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ABSTRACT
We consider a low-rank matrix estimation problem when the data is assumed to be generated from the
multivariate linear regression model. To induce the low-rank coe!cient matrix, we employ the weighted
nuclear norm (WNN) penalty de"ned as the weighted sum of the singular values of the matrix. The weights
are set in a nondecreasing order, which yields the non-convexity of the WNN objective function in the
parameter space. Although the objective function has been widely applied, studies on the estimation
properties of its resulting estimator are limited. We propose an e!cient algorithm under the framework of
the alternative directional method of multipliers (ADMM) to estimate the coe!cient matrix. The estimator
from the suggested algorithm converges to a stationary point of an augmented Lagrangian function. Under
the orthogonal design setting, the e#ects of the weights for estimating the singular values of the ground-
truth coe!cient matrix are derived. Under the Gaussian design setting, a minimax convergence rate on the
estimation error is derived. We also propose a generalized cross-validation (GCV) criterion for selecting the
tuning parameter and an iterative algorithm for updating the weights. Simulations and a real data analysis
demonstrate the competitive performance of our new method. Supplementary materials for this article are
available online.
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1. Introduction

We consider the problem of recovering an unknown coe!cient
matrix !" ∈ Rd1×d2 from n observations of the response vector
yi ∈ Rd2 , 1 ≤ i ≤ n, and predictor xi ∈ Rd1 , where the ground
truth model is as follows:

Y = X!! + E, (1)

where Y = (y1, . . . , yn)$ is an n×d2 matrix, X = (x1, . . . , xn)$

is an n × d1 matrix, and E = (e1, . . . , en)$ is an n × d2
regression noise matrix. The vectors {ej}n

j=1 are independently
sampled from N (0, σ 2 · Id2×d2) with variance parameter σ 2 >

0. Throughout the article, we write p := min(d1, d2), r! :=
rank(!!) and Im×m as an m × m identity matrix. The obser-
vational model (1) is referred to as a multivariate linear regres-
sion model in the statistics literature. This model is attractive
especially when a dependence structure exists in the multivariate
response, where the response matrix Y can be represented with
a linear combination of only a small number of linearly trans-
formed predictors. The situation is induced from the assumption
that the coe!cient matrix !! has a low rank, that is r! % p.

Given the noisy measurement pair (X, Y), estimating the
ground-truth !! with the consistent rank has been intensively
studied by many researchers during the past decades. Among
them, Yuan et al. (2007) suggested the least-squares problem
with nuclear norm (also known as trace norm) penalization,
giving the simultaneous dimension reduction and estimation of
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Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JCGS.

the coe!cient matrix. Analogous to the use of #1-regularizer for
enforcing sparsity of signal in linear regression setting, nuclear
norm is mathematically de"ned as the sum of singular values
of a matrix and enforces the sparsity in the vector of singular
values. However, the estimator from the standard nuclear norm
(SNN) penalized least-squares method still su#ers from the bias
introduced by the penalization and generally has a higher rank
estimate than other methods. To mitigate this issue, Chen, Dong,
and Chan (2013) examined the idea of weighted nuclear norm
(WNN) penalization. The core idea of WNN is to put the small
weights on large singular values to reduce the bias and to put
the large weights on small singular values to encourage the
estimated matrix to have a low rank. Nonetheless, Chen, Dong,
and Chan (2013) considered the WNN penalization on X!
instead of directly on !, where ! is the parameter of interest
for inference.

Along this line of research, we consider a statistical estimation
problem with WNN penalization only on the coe!cient matrix
! by solving the following optimization problem:

!̂ := argmin
!∈Rd1×d2

{ 1
2n

‖Y − X!‖2
F + λn ‖!‖w,"

}
(2)

with the weighted nuclear norm

‖!‖w," =
p∑

j=1
wjσj(!), (3)

© 2024 American Statistical Association and Institute of Mathematical Statistics
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where σj(!) means the jth largest singular value of a matrix ! ∈
Rd1×d2 , w = (w1, . . ., wp), wj is a nonnegative weight assigned to
σj(!), λn ≥ 0 is a hyper-parameter, and ‖ · ‖F :=

√∑p
j=1 σj(·)2

denotes the Frobenius norm. It is a well-known fact that the
landscape of (2) is non-convex when the weights are in a non-
decreasing order: that is, 0 ≤ w1 ≤ w2 ≤ · · · ≤ wp. Under
this setting, the non-convexity of (2) arises from the violation
of triangle inequality of WNN (see Section 2 of Chen, Dong,
and Chan (2013)), and (3) should be understood as a semi-
norm. However, for the sake of consistency with established
conventions in the literature (Chen, Dong, and Chan 2013; Dong
et al. 2014; Gu et al. 2014; Zha et al. 2017; Kim, Cho, and Kang
2020) we choose to refer it as a norm. Herea$er, our article only
considers the case of nondecreasing weights.

1.1. Contributions

We apply the classical alternative direction method of multipli-
ers (ADMM) algorithm (Boyd, Parikh, and Chu 2011) to solve
problem (2) and show that the sequence of tuples generated from
the suggested algorithm converges to a stationary point of the
augmented Lagrangian function. We refer to our algorithm as
WMVR-ADMM where the WMVR stands for Weighted Multi-
Variate Regression. This should be contrasted with the result
from Chen, Dong, and Chan (2013), in which they provided the
closed-form solution of the !̂ to (2), not with the penalization
‖!‖w," but with ‖X!‖w," (see Corollary 1 in their paper).
Furthermore, the theoretical analysis of Chen, Dong, and Chan
(2013) is focused on the behavior of prediction error, not the
estimation error, which is one of the key theoretical "ndings in
our paper.

Our article provides a theoretical explanation of the role
of weights for estimating the ground-truth coe!cient matrix.
Motivated from Yuan et al. (2007), under the orthogonal design
setting, we derive the closed-form solution of the global mini-
mizer of (2) denoted by !̂

OR and provide a non-asymptotic con-
vergence rate of its singular values to its ground-truth counter-
parts. Furthermore, we show that for the estimation of nonzero
singular values (i.e., σj(!!) > 0), setting small weights wj (i.e.,
wj < 2σ ) is desirable. For zero singular values (i.e., σj(!

!) =
0), large weights (i.e., wj > 2σ ) are required for achieving
fast convergence rates to the ground-truth. Under a Gaussian
random design setting, we derive the minimax rate of the esti-
mation error by adopting the technique used by Negahban and
Wainwright (2011) under the high-dimensional regime (i.e.,
n % d1d2).

Finally, we develop a data-driven method for choosing the
value of the tuning parameters in the model. For updating
the weights (wj’s) on the singular value, we borrow the idea
from the seminal work of Candes, Wakin, and Boyd (2008).
The algorithm we propose consists of solving a sequence of
WNN problems, where the weights used for the next iteration
are computed from the singular values of the current solu-
tion from (2). Regarding a choice of hyper-tuning parame-
ter λn, we adopt a generalized cross-validation (GCV) type of
criterion. This is enabled through the development of a sur-
rogate function (13), whose solution can be closely approxi-
mated to the solution of (2). The solution also allows us to

approximate the degrees of freedom of the original multivari-
ate linear regression problem, which makes the GCV statistic
computable.

