0.51, 0.30 for treatments with high, medium, and low agreement peers, respectively,
and a one-way ANOVA test con�rms that the level of agreement between peers and the AI model
across these three treatments is signi�cantly di�erent (� (3, 424) = 790.34, ? < 0.001). This indicates
that we successfully varied the peer-AI agreement level through our experimental design.

3.5.1 E�ects on Reliance on AI. First, we look into how the presence of second opinions from
human peers a�ects decision-makers’ reliance on the AI model in AI-assisted decision-making.
Second opinions from peers decrease people’s overall reliance on the AI model. Figure 2a shows
subjects’ average level of overall reliance on the AI model across the four treatments. Visually, it
is clear that the presence of second opinions from human peers results in a decrease in people’s
overall reliance on AI. Also, the more the peers disagree with the AI model, the more the reliance
decreases. A one-way ANOVA test con�rms that the di�erence in subjects’ overall reliance across
di�erent treatments is statistically signi�cant (� (3, 8556) = 28.31, ? < 0.001). The post-hoc Tukey
HSD test suggests that subjects in all treatments with peer judgements are less likely to rely on the
AI model than those in the control treatment (i.e., control vs. high agreement: ? < 0.001, Cohen’s
3 = 0.17; control vs. medium agreement: ? < 0.001, Cohen’s 3 = 0.21; control vs. low agreement:
? < 0.001, Cohen’s 3 = 0.28). In addition, the overall reliance di�erence shown between the two
treatments with high agreement peers and low agreement treatment peers is also found to be
signi�cant (high agreement vs. low agreement: ? < 0.001, Cohen’s 3 = 0.11).
Second opinions from human peers lead to lower over-reliance, higher under-reliance, and
do not signi�cantly a�ect the appropriate reliance. To understand whether the decrease in
people’s overall reliance on the AI model brought up by second opinions from peers is desirable, we
further examine people’s over-reliance, under-reliance, and appropriate reliance on AI separately.
First, Figure 2b compares subjects’ over-reliance on the AI model across the four treatments. It
suggests that the presence of second opinions from peers helps subjects reduce their over-reliance
on the AI model, especially when the peers’ judgements have a relatively low level of agreement
8Since subjects in di�erent treatments received di�erent second opinions (if any), they might be correct/incorrect on
di�erent sets of tasks. This means that directly comparing subjects’ average decision con�dence in their correct (or incorrect)
decisions across treatments without aggregating to the task level can be misleading, because the comparison may occur
between decision con�dence reported for di�erent distributions of tasks.
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(a) Overall reliance (b) Over-reliance (c) Under-reliance (d) Appropriate reliance

Fig. 2. The e�ects of second opinions from human peers on subjects’ overall reliance (2a), over-reliance (2b),
under-reliance (2c), and appropriate reliance (2d) on the AI model across treatments. Error bars represent the
standard errors of the mean.

with the AI. The one-way ANOVA test indicates that the di�erences in subjects’ over-reliance are
signi�cant across treatments (� (3, 2136) = 17.27, ? < 0.001). Post-hoc Tukey HSD tests further
show that these signi�cant di�erences exist between the control treatment and every experimental
treatment with peer judgements (control vs. high agreement: ? < 0.001, Cohen’s 3 = 0.26; control
vs. medium agreement: ? < 0.001, Cohen’s 3 = 0.31; control vs. low agreement: ? < 0.001, Cohen’s
3 = 0.44). A signi�cant di�erence is also found between the treatment with high agreement peers
and the one with low agreement peers (? = 0.010, Cohen’s 3 = 0.18).
While second opinions from peers bring about the bene�t of decreased levels of over-reliance,

these bene�ts also come with a cost. Speci�cally, Figure 2c shows subjects’ average levels of under-
reliance on the AI model in the four treatments. Here, we also �nd a signi�cant di�erence across
treatments (one-way ANOVA: � (3, 6446) = 13.84, ? < 0.001). Post-hoc Tukey HSD tests show that
compared towhen the second opinions are absent, subjects signi�cantly increase their under-reliance
on the AI model when they receive the peers’ judgements as the second opinions, regardless of
how frequently the peers’ judgements agree with the AI (i.e., control vs. high agreement: ? < 0.001,
Cohen’s 3 = 0.14; control vs. medium agreement: ? < 0.001, Cohen’s 3 = 0.17; control vs. low
agreement: ? < 0.001, Cohen’s 3 = 0.22).
Together, our results suggest that when peer-generated second opinions are presented in AI-

assisted decision-making, people decrease their reliance on the AI model regardless of the AI model’s
prediction correctness. As such, when examining subjects’ appropriate reliance on the AI model
across di�erent treatments (Figure 2d), we did not �nd that there is any signi�cant di�erence.

3.5.2 E�ects on decision time. Figure 3a illustrates the average decision time subjects spent on a
task. As expected, the presence of a second opinion makes subjects spend more time to make their
decisions, compared to subjects in the control treatment. Our one-way ANOVA test result suggests
that the di�erence in decision times across treatments is signi�cant (� (3, 8122) = 12.06, ? < 0.001).
Pair-wise comparisons indicate that subjects who received second opinions from medium and low
agreement peers spent signi�cantly more time on a task than both those subjects who did not
receive second opinions (control vs. medium agreement: ? < 0.001, Cohen’s 3 = 0.17; control vs.
low agreement: ? < 0.001, Cohen’s 3 = 0.15), and those subjects who received second opinions from
the high agreement peers (high agreement vs. medium agreement: ? = 0.004, Cohen’s 3 = 0.10;
high agreement vs. low agreement: ? = 0.022, Cohen’s 3 = 0.09).

3.5.3 E�ects on confidence. In Figures 3b and 3c, we plot the average values of subjects’ con�dence
in their correct decisions and incorrect decisions, respectively. Using repeated measures ANOVA,
we detect signi�cant di�erences across treatments in subjects’ con�dence for both their correct
decisions (� (3, 16) = 6.86, ? < 0.001) and their incorrect decisions (� (3, 16) = 3.33, ? = 0.045).
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(a) Decision time (b) Confidence (Correct) (c) Confidence (Incorrect)

Fig. 3. The e�ects of second opinions from human peers on subjects’ decision time (3a), confidence in their
correct decisions (3b), and confidence in their incorrect decisions (3c) across treatments. Error bars represent
the standard errors of the mean.

