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1. Introduction
When an elastic cylindrical shell or a circular rod is subject to a radial external pressure of
sufficient intensity, buckling occurs via ovalization, as shown with a teaching model in Fig. 1
on the left (where a segment of a acrylic polymer tube 40 mm in diameter and 0.4 mm wall
thickness is used). This buckling phenomenon is well-known and has been analyzed by various

Figure 1. A teaching model illustrates buckling in cylindrical shells. Left: a thin shell (undeformed in the upper part, 40 mm

in diameter, 0.4 mm wall thickness made up of plastic) buckles under external pressure when air is extracted from it (lower

part), resulting in ovalization. Right: buckling is also induced in a cylindrical shell with an inner core (a tubular rubber

foam); in this experiment, the core’s stiffness is insufficient to induce bifurcation in a small-wavelength mode, so that in

both cases ovalization occurs. Note the position of the plunger inside the syringe showing that the pressure load is higher

in the experiment with the internal core.

researchers, including [1–4]. In particular, a distinction has been introduced between three
different mechanical models for the external uniform radial load [5,6]:

(i.) ‘Hydrostatic’ or ‘pressure’ load, which always remains orthogonal to the structural
element to which it is applied in any configuration (undeformed or deformed);

(ii.) ‘Centrally directed’ load, which acts on the structural element remaining always directed
towards the initial centre of the ring;

(iii.) ‘Constant directional’ or, better, ‘dead’ load, which remains aligned parallel to the unit
normal to the structural element to which it is applied in its undeformed configuration.

All three above loads are conservative [5] and the difference between them emerges in the
incremental equations, holding for departures from the trivial configuration, so that they lead
to remarkably different bifurcation loads.

Bifurcation also occurs in the case when an elastically deformable core is present inside of the
shell (or the circular rod), as shown with a teaching model in Fig. 1 on the right (where the core is
a rubber foam used for pipe insulation). The inner core not only increases the buckling load (note
the position of the plunger inside the syringes showing that the pressure for buckling is higher
in the case where the inner core is present), but also results in a complex bifurcation behaviour
that allows for the emergence of short-wavelength wavemodes, although this does not take place
in the case shown in Fig. 1, due to insufficient stiffness of the core. The bifurcation problem of a
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coated elastic disk has been scarcely analyzed and always only for hydrostatic pressure loading
(i.): in [7] and [8] (where a numerical, not analytical, solution is only found), under the assumption
that the coating, modelled as an elastic rod, cannot transmit shear stress to the inner disk (the
imperfect bonding condition also considered by us); in [9], where the coating is modelled as a thin
elastic layer, fully bonded to the disk (note that a thin elastic layer is similar, but not equivalent,
to an elastic rod, which is characterized by null thickness, but finite bending stiffness and infinite
shear and axial stiffnesses at the same time). Therefore, the bifurcation of coated disks under
radial forces is still an open and almost unexplored problem.

The present article employs the coating model for an elastic disk introduced in [10], which can
be considered a specific case of the shell-coating model formulated in [11]. This model assumes
that the elastic disk is coated with an elastic rod that is axially inextensible and unshearable,
thereby introducing a Cosserat and isoperimetric constraint for the disk. The analysis of buckling
is carried out with all the three load variants (i.)–(iii.). Prior to bifurcation, the rod exhibits trivial
equilibrium, characterized by a pure axial internal force. As a result, the elastic core, assumed to be
isotropic, remains unloaded before bifurcation and follows incremental equations obeying linear
isotropic elasticity, characterized by Lamé constants λd and µd. Two transmission conditions are
analyzed for the bonding between the elastic rod and the inner core, namely, perfect bonding,
where full continuity of radial and tangential displacements is enforced, and tangential slip
contact, in which the radial displacement is transmitted but the tangential is not, so that the
shear stress at contact remains null. The latter condition can capture the behaviour of a partially
detached coating. It can also model a coating attached at discrete points to the disk, as is the case
of the piece (manufactured with a Stratasys J750 3D printer, following the multi-material Polyjet
technique process, with a layer’s printing resolution of 27 µm) documented in the photo reported
in Fig. 2.

Figure 2. A circular rubber disk (Agilus30™, 44 mm in diameter) is connected to a stiffer photopolymer (VeroYellow™,

1 mm thick) coating through radial ligaments. The latter can transmit axial but only negligible transverse forces. Therefore,

a model of slip interface can be adopted to model the disk (manufactured with a Stratasys J750 3D printer) when radially

loaded on its external surface. The piece is bioinspired by the joining through ligaments of the brain to the cranial vault.

The mechanical model adopted in the present article allows for an analytical solution to the
bifurcation problem in a simple closed form, using Kolosov-Muskhelishvili complex potentials
for the core and incremental Lagrangian equations for the coating. The analysis demonstrates
that imperfect bonding decreases the bifurcation threshold and that the hydrostatic-pressure
model (i.) results in the highest critical loads, while the centrally-directed load model (ii.)
leads to the smallest. Significant differences in the bifurcation conditions discovered here
highlight the importance of the role played by mechanical modelling of applied loads for
accurate representations of load transfer mechanisms under structural deformation, a topic often
underestimated and given here a new evidence.

Results of the bifurcation analysis show that, in cases where the inner core is sufficiently
compliant, the critical bifurcation mode corresponds to ovalization. However, as the ratio between
the stiffness of the elastic core and that of the coating rod increases, the modes display all possible
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waviness until they approach the vanishing-wavelength condition in the limit, where the stiffness
ratio approaches infinity.

Coatings are widely used in various technologies, making the findings of this article applicable
to several areas. For instance, the results may be useful in the design of mechanical rollers, as
well as of coated fibres, at both the micro and nanoscales. Another exciting application is to the
morphogenesis and growth of plants and fruits. In such cases, turgor pressure can reach up to
10 atmospheres, which is sufficient to trigger various types of bifurcation. For example, it can
produce ruffle-like or dome-like shapes in leaves [12] and undulations in flowers, characterized
by annular geometry [13]. These findings suggest that coatings may play a significant role
in shaping and enhancing the growth of plants and fruits, which can have implications for
agriculture. In fact, the coated disk analyzed here exhibits bifurcation modes that result in elegant
shapes, resembling those observed during the maturation of some fruits or vegetables. In these
cases, a soft pulp is enclosed in a stiff husk, so that pressure generated during drying may lead
to the formation of gracious undulations. A prime example is shown in Fig. 3 on the left, which
illustrates a pumpkin (white swan acorn variety) and its cross section. At the initial growth stage,

