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Abstract—Federated Learning (FL) has emerged as an effective
paradigm for distributed learning systems owing to its strong
potential in exploiting underlying data characteristics while
preserving data privacy. In cases of practical data heterogeneity
among FL clients in many Internet-of-Things (IoT) applications
over wireless networks, however, existing FL frameworks still
face challenges in capturing the overall feature properties of
local client data that often exhibit disparate distributions. One
approach is to apply generative adversarial networks (GANSs) in
FL to address data heterogeneity by integrating GANSs to regener-
ate anonymous training data without exposing original client data
to possible eavesdropping. Despite some successes, existing GAN-
based FL frameworks still incur high communication costs and
elicit other privacy concerns, limiting their practical applications.
To this end, this work proposes a novel FL framework that
only applies partial GAN model sharing. This new PS-FedGAN
framework effectively addresses heterogeneous data distributions
across clients and strengthens privacy preservation at reduced
communication costs, especially over wireless networks. Our
analysis demonstrates the convergence and privacy benefits of
the proposed PS-FEdAGAN framework. Through experimental
results based on several well-known benchmark datasets, our
proposed PS-FedGAN demonstrates strong potential to tackle
FL under heterogeneous (non-IID) client data distributions, while
improving data privacy and lowering communication overhead.

Index Terms—Federated Learning (FL), generative adversarial
networks (GAN), heterogeneous users. machine learning, privacy.

I. INTRODUCTION

Ederated Learning (FL) presents an exciting framework

for distributed and collaborative learning while preserving
user data privacy [1], [2]. As an emerging field of artifi-
cial intelligence, the full potential of FL must effectively
address a myriad of challenges, including heterogeneity of
data distribution, data privacy consideration, and communi-
cation efficiency, especially for edge devices in Internet-of-
Things (IoT) systems. With the widespread deployment of
IoT devices such as smart wearables, mobile devices, and
personal digital assistants, copious data are generated every
second, enabling collaborative machine learning for accurate
utility [4]. Today, many global machine learning models such
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as classifiers readily benefit from ample user-generated data
and are implemented on many platforms in IoT systems.
On the other hand, continual (machine) learning for global
model updates from access to new data also represents an
important learning aspect in IoT systems. Due to bottlenecks
such as communication efficiency and privacy of user data,
direct application of standard machine learning techniques for
continual updating of global models is not straightforward. As
a solution, FL is widely applied in such IoT systems [5].

Despite successes, existing FL. methods require more care
to handle non-independent identically distributed (IID) hetero-
geneous data among different participating FL clients (users)
instead of IID user data. The problem of handling data het-
erogeneity still remains an interesting research topic. Existing
works mainly share common datasets, modified algorithms, or
generative models to handle data heterogeneity. Among these
FL schemes to handle data heterogeneity, generative adver-
sarial networks (GANs) [6] based approaches have recently
drawn substantial interest owing to their ability to regenerate
data statistics without sharing raw data. In previous works, a
GAN model is trained locally to capture the local user’s data
distribution. Subsequently, the locally trained GAN model is
shared with a centralized server for model aggregation. The
model aggregation can rely on generating more data to update
a target global model or a customized GAN model for each
user. Despite reported successes, GAN-based FL also exhibits
several shortcomings, such as poor privacy protection and
heavy communication redundancies, caused by full model or
synthetic data sharing [7], [8].

Many studies, e.g., [9], [10], underscore the susceptibility
of traditional FL methods to security risks, and reveal the po-
tential risks of sensitive information leakage. These concerns
extend to GAN-based FL, as highlighted in [11], where the
release of GAN models or synthetic data raises serious privacy
issues. Specifically, GANs face threats from reconstruction
attacks and membership inference attacks, as detailed in [12],
where adversaries seek to recreate data samples and ascertain
the utilization of specific data samples, respectively. Efforts to
address privacy issues in GAN-based FL have considered the
exploration of differential privacy (DP) [13], as addressed in
works such as [7], [14]. However, the adoption of DP high-
lights a significant challenge: balancing the tradeoff between
privacy and utility. This specific challenge is exacerbated
by the necessity to allocate a privacy budget, a parameter
crucial for balancing the performance of the learning model
versus privacy preservation. Paradoxically, to enhance the
performance of downstream tasks, practitioners often opt for
an infinite privacy budget, effectively nullifying any privacy
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safeguards.

Moreover, the communication link efficiency of GAN-based
FL is impeded by the substantial size of the shared models
and the limited communication resources in various real-world
networking scenarios. This communication inefficiency poses
a practical obstacle, limiting the seamless exchange of model
updates and the collaborative learning process in federated
environments. Consequently, addressing both privacy concerns
and communication efficiency emerges as a pivotal challenge
in advancing the robustness and applicability of GAN-based
FL methods.

To summarize, the existing GAN-related FL suffers from
heavy communication overhead and severe privacy leakage,
due to the full GAN sharing. On the other hand, existing
privacy-preserving approaches may result in utility degradation
when protecting data security. To this end, we re-examine
the GAN sharing strategy in FL and propose a novel GAN
publishing mechanism, named PS-FedGAN (Partially Shared
Federated GAN), to address practical cases of non-IID data
heterogeneity among FL client users. Through our proposed
FL framework, we reconstruct separate generators at the server
from partially shared GAN models trained locally at client
users, in which each client only shares its discriminator with
the server. The proposed PS-FedGAN significantly reduces
the communication network overhead of model sharing and
provides better data privacy during communication rounds.
Furthermore, it bridges the gap between utility and privacy.
Fig. 1 highlights the distinction between existing full GAN-
sharing approaches and our proposed PS-FedGAN over an
untrustworthy network. We summarise our contributions as
follows:

e We propose PS-FedGAN, a novel GAN-based FL learn-
ing framework to cope with non-IID data among FL client
users. More specially, we train a generator at the server
to capture the underlying data distribution of local user
GAN by only sharing an individual discriminator. The
proposed framework can significantly lower communica-
tion costs and improve data privacy.

o We provide analytical insights into the convergence of
generator training at the client end and at the cloud server.
We investigate the convergence of the common discrim-
inator training based on our proposed PS-FedGAN to
establish the benefit of communication cost reduction by
only sharing discriminators. To the best knowledge, we
are the first to provide a systematic theoretical analysis
of FL based on partially shared GAN.

o We present an interpretable result on the privacy of the
proposed PS-FedGAN, which is further corroborated by
our theoretical analysis and extensive experiments.

e Our experimental results against several well-known
benchmark datasets further demonstrate the efficacy and
efficiency of our PS-FedGAN, in terms of utility, privacy,
and communication cost.

The subsequent sections of this paper are structured as
follows. In Section II, we first provide an overview of the
existing literature on Federated Learning (FL) and Generative
Adversarial Network (GAN) models. Section III is dedicated

to introducing our problem formulation and the details of the
proposed novel partial GAN-sharing method. We analyze the
theoretical aspects of PS-FedGAN in the section V. The sec-
tion VI encompasses the presentation of experimental results.
Finally, we present conclusions and future works in Section
VIIL

II. RELATED WORK

This section introduces existing FL frameworks for 1ID and
non-IID user distributions and also summarizes relevant details
of GANS.

A. The Concept of Federated Learning

FL stands out as a straightforward and effective approach
to privacy preservation in distributed learning scenarios. In
the realm of basic FL, local client datasets are often heteroge-
neous, unbalanced, and non-IID (non-identically distributed).
The FL is over a network under constraints of limited com-
munication bandwidth [1]. To mitigate communication over-
head and preserve privacy, the Federated Average (FedAvg)
algorithm emerges as a solution. FedAvg aggregates gradient
updates from various users by consolidating multiple local
updates in a single round of communication [2].