Through the post-hoc pairwise t-tests with Bonferroni corrections, we �nd that for subjects’ correct
decisions, subjects in the treatment with low agreement peers had signi�cantly higher con�dence
than subjects in both the control treatment (? = 0.003, Cohen’s 3 = 1.08) and the treatment with
high agreement peers (? = 0.002, Cohen’s 3 = 1.64). In contrast, for subjects’ incorrect decisions,
none of the pair-wise comparisons are signi�cant at the level of ? = 0.05.

3.5.4 Exploratory Analyses. Finally, we conduct a set of exploratory analyses to better understand
the reasons behind our �ndings, especially on why the presence of second opinions generated by
human peers results in both decreased over-reliance and increased under-reliance on AI. Detailed
analyses can be found in the supplemental materials.

Here, we highlight a set of analysis in which we attempt to understand how people’s reliance on
the AI model is a�ected by the comparison between the AI recommendation and the peer-generated
second opinion at the level of individual tasks. Speci�cally, when a second opinion from a peer is
presented on a particular task, the peer may agree or disagree with the AI model. How does this
agreement or disagreement a�ect people’s reliance on the AI model on that task? And how does
this e�ect vary with the peer’s overall level of agreement with the AI model across many tasks and
the AI model’s correctness on that task? Answering these questions can provide more nuanced
insights into how people react to peer-generated second opinions on the task level, and may help
explain some of our observations.

Therefore, we construct mixed-e�ect regression models to predict whether a subject’s decision
would be the same as the AI model’s prediction on a task (i.e., whether the subject would rely
on the AI model on a task). In these regression models, whether the peer—who may have a high,
medium, or low level of agreement with the AI model overall—agrees or disagrees with the AI
model on the current task is used as the �xed e�ect, while the subject and the decision-making
task are treated as the random e�ects9. We �t the regression models separately for tasks on which
the AI model is correct and incorrect, and results are reported in Table 1. Inspecting the estimated
coe�cients for those independent variables that indicate the peer agrees with the AI model on a
task (i.e., V1–V3), we �nd that, surprisingly, the agreement between peers and the AI model on a
task does not nudge people into relying on the AI model more (i.e., none of the estimated V1–V3
are signi�cantly positive). On the other hand, we also �nd that in both models, all the estimated
coe�cients for those independent variables that indicate the peer disagrees with the AI model on a
task (i.e., V4–V6) are signi�cantly negative. This means that once observing that the peer disagrees
with the AI model on a task, people signi�cantly decrease their reliance on the AI model regardless
of the AI model’s correctness on that task.
9As whether the subject relies on the AI model or not on a task is binary, we build mixed-e�ect logistic regression models.
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Reliance: AI Correct Reliance: AI Incorrect
(Model 1) (Model 2)

Intercept (V0) 1.93*** 1.34⇤⇤⇤
high agreement peer agrees with AI (V1) -0.31 -0.46⇤

medium agreement peer agrees with AI (V2) -0.25 -0.75**
low agreement peer agrees with AI (V3) -0.34 -0.69**

high agreement peer disagrees with AI (V4) -1.21*** -1.14***
medium agreement peer disagrees with AI (V5) -0.98*** -0.96***
low agreement peer disagrees with AI (V6) -0.93*** -1.37***

Table 1. Understanding how subjects’ reliance on a task is influenced by the agreement or disagreement
between the AI model and the peers on that task, while the peers may have di�erent overall frequencies
to agree with the AI model. Mixed-e�ect regression models are built for tasks that the AI model is correct
(Model 1) or incorrect (Model 2) separately, and each task and each subject is treated as a random e�ect.
Coe�icients estimated are reported. *, **, *** indicate significance levels of 0.05, 0.01, and 0.001, respectively.

Together, these results present a more detailed characterization of how the presence of second
opinions from human peers a�ects people’s reliance on AI models—When the AI model is incorrect
on a task, the presence of second opinions signi�cantly reduces people’s reliance on the AI no
matter whether the second opinions align with the AI model’s recommendation or not, leading
to lower levels of over-reliance. When the AI model is correct on a task, however, the presence of
(incorrect) second opinions that disagree with the AI also signi�cantly reduces people’s reliance on
the AI, resulting in higher levels of under-reliance. Finally, as the decreases in people’s reliance on
the AI model caused by peer-AI disagreements are larger than those caused by peer-AI agreements
(|V4 |, |V5 |, |V6 | > |V1 |, |V2 |, |V3 |), it is natural that second opinions from peers who have a lower level
of overall agreement with the AI model bring about lower levels of over-reliance and higher levels
of under-reliance.

4 EXPERIMENT 2: SECOND OPINIONS FROM DIFFERENT SOURCES
Our Experiment 1 shows that providing second opinions from human peers to decision-makers in
AI-assisted decision-making have signi�cant impacts on decision-makers’ reliance behavior and
some aspects of their decision-making performance. Naturally, one may wonder to what extent
these e�ects are speci�c to second opinions generated by human peers. For example, if the second
opinions are claimed to be produced by another AI model, would we see a similar or di�erent
e�ect?
To answer this question, we conducted our second pre-registered, randomized human subject

experiment10, where subjects were again asked to complete the same set of 20 sentiment analysis
tasks, and with the assistance from the same AI model, as those used in Experiment 1.

4.1 Experimental Design
4.1.1 Experimental Treatments and Procedure. Utilizing the same set of peer judgements as those
collected in Experiment 1, we created 5 treatments for Experiment 2. In the control treatment,
subjects completed AI-assisted sentiment analysis tasks without the access to any second opinions.
On the other hand, second opinions were provided to subjects in the other four experimental
treatments, which were arranged in a 2 by 2 factorial design varying along the following two
factors:

10The pre-registration can be found at: https://aspredicted.org/X9H_CM6.
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• The level of agreement between the AI model and the second opinion: On each
task, the second opinion presented to the subject was randomly sampled from the pool of
judgements made by high agreement peers or low agreement peers.