Figure 3. Left: a pumpkin (white swan acorn variety) with a diameter of 20 cm, featuring circumferential waviness resulting

from the drying of its inner pulp during maturation. Right: incremental displacement field (colors represent the intensity

growing from the centre to the boundary) of a coated circular disk at bifurcation for a mode involving 10 wavelengths,

calculated for a ratio between the Young’s moduli of the disk and the coating equal to 0.6; the ratio of the disk’s radius to

the coating’s thickness is 7.75, and the Poisson’s ratio of the disk is 0.5.

the fruit appears smooth on the outside. However, during maturation, the inner pulp dries up
and generates a state of compression in the stiff husk, causing it to buckle and resulting in a
wavy surface. The present article explores this phenomenon by analysing the bifurcation problem
of a coated disk and revealing that the presence of an inner core leads to complex undulated
bifurcation modes, rather than the simple ovalization that occurs in the absence of any inner
reinforcement. Fig. 3 on the right showcases the outcome of our bifurcation analysis for a coated
elastic disk, illustrating the incremental displacement field (colours evidence growing values from
the centre to the boundary) for a mode characterized by ten wavelengths, generated by a coated
elastic disk (with a ratioR/h= 7.75, whereR is the radius of the disk and h is the thickness of the
circular rod). This bifurcation mode occurs when the ratio between coating’s and disk’s Young
moduli falls between 0.543 and 0.736 (and was assumed equal to 0.6 to generate the figure, while
the disk has a Poisson’s ratio equal to νd = 0.5). Therefore, our closed-form solutions allow to
determine the stiffness ratio between husk and pulp by simply counting the number of external
undulations.

2. Large deformation of a planar elastic rod
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(a) Kinematics of a curved rod
The left part of Fig. 4 shows a rod that has undergone deformation in a plane defined by two
unit vectors, e1 and e2. The reference configuration of the rod is characterised by the arclength
parameter s0, while its current configuration is characterised by the arclength parameter s. The
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Figure 4. Left: The deformation g (x0) maps a rod from its reference configuration (characterised by points x0, arclength

parameter s0, unit tangent t0 and normal n0) to the deformed configuration (characterised by points x, arclength

parameter s, unit tangent t and normal n) through the displacement u(x0). Right: the external and internal forces

acting on the current configuration and their counterparts in the reference configuration.

points on the rod in the reference and current configurations are parametrized respectively as
x0 (s0) and x (s) and they are related to each other through the deformation g(x0) and its inverse
g−1(x),

x(s0) = g(x0(s0)), x0(s) = g−1(x(s)). (2.1)

The displacement of a point on the rod is defined as

u= x− x0, (2.2)

which can be expressed as a function of either s0 or s.
The unit tangents, t0 and t, principal normals, n0 and n, and curvatures, κ0 and κ, are defined

in the reference and current configurations, respectively, by

t0 =
∂x0

∂s0
, t=

∂x

∂s
,

n0 =
1

κ0

∂t0
∂s0

, κ0 = |t′0|, n=
1

κ

∂t

∂s
, κ= |t′|.

(2.3)

When axial deformation of the rod is negligible and thus axial inextensibility is enforced, the
stretch λ, defined as the ratio between the strained and referential elements ds and ds0, becomes
unity, ds= ds0. In this case, the geometrical elements (2.3) are related to each other through the
equations

t=
∂u

∂s
+ t0, κn=

∂2u

∂s2
+ κ0n0. (2.4)

It is instrumental to define unit normals to the rods in the two configurations, m0 and m,
which coincide with the principal normals, except possibly for the sign,

m0 = t0 × e3, m= t× e3, (2.5)
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where e3 = e1 × e2 is the out-of-plane unit vector. The derivative of equations (2.5) with respect
to the arclengths s0 and s, respectively, leads to

∂m0

∂s0
= κ0n0 × e3,

∂m

∂s
= κn× e3, (2.6)

which can alternatively be expressed as

∂m0

∂s0
=−sgn(n0 ·m0)κ0 t0,

∂m

∂s
=−sgn(n ·m)κ t. (2.7)

The unit vector m in equation (2.5) and its derivative can be written in terms of referential
quantities as

m=
∂u

∂s
× e3 +m0,

∂m

∂s
=

(
∂2u

∂s2
+ κ0n0

)
× e3. (2.8)

(b) Statics of a curved rod

(i) Equilibrium in the current configuration

An element of the rod in its current configuration, ideally ‘excised’ between the arclengths s1
and s2, is subject to a distributed load q(s) and moment µ(s)e3. To mantain equilibrium, internal
forces a(s) and bending moment M(s)e3 must act at the ends s1 and s2, as shown in Fig. 4 on the
right. The translational equilibrium of the rod is expressed as

a(s2)− a(s1) +

∫s2
s1

q ds= 0, (2.9)

while the rotational equilibrium is

[
Me3 + (x− o)× a

]s2
s1

+ e3

∫s2
s1

µds+

∫s2
s1

(x− o)× q ds= 0, (2.10)

where x− o represents the position vector of a generic point x on the rod.
Equations (2.9) and (2.10) can be reduced to a unique integral, which can eventually be

localized to yield

∂a

∂s
=−q,

∂M

∂s
+ µ−m · a= 0. (2.11)

The internal force a can be defined in terms of axial and shear components, N and T , both
referred to the current configuration, as

a=N t+ T m. (2.12)

Substitution of equation (2.12) into equations (2.11) leads to the equilibrium equations,

∂N

∂s
− sgn(n ·m)κT =−q · t,

sgn(n ·m)κN +
∂T

∂s
=−q ·m,

∂M

∂s
= T − µ,

(2.13)

holding for any curved rod.
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(ii) Equilibrium in the reference configuration

The equilibrium equations (2.13) are now re-derived in the referential description, by introducing
the nominal, or ‘Piola’, internal force a0, defined in a way that

a0 = a, (2.14)

and with referential, axial and shear force components

a0 =N0t0 + T0m0. (2.15)

Note that the bending momentM remains unchanged in the reference configuration, say,M0 =

M . The same procedure used in the spatial treatment of the equilibrium leads now to

∂N0

∂s
− sgn(n0 ·m0)κ0 T0 =−q0 · t0,

sgn(n0 ·m0)κ0N0 +
∂T0
∂s

=−q0 ·m0,

∂M0

∂s
−m · a0 =−µ0,

(2.16)

where the external loads in the reference configuration remain unchanged with respect to the
deformed configuration

q0 = q, µ0 = µ, (2.17)

because of the validity of the inextensibility constraint.
Equation (2.5) yields

t0 ·m=−m0 · t, and m0 ·m= t0 · t, (2.18)

so that substitution of the expression (2.15) into equations (2.16) leads to the equilibrium equations
for a curved rod in the referential description

∂N0

∂s
− κ0 sgn(n0 ·m0)T0 + q · t0 = 0,

κ0 sgn(n0 ·m0)N0 +
∂T0
∂s

+ q ·m0 = 0,

∂M0

∂s
= T0

(
∂u

∂s
· t0 + 1

)
−N0

∂u

∂s
·m0 − µ0.

