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ABSTRACT: We develop a local correlation variant of auxiliary-
field quantum Monte Carlo (AFQMC) based on local natural
orbitals (LNO-AFQMC). In LNO-AFQMC, independent AFQMC
calculations are performed for each localized occupied orbital using
a truncated set of tailored orbitals. Because the size of this space
does not grow with the system size for a target accuracy, the
method has linear scaling. Applying LNO-AFQMC to molecular
problems containing a few hundred to a thousand orbitals, we
demonstrate convergence of total energies with significantly
reduced costs. The savings are more significant for larger systems
and larger basis sets. However, even for our smallest system
studied, we find that LNO-AFQMC is cheaper than canonical

AFQMC, in contrast with many other reduced-scaling methods.
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Perhaps most significantly, we show that energy differences

converge much more quickly than total energies, making the method ideal for applications in chemistry and material science. Our
work paves the way for linear scaling AFQMC calculations of strongly correlated systems, which would have a transformative effect

on ab initio quantum chemistry.

I. INTRODUCTION

The primary objective of the field of electronic structure theory
is to develop cost-effective and accurate methods that can be
applied to challenging problems with ease. Existing methods
differ in the approximations they use to solve the Schrodinger
equation, and often, the choice of method is limited by
available computational resources. Although Kohn—Sham
density functional theory (DFT) is the most widely used
method, its accuracy is difficult to improve systematically." The
coupled-cluster (CC) method with single, double, and
perturbative triple excitations [CCSD(T)]* is widely regarded
as the “gold standard” for its accuracy when applied to main
group chemistry. However, the computational cost of canon-
ical CCSD(T) scales with system size N as N7, which limits its
practical application to small systems. Moreover, the CCSD-
(T) fails catastrophically for strongly correlated systems.

The phaseless auxiliary-field quantum Monte Carlo
(AFQMC)® method has gained popularity due to its
comparatively low N* computational scaling (i.e., the same as
mean-field theory) and impressive accuracy even for strongly
correlated systems.*”'> AFQMC is a descendent of the
determinantal QMC method'>'* and was extensively devel-
oped for electronic structure by Zhang and co-workers."
Recent algorithmic developments aimed at reducing the cost of
AFQMC include the use of low-rank Coulomb integrals,lé_18
stochastic resolution of identity,'” and local trial states.”

Even though AFQMC has a better formal scaling than the
traditional correlated methods widely used in quantum
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chemistry, it can still be computationally infeasible for larger
systems due to a large prefactor. In this work, we overcome this
limitation of AFQMC by the use of local correlation. The idea
to use locality to reduce the cost of correlated calculations
dates back to the early 70’s,”' but local correlation was
developed in its modern form by Pulay and Saebe in the
80’s.””7>° In this pioneering work, it was recognized that the
electron correlation decays rapidly with the distance between
the localized orbitals. This observation underpins so-called
“direct” local correlation methods, in which a single calculation
(almost exclusively perturbation theory or coupled-cluster
theory) is performed on the basis of localized orbitals,
permitting the discarding of small terms and resulting in a
calculation with linear asymptotic scaling. Methods of this type
have been extensively developed by many researchers.”®™*
The revival of pair natural orbital-based local correlation
methods®* ¢ by Neese, Valeev, and co-workers®” ™ was a
major advance of the past decade, and many related variants
have since been developed.”' ~>' Within QMC, a linear scaling
version of diffusion Monte Carlo was developed that used
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Wannier functlons to calculate wave function overlaps with
linear scaling.>” This work was later extended to improve the
scaling of local energy evaluation.>®™>*

A different approach to local correlation, often called
fragment-based methods, was initiated by Forner and co-
workers.***” These methods partition the problem into
subsystems, and separate calculations are performed on each
subsystem. Many variants exist, including the incremental
method,**™® divide and conquer,*®” divide-expand-consol-
idate,”*”"" and cluster-in-molecule (CIM).”"”> A significant
advantage of such fragment methods over direct methods is
that they are easy to implement, can be easily modified for
different electron correlation methods, and parallelize trivially.
In this work, we combine AFQMC with the CIM approach, in
particular, the local natural orbital (LNO)-based variant
recently proposed by Kallay and co-workers.”>~"” Importantly,
we show that our fragment-based approach is cheaper than the
canonical one, even for small system sizes.