• The stated source of the second opinion: Subjects were told that the second opinion was
generated by another crowd worker, or another AI model that was trained using a di�erent
algorithm than the primary AI model that provides the decision recommendation.

The procedure of this experiment was identical to that of Experiment 1, while subjects who had
participated in Experiment 1 was not allowed to take this experiment.

4.1.2 Analysis Methods. We used the same dependent variables as those used in Experiment 1
(see Section 3.4 for details). Following the standard practice to analyze experimental data where
the control treatment does not �t into the factorial design [37], for each dependent variable, we
�rst conducted a one-way ANOVA test to examine whether signi�cant di�erences exist across all
treatments. If so, we then performed the post-hoc Tukey HSD tests to compare each experimental
treatment with the control treatment. We then focused on the four experimental treatments to
understand how the agreement level between second opinions and the AI model, as well as the
stated source of second opinions, a�ect the dependent variables. We did so by conducting two-way
ANOVA tests.

4.2 Experiment Results
In total, 516 subjects participated in Experiment 2 and passed the attention check (65.3% self-
identi�ed as male, 30.8% self-identi�ed as female, and the most frequent age group reported by
subjects was 25-34)11. Again, as a sanity check, we con�rmed that the second opinions presented
to subjects in the high agreement treatments agreed with the AI model signi�cantly more than
those presented to subjects in the low agreement treatments (? < 0.001). For brevity, in the rest of
this section, we focused on reporting the results on decision-makers’ reliance behavior, and results
on decision-makers’ decision time and con�dence are included in the supplementary material.

4.2.1 E�ects on subject’s reliance on AI. We start by analyzing how subjects’ reliance on the AI
model’s decision recommendation di�ers across all treatments, and then analyze the main e�ects
of the two factors, i.e., the agreement level between second opinions and the AI model, and the
stated source of second opinions.
Second opinions from both sources lead to decreased overall reliance and over-reliance,
increased under-reliance, and sometimes decreased appropriate reliance on AI. Figures 4a–4d
compare subjects’ overall reliance, over-reliance, under-reliance, and appropriate reliance on the AI
model across the �ve treatments, respectively. One-way ANOVA test results suggest that signi�cant
di�erences exist across the �ve treatments with respect to all four aspects of reliance (overall
reliance: � (4, 10315) = 18.95, ? < 0.001; over-reliance: � (4, 2575) = 8.19, ? < 0.001; under reliance:
� (4, 7735) = 8.19, ? < 0.001; appropriate reliance: � (4, 10135) = 3.33, ? = 0.010). Through post-hoc
Tukey HSD tests, we �nd that in all four treatments with the access to second opinions, subjects’
overall reliance on AI is signi�cantly lower than that in the control treatment (? < 0.001), while
subjects’ under-reliance is signi�cantly higher than that in the control treatment (? < 0.001). For
over-reliance, except for those in the “high agreement–AI source” treatment (i.e., second opinions
are claimed to come from another AI model and have a high level of agreement with the primary
AI model’s decision recommendations), subjects in all other treatments with the access to second
opinions show signi�cantly lower levels of over-reliance than those subjects in the control treatment
(? < 0.05). Finally, subjects in the “high agreement–AI source” and “low agreement–human source”
11The median time subjects spent in Experiment 2 was 206 seconds, and the median hourly payment is $20.97.
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(a) Overall reliance (b) Over-reliance (c) Under-reliance (d) Appropriate reliance

Fig. 4. The e�ects of second opinions from di�erent sources (i.e., human peers or another AI model) and with
di�erent levels of agreement with the primary AI model on subjects’ overall reliance (4a), over-reliance (4b),
under-reliance (4c), and appropriate reliance (4d) on AI. Error bars and error shades represent the standard
errors of the mean.

treatments are found to have a signi�cantly lower level of appropriate reliance than subjects in the
control treatment (? < 0.05).
The agreement level between second opinions and the AImodel signi�cantly a�ects the e�ects
of second opinions, while the source of second opinions does not. Our two-way ANOVA tests
reveal that the level of agreement between second opinions and the AI model has signi�cant main
e�ects on subjects’ overall reliance, over-reliance, and under-reliance on the AI recommendation, but
not the appropriate reliance. Speci�cally, when the second opinions agree with AI recommendation
less frequently, subjects showed a signi�cant decrease in their overall reliance on AI (? < 0.001) and
over-reliance on AI (? = 0.002), while they exhibited a signi�cant increase in their under-reliance
(? = 0.038). On the other hand, we do not �nd signi�cant main e�ect of the source of second
opinions on any of these four reliance metrics, and we do not detect any signi�cant interactions
between the two factors either. In other words, the source of the second opinions does not appear
to play a major role in in�uencing how decision-makers would utilize the second opinions in
AI-assisted decision making.

4.2.2 Exploratory Analysis. Similar as that in Experiment 1, we now zoom in to the level of
individual tasks to understand how decision-makers’ reliance on the AI model on a task is a�ected
by (1) the agreement between the second opinion and the AI recommendation on that task, (2) the
overall level of agreement between the second opinions and the AI recommendations across many
tasks, and (3) the stated source of second opinions.
Again, we construct mixed-e�ect regression models to predict whether a subject’s decision

would be the same as the AI recommendation on a task. Compared to the exploratory analysis
in Experiment 1, here, we conjecture that each �xed e�ect may di�er based on the stated source
of the second opinions. Thus, we create additional �xed e�ect terms to capture the e�ects on
reliance that are caused exclusively by the fact that the second opinions are claimed to be produced
by human peers (V5–V8). The regression results are reported in Table 2. First, we note that the
estimated coe�cients of V1–V4 are all negative in both models. This is consistent with what we have
observed previously in Experiment 1, which again suggests that one reason that may keep decision-
makers from utilizing second opinions to improve their appropriate reliance on AI (i.e., decision
accuracy) could be the presence of second opinions on tasks where the AI recommendation is correct.
Moreover, we also notice that the estimated coe�cients of V5–V8 are almost always insigni�cant
(except for V6 in Model 2). This means that the fact that second opinions are produced by human
peers brings about very limited additional e�ects on subjects’ reliance on AI recommendations,
again implying that the impacts of second opinions do not vary much with their stated source.
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Reliance: AI Correct Reliance: AI Incorrect
(Model 1) (Model 2)