(2.19)

It should be noticed that equation (2.19)3 can be rewritten as

∂M0

∂s
= T0 t · t0 −N0 t ·m0 − µ0. (2.20)

(iii) Constitutive equations

Constitutive equations cannot determine the rod’s axial and shear forces, which are to be
understood as reactions to the inextensibility and unshearability constraints. However, the
bending moment, which is independent of the referential and spatial distinctions, M =M0, is
determined by the difference in the curvature

M =B
∂ (ω − ω0)

∂s
, (2.21)

where B =EJ is the bending stiffness, equal to the product between the Young’s modulus, E,
of the rod and the second moment of inertia of its cross section, J , and ω and ω0 are the angles
between the tangent vectors in the current and reference configurations and the axis e1, so that
t · e1 = cosω and t0 · e1 = cosω0.
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(c) Incremental equations for a curved rod
The incremental form of the equilibrium equations for the elastic rod can directly be obtained
from the equations (2.13), holding for finite deformation, as

∂Ṅ

∂s
− sgn(n ·m)

(
κ̇ T + κ Ṫ

)
=−q̇ · t− q · ṫ,

sgn(n ·m)
(
κ̇ N + κ Ṅ

)
+
∂Ṫ

∂s
=−q̇ ·m− q · ṁ,

∂Ṁ (s)

∂s
= Ṫ − µ̇,

(2.22)

where increments are denoted with a superimposed dot.
Since the increments of referential quantities are null, ṫ0 = ṁ0 = 0, the incremental form of

equations (2.4) and (2.5) become

ṫ=
∂u̇

∂s
, ṁ=

∂u̇

∂s
× e3. (2.23)

Hence, equations (2.22) can be rewritten as

∂Ṅ

∂s
− sgn(n ·m)

(
κ̇ T + κ Ṫ

)
=−q̇ ·

(
∂u

∂s
+ t0

)
− q · ∂u̇

∂s
,

sgn(n ·m)
(
κ̇ N + κ Ṅ

)
+
∂Ṫ

∂s
=−q̇ ·

(
∂u

∂s
× e3 +m0

)
− q ·

(
∂u̇

∂s
× e3

)
,

∂Ṁ

∂s
=−µ̇+ Ṫ ,

(2.24)

which are equivalent to equations (2.22), but expressed in terms of incremental displacement u̇,
instead than ṫ and ṁ.

The incremental versions of the equilibrium equations (2.19) find their counterpart in the
reference configuration as

∂Ṅ0

∂s
− sgn(n0 ·m0)

(
κ̇0T0 + κ0Ṫ0

)
=−q̇0 · t0,

sgn(n0 ·m0)
(
κ̇0N0 + κ0Ṅ0

)
+
∂Ṫ0
∂s

=−q̇0 ·m0,

∂Ṁ0

∂s
= Ṫ0 +

∂u

∂s
·
(
Ṫ0t0 − Ṅ0m0

)
+
∂u̇

∂s
· (T0t0 −N0m0)− µ̇0.

(2.25)

The incremental version of the rotational equilibrium equation (2.25)3 can be rewritten as

∂Ṁ0

∂s
= T0

(
ṫ · t0

)
−N0

(
ṫ ·m0

)
+
(
Ṫ0t0 − Ṅ0m0

)
· t− µ̇0, (2.26)

while the incremental version of the constitutive equation (2.21) is

Ṁ =B
∂ ω̇

∂s
. (2.27)

3. The annular rod

(a) Governing equations for a circular rod
The theory described above is applicable to rods of any shape, assuming that they are axially
inextensible and unshearable, and is particularized now to the case of a circular rod of radius R
and centered at point O, assumed as origin of a reference system defined by unit vectors e1 and
e2. The circumferential angle θ is measured positively in counter-clockwise direction, as depicted
in Fig. 5.
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Figure 5. The deformation of an annular rod, where points x0 of the reference configuration are displaced to points x of

the current configuration. The radial load Π , uniform in the reference configuration, is assumed to follow three different

models under incremental deformation: a) hydrostatic pressure, where the force resultant P over an elementary arc ds

follows the normal m in the deformed configuration, b) centrally-directed load, where the resultant P is pointing towards

the center of the rod in the undeformed configuration, c) dead load, where the original direction of the resultant P remains

unaltered by deformation.

Due to the polar symmetry, being s=Rθ, the tangent t0 and the normal m0 become

t0 =− sin θe1 + cos θe2, m0 = cos θe1 + sin θe2, (3.1)

while the position of a generic point x0 is singled out by x0 =Rm0. Hence, for the annular rod
the following relations hold true

∂t0
∂s

=− 1

R
m0,

∂m0

∂s
=

t0
R
. (3.2)

Equations (2.13)1−2 govern the translational equilibrium of the rod in its spatial configuration
where κ represents its deformed curvature. The derivative of the tangent vector t with respect to
the arclength s becomes

∂t

∂s
=
∂2u

∂s2
− m0

R
, (3.3)

so that the curvature is

κ=

(
∂2u

∂s2
− m0

R

)
· n, (3.4)

to be used in Eqs. (2.13)1−2, which are complemented by the rotational equilibrium, Eq. (2.13)3.
Equations (3.2) can be used to express the partial derivative of the internal ‘Piola’ force (2.15)

as
∂a0
∂s

=

(
∂N0

∂s
+
T0
R

)
t0 −

(
N0

R
− ∂T0

∂s

)
m0. (3.5)

The displacement vector u can be expressed in polar components as

u= urm0 + uθt0, (3.6)

so that, according to relations (3.2), the derivative with respect to s of the expression (3.6) leads to

∂u

∂s
=

(
∂ur
∂s

− uθ
R

)
m0 +

(
ur
R

+
∂uθ
∂s

)
t0. (3.7)

Using Eqs. (3.5) and (3.7), the equilibrium equations for the rod in the material configuration are

∂N0

∂s
+
T0
R

=−q · t0,

−∂T0
∂s

+
N0

R
= q ·m0,

∂M0

∂s
= T0

(
ur
R

+
∂uθ
∂s

+ 1

)
−N0

(
∂ur
∂s

− uθ
R

)
− µ0.