While the convergence of FedAvg for non-IID data has been
studied [16], it has been revealed in [17] that FedAvg can
incur an accuracy loss of up to ~ 55% in non-IID setups for
certain datasets. Effectively addressing non-IID data hetero-
geneity among diverse clients remains an open FL question.
FedProx [18] has been introduced as a generalized version of
FedAvg against heterogeneous networks. Another extension of
FedAvg is SCAFFOLD, which integrates predictive variance
reduction techniques to enhance performance [19]. In [20], the
authors propose a new approach involving classifier calibra-
tion with virtual representation, leveraging a Gaussian Mixer
Model to sample virtual features.

Adopting an alternative strategy, the authors of [21] ad-
vocate for raw data sharing within a cooperative learning
mechanism. Additionally, the suggestion in [16] is to incor-
porate a small fraction (e.g. 5%) of initial training data to
accommodate non-IID data using traditional FL algorithms.
Several other methods for dealing with non-IID data include
GAN sharing [7], [22], [23], synthetic data sharing [24], [25],
and global sub-dataset sharing [17]. These diverse approaches
collectively contribute to the ongoing exploration of effective
solutions for addressing the challenges posed by non-IID client
data in the context of FL.

B. Federated Learning for loT

FL may apply to a wide range of IoT services. These
services range from IoT data sharing, data offloading, and
caching to IoT privacy and attack detection [5]. Similar to
FL in any paradigm, the main bottleneck of FL in IoT lies in
the imbalanced and statistically heterogeneous user data [26]
and the need to enhance system security. In [27], authors have
addressed the cyber security aspect of FL in IoT. Another
critical FL problem involves the resource-constrained IoT
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(b) Proposed PS-FedGAN discriminator sharing

Fig. 1: Comparison of full GAN sharing v.s. our proposed PS-FedGAN discriminator sharing for /N users. In both cases, a local
user trains its GAN model with a generator (G) and a discriminator (D). In traditional FL. with fully shared GAN, full GAN
models are communicated (i.e. both G and D are shared with the server simultaneously.), whereas PS-FedGAN only shares D.
In full GAN sharing, an attacker may eavesdrop over an unsecured channel to gain access to shared G and D. As a result of
sharing G and D with the server by clients, the passive attacker can generate synthetic data which may approximate user data
distribution. Furthermore, membership inference [15] could also become viable in this setup [12]. In contrast, PS-FedGAN
prevents eavesdropping of G and denies attacker access to both true GAN model G and original data distributions.

devices [28]. On the other hand, GAN models can be used
to attack IoT-based FL systems as discussed in [29], [30].
At the same time, GAN-based FL approaches are common
in IoT applications to enhance performances and personalized
solutions [23].

C. GAN-based FL for IID and Non-IID Clients

The practice of training Generative Adversarial Networks
(GANs) locally before disseminating the trained models to
a centralized server has gained momentum as an effective
strategy for managing both IID and non-IID data. In the
study by [31], a conditional GAN (cGAN) is employed, and
both the local classifier and generator are shared with the
central server. The central server trains a global classifier and
generator, guiding the actions of local users. Expanding on
this approach, the authors of [32] suggest incorporating model
splitting by preserving a portion of the cGAN, specifically the
discriminator, and a segment of the hidden classifier, while
sharing the generator and a global classifier.

Similarly, the notion of sharing the entire local GAN with
the server and generating a synthetic local dataset to train a
global GAN is proposed in [7], [23]. This approach, known
as full GAN sharing (FGS), has also been explored by [22],
where only shared generators exhibiting the maximum mean
discrepancy are aggregated. Although these methods show
promise, effectively addressing privacy concerns in GAN-
based FL remains an ongoing challenge. To this end, Differ-
ential Privacy (DP) [13] as a mitigating measure has been in-
troduced in GAN-based FL, with applications shown in works

such as [7], [14]. However, incorporating a privacy budget in
DP introduces a delicate balance between privacy and utility.
The pursuit for effective ways to reduce the size of shared
models (i.e., communication cost) while preserving privacy in
GAN-based FL persists as an open research challenge and
warrants continued exploration and innovations.

D. Generative Adversarial Networks

Generative Adversarial Network (GAN) [6] features a mini-
max game between two neural networks, namely the generator
(G) and the discriminator (D). The concept of GAN is to
learn and capture sufficient information about a given data
distribution to generate data samples that follow the original
data distribution. In a GAN, G tries to learn a mapping from
the noise space to the data space by starting with a random
noise to generate an image to fool D. Whereas, D learns to
distinguish samples from in/out of the data distribution. If the
generator learns a distribution p, over data x by mapping a
prior noise distribution p,(z) to data space. The following
objective function can be used to train the GAN model:

V(D7 G) = ]Ewwpdam(x) [1Og D(X)]+
E.np.(allog(l — D(G(z)))], (1)

where E[-] refers to statistical expectation.

The downside of traditional GAN is that it provides no
control over the reconstruction, i.e., the generated output. To
gain control over the generation, the conditional GAN model
(cGAN) is introduced. If the generator and discriminator are

min max
G D
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TABLE I: Key notations and abbreviations

Notation/ Abbreviation Description
FL Federated learning
DP Differential Privacy
GAN Generative Adversarial Network
Generator

Discriminator
User generator
User discriminator
Server generator
Server discriminator
Classification model
User side publishing mechanism
PS-FedGAN publishing mechanism
Number of updates
Noise vector
labels
Reconstruction attacks
Attacker type I
Attacker type 11
Neural network parameters

N

S R R NSRS T

conditioned on some extra information I [33]. Then, the
objective function could be set as

V(D,G) = Ex~pdam(X) [log D(x|T)]+
B,y llog(l — DGED)]. @

In this work, we utilize cGAN models. Conditional GAN
models provide the freedom of data (e.g. image) generation
by conditioning the class label. As a result, there is no need
to implement an auxiliary classifier to classify the generated
output of cGAN models.

min max
G D

III. PROBLEM FORMULATION

In this work, we aim to develop a novel GAN-based FL
framework for a global/common task in a distributed learning
setup. For convenience, we will use image classification as
an illustrative example henceforth. Consider a reliable central
server with limited access to client training data to achieve
a desirable accuracy on the global task. Here, we assume
non-1ID data distributions and vulnerable communication links
among users, a common scenario in practice. For example, in
smart healthcare, one learning task could be to train neural
networks for the detection of a specific disease. One clinic
may have a unique set of brain images from a specific patient
group whereas other hospitals may also have access to several
types of similar diseases with a plethora of examples. A global
model based on all distributed data to detect these diseases
could benefit all participating hospitals and providing better
service for patients without releasing actual patient data. In
such a collaborative system, local data privacy is a critical
concern. Also, adding artificial noises to the dataset to hide
sensitive information may lead to unwanted information dis-
tortion and/or learning deficiencies. In this work, we address
how to preserve local privacy while preserving the original
data statistics.

Motivated by existing GAN-based FL, we develop a novel
GAN sharing/publishing mechanism for FL with privacy
preservation and communication efficiency. Consistent with
existing GAN-related FL. works, we assume a system with

a centralized server in the cloud and multiple distributed
clients/users in communication with the server. Each client
has access to enough resources to train a local GAN model.
Note that, although we apply conditional GANs (cGAN) [33]
to alleviate the need for label detection via pseudo-labeling,
the principle of our proposed scheme generally applies to all
types of generative models.