The following example demonstrates the advantage of our
proposed method for estimating the singular values of !" when
it is compared with the traditional SNN method. We consider
a setting of coe!cient matrix !! ∈ R250×250 with r! = 50
and generate A, B ∈ R250×50 with each entry from N (0, 1) and
set !! = AB!. Each entry of X ∈ Rn×d1 is sampled from
N (0, 1). Variance parameter σ 2 is set as 1, and the hyper-tuning
parameter λn is set at 5

√
d1+d2

n , where d1 = d2 = 250. Figure 1
displays the plots of singular values of the minimizer !̂ in (2)
against the singular values of ground-truth matrix !". Panel (A)
of Figure 1 exhibits the result of the "rst iteration of WMVR-
ADMM with sample size n = 250. Note that we start the
WMVR-ADMM with {wj}p

j=1 = 1, equivalent to solving SNN
problem. Panel (B) presents the second iteration results of the
algorithm with the updated weights based on the weight update
rule presented in Section 4.1. Panel (C) displays the result of
the SNN problem with n = 1000. Notice that WMVR-ADMM
achieves a satisfactory result within two iterations of the loop
(Panels (A) and (B)) with only n = 250. In contrast, a slight bias
still exists on each of the estimated singular values from SNN
with n = 1000.

1.2. Additional Related Literature

In the "eld of computer vision, many papers, including Gu et al.
(2014), Gu et al. (2017), Xu et al. (2017), Yair and Michaeli
(2018), Liu et al. (2018), and Kim, Cho, and Kang (2020) studied
WNN minimization problem in the context of matrix comple-
tion. In the statistical literature, we are not aware of many appli-
cations of the WNN in matrix regression problems except Chen,
Dong, and Chan (2013).

In contrast, there are a myriad of papers that studied the
statistical properties of SNN penalized least squares problem
under even a more general model than the multivariate linear
regression. We only mention a subset of them. Bach (2008)
provided necessary and su!cient conditions for the asymptotic
rank consistency of the SNN problem, and later Lee, Sun, and
Taylor (2015) proved the non-asymptotic rank consistency
of the estimator from the SNN under the irrepresentable
assumption on the design matrix. Under the sub-Gaussian
noise assumption, Negahban and Wainwright (2011) derived
a minimax optimal rate of the estimation error of a trace
regression model in which !! is either approximately or exactly
low-rank matrix, through the employment of the notion of
restricted strong convexity (RSC) of the cost function. Similarly,
Koltchinskii, Lounici, and Tsybakov (2011) established a sharp
oracle inequality of the trace regression estimator under the
restricted isometry condition of the design matrix X. In the
subsequent work, Fan, Gong, and Zhu (2019) investigated the
SNN problem under generalized trace regression problems
for the categorical responses. Recently, Fan, Wang, and Zhu
(2021) worked on obtaining the same minimax estimation rate
of a trace regression problem with Negahban and Wainwright
(2011) under the heavy-tail assumption on the design matrix
and observational noise.
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Figure 1. Three panels display the plots of estimated singular values versus the ground truth singular values σ!
j . The !rst two panels (A) and (B) are the results from the

WMVR-ADMM algorithm of the !rst and second iterations with one weight update, respectively, under n = 250. The panel (C) exhibits the result when the estimator is
obtained from SNN penalized least squares under n = 1000.

Our work also falls into the category of the adaptive
penalized estimation problem. Among a plethora of papers,
the most relevant work with our paper is Zou (2006), which
proposed the adaptive lasso in the context of sparse linear
regression. However, it is worth noting that once the weights
are "xed, minimizing the least squares "t with the adaptive
#1-penalization is always a convex optimization problem.
Later, Candes, Wakin, and Boyd (2008) suggested an algorithm
for updating the weights in the adaptive lasso algorithm. The
main idea of their article is to simply update the weights as the
inverse of the estimated coe!cient in the previous iteration.

1.3. Organization

The rest of the article is organized as follows. In Section 2, we
introduce the details of WMVR-ADMM and provide a theo-
rem, assuring the convergence of the proposed algorithm. In
Section 3, the statistical properties of the estimator are provided.
First, in the orthogonal design setting, the non-asymptotic con-
vergence rate of the singular values from the proposed estima-
tor, {σj

(
!̂

)
}p

j=1, is provided. Second, under a Gaussian random
design setting, we obtain the minimax rate of the estimation
error. In Section 4, a two-stage data-driven method for updating
weights and tuning the regularization parameter through GCV
statistics is detailed. In Section 5, numerical experiments from
both synthetic and real datasets are presented. Speci"cally, in
Section 5.1, our simulation results corroborate the statement
in Theorem 2.2. In Section 5.2, under speci"c simulated sce-
narios, the performance of WNN estimators is compared with
estimators from the SNN method (Yuan et al. 2007), Adaptive
Nuclear Norm, in short ANN (Chen, Dong, and Chan 2013),
and Reduced Ridge Rank Regression (Mukherjee and Zhu 2011)
under two metrics: estimation error and estimated rank. In
Section 5.3, our proposed WMVR-ADMM estimator is applied
to a real dataset showing the e#ectiveness of our method. Finally,
in Section 6, we conclude our article with a discussion section.

2. WMVR-ADMM and Convergence Guarantee

To develop an algorithm for solving (2), we start with reformu-
lating (2) as follows:

min
!,#

{
f (!) + g(#)

}
s.t. ! = # ∈ Rd1×d2 , (4)

This reformulation leads to the construction of an augmented
Lagrangian function Lρ

(
!, #, $

)
: For any ρ > 0 and dual

variable $ ∈ Rd1×d2 , we de"ne,

Lρ

(
!, #, $

)
:= f (!) + g(#) + tr

(
$$(

! − #
))

+ ρ

2
‖! − #‖2

F. (5)

Then, we update the estimators through the following three
optimization steps iteratively until primal and dual feasibility
conditions hold; to be more speci"c, we repeat
Steps 1–3

Step 1. !(k+1) = argmin
!∈Rd1×d2

Lρ

(
!, #(k), $(k)),

Step 2. #(k+1) = argmin
#∈Rd1×d2

Lρ

(
!(k+1), #, $(k)),

Step 3. $(k+1) = $(k) + ρ
(
!(k+1) − #(k+1)

)
,

until ‖!(k+1)−#(k+1)‖F ≤ 10−5 and ‖#(k+1)−#(k)‖F ≤ 10−5.
Here, we denote the tuple (!(k), #(k), $(k)) as the updated
parameters at the kth iteration of the algorithm. Note that the
non-convexity of the landscape of the objective function in
Step 1 arises from the WNN (i.e., ‖ · ‖w,!) over ! with "xed
#(k) and $(k), whereas the objective function in Step 2 is a
simple quadratic function of # with "xed !(k+1) and $(k).
The algorithm is conducted by initializing !(0) = #(0) =
$(0) = 0 ∈ Rd1×d2 . Next, the key of our algorithm is
that a closed-form solution of Step 1 can be obtained, even
though it is a non-convex problem. We state the result in
Lemma 2.1 whose proof is deferred in Section A of supplemental
material.