(3.8)
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Kinematic considerations lead to the evaluation of the axial strain ϵ (to be set equal to zero because
of the axial inextensibility), the rotation of cross-section Φ, and the change of curvature χ as

ϵ=
ur
R

+
∂uθ
∂s

, Φ=−uθ
R

+
∂ur
∂s

, χ= κ− 1

R
=−∂Φ

∂s
. (3.9)

Imposing rod’s inextensibility, ϵ= 0, and using Eqs. (3.9), the Eqn. (3.8)3 can be simplified to

∂M0

∂s
= T0 − ΦN0 − µ0. (3.10)

When an external radial load with uniform distribution, Π , is applied, the annular rod is only
subject to a uniform internal compressive force

N0 =−ΠR, T0 =M0 = 0, (3.11)

thus, before bifurcation, the rod remains in its circular configuration without suffering any
deformation. The incremental quantities (2.23) and (3.7) assume now the form

ṫ=

(
∂u̇r
∂s

− u̇θ
R

)
m0, ṁ=−

(
∂u̇r
∂s

− u̇θ
R

)
t0,

∂u̇

∂s
=

(
∂u̇r
∂s

− u̇θ
R

)
m0, (3.12)

so that the spatial equilibrium is governed by equations (2.24), where, from Eq. (3.4), the
increment in the curvature κ is

κ̇=−∂
2u̇

∂s2
·m0. (3.13)

Taking the material time derivative of the equations (3.8)1−2, the incremental translational
equilibrium equation in the reference configuration is obtained, so that Eq. (3.11)1 leads to

∂Ṅ0

∂s
+
Ṫ0
R

=−q̇ · t0,
Ṅ0

R
− ∂Ṫ0

∂s
= q̇ ·m0,

∂Ṁ0

∂s
= Ṫ0 +ΠR

(
∂u̇r
∂s

− u̇θ
R

)
, (3.14)

thus, from the constitutive Eq. (2.27) and Eq. (3.9)3, the left hand side of Eq. (3.14)3 can be
rewritten as

∂Ṁ0

∂s
=−B

(
∂3u̇r
∂s3

+
∂u̇r
∂s

1

R2

)
. (3.15)

The use of relation (3.15), when combining together Eqs. (3.14), yield the differential equations
describing the kinematics of the annular rod, subject to an external uniform radial load Π

∂5u̇r
∂θ5

+

(
2 +

ΠR3

B

)
∂3u̇r
∂θ3

+

(
1 + 2

ΠR3

B

)
∂u̇r
∂θ

− ΠR3

B
u̇θ +S= 0, u̇r +

∂u̇θ
∂θ

= 0, (3.16)

where

S=−R
4

B

(
∂q̇

∂θ
·m0 + 2q̇ · t0

)
. (3.17)

(b) The incremental applied load
Equation (3.16) requires the evaluation of the increment q̇ in the applied external radial load,
taking into account the direction assumed by the load in the deformed configuration, [4,5,14–18].
The modulus Π of the radial force is assumed to remain constant, so that Π̇ = 0. In particular, as
mentioned in the introduction, the three following different cases can be distinguished:

• Hydrostatic pressure (i.): the applied load remains aligned parallel to the normal m to the
deformed rod element, Fig. 5 (a), so that the load qh and its increment q̇h become

qh =−Πm, q̇h =Π

(
∂u̇r
∂s

− u̇θ
R

)
t0. (3.18)

• Centrally directed load (ii.): the applied load remains directed toward the initial centre of
the circular rod, Fig. 5 (b), so that the load ql and its increment q̇l become

ql =−Π x

|x| , q̇l =−Π
R
u̇θt0. (3.19)
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• Dead load (iii.): the applied load is dead and does not change its original direction m0,
Fig. 5 (c), so that the load qk and its increment q̇k become

qk =−Πm0, q̇k = 0. (3.20)

The cases of hydrostatic pressure (i.), centrally directed (ii.) and dead (iii.) load, [2,3,14,16,19] are
recovered by setting S=SΠ in equation (3.16), being

SΠ =
ΠR3

B
×


−∂u̇r
∂θ

+ u̇θ for hydrostatic pressure (i.),

u̇θ for centrally directed load (ii.),

0 for dead load (iii.).

(3.21)

Considering a circular elastic rod (without any inner part), the critical loads for bifurcation (i.e. the
smaller buckling load) for the three different loading cases can be derived by imposing continuity
of displacement, bending moment, and shear force, via equation (3.16), solved for non-trivial
solutions. These critical loads are given by

Πcr =
B

R3
×


3 for hydrostatic pressure (i.),
9/2 for centrally directed load (ii.),
4 for dead load (iii.).

(3.22)

Note that the case of hydrostatic pressure does not require any external constraint for
equilibrium in the undeformed and deformed configuration. This is different for the other two
loadings (ii.) and (iii.), where although the undeformed configuration is of equilibrium, the latter
is unstable, so that a constraint imposing null translations has to be enforced for case (ii.) and a
constraint imposing vanishing rotation about the centre has to be enforced for (iii.).

4. Bifurcation of the coated elastic disk
The core of the coated disk is elastic and for an elastic material under large strain, the constitutive
equations, relating the Cauchy stress σ to the left Cauchy-Green deformation tensor B=FFT

(where F is the deformation gradient), can be written as

σ= β0I+ β1B+ β2B
2, (4.1)

where the coefficients βj (j = 0, 1, 2) are functions of the invariants of B.
The elastic material inside the disk remains unstrained and unstressed up to bifurcation so

that B= I and σ= 0. At bifurcation, the incremental relation between the Piola stress S and the
Cauchy stress

Ṡ= J̇σF−T + Jσ̇F−T + Jσ
(
F−T

)·
, (4.2)

(where J =detF) reduces to the simple equation

Ṡ= σ̇. (4.3)

The material time derivative of equation (4.1) reveals that the elastic response inside the disk
follows the usual linear elastic relation, where the Lamé constants can be calculated as

λd = 2
∂

∂I1
(β0 + β1 + β2) + 4

∂

∂I2
(β0 + β1 + β2) , µd = β1 + 2β2, (4.4)

where I1 and I2 are the first and second invariants of the Cauchy-Green deformation tensor,
respectively.