Intercept (V0) 1.75⇤⇤⇤ 1.11⇤⇤⇤
high agreement second opinion agrees with AI (V1) -0.47⇤ -0.32⇤
low agreement second opinion agrees with AI (V2) -1.53⇤⇤⇤ -0.34

high agreement second opinion disagrees with AI (V3) -0.53⇤ -0.46
low agreement second opinion disagrees with AI (V4) -0.92⇤⇤⇤ -1.08⇤⇤⇤

high agreement peer-generated second opinion agrees with AI (V5) -0.08 0.21
low agreement peer-generated second opinion agrees with AI (V6) 0.47 -0.74⇤⇤

high agreement peer-generated second opinion disagrees with AI (V7) 0.11 0.04
low agreement peer-generated second opinion disagrees with AI (V8) 0.06 0.28

Table 2. Understanding how subjects’ reliance on a task is influenced by the agreement or disagreement
between the AI model and the second opinion on that task and whether the second opinions were claimed
to be produced by human peers, while the second opinions may have di�erent overall frequencies to agree
with the AI recommendations. Mixed-e�ect regression models are built for tasks that the AI model is correct
(Model 1) or incorrect (Model 2) separately, and each task and each subject is treated as a random e�ect.
Coe�icients estimated are reported. *, **, *** indicate significance levels of 0.05, 0.01, and 0.001, respectively.

5 EXPERIMENT 3: SECOND OPINIONS PRESENTED ONLY UPON REQUEST
Our exploratory analyses in both Experiments 1 and 2 indicate that the presence of second opinions—
especially the disagreeing ones—on those tasks where the AI model is correct may have limited
the potential of second opinions in promoting people’s appropriate reliance on AI in AI-assisted
decision making. A natural idea to overcome this limitation is to not present the second opinions
when the AI model is correct. However, realizing this idea requires the a priori knowledge of AI
correctness on each decision-making task, which is unrealistic in the real world.
Nevertheless, in the previous two experiments, we observe some indications that people may

have some capabilities to tell apart when the AI is correct and when it is wrong. For example, in
general, people rely on the AI model more when it is correct than when it is incorrect (e.g., this can
be inferred from the comparison between Figures 2b and 2c, and between Figures 4b and 4c)12. In
light of this, can we utilize people’s own perceptions of AI correctness to decide when a second
opinion should be presented? For example, instead of always providing second opinions on all tasks,
if these second opinions are presented only when the decision-makers actively request for them,
can their presence help decrease over-reliance on AI models without increasing under-reliance?
To answer this question, we conducted our third pre-registered13, randomized human-subject

experiment.

5.1 Experimental Design
5.1.1 Experimental Treatments. We kept the control, high agreement, and low agreement treatment
as those used in Experiment 1, with only one change—for subjects in the high/low agreement
treatment, instead of presenting second opinions on every task, subjects would only be presented
with the second opinion on a task if they actively clicked on the “Request” button on it. As we did
not �nd the source of the second opinions signi�cantly change the e�ects of second opinions, in
this experiment, we again told subjects the second opinions are generated by a peer crowd worker.

Figure 5 shows an example of the task interface of Experiment 3 for treatments where subjects
could solicit second opinions.

12The chance for people to rely on AI when it is incorrect is equivalent to over-reliance, while the chance for people to rely
on AI when it is correct is equivalent to 1 minus under-reliance.
13The pre-registration document can be found at: https://aspredicted.org/MWC_PH1.
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(a) Before request (b) A�er request

Fig. 5. An example of our task interface in Experiment 3 (for treatments where subjects can solicit the second
opinions), before (5a) and a�er (5b) subjects clicked the "Request" bu�on.

5.1.2 Experimental Procedure. The procedure of Experiment 3 was identical to the previous exper-
iments except for the following di�erences: (1) Workers who participated in previous experiments
were not allowed to attend this experiment; (2) To measure subjects’ tendency to engage in de-
liberative thinking, we added a cognitive re�ection test (CRT) [28, 93] in the exit-survey, which
contained three mathematical questions that require people to utilize their cognitive re�ection to
override the intuitive, wrong answers (e.g., “If it takes 5 machines 5 minutes to make 5 widgets,
how long would it take 100 machines to make 100 widgets?”).

5.1.3 Analysis Methods. The dependent variables and statistical analysis methods used in Experi-
ment 3 are the same as those outlined in Section 3.4 for Experiment 1.

5.2 Experiment Results
In total, 336 subjects participated in Experiment 3 and passed the attention check (52.4% self-
identi�ed as male, 45.2% self-identi�ed as female, and the most frequent age group reported by
subjects was 25-34)14. Again, as a check of the e�ectiveness of our experimental manipulation, we
con�rmed that the actual second opinions presented to subjects upon request in the high agreement
treatment agreed with the AI model signi�cantly more than those second opinions presented to
subjects in the low agreement treatment (? < 0.001).