Lemma 2.1. Let !(k+1) be the minimizer of Step 1 in (k+1)th
iteration. Denote B(k) := −$(k) + ρ ·#(k) and its singular value
decomposition as UBDB(

VB)$. Then, for any "xed λn, ρ ≥ 0
and 0 ≤ w1 ≤ · · · ≤ wp,

!(k+1) = UBSλnw
(
DB)(

VB)$,

Sλnw
(
DB)

= diag
{

max
{1
ρ

(
σj(B(k)) − λnwj

)
, 0

}
, j = 1, . . . , p

}
.
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Furthermore, if all the nonzero singular values of B(k) are dis-
tinct, then the solution !(k+1) is unique.

For the optimization problem in Step 2, it can be rewritten
and solved as follows:

#(k+1) = argmin
#∈Rd1×d2

Lρ

(
!(k+1), #, $(k))

= argmin
#∈Rd1×d2

{
tr

(
#$

( 1
2n X$X + ρ

2
· Id1×d1

)

# −
( 1

n Y$X + ρ · !(k+1) + $(k)
)$

#

)}
(6)

=
( 1

n X$X + ρ · Id1×d1

)−1

( 1
n Y$X + ρ · !(k+1) + $(k)

)
. (7)

Note that the quadratic equation (6) always has a unique mini-
mizer (7) as long as ρ > 0. With the updated !(k+1) and #(k+1)

from Steps 1, 2, we can easily update $(k) to $(k+1) through
Step 3. The "nal output of WMVR-ADMM is a minimizer of
Lρ

(
!, #(T −1), $(T −1)

)
in Step 1, where T denotes the last

iteration index of the algorithm. The implementation is summa-
rized in Algorithm 1. Note that the WMVR-ADMM algorithm
can be easily extended to the trace regression model, which is a
generalization of the multivariate linear regression model.1 The
convergence of the WMVR-ADMM is shown in Theorem 2.2
with its proof given in Section B of supplemental material. The
proof is motivated from Wang, Yin, and Zeng (2019) and Kim,
Cho, and Kang (2020).

Theorem 2.2. Set ρ > 2L∇g with L∇g := σ1
( 1

n X$X
)
. The

sequence {(!(k), #(k), $(k))}k≥1 from Algorithm 1 converges
to a limit point (!!, #!, $!) regardless of initialized tuple
(!(0), #(0), $(0)). The limit point (!!, #!, $!) is a stationary
point of Lρ .

The threshold for penalty parameter ρ (i.e., L∇g := σ1
( 1

n X$X
)
)

can be computed from data. The theorem states that the
sequence generated by WMVR-ADMM converges to a certain
stationary point regardless of the initialized tuple (!(0), #(0),
$(0)). The statement is corroborated by a set of numerical
experiments in Section 5.1 which shows that the sequences
{(!(k), #(k), $(k))}k≥1 with varying initialized tuples converge
to the solution with the same objective value. Wang, Yin, and
Zeng (2019) named the convergence of tuples to the certain
limit point (!!, #!, $!) as “global” convergence in a sense that
it is not a#ected by the initialized tuple. This global convergence
comes as a consequence of (5) being a Kurdyka-Łojasiewicz
(KL) function. See Proposition 2 in Wang, Yin, and Zeng (2019)
and Theorem 2.9 in Attouch, Bolte, and Svaiter (2013) for this
claim.

1Refer Negahban and Wainwright (2011) for checking how to translate MVLR
to trace regression model. A description of the extended algorithm of
WMVR-ADMM to trace regression is provided in Section G of supplemental
material.

Input : A measurement pair
(
X, Y

)
, λn ≥ 0 and weights

0 ≤ w1 ≤ · · · ≤ wp.
Initialization : !(0) = #(0) = $(0) = 0 ∈ Rd1×d2 .
Repeat the following steps:

Step 1. Let B(k) := −$(k) + ρ · #(k).
B(k) = UBDB(

VB)$.

Set Sλnw
(
DB)

= diag
{

max
{

1
ρ

(
σj(B(k))

−λnwj
)
, 0

}
for j = 1, . . . , p

}
.

!(k+1) = UBSλnw
(
DB)(

VB)$

Step 2. #(k+1) =( 1
n X$X + ρ · Id1×d1

)−1( 1
n Y$X + ρ · !(k+1) + $(k)).

Step 3. $(k+1) = $(k) + ρ
(
!(k+1) − #(k+1)

)
.

Until ‖!(k+1) − #(k+1)‖F ≤ 10−5 and
‖#(k+1) − #(k)‖F ≤ 10−5.
Output : !̂ = !(k+1).

Algorithm 1: ADMM for Weighted Multi-Variate Regres-
sion. (WMVR-ADMM)

Remark 1. Note that Theorem 2.2 does not necessarily guarantee
the convergence of WMVR-ADMM to the global minimizer
of (2). From our theoretical result in Theorem 2.2, Algorithm 1
guarantees the convergence of the sequence to a certain limit
point (!!, #!, $!). Given !! ≈ #!, the Lagrangian function
becomes the original objective function (2). Therefore, we can
roughly say that the WMVR-ADMM converges to the stationary
point of the original function (2). This stationary point can be
a saddle point, local minimum, or even global minimum of (2).
Although not theoretically justi"ed, under an orthogonal design
setting, we empirically observe that the sequence generated
from WMVR-ADMM converges to the global optimum of (2)
in Section 5.1. This veri"cation is possible since we know the
closed-form solution of !̂

OR which will be given in Proposi-
tion 3.1. Further technical comments on this issue are deferred
to Section 6.

Remark 2. The closed-form solutions of steps 1 and 2 help
us analyze the time complexity of each step in Algorithm 1
easily. The most time-consuming parts are the SVD computa-
tion of B(k) ∈ Rd1×d2 , which is O(d2

1d2 + d1d2
2 + d3

2), and
the inverse computation of ( 1

n XTX + ρId1×d1) ∈ Rd1×d1 in
step 2, which is O(d3

1). When d1 = d2, p = min{d1, d2} the
complexity of both parts becomes O(p3). To observe the time
cost at various scales of data dimensions, we provide a sum-
mary in Section K of supplemental material. The results show
that our algorithm can be used for a reasonable time to solve
multivariate regression problems with hundreds of data points
or variables and is workable under a higher number of variables
or a larger sample size. Overall, we see that as the dimension
d1 (or d2) increases, the running time follows cubic growth as
O(p3) as the theoretical results suggest. Additionally, when the
dimension is "xed and the sample size increases, we observe that
the running time follows linear growth, mainly contributed by
matrix multiplication or linear operations applied to matrices
in Algorithm 1.
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3. Statistical Properties of the Estimator

3.1. Statistical Properties of !̂ under the Orthogonal
Design

We "rst study the convergence rate of the estimated singular
values under the orthogonal design setting, which sheds light
on the role of weights in the estimation of singular values.