Consider an elastic, homogeneous and isotropic disk characterized by a radius R, shear
modulus µd and Poisson’s ratio νd with reference to a Cartesian coordinate system (e1, e2, e3)
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with origin O placed at the centre of the disk. A polar reference system (er, eθ, e3) is also
introduced, so that the displacement for generalized plane conditions can be written as

ud = ud
r er + ud

θ eθ, (4.5)

where ud
r and ud

θ are the radial and tangential displacement components. The disk is coated
on its boundary by the previously introduced rod with a bending stiffness B. In its reference
configuration and loaded with an external radial load Π , the annular rod is subject to an axial
internal force N0 =−ΠR, while the interior disk remains unstressed. At bifurcation, a non-trivial

µd, λd

B

R

e1O

e2
Π

N0

N0

bṠrr
bṠrr

bṠrθ

bṠrθτ

τ0

udr

udθ

zr
θ

er

eθ

Figure 6. A circular inextensible rod is coating an elastic disk. The bonding between the two is modeled as either perfect

or allowing tangential froictionless slip. Loaded by a uniform external radial load, the rod is subject to only an axial force,

but at bifurcation incremental internal forces develop so that tractions are transmitted from the external coating to the disk.

incremental deformation occurs, causing the disc to experience incremental stress and strain. The
resulting incremental traction at the disk’s boundary, multiplied by its thickness b (to be set equal
to the unity for plane strain), gives rise to an incremental force acting on the rod, denoted as q̇σ ,
Fig. 6. Hence, the incremental load on the coating is given by

q̇= q̇Π + q̇σ, (4.6)

where q̇Π represents the incremental contribution associated with the external radial load Π

q̇σ =−b
(
Ṡrrm0 + M Ṡrθt0

)
r=R

, (4.7)

which is determined from the incremental radial and tangential components of the first Piola-
Kirchhoff stress tensor S, evaluated on the disk’s boundary r=R. The term M in equation (4.7)
describes the shear transmission properties at the interface, so that M = 1 for perfect bonding
between disk and coating or M = 0 for slip contact, when shear force is not transmissed. As a
consequence, equation (3.16) becomes

∂5u̇c
r

∂θ5
+

(
2 +

ΠR3

B

)
∂3u̇c

r

∂θ3
+

(
1 + 2

ΠR3

B

)
∂u̇c

r

∂θ
− ΠR3

B
u̇c
θ +SΠ +Sσ = 0, (4.8)

where the superscript ‘c’ stands for ‘coating’ and

Sj =−R
4

B

(
∂q̇j

∂θ
·m0 + 2q̇j · t0

)
, j =Π, σ. (4.9)

(a) Complex potential formulation for the elastic disk
In a region enclosed by a sufficiently smooth and non-intersecting curve L, each point can be
identified with a complex number z = x1 + ix2, where x1 and x2 represent the coordinates of
the point and i denotes the imaginary unit. Each point can also be represented in terms of polar
coordinates (r, θ), where r denotes the distance from the origin to the point, and θ is the angle
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between x1 and the radius r (measured positively in the counter-clockwise direction), such that
z = reiθ .

Following [20], the notation

g (z) =
R

z
=

R

(x1 + ix2)
, g′ (z) =− 1

R
g2 (z) , g′′ (z) =

2

R2
g3 (z) ,

g (z) =
R2

r2
g−1 (z) , r=

√
x21 + x22.

(4.10)

is adopted, where a prime denotes the derivative with respect to z and ( ) the complex conjugate.
Elastic displacement and stress fields can be determined everywhere in the disk via Kolosov-
Muskhelishvili complex potentials φ(z) and ψ(z) as [21]

2µdud (z) = κdφ (z)− zφ′ (z)− ψ (z),

σ11 + σ22 = 4Re
(
φ′ (z)

)
,

σ22 − σ11 + 2iσ12 = 2
[
zφ′′ (z) + ψ′ (z)

]
,

(4.11)

where κd represents the Kolosov constant

κd =


3− 4νd, for plane strain,

3− νd

1 + νd , for plane stress,
(4.12)

while Re and Im denote real and the imaginary parts, respectively. For a circular disk, general
expressions of the complex potentials φ (z) and ψ (z) have been obtained in the form [22]

φ (z) =
2µd

κd − 1
Re(A1) g

−1 (z) +
2µd

κd

∞∑
n=1

An+1 g
−(n+1) (z),

ψ (z) =− 2µd

κd − 1
Re(A1)

zc
R

− 2µd

κd

[
zc
R

+ g (z)

] ∞∑
n=1

(n+ 1)An+1 g
−n (z)

− 2µd
∞∑

n=2

A1−n g
−(n−1) (z),

(4.13)

where zc denotes the centre of the disk and the meaning of the complex coefficients A±n is
explained below.

(b) Complex combinations for elastic fields on the disk’s boundary
The following complex Fourier series representation for the displacement at every point τ =Reiθ

on the boundary L of the disk is introduced:

ud (τ) = ud
1 (τ) + i ud

2 (τ) =

∞∑
n=1

A−n g
n (τ) +

∞∑
n=0

An g
−n (τ), (4.14)

where ud
1 (τ) and ud

2 (τ) are displacement components, A±n the unknown complex coefficients,
and the functions g±n(τ) are defined from equation (4.10) with r=R as

g (τ) =
R

τ
, g (τ) =

R

τ
= g−1 (τ) , g′ (τ) =− 1

R
g2 (τ) . (4.15)

The relation between Cartesian and polar coordinates,

ud
r (τ) + i ud

θ (τ) =
[
ud
1 (τ) + i ud

2 (τ)
]
g (τ) , (4.16)
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allows for expressing the displacement components at every point τ in the polar coordinate
system (r, θ) as

ud
r (τ) =

1

2

[
ud (τ) g (τ) + ud (τ) g−1 (τ)

]
, ud

θ (τ) =
1

2i

[
ud (τ) g (τ)− ud (τ) g−1 (τ)

]
, (4.17)

so that the final representation for displacements follows from equation (4.14)

ud
r (τ) =

1

2

[ ∞∑
n=1

A−n g
n+1 (τ) +

∞∑
n=0

An g
−(n−1) (τ) +

∞∑
n=1

A−n g
−(n+1) (τ) +

∞∑
n=0

An g
n−1 (τ)

]
,

ud
θ (τ) =

1

2i

[ ∞∑
n=1

A−n g
n+1 (τ) +

∞∑
n=0

An g
−(n−1) (τ) −

∞∑
n=1

A−n g
−(n+1) (τ)−

∞∑
n=0

An g
n−1 (τ)

]
.

(4.18)
The complex Fourier series representation for the tractions at any point τ ∈L are introduced as

σ (τ) = σrr (τ) + i σrθ (τ) =

∞∑
n=1

B−n g
n (τ) +

∞∑
n=0

Bn g
−n (τ), (4.19)

where σrr and σrθ are the radial and tangential components of the stress, respectively, at the point
τ ∈L, and B±n are the unknown complex coefficients. The expressions for the stress components
can be obtained by isolating real and imaginary parts in Eq. (4.19)

σrr (τ) =
1

2

[ ∞∑
n=1

B−n g
n (τ) +

∞∑
n=0

Bn g
−n (τ) +

∞∑
n=1

B−n g
−n (τ) +

∞∑
n=0

Bn g
n (τ)

]
,

σrθ (τ) =
1

2i

[ ∞∑
n=1

B−n g
n (τ) +

∞∑
n=0

Bn g
−n (τ) −

∞∑
n=1

B−n g
−n (τ)−

∞∑
n=0

Bn g
n (τ)

]
.