To assess the efficacy of our framework in preserving
privacy, we consider adversarial attackers that passively eaves-
drop. In order to model potential attacks from these quiet
adversaries, we assume that an attacker has the capability to
eavesdrop on the communication channels connecting local
users and the server without being detected, as depicted in
Figure 1. The attacker’s objective is to estimate the data
distribution of the local user through reconstruction attacks.

As illustrated in Figure 1, in conventional GAN-based FL
methods, such attackers may have unrestricted access to the
entire GAN model. However, our proposed PS-FedGAN is
specifically designed to address the security vulnerabilities
associated with fully shared GAN models.

Mathematical Formulation: Let ¢y be the parameters of
the global/common model F' that need to be optimized (min-
imized) for a given objective function £ over data points
that follow certain distribution pg,¢,. Consider a distributed
learning setup with N number of clients. Suppose that the
ith user u; has access to data from a distribution pgqte; and
uses publishing mechanism M, then, we aim to optimize the
distributed optimization as follows:

N
min{F(¥) £ _pifi()}, 3)
i=1
where Zf\; p; = 1. Here f; is defined as
NERS
fi() = E;E(¢;Iij)~ “4)

where z;; is sampled from a data distribution Pggtq; that
approximates Pdatai, and Pdatq; is learned from M, (.) and
using the Eq. (2).

IV. METHODOLOGY

In this section, we introduce the overall framework of our
proposed PS-FedGAN and subsequently describe the attacker
models in our system.

A. PS-FedGAN

We now delve into the structures of the proposed PS-
FedGAN. To tackle the privacy issues arising from full GAN
sharing, we introduce a partial sharing approach within our
PS-FedGAN framework. Specifically, we train two generators:
generator G, at the local user’s end and generator G at
the server side for each user. In order to bridge the training
of two generators, i.e., one at a local user and the other at
the server connected by a communication link, we share a
common discriminator D,, trained only at the local user.

To visually depict the update process of PS-FedGAN, we
present the user-server communication flow leading up to a
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single-step update of the global classification model (C}) in
Figure 2. In the case of a single user, the training process
begins with the local user training a local GAN model consist-
ing of generator GG,, and discriminator D,,. After completing
a single batch training at the local user’s end, the trained
discriminator D,, is shared with the server through the PS-
FedGAN publishing mechanism M,,. The details of this pub-
lishing scheme will be further elaborated in the next section.
In our study, we consider an untrustworthy communication
link where attackers may potentially gain access to the PS-
FedGAN publishing mechanism M,,. On the server side, we
initialize a separate generator G5 for each user, following
the guidelines of PS-FedGAN Algorithm 1. Subsequently, the
server updates its corresponding G, based on information
received through M,,.

Before updating the global classification model C;, we wait
for a specific number of updates from the user side, denoted
as N. In this context, N can represent an epoch for the
local user. Consequently, we carry out N updates on both the
local user’s GAN and the corresponding G in parallel. The
generated data from all the updated G5 models, corresponding
to different local users, is combined with the server-available
data to update the global model C;. This cycle of updates and
combination of generated data is repeated until C; converges
to the desired point.

When deploying the FL models, we assume each local user
and the server have agreed on a secret seed value and the
same architecture for G,, and GG;. The secret seed serves to
initiate the weights of G, and its corresponding G. Note
that each user is assigned its own dedicated generator on
the cloud server. Also, we impose no constraint on D,,. PS-
FedGAN follows a batch-wise training process where we
update G, G, and D,, at each step. Once G, and G are
initiated, local GAN training commences with D,. In the
following subsections, we provide a detailed explanation of
the PS-FedGAN publishing mechanism M,, followed by an
elaboration of the training process for both the local users and
the cloud server in each communication round.

1) PS-FedGAN Publishing Mechanism M,: In PS-
FedGAN, let z; be the noise vector used to train G, with
random labels I; at step/batch ¢ at the user side. Let M(6)
be a user-side publishing mechanism used to send trained
parameters 6 to the server. The PS-FedGAN publishing mech-
anism is defined as M,: M(D,, z,1;), where the local user
releases D,,, z;, and I; to the server after each training step of
D,,. We shall show that M, preserves privacy and lowers
communication cost compared to the full GAN releasing
methods M(G,,, D,,) via theoretical analysis and experimental
results in Section V and Section VI, respectively.

2) PS-FedGAN Local User Training: As discussed earlier,
D, is trained at the local user end after initializing G,. The
local user has the flexibility to choose any architecture for D,,,
as long as it is trainable with GG,,. Following the conventional
GAN training, D,, is initially trained using both real images
and images generated by G, at each step. To handle the
randomness of G, in a deterministic manner, the parameters
of D, are updated during backpropagation (BP).

Depending on the convergence requirements of the archi-

Algorithm 1 PS-FedGAN: Training Algorithm. Minibatch
GAN training for distributed GANs.

for each user i do
Initial G,,, and Gy, using secret seed key;
Initiate the discriminator: D,,,
end for
Initiate the global model Cj ( classifier ) and train using the
available cloud data.
for each communication round, until C} is converged do
for number of training iterations do
for each step t do
# User side:
zt, l; < random vectors, random labels
Train D,,;: Dq(ffiﬂ) — .F(Gq(fi)(zl, le), Dq(f,i)),
where F represent forward/back prop and weight updating
Share (DS 2, 1,) : My(DETY 2, 1)
Train Gy,: G4 « F(GY (2, 1,), DY)
# Server side:
Train Gy;,: Gg+1) — I(Ggi)(zt, ly), Dfﬁ.ﬂ))
end for
end for
# Server side:
Train C; with cloud data and synthetic data : Cl(
F(e)
end for

t+1)

tecture, multiple iterations of D,, training can be performed.
Subsequently, random vectors z; and corresponding random
labels I; are generated for training G,,. Before we train G,
we release M, to the server to minimize latency. Locally,
G, is trained using z; and the corresponding I;. Similar to
general GAN training principles, the randomness in D, is
handled deterministically, to enable the training of GAN G,,.
The parameters of G, are then updated through BP.

3) PS-FedGAN Server Training: At the server, we main-
tain a dedicated generator (G) corresponding to each user
initialized with the shared secret seed. Upon receiving the
parameters M, from the respective user, the training process
for each G starts. During this process, it is not necessary to
wait for other users to communicate with the server. Similar
to the training of GG, we train G5 using the received z; and [,
from its corresponding user. To ensure consistency and avoid
randomness in D,,, we employ the same techniques used by
the corresponding user during training.

Next, we apply BP to update the parameters of G5. Upon
reception of updates from all users, we proceed to update the
global classifier C;. To update C; at each iteration, we generate
a preset number of samples using each G, and combine them
with a small amount of available real data pre-fetched by the
server. Note that this small pre-fetched real data is the only
advantage of the server over the potential eavesdroppers. This
approach allows us to generate sufficient training samples that
capture multiple private client datasets. We present the PS-
FedGAN training algorithm in Algorithm 1.



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

Secure G training on the
server from the shared D

. Discriminator sharing in .