Proposition 3.1. Let ÛLSD̂LS(V̂LS)$ be the singular value
decomposition of the least-square estimator !̂

LS :=
(
X$X

)†X$Y .
Then, under the orthogonal design (i.e., X$X = nId1×d1 ), the
SVD of the minimizer of (2) has the following closed-form
solution: !̂

OR := ÛLSD̂
(
V̂LS)$, where the diagonal entry of

D̂ is σj
(
!̂

OR)
= max

(
σj

(
!̂

LS) − λnwj, 0
)

for j = 1, . . . , p.
Furthermore, suppose λn =

√
d1+d2

n . Then, with probability at
least 1 − 2 exp(−(

√
d1 + √

d2)2/2), for j such that σj
(
!!

)
> 0,

we have,

∣∣∣σj
(
!̂

OR)
− σj

(
!!

)∣∣∣ ≤ max
(
4σ , 2wj

)
·
√

d1 + d2
n . (8)

With the same probability bound, for j such that σj
(
!!

)
= 0, we

have,

∣∣∣σj
(
!̂

OR)∣∣∣ ≤ min
(
2σ , wj

)
·
√

d1 + d2
n . (9)

The proof of Proposition 3.1 can be found in Section C
of supplemental material. Here,

(
X$X

)† denotes the Moore-
Penrose inverse of enclosed Gram-matrix. Based on the closed-
form solution of !̂

OR in Proposition 3.1, under the orthogonal
design assumption, each estimated singular value has a form
max

(
σj

(
!̂

LS)−λnwj, 0
)

for j ∈ {1, . . . , p}. Then, for the "xed λn,
it is easy to see that the large weights for small singular values of
!̂

LS can induce the sparsity among the singular values of !̂
OR.

Furthermore, the proposition states that with an appropriate
choice of tuning parameter λn, the singular values of the !̂

OR

are consistently estimated. Bounds in (8) and (9) provide us with
the guidelines for the choices of weights. For the set of indices {j :
σj

(
!!

)
> 0}, the corresponding wjs need to be set lower than

twice the magnitude of regression noise, that is, 2σ , whereas, for
the set of indices {j : σj

(
!!

)
= 0}, the corresponding weights

can be set even higher than 2σ . This is consistent with our
intuition that we need small weights for estimating the nonzero
singular values of !!, whereas large weights are required for the
consistent estimation of zero singular values of !!.

3.2. Estimation Error under Random Design

In this section, we study the estimation error under a random
design assumption in the Frobenius norm (i.e., ‖!̂ − !"‖2

F).
For the precise statement of the main theorem on the estimation
error, two technical assumptions are required : (I) A design
matrix X is assumed to be random, whose rows are indepen-
dently sampled from d1-variate N (0, %) distribution for some
positive de"nite covariance matrix % ∈ Rd1×d1 , and (II) The
exact low-rank assumption of !! is relaxed to a nearly low-rank

matrix by requiring that the {σj
(
!!

)
}p

j=1 decays fast enough.
Speci"cally, for a parameter q ∈ (0, 1] and a radius Rq, we
assume that !! ∈ Bq(Rq) :=

{
! ∈ Rd1×d2 :

∑p
j=1

∣∣σj
(
!

)∣∣q ≤
Rq

}
. In a limiting case when q = 0, we de"ne the set B0(r!) :={

! ∈ Rd1×d2 :
∑p

j=1 1(σj
(
!

)
,= 0) ≤ r!

}
.

3.2.1. Restricted Strong Convexity of Loss function
In this sub-subsection, an important lemma for describing
the notion of “restricted strong convexity (RSC)” of the loss
function is stated. To be more speci"c, in high-dimensional
setting where n % d1d2, although the function Ln(!) :=
1

2n ‖Y − X!‖2
F might be curved in some directions, there are(

d1d2 − n
)

directions where it is &at up to the second order. We
hope that the associated error matrix &̂ := !̂−!" lies in some
directions C ⊆ Rd1×d2 where the Ln(!) is curved. This notion
is expressed as follows: for some positive constant κ > 0,

En
(
&̂) ≥ κ‖&̂‖2

F for all &̂ ∈ C, (10)

where En
(
&̂) denotes the "rst order Taylor-expansion error of

Ln(·) around !!.
Before we formally state the lemma that characterizes the

set C, let us introduce the relevant notation. Denote U! and
V! as the le$ and right singular matrices of !!. Let r (≤ p)

be any arbitrary integer. Then, U and V are the r-dimensional
subspaces of vectors from the "rst r columns of matrices U! and
V!. Moreover, U⊥ and V⊥ denote the subspaces orthogonal to
U and V , respectively, and colspan(!) and rowspan(!) denote
the column space and row space of !, respectively. Then, with
these notations, the Mr

(
U , V

)
( resp. M⊥

r
(
U , V

)
) corresponds

to a subspace of matrices with nonzero le$ and right singular
vectors associated with the "rst r ( resp. the remaining (p − r) )
columns of U! and V!: for any given integer r (≤ p), we have

Mr
(
U , V

)
=

{
! ∈ Rd1×d2 : colspan(!) ⊆ U ,

rowspan(!) ⊆ V
}

M⊥
r
(
U , V

)
=

{
! ∈ Rd1×d2 : colspan(!) ⊆ U⊥,

rowspan(!) ⊆ V⊥}
.

Herea$er, we will omit U and V from the notations, if they are
clear from the context. The notations can be used to characterize
the set C as shown in the lemma below:

Lemma 3.2. Suppose !̂ is a global minimizer of (2) with the
associated matrix &̂ = !̂ − !". Set the weights 1

2 < w1 ≤
· · · ≤ wp and suppose regularization parameter is chosen such
that λn ≥ 2

n
∥∥X$E

∥∥
op. Let ‖ · ‖! := ∑p

j=1 σj(·). Then, for a
positive integer r ≤ p,

C
(
w; r

)
:=

{
&̂ ∈ Rd1×d2 : ‖&̂′′‖! ≤ 2wp

w1 − 1
2

p∑

j=r+1
σj

(
!"

)

+ 2wp − w1 + 1
2

w1 − 1
2

· ‖&̂′‖!

}
, (11)

where &̂
′′ ∈ 'M⊥

r

(
&̂

)
and &̂

′ = &̂− &̂
′′. Let 'M⊥

r
denote the

projection operator onto the subspace M⊥
r .
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A detailed proof of Lemma 3.2 is deferred in Section D of
supplemental material. The result holds for the global minimizer
of (2) as the proof relies on the basic inequality, that is, see eq.
(16) in supplemental material. The lemma shows that the subset
C corresponds to the matrices &̂ for which the quantity ‖&̂′′‖!

is relatively small compared to the weighted sum of ‖&̂′‖! and
∑p

j=r+1 σj
(
!"