(4.20)

The complex coefficients A±n and B±n are interrelated as [23]

B−1 = 0, B0 =
4µd(

κd − 1
)
R

Re(A1) ,

B−n =
2µd

R
(n− 1)A1−n, for n≥ 2, Bn =

2µd

κdR
(n+ 1)An+1, for n≥ 1.

(4.21)

To satisfy the condition of inextensibility of the coating, additional relations for the complex
coefficients A±n can be obtained by using equation (99)2 in [20] and the following relations [10]

Re (A1) = 0, A2 = 0, An+1 =
n− 1

n+ 1
A1−n for n ̸= 0 and n ̸=−1. (4.22)

(c) Complex variable formulation for bifurcation
Expression (4.7) can be derived with respect to the arclength s to yield

∂q̇σ

∂s
=−

(
M

∂σ̇rθ(τ)

∂s
+

1

R
σ̇rr(τ)

)
t0 +

(
M

R
σ̇rθ(τ)−

∂σ̇rr(τ)

∂s

)
m0, (4.23)

so that the term Sσ in equation (4.9) becomes (for j= σ)

Sσ(τ) =
R4b

B

(
R
∂σ̇rr(τ)

∂s
+ M σ̇rθ(τ)

)
. (4.24)

If the coating is perfectly connected to the disk or if sliding can occur, the following conditions
(displacement continuity in the former case, partial continuity and vanishing of shear stress in the
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latter) have to be imposed,

u̇c
r = u̇d

r

∣∣
r=R

, and u̇c
θ = u̇d

θ

∣∣
r=R︸ ︷︷ ︸

perfect bonding

or σ̇rθ
∣∣
r=R

= 0︸ ︷︷ ︸
slip contact

, (4.25)

and equation (4.8) can be rearranged as

∂5u̇c
r

∂θ5
+ 2

∂3u̇c
r

∂θ3
+
∂u̇c

r

∂θ
+
ΠR3

B

(
∂3u̇c

r

∂θ3
+ 2

∂u̇c
r

∂θ
− u̇c

θ

)
+SΠ +Sσ = 0. (4.26)

Note that the term u̇cθ simplifies in equation (4.26) for all cases, except for the combination of
slip contact and dead load, in which case, equation (4.26) has to be differentiated with respect to θ
and the inextensibility condition has to be enforced. A governing sixth-order differential equation
is obtained holding for slip contact and dead radial loading:

∂6u̇c
r

∂θ6
+ 2

∂4u̇c
r

∂θ4
+
∂2u̇c

r

∂θ2
+
ΠR3

B

(
∂4u̇c

r

∂θ4
+ 2

∂2u̇c
r

∂θ2
+ u̇c

r

)
+
R4b

B

∂2σ̇rr
∂θ2

= 0. (4.27)

In the following only the cases pertinent to equation (4.26) will be explicitely derived, while for
the sake of brevity analogous treatment of equation (4.27) will not be reported.

Using complex variables formalism, the bifurcation equation (4.8) can be rewritten by adopting
the Fourier series representation introduced in Section 4(b) for the incremental boundary
displacement and stress components at a point τ ∈L. The first three terms on the left-hand side
of equation (4.26) have been already derived in [10] and can now be adapted as

∂5u̇r
∂θ5

+ 2
∂3u̇r
∂θ3

+
∂u̇r
∂θ

=−R3 Im

[(
R2 ∂

5u̇

∂τ5
g−2 + 5R

∂4u̇

∂τ4
g−1 + 3

∂3u̇

∂τ3

)
g−2

]
, (4.28)

(where the superscripts ‘c’ and ‘d’ have been omitted) so that, using equations (43) reported in
[10], equation (4.28) becomes

∂5u̇r
∂θ5

+ 2
∂3u̇r
∂θ3

+
∂u̇r
∂θ

=
1

2i

{ ∞∑
n=1

n2 (n+ 1) (n+ 2)2
[
A−n g

n+1 −A−n g
−(n+1)

]

−
∞∑

n=3

n2 (n− 1) (n− 2)2
[
An g

−(n−1) −An g
n−1

]}
. (4.29)

The last three terms on the left-hand side of equation (4.26) can be rearranged by combining
together equations (99)4−5 and (99)1 reported in [20], leading to

∂3u̇r
∂θ3

+ 2
∂u̇r
∂θ

− u̇θ =R Im

(
R2 ∂

3u̇

∂τ3
g−2 − ∂u̇

∂τ

)
. (4.30)

Employing equations (42) reported in [10], equation (4.30) can be written as

∂3u̇r
∂θ3

+ 2
∂u̇r
∂θ

− u̇θ =
1

2i

{ ∞∑
n=1

n
(
n2 − 3n+ 1

) [
An g

−(n−1) (τ)−An g
n−1

]

−
∞∑

n=1

n
(
n2 + 3n+ 1

) [
A−n g

n+1 −A−n g
−(n+1)

]}
.

(4.31)

Using Eq. (99)1 reported in [20] in Eqs. (3.21), the complex form of SΠ introduced by Eq. (4.26)
becomes

SΠ =
ΠR3

B
×


R Im

(
∂u̇

∂τ

)
for hydrostatic pressure (i.),

Im (u̇) for centrally directed load (ii.),

0 for dead load (iii.).

(4.32)
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Equations (43) derived in [10] and the above equations (4.14), allow to rewrite Eqs. (4.32) as

SΠ = ξ
ΠR3

2i B

{ ∞∑
n=1

(−n)α
[
A−n g

n+1 −A−n g
−(n+1)

]

+

∞∑
n=0

nα
[
An g

−(n−1) −An g
n−1

]
− (α− ξ)

[
A0 g −A0 g

−1
]}

, (4.33)

where (i.) ξ = α= 1 for hydrostatic pressure, (ii.) ξ = 1, α= 0 for centrally directed load and (iii.)
ξ = 0 for dead load. The term Sσ(τ) in equation (4.26) is expressed through equation (4.24), so
that, the relation (96)2 reported in [20], namely, ∂/∂s= ig−1(τ) ∂/∂τ , for points τ ∈L, leads to

Sσ =
R4b

2i B

{ ∞∑
n=1

(n+ M )
[
B−n g

n −B−n g
−n
]
−

∞∑
n=0

(n− M )
[
Bn g

−n −Bn g
n
]}

. (4.34)

Therefore, the bifurcation criterion for the coated disk, equation (4.26), assumes the form

∞∑
n=1

n2 (n+ 1) (n+ 2)2
[
A−n g

n+1 (τ)−A−n g
−(n+1) (τ)

]

−
∞∑

n=3

n2 (n− 1) (n− 2)2
[
An g

−(n−1) (τ)−An g
n−1 (τ)

]
+
ΠR3

B

{ ∞∑
n=1

n
(
n2 − 3n+ 1

)
[
An g

−(n−1) (τ)−An g
n−1 (τ)

]
−

∞∑
n=1

n
(
n2 + 3n+ 1

) [
A−n g

n+1 (τ)−A−n g
−(n+1) (τ)

]}

+
bR4

B

{ ∞∑
n=1

(n+ M )
[
B−n g

n(τ)−B−n g
−n(τ)

]
−

∞∑
n=0

(n− M )
[
Bn g

−n(τ)−Bn g
n(τ)

]}

+SΠ = 0. (4.35)

The bifurcation load depends on the particular type of applied radial force per unit length,
cases (i.)–(iii.), while the term SΠ is given by Eq. (4.33). Taking into account the expressions
for coefficients (4.21) and collecting terms with the same power of g±n(τ) in Eq. (4.35), lead to the
following result.