5.2.1 E�ects on subjects’ behavior and performance. First, we conduct the main analyses on the
experimental data collected from all subjects to understand that when people have the option to
solicit second opinions, how their behavior (e.g., reliance on AI) and performance in AI-assisted
14The median time subjects spent in Experiment 3 was 186 seconds, and the median hourly payment is $23.2.
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(a) Overall reliance (b) Over-reliance (c) Under-reliance (d) Appropriate reliance

Fig. 6. The e�ects of the optional solicitation of second opinions from peers on subjects’ overall reliance (6a),
over-reliance (6b), under-reliance (6c), and appropriate reliance (6d) on the AI model across treatments. Error
bars represent the standard errors of the mean.

decision-making change. Again, in the main paper, we focus on the decision accuracy (i.e., decision-
makers’ appropriate reliance on AI) as the primary performance metric; detailed analysis on other
performance metrics like decision time and con�dence can be found in the supplemental materials.
Having the option to solicit second opinions still decreases people’s overall reliance and over-
reliance on the AI model, and increases people’s under-reliance on the AI model. Figures 6a–6d
compare subjects’ overall reliance, over-reliance, under-reliance, and appropriate reliance on the
AI model across the three treatments, respectively. It appears from the �gures that the option
of soliciting second opinions still makes people reduce their overall tendency to rely on the AI
model; this seems to decrease people’s over-reliance on the AI model, increase their under-reliance,
and result in a limited di�erence in appropriate reliance (i.e., decision accuracy), regardless of
the level of agreement between the second opinions and the AI model. One-way ANOVA tests
further show that the di�erences across treatments in subjects’ overall reliance and under-reliance
on the AI model are signi�cant (overall reliance: � (2, 6717) = 14.25, ? < 0.001; under-reliance:
� (2, 5037) = 11.91, ? < 0.001). Meanwhile, the di�erence across treatments in subjects’ over-
reliance and appropriate reliance on the AI model is not statistically signi�cant at the level of
? = 0.05. Post-hoc Tukey HSD tests con�rm that compared to subjects in the control treatment,
those subjects who could request second opinions relied on the AI model signi�cantly less in general
(control vs. high agreement, ? < 0.001, Cohen’s 3 = 0.12; control vs. low agreement, ? < 0.001,
Cohen’s 3 = 0.15), and they su�ered from a signi�cantly higher level of under-reliance (control
vs. high agreement: ? = 0.018, Cohen’s 3 = 0.12; control vs. low agreement: ? < 0.001, Cohen’s
3 = 0.16).

5.2.2 Exploratory Analysis. So far, the main analyses we conduct on the experimental data collected
from all subjects of Experiment 3 seem to indicate that allowing subjects to solicit second opinions
still comes with the negative side e�ects of increasing people’s under-reliance on AI models. Yet,
we note that some subjects in our experiment had never requested for second opinions on any of
the 20 tasks, even though they had the option to do so. So, in the following, we conduct a set of
exploratory analyses to better understand subjects’ behavior in requesting for second opinions. In
addition, we are also interested in exploring how the presence of second opinions a�ects people’s
reliance on the AI model in AI-assisted decision making, when people actually have solicited second
opinions for at least once.
Understanding people’s behavior in requesting for second opinions. On average, 34.0% of
the subjects (31 subjects) in the high agreement treatment and 38.8% of the subjects (44 subjects)
in the low agreement treatment solicited second opinions for at least once among the 20 tasks.
Taking a deeper look into where subjects solicited second opinions, we �nd subjects requested
for second opinions slightly more when the AI model was incorrect than when the AI model was
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correct—For example, among subjects who solicited second opinions for at least once in the high
(low) agreement treatment, the average chance for subjects to request for a second opinion on a
task where the AI model was correct was 46.54% (37.48%), while the average chance for subjects to
request for a second opinion on a task where the AI model was wrong was 50.63% (43.11%). Using
a proportion test, we �nd that this increase in subjects’ likelihood of soliciting second opinions
on tasks where AI is incorrect was only marginal (? = 0.086). In other words, it appears that the
timing for people to solicit second opinions may, to some extent, re�ect their perceptions of AI
correctness.
Interestingly, when we split subjects in all but the control treatment into two groups based on

whether they had ever requested for a second opinion from the peers, we �nd that the group of
subjects who requested for second opinions at least once had some di�erent characteristics compared
to the group of subjects who never requested for second opinions. For example, compared to subjects
who never solicited a second opinion, subjects who solicited for second opinions at least once had
lower levels of education (solicit: " = 3.88, (⇡ = 0.70 vs. non-solicit: " = 4.10, (⇡ = 0.37; t-test:
? = 0.004), and they also had less prior knowledge in programming (solicit:" = 2.77, (⇡ = 0.83 vs.
non-solicit:" = 3.17, (⇡ = 0.60; t-test: ? < 0.001).
The e�ects of second opinion solicitations on people’s reliance on the AI model. Next, we
focus on only those subjects who requested second opinions for at least once, and we aim to
understand how their active solicitations of second opinions changed their reliance on the AI model
in AI-assisted decision-making. Given the systematic di�erences in demographic backgrounds
between subjects who had solicited or had never solicited second opinions, directly comparing the
reliance behavior of those subjects who had solicited second opinions in the high agreement or
low agreement treatments with that of all subjects in the control treatment can be misleading. To
ensure the robustness of our analyses, we adopt matching methods to pair up subjects with similar
demographic characteristics in the control treatment and the experimental treatment, and then
conduct comparisons between paired subjects.
We �rst conduct propensity score matching [78] for the 31 subjects in the high agreement treat-

ment who had solicited second opinions for at least once. Speci�cally, given each subject in the
control treatment and the high agreement treatment, we characterize them using all the demo-
graphic information that they self-reported in the exit-survey (e.g., age, gender, education, prior
programming knowledge, CRT score, etc.), and we build a logistic regression model to predict a
subject’s treatment given their features (i.e., “covariates”). The predicted log-likelihood for a subject
to belong to the high agreement treatment is thus used as the subject’s “propensity score.” Then,
for each of the 31 subjects in the high agreement treatment who requested for second opinions at
least once, we identify a subject in the control treatment with the closest propensity score (with
replacement) to be their “match.” These two subjects thus become a pair who share very similar
demographic characteristics, but one subject in the pair had the chance to solicit second opinions
from high agreement peers while the other did not. After the matching, we �nd that between
subjects who requested for second opinions at least once in the high agreement treatment and their
matches, paired t-tests suggest that there are no signi�cant di�erences in the values for any of the
covariates. Furthermore, between the requested subjects and their matches, the standard mean
di�erences (SMD) for most of the covariates are less or equal to 0.1, which indicates that subjects
in the pairs are comparable [2, 66]15.