)
with any given r ≤ p. The weights put in ‖&̂′‖!

and
∑p

j=r+1 σj
(
!"

)
are functions of a pair (w1, wp), and this

pair characterizes the size of the subset C. We restrict the case
w1 > 1

2 for a technical reason. The closer w1 gets to 1
2 and

the larger wp we have, the bigger the size of C becomes. Also,
Lemma 3.2 shows that plugging in w1 = · · · = wp = 1 recovers
one of the constraints that are used to de"ne the set in Lemma 1
of Negahban and Wainwright (2011).

Remark 3. A notable di#erence between the set in (11) and the
set (12) in Negahban and Wainwright (2011) is the existence of
the constraint, ‖&̂‖F ≥ δ, where δ > 0 is a tolerance parameter.
Note that when rank(!!) = r, the set C becomes a cone.
But when rank(!!) > r, it no longer de"nes a cone where it
contains an open ball. The constraint removes certain directions
in Rd1×d2 on which )̂ can lie so that the RSC condition holds
over the set C, even when En

(
&̂) fails strong convexity in a

global sense. Recall (10). Nonetheless in our setting, as we can
ensure En

(
&̂) ≥ σmin(%)

18 ‖&̂‖2
F for all )̂ ∈ Rd1×d2 , where

σmin(%) denotes a minimum eigenvalue of %, the constraint
is not required. We refer readers to the proof of Corollary 3
in Negahban and Wainwright (2011) for this result.

3.2.2. The Main Theorem on Estimation Error
With the RSC condition and Lemma 3.2, we can further show
that the estimation error converges to 0 at a minimax rate, whose
proof is given in Section E of supplemental material.

Theorem 3.3. The regularization parameter is chosen such that
λn = 10σ‖%‖op

√
d1+d2

n and weights are set as 1
2 < w1 ≤

· · · ≤ wp. De"ne W := wp
(

2wp−w1+ 1
2

)

w1− 1
2

. Then, there are universal

constants {ci, i = 1, 2, 3} such that a global minimizer !̂ of (2)
satis"es the following bound:

∥∥!̂ − !"
∥∥2

F ≤ c1W2
(

σ 2‖%‖2
op

σ 2
min(%)

)1−q/2
· Rq

(d1 + d2
n

)1−q/2
.

(12)

with probability at least 1 − c2 exp(−c3(d1 + d2)).

Here, ‖%‖op denotes the spectral norm of the matrix %. Notably,
when !" ∈ B0(r!) is an exact rank r! matrix (i.e., q = 0)
and % = Id1×d1 , convergence rate of the estimation error
becomes O

(
W2 σ 2r!(d1+d2)

n
)
. The quantity r!(d1 + d2) counts

the degrees-of-freedom in the model, and the rate is known
to be minimax optimal for estimating a d1 × d2 matrix with
rank r!. See Negahban and Wainwright (2011), Koltchinskii,
Lounici, and Tsybakov (2011), and Rohde and Tsybakov (2011).
It is worth noting that {ci, i = 1, 2, 3} are the universal con-
stants independent of weights {wj}p

j=1 and the information on

weights is solely encoded in the factor W . This factor enables a
comparison of estimation rates between SNN and WNN. More
discussions on this comparison can be found in Section 6.

4. Data-Driven Model Selections

4.1. Weight Update Rule

In this section, we propose an iterative algorithm that alternates
between estimating !! and updating weights {wj}p

j=1. For any
"xed λn ≥ 0, we have the following procedure (I) ∼ (IV):

(I) Set the iteration count # to 1 and weights w(#)
1 = · · · =

w(#)
p = 1.

(II) Solve (2) via WMVR-ADMM with the weights {w(#)
j }p

j=1,
and denote the solution as !̂

(#).
(III) For j ∈ {1, . . . , p}, update the weights for the next iteration

as w(#+1)
j = (σj(!̂

(#)
) + ε)−1 and set # + 1 = #

(IV) Repeat steps (II) and (III) until the following holds:
rank(!̂

(#)
) = rank(!̂

(#+1)
).

In steps (I) and (II) with # = 1, we start the algorithm
by solving the SNN problem with weights set as wj = 1 for
j = 1, . . . , p. In step (II) with # ≥ 1, we employ WMVR-ADMM
developed in Section 2. In step (III), weights {w(#+1)

j }p
j=1 for the

next iteration are updated as {1/(σj(!̂
(#)

) + ε)}p
j=1 so that a

sequence of weights becomes in nondecreasing order. We repeat
steps (II) and (III) until the rank of the estimated matrix does
not change over the iteration #.

Motivated from Candes, Wakin, and Boyd (2008), the ratio-
nale behind the weight updating rule (i.e., step (III)) is from
the de"nition of weighted nuclear norm (3) with nondecreasing
order (i.e., 0 ≤ w1 ≤ · · · ≤ wp); that is, the small weights
are assigned for the large estimated singular values, whereas
the large weights should be put on the small estimated singular
values. The introduced parameter ε > 0 in step (III) guarantees
that, for any j ∈ {1, . . . , p}, the (# + 1)th updated weight w(#+1)

j

is computable, when σj(!̂
(#)

) = 0. Following Candes, Wakin,
and Boyd (2008), we set ε = 10−3, which works reasonably well
in simulated settings in Section 5.

Remark 4. The weight update rule (I) ∼ (III) corresponds to
solving (2) with a speci"c weight sequence w = {1/(σ1(!̂

(#)
) +

ε), . . . , 1/(σp(!̂
(#)

)+ε)}. Solving this problem is exactly equiva-
lent to applying the Majorization-Minorization (MM) algorithm
to the following surrogate objective function.

min
!∈Rd1×d2

{ p∑

j=1
log

(
σj(!) + ε

)}
s.t. Y = X!.

Similarly noted by Candes, Wakin, and Boyd (2008), the log-sum
penalty function

∑p
j=1 log

(
σj(!)+ε

)
has a potential to encour-

age more sparsity than the #1 norm on singular values (i.e.,
nuclear norm penalty) by allowing relatively large penalties to
be placed on small singular values. This potentially implies solv-
ing (2) with weights updated via steps (I) ∼ (IV) can mitigate the
rank over-estimation problem of SNN pointed out by Mukherjee
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et al. (2015) and Bunea, She, and Wegkamp (2011). Readers can
check this e#ect in the experiment presented in Section 5.2.

Remark 5. To the best of our knowledge, the ANN estimator
from Chen, Dong, and Chan (2013) is the only paper that works
on multi-variate linear regression problems via WNN. They
suggest their way for the weight update rule. We compare the
e#ects of the weight update rule in Section 4.1 with theirs on
the estimation error. The detailed descriptions of the simulation
setting and results are discussed in supplementary material I.