The rest of the paper is organized as follows. In Section II,
we present the basic theory of both LNO-based local
correlation methods and canonical AFQMC with an emphasis
on those aspects of AFQMC that will be modified to develop
LNO-AFQMC. We end this section with an analysis of the
computational scaling of LNO-AFQMC. In Section III, we
compare the efficiency of LNO-AFQMC for calculating the
absolute energies and relative energies compared to that of
canonical AFQMC for molecules and reactions of different
sizes using various basis sets. In Section IV, we conclude and
suggest future research directions.

Il. THEORY

In this work, we consider only closed-shell molecules described
by a spin-restricted Hartree—Fock (HF) reference determinant
|®,), with canonical HF orbitals ¥, orbital energies €, and
total energy Eyp. We use i, j, and k for Ny occupied orbitals, a,
b, and ¢ for N, virtual orbitals, and p, q, r, and s for N
unspecified molecular orbitals. In this basis, the electronic
Hamiltonian is

)
pa,0

with V... = (pglrs) in (11122) notation.

IL.I. LNO Coupled-Cluster Theory. For completeness, we
describe the basics of the LNO—CCSD method.”*~"” In this
approach, the correlation energy is obtained by left projection
onto the HF determinant,

Vibja) = Z EI
I

Ec = <q)0|H - EHFl(D0> = z m]b(ZVta;b
@)

ijab
where H is the similarity-transformed Hamiltonian, Tigjp = tiaio
+ tigty, and t, t,; are the CC single and double amplitudes,
respectively.” In the final equality of eq 2, we have recognized
that the energy expression is invariant to unitary rotations of
occupied and virtual orbitals and associated an energy
contribution to each rotated occupied orbital

= Uy
% Z i 3)

In LNO methods, the unitary transformation of occupied
orbitals (eq 3) is chosen to spatially localize the orbitals. For
each ¢, one constructs a local active space ; by augmenting

hpqap()'aq()' Z prqs p()'aq()' aS(T am

pqrs, 00’

(1)
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¢; with selected LNOs (both occupied and virtual) from
second-order Moller—Plesset perturbation theory (MP2).
Specifically, one computes the occupied—occupied and the
virtual—virtual blocks of the MP2 density matrix

Df = W2l - )]

jalb Iajb

ab (4)
1
Dl = Y 2 - ¢4
je (8)
where
() (Ialjb)
Iajb — ~
&§t€6—6-6 (6)

is an approximate MP2 amplitude with & = (¢/lfl¢p;) and f is
the Fock operator. Diagonalizing the virtual—virtual block,

Dy, = Z £IX,X;,
¢ (7)

gives the virtual LNOs associated with ¢, i, ¢, = > Xow..
For the occupied LNOs, we follow ref 73 and diagonalize

Z szDk Ql] Z ékX’CXIk 8)

where Qj = 6; — UyUj projects out ¢; from D to prevent it
from mixing with other occupied orbitals, glvmg the occupied
LNOs ¢, = o Xiil//k. The eigenvalues 511,, which are between 2
and 0, quantify the importance of a given LNO to the electron
correlation of the localized orbital ¢;. In practice, we construct
the local active space #; by keeping those LNOs satisfying

§Gze, 826 9)

for some user-selected thresholds €, and €,, producing n = ny +
n, orbitals. Typically, n is much less than N and does not
increase with the system size for a targeted level of accuracy. A
local Hamiltonian is then constructed by projecting H into %

n

1 t ot
HI = Z f Pq p(r q(f E Z prqsapnaq(f G564/
pq€EP,0 pqrs€Py o0’
(10)
where
Ny—nyq
I
pq - h + Z 2y, pajj PJJq)
&P (11)

which includes a frozen core contribution. Solving the CCSD
amplitude equations with H; gives the local CCSD amplitudes
Tpy in ¥ and the associated orbital contribution to the
correlation energy

EI = Z TIajb(ZViujb - V}alb)
jabeP;

(12)

LNO—-CCSD(T) calculations are performed in a similar way,
as described in more detail in refs 74 and 75. We note that
other fragment-based local correlation methods follow
essentially the same idea but differ only in the definition of
the local fragments I and the method for constructing the
associated active space of orbitals 7.