! an unsecure medium ; Global classifier
E X Mp() ; Mp( ) Mp(') training

i E al | ....... au

! ey | ; gl

sy

-__--——.g—-—---"'"'_..:.'...A

Initialization Step 1

Step 2

Fig. 2: User-server communication process until one update of the global classifier (C;) shown for one user using the PS-
FedGAN method: The local user first starts training a local cGAN (generator GG,, and discriminator D,,). After a single batch
training at the local user, trained D, is shared with the server using M,. M, : M(D,,z,1), where M is a publishing
mechanism. z and [ are noise vectors and corresponding fake labels used to train GG, at current step, respectively. At the
server, we initiate a separate generator GG for each user. For every received user update, we update G5 by one step. After N
steps, we update the C; using synthetic data generated from each G4 and cloud-available data. We continue this process till

C) converges.

B. Attacker Models

To assess the performance of PS-FedGAN against potential
attackers, we focus on reconstruction attacks specifically.
These attackers are denoted as Ap. For any M (6), an attacker
Apg attempts to reconstruct the training samples and assume
T represents a reconstructed sample (e.g. image), i.e.,

Ap : M(0) — T. @)

In our experimental setups, we consider two types of
attackers: A; and As. The bottleneck faced by any attacker
against our model lies in the hidden generator model which
is more prone to privacy leakage. Therefore, the process of
reconstructing synthetic data helps preserve privacy in terms
of the initial weights and network architecture, as further
elaborated in Section V. Predicting the exact architecture has
become challenging owing to the many advances in deep
learning techniques.

For an attacker to obtain information, it is crucial to eaves-
drop from the very beginning and ensure they do not miss
any round of communication exchanges. Such requirements
prove difficult for potential privacy attackers. Additionally, the
attacker must acquire knowledge of the initial weights of the
generator, to be discussed in Section V. However, in practice,
it is typically challenging, and often impossible, for an attacker
to accurately estimate the generator’s structure due to various
practical constraints such as power, latency, and hardware
capabilities. The complexity and variability of generator ar-
chitectures could play a significant role in preserving privacy.
The diverse range of architectures available for generators,
coupled with their complexity, makes it highly uncertain for
an attacker to accurately infer the precise model structure.
Such inherent difficulty further enhances the preservation of

privacy in the system. By utilizing complex and variable
generator architectures, PS-FedGAN adds an additional layer
of protection against potential privacy breaches.

Therefore, to define new attacks, we first introduce a mul-
tiplicative factor r € [0, 1]. We assume that attackers .4; and
As have the same architecture of G,, and the same weights
and bias terms of GG, in every deep learning network layer
except the first. Let w; and by be the layer 1 weight and bias
term of GG,,. Layer 1 weight w11 and bias term b,1; of A; are
set to wg,11 = Twi and b,1; = by, respectively. Similarly for
As, we set layer 1’s weight unperturbed as wg01 = wq, and
set layer 1’s bias to b2 = rby. Clearly, these two attackers’
knowledge of GG, parameters are only slightly different from
the true parameters with a multiplicative factor  on Layer 1’s
weights and biases, respectively.

V. ANALYTICAL RESULTS

This section focuses on a convergence analysis of the pro-
posed method and provides insights into privacy preservation
with detailed proofs.

A. Convergence of D,

We first show the convergence of two generators and a
discriminator trained according to Algorithm 1. Suppose that
the GAN trained at a local user u consists of a generator G,
capturing a probability distribution of pg,,, and a discriminator
D,. Let the local user’s data distribution be pgatq(z). The
local user (client) trains G, with z ~ p,. We have the
following properties on model convergence.

Proposition 1. Two generators G,, and G4 trained on Algo-
rithm 1 with a shared discriminator D, lead to the conver-
gence to the same optimal discriminator D, as in [6], i.e.,
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* pdata(x)
D’ = 6
“ pdata(x) +pgu($) ( )

which uniquely corresponds to the same given G,,.

Proof: In the proposed PS-FedGAN, Algorithm 1 trains D,,
using GG, while G4 has no influence on D,,. Therefore, as
illustrated in [6], the discriminator training is valid with the
value function V(G,, D,,) denoted by,

V(G D) = [ pantalog(Dufw) dot
’ )
/pz(Z) log(1 — Dy (Gy(2))) d.

z

Radon-Nikodym theorem leads to the following conclusion:

Ezrvpz(z) log(l — Du(Gu(z))) = EZL’NPgu(!E) log(l — Du(x))
®)

Then, the value function can be recalculated as

V(Gy,Dy) = /pdatu log(D(x)) + pgu(x) log(1 — D(x)) dz.

x

©))
Let g(x) = alog(z) 4+ blog(1 — x) for which
dg(z) a b
- 10
Oz x 1-—a’ (19)
and

9%g(x) a b
o2 T 2 (R (v
The derivatives give the unique maximizer x = %3 with
628‘2(2:”) < 0 for a,b € (0,1). Hence, the optimal D} can be

calculated by

D* _ pdata(x)
" Pdata() + pgu(T)

12)

Here, the unique maximizer implies the uniqueness of D;; for
a given G,,.

In Proposition 1, we see that the D, in PS-FedGAN
converges to the same discriminator if we train G,, and D,
without Gs. That is, training G in the cloud does not hamper
the convergence or performance of the local GAN training. On
the other hand, we have a unique D,, given G. This property
drives the convergence of G to GG, which is characterized in
the following Propositions regarding the generator models.

B. Convergence of G, and G

Proposition 2. Two generators G, and G trained according
to Algorithm 1 with a shared D, would converge to a unique
G* = G}, = G% which captures pgaiq-

Proof: Following Proposition 1, Algorithm 1 converges to
D;,. Therefore, in the training of the generator, we have the
following optimization formulations, i.e.,

Gy =argmin V(G,, D), (13)
Gy
and
G: =argminV(Gg, D}). (14)

Gs

According to Algorithm 1, after each epoch of training in
G, and Gy, we have G, = (.. This is because the input
to both networks and initial weights are the same, leading to
the same loss with the same gradients to be updated in the
backpropagation. Therefore, the training of GG can be viewed
as the traditional GAN training with G and D,. Since z is
shared in the communication, we have

V(GS7DU> :/pdata(x> IOg(Du(m))dgc—i—
(15)
/pz(Z) log(1 — D, (Gs(2))) dz.

z

Moreover, if G5 captures a distribution p,s, from Eq. (15), we
have

V(Gs,D,) = /pdata(x) log(Dy(x)) dz+
* (16)

/pz(z) log(1 — D, (Gu(2))) dz,

z

which could be further calculated via

V(Gb = Gua Du) = /pdata(x) IOg(D(x))+ (17)

Pgs()log(1 — D(x)) da.

The uniqueness of D7, in Eq. (9) and Eq. (17) leads to py,, =
Dgs- Thus, G captures the same distribution as G,,. Hence,
we can train two generators to capture the same distribution
by only sharing a discriminator, without sharing original data
explicitly. If G, achieves G, we have G}, = G%. Then the

optimization problems in Eq. (13) and Eq. (14) reduce to

G* =G, =G =argminV(G,, D}). (18)
Gu

In order to prove that G captures pgqtq, We refer to [6]. For
G, from the viewpoint of game theory, D,, fails to distinguish
between true and fake data. Then, we have

ata 1
D = _ Pdata  _ - (19)
Pdata T Pgu 2

which leads to pgy = Pdata- Now, we have pys = Pyata-
Thus, the server generator also captures the data distribution
of the corresponding local user. Hence, G* captures pgyq¢q- The
uniqueness of G* shall follow the same conclusion from [6].
Following the GAN training in [6], the global minimum of
M(G) = maxp V(G, D) is gained if and only if pg, = Pdata-
To prove both the above theorem and the uniqueness of G*,
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we first assume that pgy, = Pdate. Then the value in Eq. (17)
can be calculated as

V(G DY) = / Pata () 10g(D?) + pys () log(1 — D7) dar

x

= /pdam(ﬂf) log(0.5) + pgs(z) log(0.5) dx

—( / (Paata (&) + Py () dz) log(0.5)
= (14 1)log(0.5)
= —log(4).