• Determination of coefficients A1 and A0

Π Im(A1) (ξ − 1) = 0, Π A0 ξ (α− ξ) = 0. (4.36)

• The bifurcation condition, holding for modes of order n≥ 2:

A1−nΥ (Π,n) = 0, (4.37)

where

Υ (Π,n) = n2(n2 − 1) + b
µd

Bκd

[
(n+ M )κd + n− M

]
−Π

R3

B

{
n2 − 1− ξ

2

[
(1− n)α

n− 1
− (n+ 1)α−1

]}
. (4.38)

WhenA1−n = 0 the trivial solution is obtained, otherwise, the bifurcation radial load for the coated
disk, corresponding to the n-th mode, is:

Π(n)R3

B
=

2n2
(
n2 − 1

)
+ 2

µdbR3

κdB

[
(n+ M )κd + n− M

]
2 (n2 − 1) + ξ

[
(1− n)α−1 + (1 + n)α−1

] , n≥ 2, (4.39)
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where M = 1 (M = 0) for perfect bonding (for slip contact) at the rod/core interface and ξ = α= 1

for hydrostatic pressure, ξ = 1 and α= 0 for centrally directed load and ξ = α= 0 for dead load.
It is worth noting that Eq. (4.39) has been obtained for 5 load and interface combinations,

excluded the sixth case of slip contact plus dead loading, which requires a separate treatment
based on Eq. (4.27). This treatment is omitted for brevity but leads again to Eq. (4.39), which is
found to hold true in all cases. Equation (4.39) shows that, when parameter µdbR3/B tends to
zero, the coated disk behaves as a rod subject to the radial load Π . For a given set of material and
geometrical parameters (Ec, Ed, νd, R, h, b) and varying the mode number n in equation (4.39),
different values for the bifurcation load can be analyzed. The critical value corresponds to the
integer number n that minimises equation (4.39), so that from the expressions (4.37) and (4.22),
the only non-vanishing coefficients are A1−ncr and A1+ncr , which define the bifurcation mode.
For the elastic rod coating the disk, the latter corresponds to the displacement components

ur(τ, n) =Re

(
n

n+ 1
A1−n g

n(τ) +A0 g(τ)

)
,

uθ(τ, n) = Im

(
2

n+ 1
A1−n g

n(τ) +A0 g(τ) +A1

)
,

(4.40)

where the non-vanishing coefficient A1−n remains arbitrary, while A0 and Im(A1) can be
computed by fixing the rigid-body displacement, as shown in [20,22]. The stress components on
the boundary of the disk are

σrr(τ, n) =
2µd

Rκd

(
κd + 1

)
(n− 1)Re

(
A1−n g

n(τ)
)
,

σrθ(τ, n) =
2µd

Rκd

(
κd − 1

)
(n− 1) Im

(
A1−n g

n(τ)
)
.

(4.41)

All displacement and stress fields at every point z within the boundary of the disk may be
determined from equations (4.11), where the complex potentials and their derivatives can be
obtained from equation (4.13) as

φ (z, n) =
2µd

κd
n− 1

n+ 1
A1−n g

−(n+1)(z),

φ′ (z, n) =
2µd

Rκd (n− 1) A1−n g
−n(z),

φ′′ (z, n) =
2µd

R2κd n (n− 1) A1−n g
−n+1(z).

ψ(z, n) =−2µd

κd

(
n+ κd − 1

)
A1−n g

−(n−1)(z),

ψ′(z, n) =− 2µd

κdR
(n− 1)

(
n+ κd − 1

)
A1−n g

−(n−2)(z).

(4.42)

The coefficients A0 and A1 are determined by fixing a rigid-body displacement, in particular,
equation (4.11)1 assumes the form

u (z) =
1

2µd

[
κdφ (z)− zφ′ (z)− ψ (z)

]
+A0 + i

z

r
Im(A1) , (4.43)

so that the condition A0 = 0 is obtained by imposing the displacement to be zero at point z = zc
in equation (4.43), as in [10]. Again, requiring the displacement component uθ to be zero at the
point τ0 =R, the following expression for A1 is obtained

Im(A1) =−2ξ Im

(
1

n+ 1
A1−n

)
. (4.44)
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(d) Bifurcation results
The bifurcation radial load, equation (4.39), evaluated for the 3 different types of radial forces per
unit length (i.)–(iii.), as listed in Section 1, and for the two models of bonding at the interface, has
been normalised through division by the bifurcation load of the ‘empty’ coating, equation (3.22),
and has been evaluated as a function of the contrast ratio Ed/Ec between the Young’s moduli of
the coated disk. In addition to the latter parameter, the bifurcation load depends on κd and on the
dimensionless parameter bR3/[(1 + νd)κdJ ]. The latter has been assumed equal to 1000, while
the Kolosov constant has been selected as κd = 2, corresponding to νd = 1/4 in plane strain and
νd = 1/3 in plane stress. Bifurcation results are reported below in Fig. 7, for perfect bonding at the
disk/coating interface (upper part) and for frictionless slip (lower part).
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Figure 7. Dimensionless radial load for bifurcation Π(n) as a function of the ratio Ed/Ec for hydrostatic (ξ= α= 1)

pressure, centrally directed (ξ= 1, α= 0) and dead (ξ= 0) load, when perfect bonding holds at the interface. The

different colors correspond to the critical bifurcation number ncr Upper part: perfect bonding at the disk/coating interface.

Lower part: slip contact, where the black dashed line corresponds to the solution obtained in [9] for a hydrostatic load

distribution and an elastic layer as coating.



19

royalsocietypublishing.org/journal/rspa
P

roc
R

S
oc

A
0000000

..................................................................