ILIl. LNO-AFQMC. Adapting the LNO approach for use
with AFQMC merely requires an energy expression analogous

https://doi.org/10.1021/acs.jctc.3c01122
J. Chem. Theory Comput. 2024, 20, 134—142


pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c01122?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

to that in eq 2. This is straightforward given that the AFQMC
energy is also obtained by left projection onto a trial state,
which throughout this work we choose to be the HF
determinant D). In AFQMC, the ground state is represented
as a statistical average of walkers, each a single Slater
determinant |®,,), with weight W,,,

>, Wi®,)
A (13)

a review of the AFQMC method with further technical details
can be found in ref 3. The correlation energy is

V) =

B o 2w WE
CXW (14a)
wo_ <q)0|H — EHqu)w>

By expanding the walker determinant in the basis of
excitations with respect to the HF trial state, the correlation
energy of a given walker is easily evaluated to be

E = Z GiZG}Z(Z‘/iajh - Vihja) = z Ey
ijab I

(15)
where GY = (®laja,|®,)/(®®,) is the generalized one-
particle reduced density matrix. Equation 15 clearly has the
same form as the CCSD in expression 2. Thus, in LNO-
AFQMC, we form localized occupied orbitals and associated
local active spaces % just as in LNO—CCSD; we then perform
independent AFQMC calculations in each local active space
and calculate the contribution E; to the correlation energy as
an average over walkers,

YL WE

E = ="
. W, (162)
E'= Y GiGi2Vig, = Vi)
jabe®P, (16b)

This general form is amenable to almost any flavor of
fragment-based local correlation, although here we focus on
the LNO framework. In this work, we perform AFQMC
calculations with the phaseless azpproximation and force bias
(hybrid) importance sampling.” We note that if a multi-
determinant trial wave function is used, then expressing the
correlation energy as a sum of contributions becomes more
complicated because there is not a unique set of occupied
orbitals. This extension will require a different partitioning of
the correlation energy that ensures that scaling with the
number of configurations is manageable for each independent
calculation. These aspects will be explored in future
investigations.

In practice, the missing correlation outside of %, can be
included approximately by a composite correction with a lower
level of theory, such as MP2. To any LNO calculation (CC or
AFQMC), we add the correction

AE® = 5O 50, w
where E?) and EE,ZL)NO are the MP2 correlation energies in the
full orbital space and in the truncated LNO space, respectively.

Summarizing the steps and cost of an LNO calculation, there
are three parts.
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1. Full-system MP2, which is required by both the LNO
construction [eqs 4—8] and the MP2 composite
correction [eq 17] and scales as O(N®).

2. Ny independent integral transformations, which are
required by the local Hamiltonian construction [eq
10] and scale as O(N*n) each, but embarrassingly
parallel in N,

3. Independent correlated calculations of all local Hamil-
tonians, which scale as N, times the cost of a calculation
at the desired level of theory in the local active space, i.e.,

n* for AFQMC, n® for CCSD, and n’ for CCSD(T).

For moderately sized systems, the high-level correlated
calculation in step (3) dominates the computational cost,
which leads to an overall cost that scales linearly with the
system size. This will be the case for all of the systems we use
to benchmark our method in this work. As the system size
increases, the first two steps whose cost scales superlinearly
with the system size N eventually become the computational
bottleneck. Although not explored in this work, many
numerical techniques such as local domain-based approxima-
tions”* and Laplace transform methods’> have been exploited
to make these steps linear scaling as well. Such advances can be
straightforwardly used with the LNO-AFQMC approach
described here.

ILIIl. Computational Scaling of AFQMC and LNO-
AFQMC. In AFQMC, energies are obtained by averaging over
a trajectory that samples the wave function. With force bias
(hybrid) importance sampling, the cost of each propagation
step scales as N°. Local energy evaluation scales as N* but is
performed less frequently; for moderately sized systems,
including those studied here, the total cost is dominated by
propagation and thus scales effectively as N°. However, for the
following scaling analysis, we will assume the worst-case
scenario where local energy evaluation dominates, although we
note that its scaling can be reduced to N° using integral
compression'*'”'? or localized orbitals."®

The above scalings are for a trajectory with a fixed number
of iterations, N, but how does N, scale with system size N?
Assuming the variance of the total energy is proportional to
system size, the stochastic error after N, iterations is

\/GZ/Nt & /N/N,. Therefore, to achieve a fixed absolute

error requires N, o N but to achieve a fixed relative error (i.e.,
error per electron) requires N, &« 1/N. Thus, for a calculation
dominated by N*-scaling energy evaluation, the final cost of
AFQMC scales as N® for fixed absolute error and as N° for
fixed relative error.””