This provides us with the global minimum. On the other
hand, for any G and D, For M(G), we have,

M(G) = max V(G, D)

(20)

:/pdam(x) log(D.,) + pys(z)log(l — D,,) dz
' (21
Pdata

Pdata + Pgu
Ddata ) dx

Pdata + Pgu
Pdata
Pdata + Pgu

A) dz.
DPdata + Pgu

After some manipulations, M (G) can be calculated as

M(G) = —log(4) + / Pdata () log((pdatfiﬁ

Pgu
e los G )
ata gu

= 10g(4) + 2JSD(pdam |pG)7
where JSD is the Jenson-Shannon Divergence which is non-

negative. This yields — log(4) as the global minimum. Finally,
it gives US Pdata = Pgu, and the uniqueness of G*.

= /I Pdata () log(

+ Pgs() log(1 —

= /x Pdata(z) log(

+ pys () log( (22)

(23)

B 1.3 Divergence of any G other than G,, or G

This proposition establishes that two distributed generators
trained using PS-FedGAN converges to the same generative
model. Moreover, this model is the same as the optimized
model that one can obtain via classical GAN training. Another
vital observation is that both G, and G capture the user-side
data distribution.

Proposition 3. Any other generator G 4 failing to capture the
weights and architectures of G4 or GG, either in the initial
state or in any single communication round, would fail to
characterize the data distribution pga¢q-

Proof: From Proposition 1 and Proposition 2, we have
Dgu = Pdata a0d Pgs = Pdata Which are made possible only
by a unique G* and D;. As shown before, to obtain G* =
G* = G*, we need to have G, = G, at each step, implying
that G needs to capture all communication rounds. Therefore,
these conditions restrict G' to capture pgqtq-

This proposition provides insights into the capacity required
by an attacker. To attack the proposed model, an attacker
would need to predict a generator G using the information
obtained from M,. However, to successfully carry out this
attack, the attacker would need to possess precise knowl-
edge of the generator’s architecture, initial weights of either
Gs or G,, and would need to monitor and capture every
round of communication. In our experiments, numerical re-
sults shall substantiate the need for these requirements and
further demonstrate the difficulty an attacker would face when
attempting to breach the privacy of the PS-FedGAN model.

C. DP property of M,

We now discuss the DP properties of the proposed methods.
Let us denote the discriminator by D = f(data) and the
generator by G = g(D, z), where z represents noise. From the
post-processing property in [34], g(f(D)) is DP if f(data)
is DP. Thus, the generator G is DP whenever D is DP.
Furthermore, if the training process is based on original data,
FL-GAN follows DP [35].

In practical scenarios of PS-FedGAN, accessed models of
D with quantized channel noise is DP [36] on the original
weights of D, i.e., Wp. Since an attacker can only gain access
to discriminator D during the communication round in the pro-
posed PS-FedGAN framework, any generators reconstructed
by the attackers from the hacked D are also DP on Wp.

Proposition 4. Any generator G reconstructed by the attacker
shall be DP in a communication channel with quantization
noise or channel-induced error.

This proposition shows that the attackers’ estimated GAN
model is DP on the original model weights W sent from a
client to the server. Considering the mutual information of
shared models and original data, we have I(data,Wp) <
I(data,data). Therefore, if we preserve privacy on Wp, we
also preserve some privacy on the original data.

Proposition 5. M, preserves privacy compared to full data
sharing.

Clearly, full data sharing poses the most privacy leaks.
Based on the foregoing propositions, we empirically evaluate
the privacy-preserving capabilities of M,, next.

VI. EXPERIMENTS

In this section, we present the test results of the proposed
PS-FedGAN under non-IID user data distributions. In the
first subsection, we evaluate performance when utilizing the
proposed method and compare performance with existing FL
methods. We then present privacy measures and also evaluate
the associated communication cost. Our experiments use sev-
eral well-known benchmark datasets, including MNIST [37],
Fashion MNIST [38], SVHN [39], and CIFARI10 [40]. Ex-
periments are implemented via torch 1.13 on a server with
NVIDIA TITAN V GPUs with an Intel Xeon Silver 4110 CPU
(32 cores) with a memory size of 64 GB.
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To design the global classifier for the MNIST and Fashion
MNIST datasets, our architecture utilizes a structure of two
convolution layers, each of which uses batch normalization
and ReL.U activation followed by a fully connected layer with
a dropout layer. It is then connected to two fully connected
layers for output. For SVHN and CIFARIO datasets, the
global classifier consists of six convolution layers followed by
two fully connected layers. Each odd-numbered convolution
layer has a batch normalization layer, whereas even-numbered
convolution layers have a max pool followed by a dropout
layer. The final layer includes a batch for output.

A. Evaluation of Utility

Our study considers three distinct scenarios (Split 1, Split-2,
and Split-3) of heterogeneous user cases, which are based on
the work presented in [7]. Each case involves a total of 10
users and the following details:

o Split-1: In this case, training data is divided into 10
shards, each containing samples from a single class. Each
user is randomly assigned one distinct shard.

o Split-2: This case generates 20 training data shards, each
consisting of samples from a single class. Two shards are
randomly assigned to each user without overlap.

o Split-3: This case generates 30 shards, each containing
samples from a single class. Three shards are randomly
assigned to each user without overlap.

As illustrated above, the experimental setup for accuracy
evaluation consists of three different settings. From Split-1
to Split-3, we reduce the skewness in data by increasing the
number of classes per user while keeping the total number of
data points per user constant. Specifically, we test PS-FedGAN
performance against extreme skewness by considering users
with a single class in Split-1. Subsequently, we degrade the
skewness by increasing the number of classes by two and three
in Split-2, and Split-3 respectively.

As a utility measure, we select the classification accuracy of
the global model in a supervised setup. We compare our results
against several existing FL alternatives: FedAvg (FA) [1],
FedProx (FP) [18], SCAFFOLD (SD) [19], Naivemix (NM)
[41], FedMix (FM) [41], and SDA-FL (SL) [7] as baselines.
We also compare our partially-shared PS-FedGAN (PS) with
the fully-shared GAN (FG) as a performance benchmark. The
results of Split-1/2/3 are shown in Table II.

Table II shows the superior performance of the proposed PS-
FedGAN over most existing methods except for the FG. More
specially, we see a significant improvement in PS-FedGAN
in Split-1 for the CIFAR10 dataset. Compared with full-GAN
(FG) sharing which is the best possible benchmark, our PS-
FedGAN achieves similar performance but at significantly
reduced communication cost and substantial privacy loss as
further shown in Table VI. Note that in the above test, the
SDA-FL method requires an infinite privacy budget to achieve
the desired utility. This indicates that SDA-FL fails to balance
privacy and utility. Additionally, we note that other alternatives
such as [7] are able to access more real data for new classes
seen from Split-1 (10% real data in the respective received
class) to Split-3 (3.33% real data per class and 3 such classes),
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Fig. 3: The variation of the classification accuracy with the
percentage of available data in the server.

whereas our proposed PS-FedGAN only maintains a small
unchanged amount (1%) of real data on the server.