Both cases show a similar behaviour, in which the critical load increases at increasing stiffness
contrast between disk and coating. However, when slip can occur the critical loads are smaller
than when it is excluded. The increase in the critical load is accompanied by increase in the
wavenumber n of the bifurcation mode, evidenced by the alternance of different color marking
the curves. For the case of slip contact and hydrostatic pressure loading, the results have been
compared with Hermann and Forrestal [9] and included in the figure as a dashed black line. The
comparison shows the correct trend, although results are not superimposed as a consequence of
the fact that Hermann and Forrestal use a thin elastic layer as coating, which differs from several
points of view from a rod model, the most important of which is the fact that an elastic layer of
vanishing thickness has a null bending stiffness.

The shapes of the bifurcation modes are reported in Fig. 8 for the case of perfect bonding, from
n= 2 to n= 7. These have been obtained by choosing the non-vanishing coefficientA1−n = 1 and
fixing the rigid body motion accordingly to equation (4.44). The contour of the bifurcation modes
are highlighted red (blue) where tensile (compressive) tractions prevail. The zones under tension
may be expected to detach as a consequence of adhesion failure.

2 3 4 5 6 7

Figure 8. Bifurcation modes for the coated disk at increasing wavenumber n. Perfect bonding is assumed at the

disk/coating interface. The parts highlighted red (blue) show zones at the interface where tensile (compressive) tractions

prevail.

5. Conclusions
The Kolosov-Muskhelishvil complex potential technique has been shown to allow for the
analytical solution of the bifurcation of an elastic disk, coated with an inextensible elastic rod.
The latter can be fully bonded or in slip contact with the inner disk and is subject to three
different types of external radial loads, all uniformly distributed. This new solution shows that the
presence of the inner disk may lead to the dominance of high-wavenumber modes and reveals
the importance of detachment at the interface between disk and coating, as well as, of proper
modelling of the way in which the external load acts on the structure during its incremental
deformation. Applications of the results may be of use in the development of several coating
technologies and also in the understanding of growth of plants and fruits.

Acknowledgements. D.B., A.P. and M.G. acknowledge funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme, Grant agreement No. ERC-
ADG-2021-101052956-BEYOND. S.G.M acknowledges the support from the National Science Foundation,
United States, award number NSF CMMI - 2112894.

References
1. Timoshenko S. 1970 Theory of elastic stability. Tata McGraw-Hill Education.
2. Stevens G. 1952 The stability of a compressed elastic ring and of a flexible heavy structure

spread by a system of elastic rings. The Quarterly Journal of Mechanics and Applied Mathematics
5, 221–236.



20

royalsocietypublishing.org/journal/rspa
P

roc
R

S
oc

A
0000000

..................................................................

3. Biezeno C, Koch J. 1945 The generalized buckling problem of the circular ring. Koninklijke
Nedetiansche Akademie Van Wetenschappen 49, 477–486.

4. Boresi A. 1955 A Refinement of the Theory of Buckling of Rings Under Uniform Pressure.
Journal of Applied Mechanics 22, 95–102.

5. Bodner SR. 1958 On the conservativeness of various distributed force systems. Journal of the
Aerospace Sciences 25, 132–133.

6. Armenakas A, Herrmann G. 1963 Vibrations of infinitely long cylindrical shells under initial
stress. AIAA journal 1, 100–106.

7. Seide P. 1962 The stability under axial compression and lateral pressure of circular-cylindrical
shells with a soft elastic core. Journal of the Aerospace Sciences 29, 851–862.

8. Seide P, Weingarten VI. 1961 Buckling of circular rings and long cylinders enclosing an elastic
material under uniform external pressure. ARS Journal 32, 680–687.

9. Herrmann G, Forrestal M. 1965 Buckling of a long cylindrical shell containing an elastic core.
AIAA Journal 3, 1710–1715.

10. Gaibotti M, Bigoni D, Mogilevskaya SG. 2022 Elastic disk with isoperimetric
Cosserat coating. European Journal of Mechanics - A/Solids p. 104568.
(https://doi.org/10.1016/j.euromechsol.2022.104568)

11. Benveniste Y, Miloh T. 2001 Imperfect soft and stiff interfaces in two-dimensional elasticity.
Mechanics of materials 33, 309–323.

12. Boudaoud A. 2010 An introduction to the mechanics of morphogenesis for plant biologists.
Trends in plant science 15, 353–360.

13. Green PB, Steele C, Rennich S. 1996 Phyllotactic patterns: a biophysical mechanism for their
origin. Annals of Botany 77, 515–528.

14. Boresi AP, Reichenbach HC. 1967 Energy methods in parametric excitation of rings. Nuclear
Engineering and Design 6, 196–202.

15. Simitses G, Cole R. 1968 Effect of Load Behavior on the Buckling of Thin Spherical Shells
Under Pressure. Journal of Applied Mechanics 35, 420.

16. Singer J, Babcock C. 1970 On the buckling of rings under constant directional and centrally
directed pressure. Journal of Applied Mechanics.

17. Batterman S, Singer J. 1974 Rigid body instabilities and the buckling of spherical shells under
external pressure. Journal of the Franklin Institute 298, 125–131.

18. Schmidt R. 1980 Critical constant-directional pressure on circular rings and hingeless arches.
Zeitschrift für angewandte Mathematik und Physik ZAMP 31, 776–779.

19. Bažant Z, Cedolin L. 1991 . Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories.
Oxford University Press: Oxford.

20. Mogilevskaya SG, Zemlyanova AY, Zammarchi M. 2018 On the elastic far-field response of
a two-dimensional coated circular inhomogeneity: Analysis and applications. International
Journal of Solids and Structures 130, 199–210.

21. Muskhelishvili N. 1959 Some basic problems of the mathematical theory of elasticity. Springer
Science & Business Media.

22. Mogilevskaya S, Crouch S, Stolarski H. 2008 Multiple interacting circular nano-
inhomogeneities with surface/interface effects. Journal of the Mechanics and Physics of Solids
56, 2298–2327.

23. Zemlyanova A, Mogilevskaya S. 2018 Circular inhomogeneity with Steigmann–Ogden
interface: Local fields, neutrality, and Maxwell’s type approximation formula. International
Journal of Solids and Structures 135, 85–98.

http://dx.doi.org/https://doi.org/10.1016/j.euromechsol.2022.104568

	1 Introduction
	2 Large deformation of a planar elastic rod
	(a) Kinematics of a curved rod
	(b) Statics of a curved rod 
	i Equilibrium in the current configuration 
	ii Equilibrium in the reference configuration
	iii Constitutive equations

	(c) Incremental equations for a curved rod

	3 The annular rod 
	(a) Governing equations for a circular rod
	(b) The incremental applied load

	4 Bifurcation of the coated elastic disk 
	(a) Complex potential formulation for the elastic disk
	(b) Complex combinations for elastic fields on the disk's boundary
	(c) Complex variable formulation for bifurcation 
	(d) Bifurcation results

	5 Conclusions
	References