In LNO-AFQMC, the computational scaling of a single
propagation step (including local energy evaluation) is
effectively reduced from N* to Nn*, where n is independent
of the system size because each fragment is treated
independently. This reduction by a factor of N® implies that
the cost of LNO-AFQMC scales as N* for fixed absolute error
and is independent of N for the fixed relative error (to be
compared to N° and NP respectively, for the canonical
algorithm).

Separately, one needs to consider the biases inherent in
AFQMC results due to Trotter error and truncation of the
Cholesky decomposition of the two-electron integrals. In both
cases, we expect the errors to increase with the size of the
system for a fixed time step and Cholesky threshold. Thus, to
obtain a constant error with increasing system size, one has to
run calculations with smaller time steps and a Cholesky

https://doi.org/10.1021/acs.jctc.3c01122
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Figure 1. Performance of LNO-AFQMC and LNO—CCSD(T) for the total correlation energy of the acetylacetone molecule (shown in the inset).
(a) Convergence of the correlation energy of LNO-AFQMC (circles) and LNO—CCSD(T) (star), with (solid lines) and without (dashed lines)
MP2 corrections in the DZ (blue), TZ (red), and QZ (green) basis sets. (b) The average number of orbitals in each LNO fragment as a percentage
of the total number of molecular orbitals. (c) Speed-up of LNO-AFQMC compared to canonical AFQMC, where the timing of LNO-AFQMC is

reported as the sum of times for all fragments.

threshold. In LNO-AFQMC, these shortcomings are mitigated
because each individual calculation contains a small number of
electrons. Empirically, we find that in LNO-AFQMC
calculations, we can use a Cholesky threshold that is an
order of magnitude larger than in canonical AFQMC
calculations without seeing a noticeable error in the final
results (see Section III). Similarly, we find that in large
AFQMC calculations, we need to use smaller Trotter time
steps to avoid large biases.

lll. RESULTS

In this section, we present the results of LNO-AFQMC
calculations for total energies and isomerization reaction
energies. Tight convergence of total energies is naturally
more difficult to achieve than that of energy differences. All
HF, MP2, and CC calculations were performed using
PySCF,** and all AFQMC calculations were performed using
Dice®' with a Trotter time step of 0.005 au, unless specified
otherwise. The geometries used for the total energy
calculations are provided in the Supporting Information. For
all calculations, Dunning correlation-consistent basis sets [cc-
pVXZ (where X = D,T,Q) or aug—cc—pVDZ]gz_84 were used.
The core electrons were kept frozen in all of the calculations.

Occupied orbitals were localized using the Pipek—Mezey
method.*® Following previous work,”® a ratio of €,/¢, = 10 was
fixed to reduce the number of variables, and we generally test
the range from ¢, = 107 (loosest) to €, = 107° (tightest). In
the LNO-AFQMC fragments, Cholesky decomposition was
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performed with a threshold error of 1 X 107* while for the
reference AFQMC calculations, a more stringent threshold
error of 1 X 107° was employed. All LNO-AFQMC
calculations were converged to 1 mHa stochastic error,
which requires converging the correlation energy contribution
from each fragment to a stochastic error that is smaller by a

factor of \/N,, where N is the number of fragments (equal to

the number of occupied orbitals). For canonical AFQMC
calculations, a stochastic error of 1 mHa can be achieved for
small molecules but not for large basis sets and large molecules
without significant computer resources.