B. Ablation Study of the Effect of the Server Data

We now provide an ablation study to analyze the effect of
the server data. We first present the accuracy compared to
other state-of-the-art (SOTA) approaches without any server
data (0%), as shown in Table III. From the results, our
proposed PS-FedGAN still achieved the best performance,
even without any server data, which validates the power of
our proposed framework. Furthermore, to analyze the effect of
server data, we analyze the variation of the accuracy against
the data availability on the server using the same Split-1 for
the datasets, i.e., FMNIST and SVHN. Generally, as illustrated
in Figure 3, the number of server data and classification
accuracy of our model are positively correlated. When some
server data is first introduced (below 0.1%), we can observe
an accuracy drop, around 0.1% of server data. There are
several possible reasons. First, the number of samples in 0.1%
data samples is tiny and cannot well represent the learned
distribution. Secondly, a better data combination algorithm,
such as Mixup [42], can be used. Nevertheless, as shown in
Figure 3, even with a very small ratio of server data, such
as 0.1%, our proposed PS-FedGAN could achieve a better
performance against SOTA methods, such as SL [7] trained
on 10% real data (skewed) using the Mixup.

C. Privacy Evaluation

We now evaluate the privacy of PS-FedGAN with respect
to reconstruction attacks, which are often viewed as one of the
most dangerous attacks. Here, we utilize the MNIST dataset.
To evaluate the efficacy against reconstruction attacks, we
use several proxies to measure the degree of privacy leakage,
including normalized mean square error (NMSE), structural
similarity index (SSIM) [43], and classification accuracy. We
consider two different non-IID user setups:

o Setup-1 includes three users. User-1 has access to classes
{0,1}, user-2 has access to classes {2,3,4}, and user-3
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TABLE II: Classification accuracy (best) of existing FL methods and full GAN sharing compared with PS-FedGAN in Split-1,
Split-2, and Split-3. Some of the results are from [7]. We assume 1% of the training data of each dataset available in the cloud
for FG and PS-FedGAN.

Split-1 Split-2 Split-3

Method MNIST FMNIST SVHN CIFAR10 MNIST FMNIST SVHN CIFAR1I0 MNIST FMNIST SVHN CIFARIO

FA 83.44 16.50 14.05 18.36 97.61 73.50 81.11 61.28 98.42 82.47 84.18 79.33

FP 84.17 57.14 17.53 11.24 97.55 75.76 86.28 63.16 98.38 83.43 92.15 79.54

SD 25.39 56.80 11.64 12.81 94.17 70.82 73.34 60.78 96.89 77.68 80.13 79.35

NM 84.35 66.62 14.35 14.39 84.35 79.54 84.64 64.39 98.11 82.09 92.30 78.92

FM 90.96 72.11 16.78 13.57 90.96 82.41 86.61 65.76 98.46 84.65 92.61 79.49

SL 98.19 85.70 88.46 37.70 98.26 86.87 90.70 67.89 98.50 87.06 93.16 84.56

FG 198.41 88.77 91.92 66.98 98.41 89.01 92.61 69.91 98.46 89.26 93.05 82.09 ]

PS 98.31 88.42 91.73 66.96 98.44 89.02 92.30 69.89 98.54 89.28 93.23 82.05
TABLE III: Accuracy of different methods compared in the TABLE IV: Classification accuracies (best) on attacker’s gen-
experiment setting Split-1 erator and cloud’s generator: How attacker’s performance

Method MNIST FMNIST SVHN CIFARI0
FA 83.44 16.50 14.05 18.36
FP 84.17 57.14 17.53 11.24
SD 25.39 56.80 11.64 12.81
NM 84.35 66.62 14.35 14.39
M 90.96 72.11 16.78 13.57
SL 98.19 85.70 88.46 37.70
PS (no server data)  97.25 88.32 91.52 58.60

has access to remaining classes {5,6,7,8,9}. Also attacker
model A; described in Section IV-B is used.

e In Setup-2, we consider 10 users with data splitting
in Split-1, where attacker model A; is applied here in
reconstruction attacks.

Classification Accuracy: To evaluate the attacker’s classi-
fication accuracy on reconstructed images, we first consider
Setup-1. In this setup, we assume that the attacker has access
to all the elements released by the releasing mechanism Mp.
Furthermore, we assume that the attacker can accurately guess
the exact generator architecture. Note that at the beginning of
training, the generator weights are different for A; (wg11 =
rwy), from the cloud generator as mentioned earlier. The
generators are trained simultaneously at the user, the server,
and the attacker.

We then select an attacking classifier trained on the original
MNIST training set and infer data generated by the attacker’s
generator. Here, the attacker guesses correctly that the user
works with MNIST data. Table IV illustrates the attacker’s
performance in different r. From Table IV, we see that the
attacking gains in accuracy with increasing r. In Table 1V,
we evaluate the classification accuracy at the cloud using the
same attacking classifier, which reflects the potential of an
ideal attacker and the utility at the cloud. Table IV shows
that an attacker with some disparity in the initial weights only
performs like a random guess. Note that in this scenario, user-
1 has 2 classes, user-2 has 3 classes, and user-3 has 5 classes.
These results suggest that an attacker must acquire extraordi-
narily accurate information on architecture and initial model
weights to achieve higher and nontrivial inference accuracy.
Since such requirements are improbable and impractical to
achieve, our results establish the robustness of our proposed
method against classification attacks.

(classification accuracy %) varies as r varies on 4; on Setup-
l.Herer; = 1-1x10"%,ry = 1-1x10"",rg = 1-1x10715,
and ry =1 —1x 1072!

r Attacker’s Models Cloud’s models

Userl User2 User3 Userl User2 User3
r1 04955 0.3390 0.2048 09911 0.9902 0.9722
ro  0.4933  0.3323  0.1945 09983 0.9727 0.9610
rg  0.4941  0.3299 0.1990 0.9980 0.9677 0.9690
rqe 05027  0.3341 0.2056 09981 09746 0.9754
60 :

4

355 o
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Fig. 4: Reconstruction attacks: Different r from 0.1 to
0.999999 evaluated under As.

Next, we consider Ay’s classification accuracy on recon-
structed images. For this attacker, the difference between its
generator and the cloud generator lies in the first layer bias
term (bgo1 = rby). We evaluate A5’s performances on Split-1.
Figure 4 illustrates the attacker’s performance for different r.
Figure 4 shows that the attacking gains better classification
with increasing r. Similar to the first type of attackers in A,
these results suggest that an attacker from Ay also needs to
have extremely accurate architecture knowledge and the initial
weights. This test case further establishes the robustness of
PS-FedGAN robust against classification attacks.

Reconstruction Quality and Similarity As presented in
the paper [44], reconstruction quality and similarity can be
used as a measure of privacy leakage. For this, we consider 2
metrics, i.e., SSIM and NMSE, in Setup-1. Table V compares
the corresponding generations of the attacker and the cloud
based on the similarity between each generated image. From
Table V, we can see that the NMSE values achieved by
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TABLE V: Reconstruction attacks: Attacker 4; reconstruction
quality on 3 different users in Setup-1. For NMSE lower values
are better and for SSIM higher values are better.

Metric Userl User2 User3
NMSE 1.4108 1.4585  1.2553
SSIM 0.01956  0.0253  0.0229

(a) Regenerated data (b) Regenerated

sam-
samples in the cloud ples of Ay (each # for of A; (each block for

(c) Regenerated samples

server. one user). one user).