4.2. Surrogate Solution of !̂ for the GCV Statistic

Let ÛD̂V̂$ be the SVD of the converged solution from WMVR-
ADMM in Section 2. Here, denote D̂ := diag

(̂
d1, . . . , d̂p

)
as

the diagonal matrix of singular values of the converged solution,
which is not necessarily equal to the global minimizer !̂ of (2).
Then, we de"ne the following matrix K ∈ Rd1×d1 : for any
"xed weights 0 < w1 < · · · < ŵr , let K := Û r̂D̂KÛ$

r̂ :=
∑r̂

j=1
wj
d̂j

Û j
(
Û j

)$, where r̂ denotes the cardinality of a set {j :

d̂j > 0} and Û j denotes the jth column of the matrix Û . With
these notations, we provide the following proposition, whose
proof is in Section F of supplemental material.

Proposition 4.1. For a "xed K , denote !̂
SR as a minimizer of the

following surrogate optimization problem:

!̂
SR := argmin

!∈Rd1×d2

{ 1
2n

‖Y − X!‖2
F + λn

2
tr

(
!$K!

)}
. (13)

Then, under orthogonal design (i.e., X$X = nId1×d1 ), !̂
SR =

ÛLSD̂SR(
V̂LS)$, where D̂SR

jj = d̂j for j = 1, 2, . . . , r̂, and D̂SR
jj =

σj
(
!̂

LS) for j = r̂ + 1, . . . , p.

Under the orthogonal design assumption, as long as !̂
LS is a

full-rank, !̂SR is a full-rank matrix whose "rst r̂ singular values
are identical to those of !̂, and remaining (p− r̂) singular values
are equal to the corresponding singular values of !̂

LS. Note that
the assumption X$X = nId1×d1 requires the condition n ≥ d1.
Although not theoretically justi"ed, for some non-orthogonal
random designs under the condition d1 > n, we empirically
observe the statement in Proposition 4.1 approximately holds.
Speci"c simulation settings with results will be presented in
supplementary material Section G. Note !̂

SR is not obtainable
purely from data, but it plays a crucial role in estimating the
degrees-of-freedom of !̂ in the next subsection.

4.3. GCV Statistic and Choice of Hyper-parameter λn

In this section, a GCV type of statistic (Golub, Heath, and
Wahba 1979) for the choice of hyper-parameter λn is devel-
oped. Let us denote the !̂

W
(λn) as a resulting estimator from

the weight update procedure introduced in Section 4.1 with a
"xed λn. Then, following Mukherjee et al. (2015), a GCV score
for !̂

W
(λn) from the multivariate linear regression problem

is given by

GCV(λn) := tr
((

Y − Ŷ(λn)
)(

Y − Ŷ(λn)
)$)

(
nd2 − df(Ŷ(λn))

)2 , (14)

where df(Ŷ(λn)) is the degrees-of-freedom (Stein 1981; Efron
2004) of the model Ŷ(λn) := X!̂

W
(λn). The optimal λ!

n is
obtained when it minimizes the GCV score over the search range
λn ∈ [0, T ] for some T ≥ 0. The crux component in (14)
is to compute the df(Ŷ(λn)) either exactly or approximately.
Motivated from Yuan et al. (2007) and the surrogate objective
function (13), we can approximate Ŷ(λn) := X!̂

W
(λn) by

Ŷ(λn) ≈ X
(

X$X + nλnK
)†

X$Y,

where (·)† denotes the Moore-Penrose inverse of enclosed
Gram-matrix. The degrees-of-freedom is approximated as
follows:

df(Ŷ(λn)) ≈ d2tr
(

X
(

X$X + nλnK
)†

X$
)

, (15)

where we use a simple fact: the degrees-of-freedom of a linear
smoother, ŷ := Sy is df(̂y) = tr(S) for the smoothing matrix
S and a vector y. Note that the degrees-of-freedom is “approxi-
mated” in the sense that the non-linearities involved with Y in
matrices K are ignored.

5. Numerical Experiments

Throughout this section, we generate the simulated data pair
(X, Y) under the following setting. In Section 5.1, the coe!cient
matrix is generated from !! = AB! ∈ Rd1×d2 , where each
entry of A ∈ Rd1×r! and B ∈ Rd2×r! is from N (0, 1). In
Section 5.2, each entry of !! ∈ Rd1×d2 is independently
sampled from N (0, 1), and its "rst r! singular values are replaced
by values speci"ed in the subsection, and rest are set as 0. For
random design matrix X ∈ Rn×d1 , each row of the matrix is
sampled from N (0, %), where %i,j = ξ |i−j| for i, j = 1, . . . , d1.
Here, the ξ is a parameter that controls correlations among
features. The response matrix Y is generated from the model
Y = X!" + E, where the entries of E are independently from
N (0, 1). Thus, the simulation setting is characterized by the
parameters (n, r!, ξ , d1, d2).

5.1. Convergence of WMVR-ADMM

In this subsection, we present empirical evidence supporting
the assertion made in Theorem 2.2; speci"cally, the simula-
tions demonstrate that the solution obtained through WMVR-
ADMM converges to a unique stationary point of Lagrangian
function regardless of the initialized tuple (!(0), #(0), $(0)).
Additionally, we investigate whether the converged solution is
a global minimum of the non-convex landscape (2) under the
orthogonal design setting. The following two quantities are used
to check the statements.
(I) For checking the Primal residual convergence (i.e., !(k) −

#(k) → 0 as k → ∞), and #(k) convergence (i.e., #(k+1) −
#(k) → 0 as k → ∞), we consider R(k) := ‖!(k)−#(k)‖2

F+
‖#(k+1) − #(k)‖2

F.
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Figure 2. Convergences of R(k) (panel (A)) and O(k) (panel (B)) over the algorithm iteration index k. Panel (C) shows the empirical evidence for the global convergence of
WMVR-ADMM under orthogonal design.

(II) For checking the objective convergence, we consider
O(k) := 1

2n

∥∥∥Y − X!(k)
∥∥∥

2

F
+ λn

∥∥∥!(k)
∥∥∥

w,"
.

In simulation, a parameter tuple is set as (n, r!, ξ , d1, d2) =
(250, 50, 0, 250, 250). Note that with ξ = 0, then - = Id1×d1 .
The hyper-tuning parameter λn is "xed at 5

√
d1+d2

n . We vary
the initialized tuple (!(0), #(0), $(0)) of WMVR-ADMM in
Algorithm 1. The entries of three matrices are sampled from
N (0, ν2), where ν = {0, 0.1, 0.2, 0.5, 1, 1.5}. Weights {wj}p

j=1 are
updated once through the rules in Section 4.1, and with the
updated weights, R(k) and O(k) are recorded over 1 ≤ k ≤ 1000,
where k is an iteration index of the algorithm.