lll.l. Total Energies. Total energy calculations were
performed on acetylacetone, which is small enough (40
valence electrons) to allow canonical CCSD(T) and
AFQMC calculations in the DZ (131 orbitals), TZ (315
orbitals), and QZ (618 orbitals) basis sets for benchmarking
purposes. In Figure 1(a), we show the convergence of the
correlation energy with the LNO threshold using different
basis sets. Without the MP2 correction, the correlation energy
error is large but progressively converges with tighter
thresholds. The convergence is significantly accelerated with
the MP2 correction. Specifically, in the DZ basis (with the
MP2 correction), the correlation energy error is 6 mHa with
loose thresholds and 3 mHa with tight thresholds, the latter of
which is comparable to the stochastic error of calculation.
Similarly, in the TZ and QZ basis sets, the error decreases from
10 to 1 mHa and from 25 to 3 mHa with increasingly tight
thresholds. We note that all of these errors amount to less than

https://doi.org/10.1021/acs.jctc.3c01122
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Figure 2. Performance of LNO-AFQMC (with MP2 corrections) for the isomerization energy of reaction 10 from the ISOL database [shown in
(a)] with the cc-pVTZ basis set. Convergence of the total energy of the reactant and the product (a) and their energy difference (b) as a function of
threshold. The red, blue, and gray shaded regions indicate the stochastic error of the canonical AFQMC calculations, and the dotted lines indicate

+1 kcal/mol around the average canonical AFQMC isomerization energy.

2% of the total correlation energy. This convergence behavior
is almost identical with that from LNO—CCSD(T), results of
which are also shown in Figure 1(a), confirming the
straightforward transferability of the LNO methodology.
Therefore, the general guidelines used for LNO—CCSD(T)
in choosing thresholds can be readily extended to LNO-
AFQMC.

As discussed above, the key advantage of the LNO
methodology is the reduction in the number of orbitals that
must be correlated within each fragment. In Figure 1(b), we
show the average size (total number of orbitals) of the LNO
fragments of acetylacetone with the DZ, TZ, and QZ basis sets.
Even with the tightest threshold, the average number of
fragment orbitals is 56, 34, and 21% of the total number of
orbitals in DZ, TZ, and QZ basis sets, respectively, showing
that the method is particularly advantageous for larger basis
sets. For correlated methods with polynomial scaling, these
reductions in the number of orbitals lead to huge savings in
computational cost. This behavior is shown in Figure 1(c),
where we report the speed-up, calculated as the ratio of time
taken for the canonical AFQMC calculation and the total
LNO-AFQMC calculation. The time taken for LNO-AFQMC
is reported as the sum of times for all fragment calculations,
but, because these calculations are independent, the walltime
can be reduced by a factor approximately equal to the number
of fragments if these calculations are performed in parallel.

In the DZ basis set with a target stochastic error of 1 mHa,
the LNO method with the loosest threshold accelerates the
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calculations by a factor of about 23; with the tightest threshold,
the time becomes comparable to that of canonical AFQMC.
Results are even more encouraging in larger basis sets, where
the number of orbitals per fragment is a smaller fraction of the
total and the speed-up is therefore more significant. In the QZ
basis, the speed-up ranges from almost 300 to 3 with an
increasingly tight threshold, and even in the latter case, the
stochastic error of LNO-AFQMC was converged to 1 mHa
while that for canonical AFQMC could only be converged to 2
mHa. Finally, we note that these timings and speed-ups pertain
to a relatively small molecule, for which canonical AFQMC
calculations are feasible. As shown in the Supporting
Information, the speed-up becomes even more pronounced
for larger molecules [melatonin (90 valence electrons) and
penicillin (128 valence electrons)] where obtaining canonical
benchmark results in large basis sets becomes impractical. We
conclude that while specific timings are influenced by
acceptable errors, molecular size, basis set, and hardware,
LNO-AFQMC demonstrates better efficiency compared to its
canonical counterpart and scales effectively to larger systems
with larger basis sets.

lILIl. Isomerization Energies. The relative energy differ-
ences between structures during chemical reactions are often
more significant than their absolute energies. In order to assess
the performance of LNO-AFQMC for chemical reactions, we
studied three isomerization reactions from the ISOL database,
which contains 24 isomerization reactions of large organic
molecules.*”*” As a case study, we focus on reaction 10, shown