Fig. 5: Divergence of the attacker: Any attacker fails to initiate
with the same parameters as G, or G fails to capture the local
user’s distribution (r = 0.9999 for both A; and As).

the attackers are high whereas SSIM (maximum 1) is very
low. These results indicate that the attacker-generated images
cannot capture the true data distribution. We shall further show
in a later section that, if the attacker deviates from the actual
generator weights, its convergence would be to a trivial point.
As a result, no underlying user data properties are captured.
The generator generates an informationless image which is
enough to pass the discriminator. Hence, the generator stops
learning the data distribution. As illustrated by the visual
examples in Figure 5(c), the attacker generates single-mode
outputs for each user.

D. Evaluation of Communication Cost

Table VI illustrates the number of parameters that need
to be shared between each user and the cloud server per
communication round for both full GAN and PS-FedGAN.
From the table, we can see a significant saving in PS-FedGAN
compared to classical full GAN sharing. The advantage would
be similar for various different GAN architectures.

E. Convergence of Cloud Generators

As an example to illustrate the generator convergence, we
illustrate the cloud generator loss of all the 10 users under
Split-1 in Figure 6. The results show that our proposed
PS-FedGAN can converge well for all users, which further
demonstrates the practicality of discriminator sharing.

F. Divergence of Attacker’s Generator

From Figure 7 we see that so long as the attacker (A;)
deviates slightly from the actual generator weights, the attacker
would converge to a trivial point. Hence, almost no underlying
user data properties are captured by the attacker.

TABLE VI: Number of parameters communicated at each step
for Split-3.

Dataset Full GAN sharing:  PS-FedGAN:
M(G, D) Mp(D, z,1)
MNIST 3M I5M
FMNIST 5M 1.5 M
SVHN 2M 0.7 M
CIFARIO 6.8 M 298 M
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Fig. 6: Generator loss of all the cloud generators in Split-1 for
MNIST dataset.

G. Ay Performances

We next provide more visual results to illustrate the ro-
bustness of the proposed methods against the attacks of A;.
Figure 8 shows cloud-generated images compared to A4
generated images for the SVHN dataset for three users at
some intermediate step (epoch 20) while Figure 9 shows
the regenerated samples in the FMNIST dataset. From these
visualization comparisons, we see that 4; fails to capture
the underlying data statistics as well as to regenerate the
meaningful synthetic data samples.

Discussion: Note that, our objective is to develop a privacy-
preserved and communication-efficient GAN-based FL for
general IoT applications. Thus, we focus our analysis without
considering the possibility of imperfect links. However, the
case of imperfect channels is also of interest. For example,
if packet loss is considered, Automatic Repeat Query (ARQ)
[45] or hybrid ARQ allows the transmission of lost packets,
which would introduce some additional delay though we can
still achieve the same convergence. Different channel noises
or fading characteristics would directly lead to different packet
loss rate and delay variation. For unrecoverable packet loss,
We may investigate its effect on training convergence in future
studies.

VII. CONCLUSIONS

This work develops PS-FedGAN, a novel GAN-based FL
framework that can beneficially preserve local data privacy and



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

m— (G5 |0SS
Ga1 loss
), 0SS

2.5

N
)

Training loss
=
«n

=
°

0.5

0 25 50 75 100 125 150 175 200
Number of epochs

Fig. 7: Divergence of the attacker. Any attacker fails to initiate
with the same parameters as the optimal generators, i.e., G,
or GG, which indicates the attacks would fail to capture the
local user’s data distribution.
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Fig. 8: Cloud generated images compared to .4; generated
images for Split-3 for SVHN dataset.

reduce communication overhead in comparison with existing
FL proposals. Our proposed PS-FedGAN achieves learning
utility very close to that of fully shared GAN architecture,
while providing strong data privacy and significant reduction
of communication cost. Empirical results further demonstrate
superior results against state-of-the-art GAN-based FL frame-
works. This PS-FedGAN principle and architecture can be
directly generalized to incorporate other existing GANSs. In
future work, we plan to further investigate the effect of lossy
networking channels and to improve PS-FedGAN’s robustness
against non-ideal network links. Another promising extension
may consider different FL. models and data heterogeneity as
outlined in [46].

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. 2017 Artificial Intelligence and Statistics, Ft. Lauderdale,
FL, USA, Apr. 2017, pp. 1273-1282.

Cloud generated images of the
user 4

Attacker generated images of
user 4

Cloud generated images of the
user 5

Attacker generated images of
user 5

Cloud generated images of the
user 6

Attacker generated images of
user 6

Fig. 9: Cloud generated images compared to .A; generated
images for Split-3 for FMNIST dataset.

[2] J. Konecny, H.B. McMahan, F. X. Yu, P. Richtdrik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency”, arXiv:1610.05492, Oct. 2016.

[3] S. Jing, A. Yu, S. Zhang, and S. Zhang, “Fedsc: provable federated
self-supervised learning with spectral contrastive objective over non-i.i.d.
data”, to appear in 2024 International Conference on Machine Learning
(ICML), Vienna, Austria, Jul. 2024.

[4] B. Ghimire and D. B. Rawat, “Recent advances on federated learning
for cybersecurity and cybersecurity for federated learning for internet of
things,” in IEEE Internet of Things Journal, vol. 9, no. 11, pp. 8229-8249,
Feb. 2022.

[5] D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, and
H. V. Poor, “Federated learning for internet of things: a comprehensive
survey,” in IEEE Communications Surveys & Tutorials, vol. 23, no. 3,
pp. 1622-1658, Apr. 2021.

[6] 1. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S.
Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Proc.
2014 Advances in Neural Information Processing Systems, Montreal,
Canada, Dec. 2014, Part 27.

[7]1 Z.Li, J. Shao, Y. Mao, J. H. Wang, and J. Zhang, “Federated learning with
gan-based data synthesis for non-iid clients,” in Proc. 2022 International
Workshop on Trustworthy Federated Learning, Vienna, Austria, Jul. 2022,
pp.17-32.

[8] B. Xin, W. Yang, Y. Geng, S. Chen, S. Wang, and L. Huang, “Private
fl-gan: Differential privacy synthetic data generation based on federated
learning,” in Proc. 2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Barcelona, Spain, May 2020,
pp. 2927-2931.

[9] M. Fang, X. Cao, J. Jia, and N. Gong, “Local model poisoning attacks
to Byzantine-Robust federated learning,” in Proc. 29th USENIX Security
Symposium (USENIX Security 20), Boston, MA, USA, Aug. 2020, pp.
1605-1622.

[10] L. Lyu, H. Yu, X. Ma, L. Sun, J. Zhao, Q. Yang, and P. S. Yu, “Privacy
and robustness in federated learning: attacks and defenses,” in [EEE
Trans. on Neural Networks and Learning Systems, Early Access, Nov.
2022.

[11] B. Hitaj, G. Ateniese, and F. Perez-Cruz, “Deep models under the gan:
information leakage from collaborative deep learning,” in Proc. the 2017
ACM SIGSAC Conference on Computer and Communications Security,
New York, NY, USA Oct. 2017, pp. 603-618.

[12] J. Hayes, L. Melis, G. Danezis, and E. De Cristofaro, “Logan: evaluating
information leakage of generative models using generative adversarial
networks,” arXiv:1705.07663, vol. 18, May 2017.