The "rst two panels, Figure 2(A) and (B), are the results under
the design setting ρ = 0. As predicted by Theorem 2.2, the algo-
rithm converges (i.e., Figure 2(A)), and the converged solution
has the same objective values regardless of the initialization tuple
(i.e., Figure 2(B)), which can be the evidence that the algorithm
converges to a unique point of the Lagrangian function. In the
last panel (i.e., Figure 2(C)), we work under the orthogonal
design setting. The panel displays that the converged solutions
from WMVR-ADMM have the same objective value as that from
the global optimal solution of (2). This can be checked because
the closed-form solution of the global minimizer of (2) is known
from Proposition 3.1 under the orthogonal design setting. Note
that the algorithm converges within 30 iterations much faster
than it does under the non-orthogonal design.

5.2. Comparisons of Estimation Error with Other Methods

In this subsection, we compare the "nite sample performance
of the proposed method with several other popular approaches
for multivariate linear regression. The methods that we compare
include the following:

(a) WNN, the estimator obtained via WMVR-ADMM with
weight update rule and GCV procedure introduced in
Section 4;

(b) Naïve-WNN, the estimate is the same with the item (a) but
with naïve GCV procedure;

(c) SNN, the estimate from the standard nuclear norm penal-
ized least square method (Yuan et al. 2007) with GCV
procedure in Section 4;

(d) Naïve-SNN, the estimate is the same with the item (c) but
with the naïve GCV procedure;

(e) ANN, the estimate from the adaptive nuclear norm
method (Chen, Dong, and Chan 2013) with weight update
rule in Chen, Dong, and Chan (2013) and λn chosen from
10-fold cross-validation;

(f) RRRR, reduced ridge rank regression method (Mukherjee
and Zhu 2011) with parameter λn and rank selected by 10-
fold cross-validation.

The naïve GCV procedure in (b) and (d) chooses tuning param-
eter λn for which the GCV score in (14) is minimized, but
with a naïve estimator of degrees-of-freedom for Ŷ(λn); that is
df(Ŷ(λn)) = r̂(rX + d2 − r̂), where rX denotes the rank of
design matrix X. Here, r̂(rX + d2 − r̂) denotes a number of
free parameters in a d1 × d2 matrix with rank r̂ (Mukherjee
et al. 2015; Bunea, She, and Wegkamp 2011). The ANN method
in (e) is introduced in Section 1.1. The RRRR method in (f ) is
shown to be e#ective in estimating the singular value structure
of !! under high collinearity of X. We provide the closed-form
solutions of ANN and RRRR methods and descriptions on 10-
fold cross-validation on data pair (X, Y) in Section H of sup-
plementary material. Following Chen, Dong, and Chan (2013),
the search range for choices of optimal λn is set as [0, σ1(!̂

LS
)3]

where the range is splitted into 100 intervals with same length.
For any methods listed in (a) ∼ (f ), let !̂

(m) be an optimal
estimator of !" obtained from an mth data pair (X(m), Y(m)).
Over 200 data pairs, D := {(X(m), Y(m))}200

m=1, we record two
quantities for measuring the performances of estimators listed
in (a) ∼ (f ) : (I) ‖!̂(m) − !!‖2

F and (II) Rank(!̂
(m)

). Under
these two metrics, we consider the following three models with
(n, d1, d2) = (20, 8, 8).

(a) For model I, each entry of !! ∈ R8×8 is independently
sampled from N (0, 1), and its singular values are replaced
by the values (3, 2, 1, 0, 0, 0, 0, 0).

(b) Model II is the same as model I, but with the singular values
(5, 0, 0, 0, 0, 0, 0, 0).

(c) Model III is the same as model I, but with the singular values
(5, 5, 5, 5, 0, 0, 0, 0).

We analyze each model at three di#erent correlation levels
between predictors. The correlation parameters of % are set
as ξ = {0, 0.5, 0.7}. For the given 9 scenarios, the results are
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Table 1. A summary of mean and variance (in parentheses) of {||!̂(m) − !!||2F}200
m=1 and {Rank(!̂(m)

)}200
m=1 in the !rst and second row, respectively, over the methods

(a) ∼ (f ) over nine scenarios. Bold values represent the best result for each row (in terms of the mean values).

Scenarios Results for the following methods

WNN Naïve-WNN SNN Naïve-SNN ANN RRRR

I ξ = 0 3.05 (1.00) 2.97 (1.05) 3.14 (0.85) 3.36 (1.22) 3.27 (1.24) 4.53 (1.53)
3.86 (0.77) 2.75 (0.70) 6.36 (0.72) 4.50 (1.72) 3.68 (0.66) 3.13 (1.32)

ξ = 0.5 3.85 (1.28) 3.58 (1.14) 3.63 (1.01) 4.31 (1.55) 4.54 (1.74) 4.50 (1.51)
3.47 (0.74) 2.31 (0.61) 5.91 (0.61) 2.96 (1.57) 3.46 (0.62) 2.64 (1.09)

ξ = 0.7 4.99 (1.55) 5.07 (1.45) 5.15 (1.38) 6.34 (1.52) 6.53 (2.64) 6.31 (1.71)
2.75 (0.80) 2.18 (0.46) 4.54 (1.17) 2.43 (0.78) 3.13 (0.67) 2.88 (1.33)

II ξ = 0 1.15 (0.63) 1.16 (0.67) 2.30 (1.30) 3.60 (2.07) 1.31 (0.74) 1.37 (0.89)
1.03 (0.16) 1.00 (0.00) 2.87 (0.80) 1.45 (0.66) 1.31 (0.56) 1.07 (0.28)

ξ = 0.5 1.94 (1.20) 1.95 (1.20) 5.28 (2.58) 6.75 (3.68) 1.85 (1.30) 2.19 (1.76)
1.00 (0.07) 1.00 (0.00) 2.45 (0.86) 1.65 (0.72) 1.25 (0.53) 1.09 (0.41)

ξ = 0.7 2.22 (1.15) 2.22 (1.15) 5.21 (1.92) 6.35 (2.45) 2.65 (2.16) 2.36 (1.45)
1.00 (0.00) 1.00 (0.00) 1.94 (0.67) 1.37 (0.50) 1.26 (0.47) 1.11 (0.51)

III ξ = 0 3.95 (1.18) 3.96 (1.31) 3.79 (0.99) 3.88 (1.05) 4.31 (1.65) 7.11 (1.99)
5.10 (0.66) 4.18 (0.55) 6.89 (0.61) 6.19 (1.20) 4.76 (0.59) 4.69 (1.11)

ξ = 0.5 4.91 (1.42) 4.83 (1.50) 4.40 (1.20) 4.33 (1.26) 6.32 (2.38) 6.28 (1.73)
4.66 (0.68) 4.05 (0.46) 6.38 (0.74) 5.20 (1.23) 4.59 (0.66) 4.59 (1.10)

ξ = 0.7 8.22 (1.95) 8.77 (2.08) 7.02 (1.65) 9.39 (2.56) 9.83 (3.55) 8.37 (1.70)
3.56 (0.93) 2.95 (1.02) 5.29 (1.15) 2.99 (1.69) 3.95 (0.64) 4.61 (1.62)

presented in Table 1. For each of the scenarios, we record the
means (variances in parentheses) of {||!̂(m) − !!||2F}200

m=1 and
{Rank(!̂

(m)
)}200

m=1 in the "rst and second row, respectively,
over the methods (a) ∼ (f ). In what follows, we summarize
the results with the insights gained from them. No methods
(a) ∼ (f ) dominate either in having the lowest estimation error
or in estimating the true rank of !" over the nine presented
scenarios. However, WNN estimators with methods (a) and
(b) give us the satisfying results on 11 out of 18 cases. Among
the 7 cases where they did not show the best results, 3 cases
come from the estimation error results in model III. Given the
nature of WNN estimators with non-decreasing weights, this
is not surprising, as model III considers the cases where all the
singular values of !! are equivalent.