https://doi.org/10.1021/acs.jctc.3c01122
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in the inset of Figure 2(a). The molecule has 15 heavy atoms,
82 electrons, and 715 orbitals in the cc-pVTZ basis set; it has
one of the smallest isomerization energies in the ISOL
database, and it is the most challenging of the three reactions
that we study. As shown in Figure 2(a), with increasingly tight
LNO thresholds, the error in the total energy (with the MP2
correction), for both the reactant and the product, decreases
from about 50 to 2—4 mHa. Importantly, the error is very
similar for both the reactant and the product at a given
threshold such that the energy difference (the isomerization
energy) is almost independent of the threshold. In fact, the
isomerization energy is always within the relatively large
stochastic error bars of the canonical AFQMC calculation,
which predicts an isomerization energy of 7 + 3 kcal/mol.
From our tightest threshold, the LNO-AFQMC isomerization
energy is predicted to be 6.3 & 0.9 kcal/mol; for comparison,
the LNO—CCSD(T) isomerization energy in the same basis
set was calculated as 6.16 kcal/mol. We also note that PT2
correction is necessary for this convergence behavior. Without
the correction, similar accuracy is achieved only using the
tightest threshold. Additionally, convergence with the thresh-
old is dependent on the nature of the system under
consideration. Therefore, it is advisible to perform a
convergence test for the studied property using the LNO
truncation threshold.

We performed the same calculations for reactions 3 and 9,
and detailed results for all reactions are presented in the
Supporting Information. In all cases, we find that energy
differences converge significantly faster than total energies and
are always within the stochastic error of the canonical AFQMC
result, even for loose thresholds. In Table 1, we report LNO-

Table 1. Isomerization Energy (kcal/mol) of Reactions 3, 9,
and 10 (see the Supporting Information for figures of
reactions) Obtained Using LNO-AFQMC, AFQMC, and
CCSD(T) in the cc-pVTZ Basis Set”

reaction 3 reaction 9 reaction 10
LNO-AFQMC (loosest) 8.8(9) 22.6(9) 8.2(9)
LNO-AFQMC (tightest) 8.8(9) 22.0(9) 6.3(9)
AFQMC 9.4(9) 20(1) 7(3)
CCSD(T) 8.77 21.63 6.16

“For reaction 10, because of its large size, we give the result from
LNO-CCSD(T) with the tightest threshold.

AFQMC isomerization energies for all three reactions obtained
using the loosest and tightest thresholds, compared with
canonical AFQMC and CCSD(T) in the cc-pVTZ basis set.
The LNO-AFQMC results are in good agreement with those
from canonical AFQMC and required only a fraction of the
cost. Employing the loosest threshold had a speed-up of 158,
233, and 43 for reactions 3, 9, and 10, respectively (and recall
that, for reaction 10, the canonical AFQMC calculation had
only reached convergence within a stochastic error of 3 kcal/
mol). As the calculations with looser thresholds are several
times faster than that using the tightest, employing such
thresholds becomes a practical and computationally viable
approach for testing convergence in reaction energy calcu-
lations. Even with the tightest threshold, LNO-AFQMC was
still faster than the canonical counterpart by a factor of 3 for
reactions 3 and 9 and comparable for reaction 10 despite
converging to a smaller stochastic error. Moreover, the
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agreement with (LNO—)CCSD(T) is quite good, reflecting
the single-reference character of these organic molecules.

Interestingly, when using a Trotter time step of 0.005 au, the
canonical AFQMC energy calculation for the reactant of
reaction 9 showed a notable difference of 7 mHa compared to
the LNO-AFQMC calculation. When the time step was halved,
this difference reduced to 4 mHa. This behavior can be
attributed to the scaling of the Trotter error with system size.
However, the LNO-AFQMC approach effectively circumvents
these biases by employing fragment calculations that are
considerably smaller in scale than the overall system. Similar
sensitivity to Trotter time step was observed for the product of
reaction 3 in the aug-cc-pVDZ basis set. Notably, the AFQMC
calculation with a time step of 0.0025 au closely aligns with the
tightest LNO-AFQMC result obtained using a step size of
0.005 au, which demonstrates the reliability of the local
method.

IV. CONCLUSIONS

In this work, we introduced local correlation into the AFQMC
framework, specifically via the use of local natural orbitals. The
LNO framework provides an efficient truncation of the basis
set, which makes it possible to perform LNO-AFQMC
calculations with basis sets larger than those possible with
canonical AFQMC. Notably, energy differences converge
much more rapidly than total energies, which makes this
method especially promising for applications in chemistry. In
the future, LNO-AFQMC will be extended to study open-shell
and strongly correlated, multireference systems. To achieve
this, we will adapt LNO-AFQMC for use with multi-
determinantal trial states,'”*® for which there is no unique
set of occupied orbitals and eq 15 no longer holds.
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