15We have also experimented with covariate matching, and results are qualitatively similar. See the supplemental materials
for details. For completeness, we also include in the supplemental materials the comparison results obtained from analyzing
the raw data without applying matching methods, which are similar to results obtained after matching methods are used.
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(a) Overall reliance (b) Over-reliance (c) Under-reliance (d) Appropriate reliance

Fig. 7. The e�ects of active solicitations of second opinions from high agreement peers on subjects’ overall
reliance (7a), over-reliance (7b), under-reliance (7c), and appropriate reliance (7d) on the AI model. Data for
the control treatment contains only the matched subjects a�er applying propensity score matching. Error
bars represent the standard errors of the mean.

Figures 7a–7d show the comparisons in subjects’ overall reliance, over-reliance, under-reliance,
and appropriate reliance on the AI model, respectively, between those subjects who requested for
second opinions from high agreement peers for at least once and their matched subjects in the
control treatment. Conducting paired t-tests on the 31 pairs of subjects, we �nd that subjects’ active
solicitations of second opinions from high agreement peers lead to a signi�cant decrease in their
over-reliance on theAImodel (control:" = 0.61, (⇡ = 0.49 vs. high agreement:" = 0.47, (⇡ = 0.50;
? = 0.009). Importantly, we also �nd that the solicitation of second opinions from high agreement
peers does not result in signi�cant increases in subjects’ under-reliance on the AI model. As a result,
as shown in Figure 7d, there appears to be a slight increase in subjects’ appropriate reliance on
the AI model when they requested for second opinions from high agreement peers at least once
(control:" = 0.69, (⇡ = 0.46 vs. high agreement:" = 0.73, (⇡ = 0.44), although the di�erence is
not statistically signi�cant at the level of ? = 0.05.

We then repeat the propensity score matching process for the 44 subjects in the low agreement
treatment who had solicited second opinions for at least once16, and the comparison results between
the matched subjects are shown in Figures 8a–8d. Here, we �nd that compared to their matched
subjects in the control treatment, subjects in the low agreement treatment who solicited second
opinions for at least once signi�cantly reduced their overall reliance (? < 0.001) and over-reliance
(? = 0.003) on the AI model, but they also exhibited signi�cantly higher levels of under-reliance on
the AI model (? = 0.003). Together, the active solicitations of second opinions from low agreement
peers does not result in a signi�cant change in subject’s appropriate reliance on the AI model.

Together, these results show the promise of utilizing second opinions to help people reduce their
over-reliance on an AI model while not increasing their under-reliance—this goal can be achieved by
enabling people to actively solicit second opinions, while in our experiment, these second opinions
also need to have a relatively high level of agreement with the AI model. We conjecture that this
approach may be e�ective because (1) people tend to solicit second opinions more frequently on
tasks where the AI model is wrong (i.e., disagreements between second opinions and the AI model
on these tasks lead to lower over-reliance), and (2) the relatively high level of agreement between
the second opinions and the AI model minimizes the chance that people get misled by incorrect
second opinions on tasks where the AI model is correct (i.e., under-reliance is not increased).

16For this matching, we added elastic (L1+L2) penalty to the logistic regression model to ensure the SMD in the two groups
of subjects after matching are less than or equal to 0.1 on all covariates, so that the paired subjects were comparable.

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. CSCW1, Article 217. Publication date: April 2024.



217:22 Zhuoran Lu, Dakuo Wang, and Ming Yin

(a) Overall Reliance (b) Over-reliance (c) Under-reliance (d) Appropriate Reliance

Fig. 8. The e�ects of active solicitations of second opinions from low agreement peers on subjects’ overall
reliance (8a), over-reliance (8b), under-reliance (8c), and appropriate reliance (8d) on the AI model. Data for
the control treatment contains only the matched subjects a�er applying propensity score matching. Error
bars represent the standard errors of the mean.

6 DISCUSSION
Via three randomized human-subject experiments, we investigate into how the presence of second
opinions can a�ect people’s behavior and performance in AI-assisted decision-making. We �nd
that when appropriate kinds of second opinions are presented to people in appropriate formats,
they are promising in helping people rely on the AI model more appropriately and potentially
improve the decision-making performance of the human-AI team. In this section, we discuss the
implications and limitations of our work.

6.1 The Benefits, Risks, and Limitations of Second Opinions in AI-Assisted
Decision-Making

Our results of Experiment 1 show that there are clear bene�ts and risks when presenting second
opinions from human peers to decision-makers on every single AI-assisted decision making case—it
is a very e�ective intervention for reducing people’s over-reliance on the AI model, especially
when the peers have a low level of agreement with the AI model. This e�ect can be highly desirable
in scenarios where minimizing over-reliance is the priority, such as when decisions involve high
stakes. On the other hand, we also �nd that seeing peer-generated second opinions on every task
makes decision-makers signi�cantly increase their under-reliance on the AI model, even when
the peers have a relatively high level of agreement with the AI model. This e�ect is certainly
not desirable, and to the extreme, it could imply the possibility of providing “adversarial” second
opinions to signi�cantly reduce decision-makers’ reliance on a trustworthy AI model. Overall,
while we don’t see that the presence of second opinions signi�cantly changes decision-makers’
appropriate reliance on the AI model/decision accuracy in Experiment 1, an interesting observation
we make by comparing Figures 2b and 2c is that in all the three treatments where second opinions
are presented, the magnitude of people’s decrease in their over-reliance on AI is always larger
than the magnitude of people’s increase in their under-reliance (e.g., in the treatment with high
agreement peers, over-reliance is decreased by 11.97% and under-reliance is increased by 6.10%). If
this trend is generally true, it may imply that the e�ects of always presenting second opinions from
peers to decision-makers on their decision accuracy depend on the AI model’s accuracy—the more
(less) accurate the AI model is, the more likely it will decrease (increase) the decision accuracy.