Note that in model I where the singular values are in decreas-
ing order, WNN estimators showed the best performances in
estimation error. Regarding the rank estimation, SNN estimators
from (c) and (d) tended to overestimate the rank of coe!-
cient matrices (Bunea, She, and Wegkamp 2011; Mukherjee
et al. 2015), whereas WNN estimators in (a) and (b) rather
gave the underestimated ranks. Readers can revisit Section 4.1
where we provide a possible reason for this observation. In
extreme cases where the rank of !! is 1 (model II), WNN
estimators both from (a) and (b) exhibited impressive perfor-
mances where they almost accurately estimated the ranks over
200 estimators. Both ANN and RRRR estimators from (e) and
(f ) showed good performance in rank estimations across the
nine scenarios (best or second to the best). In all three models,
as the correlation parameter ξ increases, the estimation error
increases.

5.3. Application to a Real Dataset

The proposed method is applied to an application, about a
study of Polycyclic Aromatic Hydrocarbons (PAHs) from sec.
2.2.2 of Isenmann (2008). PAHs are ubiquitous environmental
contaminants generated primarily during the incomplete

combustion of some organic substances, such as coal, oil,
rubbish, and wood. They are linked with the causes of
tumors and their e#ects on reproduction. PAHs are widely
used in industry or medicines to make dyes, plastics, and
pesticides.

The dataset includes 10 PAHs, which are pyrene (Py),
acenaphthene (Ace), anthracene (Anth), acenaphthylene (Acy),
chrysene (Chry), benzanthracene (Benz), &uoranthene (Fluora),
&uorene (Fluore), naphthalene (Nap), and phenanthrene
(Phen), and 25 complex mixtures of certain concentrations (with
unit milligrams per liter) of these PAHs were recorded, which
indicates n = 25 and d1 = 10 in model (1). The mean and range
values of these mixtures of certain concentrations are plotted in
Panel (A) of Figure 4 in Section L of supplemental material.
From each of these mixtures, an electronic absorption spectrum
is computed, The spectrum is digitized at 5 nm intervals in
27 wavelength channels from 220 nm to 350 nm, as shown in
Panel (B) of Figure 4 in Section L of supplemental material. This
means there are 27 columns for X2 in model (1) (d2 = 27). More
details about the dataset can be found in sec. 5.1.2 of Brereton
(2003) and sec. 2.2.2 of Isenmann (2008).

We are mainly interested in using WMVR-ADMM to under-
stand the association between the concentrations from PAHs
and the electronic absorption spectrum through the model (1).
A "gure demonstrates the concentrations from PAHs and the
electronic absorption spectrum from the data are provided in
supplemental material Section L. The method is conducted by
following Algorithm 1, and the optimal tuning parameter λn
and weights w are selected by the proposed GCV criterion
described in Section 4. The resulting GCV scores are plotted
in Figure 3(A) with respect to value λn, showing the selected
λn is around 0.00021. The estimated eigenvalues with respect
to λn are plotted in Figure 3(B), and under the optimal λn
and weights from the GCV criterion, the estimated coe!cient
matrix is rank 5. The estimated coe!cients are demonstrated
in a heatmap as shown in Figure 3(C). The "gure shows that
for each PAH, only a few important channels can be used to
determine the concentrations because only some coe!cients are
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Figure 3. (A) GCV score versus tuning parameters λ, (B) solution path, (C) estimated coe"cient matrix.

Figure 4. Panel (A) exhibits the intersected region of W ≤ 3 and 1
2 < w1 ≤ · · · ≤ wp . Panel (B) magni!es the intersected region on grid (w1, wp) ∈ [1, 1.5] × [1, 1.5].

Here, f (w1) := 1
4 (w1 − 1

2 ) + 1
4

√
w2

1 + 23w1 − 47
4 . Yellow circles represent the grid points where the WNN estimators give smaller estimation errors than SNN estimators

do in our simulation setting.

relatively large. Additionally, these larger coe!cients are usually
from smaller column numbers in the heatmap. Thus, this shows
the channels with smaller wavelengths are more important than
larger wavelength channels.

6. Discussion

Several remaining open questions require further investigation
in the future. We summarize them as follows.
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1. A question on whether the non-convex ADMM can achieve
the global minimizer of (2) is a well-known open question.
Although empirical results on the convergence of WMVR-
ADMM are provided in Section 5, they still cannot verify the
converged solution is a global minimizer of (2). We leave
both empirical and theoretical justi"cations on this issue
as important open problems for future studies. Under the
SNN setting, it is proved that there exists a primal-dual pair
of (2) which satis"es the strong duality (Shang and Kong
2021). Therefore, the existence of saddle point on L0 can be
ensured so that the global minimizer of (2) can be proved
through the classical techniques in Boyd, Parikh, and Chu
(2011). Nonetheless, we need further investigation whether
these conditions can be used under our WNN setting with
nondecreasing weights.

2. Although Theorem 3.3 demonstrates the estimation error
from the WNN method converges to zero at the minimax
rate, it’s still unclear whether WNN outperforms SNN with
a "nite sample size. In Figure 4 the yellow circles represent
the grid points of (w1, wp) over [0, 2.5] × [0, 2.5] where
WNN gives smaller estimation errors than that by SNN
with the tuning parameter λn and the sample size n being
"xed. (More speci"c settings for simulations are deferred
in supplementary material Section K.) The green colored
region is an intersection of two constraints W ≤ 3 and
1
2 < w1 ≤ wp. Here, the constraint W ≤ 3 is from
Theorem 3.3 re&ecting the set of pairs (w1, wp) for which
WNN has a lower constant factor than SNN has. (Recall the
de"nition of W and also recall SNN corresponds to the case
w1 = wp = 1.) Note the green-colored region cannot cover
the yellow circles which means that the result in Theorem 3.3
requires further re"nements to justify our simulation result.
We leave this as an open problem for future research.

Supplemental Materials

More technical details and numerical results are summarized in the supple-
mental material. The code for the numerical results and "gures of the article
and the associated user guidelines are also available in the supplemental
material.
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