[13] C. Dwork, “Differential privacy,” in Automata, Languages and
Programming, M. Bugliesi, B. Preneel, V. Sassone, and L
Wegener, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 1-12. Accessed: Apr. 23, 2024. [Online]. Available:
https://link.springer.com/chapter/10.1007/11787006_1.

[14] C. Xu, J. Ren, D. Zhang, Y. Zhang, Z. Qin, and K. Ren, “Ganobfuscator:



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

Mitigating information leakage under gan via differential privacy,” in
IEEE Transactions on Information Forensics and Security, vol. 14, no. 9,
pp. 2358-2371, Feb. 2019.

[15] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in Proc. 2017 IEEE
Symposium on Security and Privacy (SP), San Jose, CA, USA, May 2017,
pp. 3-18.

[16] X.Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of fedavg on non-iid data,” arXiv:1907.02189, Jul. 2019.

[17] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv:1806.00582, Jun. 2018.

[18] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” in Proc. Machine
Learning and Systems, Austin, TX, USA, Mar. 2020, pp. 429-450.

[19] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A.
T. Suresh, “SCAFFOLD: stochastic controlled averaging for federated
learning,” in Proc. 37th International Conference on Machine Learning,
Virtual, Jul. 2020, pp. 5132-5143.

[20] M. Luo, E. Chen, D. Hu, Y. Zhang, J. Liang, and J. Feng, “No Fear of
Heterogeneity: Classifier Calibration for Federated Learning with Non-
IID Data,” in Proc. Advances in Neural Information Processing Systems,
Virtual, Dec. 2021, pp. 5972-5984.

[21] N. Yoshida, T. Nishio, M. Morikura, K. Yamamoto, and R. Yonetani,
“Hybrid-fl for wireless networks: cooperative learning mechanism using
non-iid data,” in Proc. 2020 IEEE International Conference on Commu-
nications, Dublin, Ireland, Jun. 2020, pp. 1-7.

[22] W. Li, J. Chen, Z. Wang, Z. Shen, C. Ma, and X. Cui, “Ifl-gan: im-
proved federated learning generative adversarial network with maximum
mean discrepancy model aggregation,” in IEEE Transactions on Neural
Networks and Learning Systems, pp. 1-14, Apr. 2022.

[23] X. Cao, G. Sun, H. Yu, and M. Guizani, “Perfed-gan: personalized
federated learning via generative adversarial networks,” in IEEE Internet
of Things Journal, vol. 10, no. 5, pp. 3749-3762, May 2023.

[24] W. Hao, M. El-Khamy, J. Lee, J. Zhang, K. J. Liang, C. Chen, and
L. Carin, “Towards fair federated learning with zero-shot data augmen-
tation,” in Proc. 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), Nashville, TN, USA, Jun.
2021, pp. 3305-3314.

[25] E. Jeong, S. Oh, H. Kim, J. Park, M. Bennis, and S.-L. Kim,
“Communication-efficient on-device machine learning: federated distil-
lation and augmentation under non-iid private data,” arXiv:1811.11479,
Nov. 2018.

[26] W. Ni, J. Zheng, and H. Tian, “Semi-federated learning for collaborative
intelligence in massive iot networks,” in IEEE Internet of Things Journal,
vol. 10, no. 13, pp. 11942-11943, Jul. 2023.

[27] B. Ghimire and D. B. Rawat, “Recent advances on federated learning
for cybersecurity and cybersecurity for federated learning for internet of
things,” in IEEE Internet of Things Journal, vol. 9, no. 11, pp. 8229-8249,
Jun. 2022.

[28] A. Imteaj, U. Thakker, S. Wang, J. Li, and M. H. Amini, “A survey on
federated learning for resource-constrained iot devices,” in I[EEE Internet
of Things Journal, vol. 9, no. 1, pp. 1-24, Jul. 2021.

[29] Z. Chen, A. Fu, Y. Zhang, Z. Liu, F. Zeng, and R. H. Deng, “Secure
collaborative deep learning against gan attacks in the internet of things,”
in IEEE Internet of Things Journal, vol. 8, no. 7, pp. 5839-5849, Oct.
2020.

[30] K. Wang, N. Deng, and X. Li, “An efficient content popularity prediction
of privacy preserving based on federated learning and wasserstein gan,”
in IEEE Internet of Things Journal, vol. 10, no. 5, pp. 3786-3798, May
2022.

[31] H. Zhang, Z. Zhang, A. Odena, and H. Lee, “Consistency regularization
for generative adversarial networks,” arXiv:1910.12027, Oct. 2019.

[32] Y. Wu, Y. Kang, J. Luo, Y. He, and Q. Yang, “Fedcg: leverage
conditional gan for protecting privacy and maintaining competitive per-
formance in federated learning,” in Proc. International Joint Conference
on Artificial Intelligence, Virtual, Aug. 2021.

[33] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
arXiv:1411.1784, Nov. 2014.

[34] C. Dwork and A. Roth, “The algorithmic foundations of differential
privacy,” in Found. Trends Theor. Comput. Sci., vol. 9, pp. 211-407, Aug.
2014.

[35] B. Xin, Y. Geng, T. Hu, S. Chen, W. Yang, S. Wang, and L. Huang,
“Federated synthetic data generation with differential privacy,” in Neuro-
computing, vol. 468, pp. 1-10, Jan. 2022.

[36] S. Amiri, A. Belloum, S. Klous, and L. Gommans, “Compressive
differentially private federated learning through universal vector quan-

tization,” in Proc. 2021 AAAI Workshop on Privacy-Preserving Artificial
Intelligence, Virtual, Feb. 2021, pp. 2-9.

[37] L. Deng, “The mnist database of handwritten digit images for machine
learning research,” in IEEE Signal Processing Magazine, vol. 29, no. 6,
pp. 141-142, Nov. 2012.

[38] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel
image dataset for benchmarking machine learning algorithms,”
arXiv:1708.07747, Aug. 2017.

[39] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, A. Y. Ng et al.,
“Reading digits in natural images with unsupervised feature learning,”
in NIPS workshop on deep learning and unsupervised feature learning,
Granada, Spain, Dec. 2011, p. 7.

[40] A. Krizhevsky and G. Hinton, “Learning multiple layers of features
from tiny images,” in Technical Report 0, University of Toronto, Toronto,
Ontario, 2009.

[41] T. Yoon, S. Shin, S. J. Hwang, and E. Yang, “Fedmix: Approximation
of mixup under mean augmented federated learning,” arXiv:2107.00233,
Jul. 2021.

[42] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “Mixup: beyond
empirical risk minimization,” arXiv:1710.09412, Oct. 2017.

[43] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” in IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, Apr. 2004.

[44] D. Dangwal, V. T. Lee, H. J. Kim, T. Shen, M. Cowan, R. Shah,
C. Trippel, B. Reagen, T. Sherwood, V. Balntas et al., “Analysis and
mitigations of reverse engineering attacks on local feature descriptors,”
arXiv:2105.03812, May 2021.

[45] A. M. Albarrak, “Similarity-aware query refinement for data explo-
ration,” PhD Thesis, School of Information Technology and Electri-
cal Engineering, The University of Queensland. [Online]. Available:
https://doi.org/10.14264/uql.2018.416.

[46] S. Vahidian, M. Morafah, M. Shah, and B. Lin, “Rethinking data
heterogeneity in federated learning: introducing a new notion and standard
benchmarks,” in IEEE Transactions on Artificial Intelligence, vol. 5, no.
3, pp. 1386-1397, Mar. 2024.