Experiment 2 demonstrates that these double-edged e�ects are not speci�c to peer-generated
second opinions. AI-generated second opinions have a similar impact on people’s reliance on the
primary AI recommendation. When there is a higher disagreement between the two AI models’
recommendations, people tend to decrease their over-reliance on the primary model while also
increasing their under-reliance. Such �ndings suggest that holding everything else equal, the stated
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source of the second opinions does not appear to signi�cantly change how decision makers process
these second opinions. This implies that when getting second opinions from human peers in the real
time is infeasible, one possible alternative to consider is to use the outputs generated by another AI
model to replace the human-generated second opinions. That said, we note that in our Experiment
2, in order to single out the e�ects of the second opinion’s source on decision-makers’ behavior and
performance in AI-assisted decision making, we intentionally �x the content of the second opinions
to be the same for treatments sharing the same level of agreement between the second opinions
and the primary AI model. In practice, however, even keeping the level of agreement between
the second opinions and the primary AI model the same, where human peers or the secondary
AI models agree/disagree with the primary AI model may di�er. Thus, future studies should look
deeper into how decision-makers process second opinions when they are actually produced by real
AI models.

One possible explanation for the decreases in over-reliance and increases in under-reliance
when decision-makers are presented with second opinions is that they may simply use the level
of agreement between the primary AI model and the second opinion as a heuristic to gauge the
primary AI model’s accuracy. This accuracy estimate can then be used by decision-makers to adjust
their levels of reliance on the primary AI model, without spending much e�ort di�erentiating the
correctness of the AI model on individual tasks. If this is indeed the case, it may imply that the
mere presence of second opinions from peers is not su�cient for encouraging people to engage
in deep deliberative thinking on each decision-making task. To truly help people improve their
decision-making performance, perhaps additional information about the second opinions (e.g., the
rationale underlying the peer judgements) needs to be provided to help decision-makers make
sense of them. In fact, the overly frequent presence of second opinions may even make it more
convenient for people to utilize them as a heuristic in order to decrease their cognitive load rather
than engage with them analytically.
In contrast, our results of Experiment 3 highlight the promise of utilizing second opinions

to improve people’s decision-making performance in AI-assisted decision-making by granting
decision-makers the option to actively solicit second opinions, although this bene�t is only observed
when the second opinions have a relatively high level of agreement with the AI model. However,
in our experiment, not every subject was willing to solicit second opinions from peers; these
people may have missed the opportunity to learn from the second opinions and further improve
their decision-making performance. To maximize the bene�ts brought about by the solicitations
of second opinions, creative methods need to be designed to incentivize people to solicit second
opinions or even prompt people to do so when needed.

6.2 Design Implications for Second Opinions as an Intervention
Our study provides many implications for real-world AI-assisted decision-making where the
decision-maker—who is responsible for the �nal decision—can get “advice” (i.e., second opinions)
from di�erent sources. In practice, peer-generated second opinions are available in many cases.
For example, a content moderator may evaluate the credibility of a social media post with the
assistance of an AI-based decision aid, while they can solicit second opinions from another random
member in the moderation team. In these cases, second opinions can be obtained on the �y when
the �nal decision-makers need to make their decisions. However, we note that there are many real-
world scenarios, especially when a hierarchy of decision-making exists, that peer-generated second
opinions will be readily available for the �nal decision-maker—for instance, in a security operation
center (SOC), the decision recommendation of a Tier 2 analyst may already be formed before they
pass on a security alert to the SOC manager for them to make the �nal call on how to respond.
Beyond peer-generated opinions, alternative AI models could also serve as a complementary source
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of second opinions. For example, there may exist situations where peer-generated second opinions
are not accessible, such as when a decision team consists of a single decision-maker with no records
of historical decisions and when real-time peer consultation is not feasible due to constraints like
time di�erence. In such scenarios, if decision-makers have access to multiple AI models, they could
utilize these AI models to mimic a decision-making environment with arti�cial second opinions.
For instance, the decision-maker could use one of the AI models (e.g., the one with the highest
accuracy) as their primary AI model for AI-assisted decision making, while soliciting the “second
opinions” from other AI models when they are unsure about the correctness of the primary model’s
recommendation.

Based on our �ndings in this study, we highlight that one key premise for the provision of second
opinions to e�ectively promote people’s appropriate reliance on AI in AI-assisted decision-making
is that people should not encounter too many disagreements between the second opinion and the
primary AI model on the tasks where the AI model is correct. Without knowing the correctness of the
AI model on each task a priori, we attempt to achieve this goal in our Experiment 3 by asking people
to decide when they need second opinions and hoping that they may have a lower need for seeing
second opinions on tasks where the AI is correct. Other methods can be designed to achieve this
goal as well. For instance, the system may adaptively determine the presence of second opinions
based on estimates of AI correctness (e.g., the AI model’s con�dence score). Alternatively, one may
leveraging the wisdom of the crowd to present the majority opinion among a group of second
advisors on each task rather than just the opinion of a randomly selected second advisor. Another
important lesson from our study is whenever disagreements between the AI recommendations and
the second opinions occur, support should be provided to people to help them cognitively engage
with the opposing opinions and resolve the con�ict by making a genuine attempt to di�erentiate
which party is correct, instead of consuming this information in a heuristic way. To this end, other
than providing the rationale for the second opinion, as we’ve discussed earlier, another interesting
direction to explore is to combine the cognitive forcing functions—which have previously shown to
be e�ective in nudging people to engage with the decision-making task more cognitively [8]—with
the presence of second opinions. In addition, knowledge about when the AI model or the second
opinion can do well and when they are likely to err will also be very informative for people to
decide whose recommendation to rely on when disagreements occur.

Finally, when determining whether to deploy the presence of second opinions as an intervention
in AI-assisted decision making, it is also essential to consider an additional factor, that is, the cost
associated with obtaining second opinions. For instance, when second opinions are collected from
humans (e.g., peers, domain experts), it may result in �nancial cost to recruit them. Similarly, when
second opinions are produced by AI models, it will also require training and maintaining extra AI
models. Thus, whether incurring this cost to obtain second opinions is “worthwhile” depends on
how much positive impact these second opinions can have on decision-makers’ performance in
AI-assisted decision making, as well as how critical making correct decisions is in the given context
(i.e., the stakes of the decisions). In those cases where the introduction of second opinions brings
about positive impact on one aspect of AI-assisted decision-making performance (e.g., decision
accuracy) but negative impact on another aspect (e.g., decision time), one may also need to decide
how to trade-o� di�erent aspects of performance. Ultimately, the decision on whether to incorporate
second opinions as an intervention or not should be made on a case-by-case basis, weighing the
potential bene�ts against the costs associated with obtaining those second opinions.
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6.3 On the Ecological Validity of Peer Judgements
As discussed in Section 3.2, in this study, to ensure the ecological validity of the peer-generated
second opinions, we collected them from real crowd workers using a pilot study. We note that these
real-world peer judgements have some important characteristics that are likely critical for them to
be useful for promoting people’s appropriate reliance on AI. For example, for all three sets of peers
we’ve created in our study, their average level of agreement with the AI model is higher when the
AI is correct than when the AI is wrong (AI correct: 82.22%, 51.11%, and 31.11% for high, medium,
low agreement peers, respectively; AI incorrect: 60.00%, 46.67%, and 26.67% for high, medium, low
agreement peers, respectively). This characteristic indirectly “help” decision-makers encounter
fewer peer-AI disagreements on tasks where the AI model is correct than what would have been
observed if the peers disagree with the AI equally frequently regardless of AI correctness or even
disagree with the AI more when the AI is correct. In fact, despite our key �nding in Experiment 3 is
that the active solicitations of second opinions may mitigate over-reliance on AI without increasing
under-reliance if peer judgements have a relatively high level of agreement with AI, we suspect
that not all “high level of agreement with AI” is created equal—when �xing the level of agreement
between peers and the AI model, peers that fully agree with AI when it is wrong but have some
disagreements with it when it is correct is unlikely to help promote decision-makers’ appropriate
reliance on AI. However, with great ecological validity comes great challenges in isolating the
e�ects of di�erent factors. For example, in our study, as we increase the level of agreement between
real-world peers and the AI model from low to high, not only do the peers agree with the AI
model’s recommendations more frequently, but their own accuracy is increased while their errors
become less independent of those of the AI model’s. Carefully separating how each of these factors
of the peer-generated second opinions, alone, a�ect decision-makers’ behavior and performance in
AI-assisted decision-making will be a very interesting and important future direction.

6.4 Limitations and future work
Our study was conducted with laypeople (i.e., subjects recruited from MTurk) on a decision-making
task that does not require much expertise yet still seems to be not easy for laypeople (e.g., in our
pilot study, the average decision accuracy of the crowd workers on our selected sentiment analysis
task is 64.34%). Cautions should be used when generalizing the results of this work to di�erent
settings, such as for a di�erent population of people, for tasks that are much easier, or for tasks
that require substantially more domain expertise.

In addition, the second opinion in our experiment came from randomly selected crowd workers
that our subjects did not know. In other words, our experiment re�ects a scenario where decision-
makers can request a “system” to obtain second opinions for them in AI-assisted decision making,
while decision-makers themselves are not directly involved in the process of identifying who
to solicit the second opinions from. In reality, decision-makers in AI-assisted decision making
may actively seek help and solicit second opinions from those people that they are quite familiar
with and naturally trust, which may signi�cantly change how they respond to the agreements or
disagreements between the AI recommendations and the peer’s second opinions. Future studies
should be conducted to understand when decision-makers actively involve in identifying their
additional advisors to seek second opinions from, how those second opinions will a�ect their
behavior and performance in AI-assisted decision making.

We believe our experiment setup (e.g., the choice of sentiment analysis tasks, the usage of MTurk
workers as our human subjects) could well represent some speci�c AI-assisted decision making
scenarios (e.g., AI-assisted data labeling). For instance, we found that subjects in our experiment
spent a very short amount of time on each decision making task (about 5–8 seconds on average) and
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some of them never solicit second opinions when given this option. This behavior may be attributed
to crowd workers’ nature of optimizing for the speed, but it re�ects real-world annotators’ behavior
in AI-assisted data labeling well. That said, we acknowledge that our experimental setup does not
re�ect all di�erent kinds of AI-assisted decision making settings. For example, our experimental
setup may not be representative of those decision-making scenarios involving high stakes, in which
decision-makers will likely spend more time, exhibit stronger motivations, and engage in more
analytical thinking on each decision making case. Also, as discussed earlier, second opinions that
are generated by real AI models may possess di�erent characteristics from the ones generated by
humans, and future studies should investigate into their impacts in more depth.

Furthermore, we note that the structure of the advice in AI-assisted decision making is also not
limited to the combination of one single primary recommendation by the AI model and one second
opinion, as studied in this work. For example, multiple second opinions can be provided instead
of one, and the second opinions may also come from a combination of sources (e.g., laypeople,
domain experts, AI) rather than a single source. Understanding how second opinions under these
settings a�ect decision-makers’ behavior and performance in AI-assisted decision-making is another
exciting future work. Finally, interesting future work could be carried out to delve deeper into
whether there exist any individual di�erences on the e�ects of second opinions in AI-assisted
decision making, and how these e�ects may evolve over time.

7 CONCLUSION
In this paper, we explore the e�ect of providing second opinions to people on their behavior and
performance in AI-assisted decision-making. Via three pre-registered, randomized experiments,
we show that always presenting second opinions along with the AI recommendation can reduce
decision-makers’ over-reliance on AI and increase their con�dence in their correct decisions, but
it also increases decision-makers’ under-reliance on AI. Such e�ects hold regardless of whether
the second opinions are provided by human peers or another AI model. Nevertheless, by enabling
decision-makers to actively solicit second opinions from peers as needed, we �nd that decision-
makers’ active solicitations of second opinions have the promise to reduce their over-reliance on the
AI model without increasing the under-reliance in some cases. Our results highlight the potential
bene�ts, risks, limitations, and implications of presenting second opinions to people in AI-assisted
decision making for promoting the human-AI team performance. We hope this work could open
more discussions on understanding the e�ects of second opinions in AI-assisted decision-making
and better utilizing them as an intervention to enhance human-AI collaboration in decision-making.
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