
Relativistic Semistochastic Heat-Bath Configuration Interaction

Xubo Wang* and Sandeep Sharma*

Cite This: J. Chem. Theory Comput. 2023, 19, 848−855 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: In this work we present the extension of semi-
stochastic heat-bath configuration interaction (SHCI) to work with
any two-component and four-component Hamiltonian. The vertical
detachment energy (VDE) of AuH2

− and zero-field splitting (ZFS)
of NpO2

2+ is calculated by correlating more than 100 spinors in both
cases. This work demonstrates the capability of SHCI to treat
problems where both relativistic e/ect and electron correlation are
important.

1. INTRODUCTION

The relativistic e/ect becomes more important as one goes
down the Periodic Table1−3 and gives rise to various
phenomena, such as lanthanide contraction, mercury being
liquid, simple cubic structure of polonium, etc. A proper
relativistic Hamiltonian is needed to address these e/ects. In
practice, the most rigorous relativistic Hamiltonian is the four-
component Dirac-Coulomb-Breit (DCB) Hamiltonian which
reduces to the Dirac-Coulomb (DC) Hamiltonian when the
Gaunt term and gauge term are omitted.4,5The four-component
Hamiltonian supports the electron-positron pair-creation
processes; however, such a process involves high energy (of
the order of 2mec

2 or 1.02MeV)6 and thus does not play an
important role in the chemical process. In light of this, various
electron-only two-component Hamiltonians are derived to
reduce the dimension of the problem, examples of which
include the Zeroth Order Regular Approximation (ZORA),7 the
Douglas-Kroll-Hess (DKH) Hamiltonian,8,9 the Barysz-Sadlej-
Snijders (BSS) Hamiltonian,10 and exact two-component
(X2C).11−13 In X2C theory, the one electron operator is solved,
and the transformation is then derived from the one electron
solution in one step. The X2C transformation has therefore
become popular due to its eBciency and accuracy.
Often, the one electron operator is chosen to be the one-

electron Dirac operator, and the two-electron term is simply the
Coulomb operator. By doing so, the part of spin−orbit coupling
(SOC) that originates from two-electron terms are completely
neglected. One cost-e/ective way to treat the two-electron SOC
terms is the spin−orbit mean field (SOMF) approach,14,15

where the relativistic two-body terms are treated approximately
by including them in the Fock type one-body operator. In a
SOMF calculation, one does a nonrelativistic or scalar relativistic

calculation, then computes the two electron SO integrals in the
molecular orbitals obtained. The two electron SO integrals are
then contracted with the spin-averaged self-consistent field
(SCF) density matrix to obtain the e/ective one-electron SO
integrals. But for heavy elements, the use of scalar orbital would
cause noticeable errors,16 and using spinors can give more
accurate results since the molecular spinors are then fully relaxed
under SOC. Such a molecular mean-field approach uses the
density matrix and spinors from a four-component mean field
wave function.17 In this scheme, one first does a four-component
mean field calculation, then block diagonalizes the so-obtained
Fock matrix, the decoupling of the Fock matrix is just an X2C
transformation of the Fock matrix, and is thus called
X2CMMF17 (exact 2-component molecular mean field). One
can avoid the cost of performing a full 4-component mean field
calculation by exploiting the local nature of the SOC, and this
strategy yields the atomic mean field (AMF) approach.18−22 In
AMF, an atomic SCF is performed and then the SO integral is
contracted to the mean field form. The use of atomic integrals
greatly reduced the cost and has been shown to be highly
accurate. The AMF approach using 4c Hamiltonian to generate
mean field SO integral20 including even the Gaunt or Breit term
has been proposed recently22,23 and is used in most calculations
in this work.
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During the past few decades, quantum chemistry algorithms
that have been successful for nonrelativistic systems have also
become available for 4c and 2c Hamiltonians, such as self-
consistent field,24,25 density functional theory,2627 coupled
cluster,28−32 configuration interaction,33,34 multiconfiguration
self-consistent field,35−39 multireference perturbation theory
(MRPT),40,41 multireference configuration interaction
(MRCI),40,42 etc. Several quantum chemistry packages are
also available to perform these relativistic electronic structure
calculations.43−50

In this work, we extend the semistochastic heat-bath
configuration interaction (SHCI) algorithm51 to treat two- or
four-component Hamiltonians with large active spaces. In our
previous work52 to treat SOC using SHCI, we used scalar
orbitals with SOMF integrals. This time we work with spinors
which is expected to give a better description of SOC at the
orbital optimization level. To our knowledge, only the density
matrix renormalization group (DMRG)53,54 and full config-
uration interaction quantum Monte Carlo (FCIQMC)55 have
been implemented for 2c/4c Hamiltonians with the capability of
treating around 100 molecular spinors; however, SHCI is often
faster than both FCIQMC and DMRG for treating non-
relativistic Hamiltonians of molecules, and we expect this to be
the case for relativistic Hamiltonians as well.40 This paper is
organized as follows. In section 2 and section 3, we describe the
current SHCI algorithm, and the adaptation of SHCI algorithm
to treat 2c/4c Hamiltonians including some implementation
details. In section 4, we present the relativistic Hamiltonians we
use in the calculations. In section 5, we give computational
details and results on the vertical detachment energy (VDE) of
AuH

2
and the first few excited states of +

NpO2
2 .

2. RECAP OF SHCI

Semistochastic heat-bath configuration interaction is a recently
developed variant of the class of methods that perform a selected
configuration interaction followed by perturbation theory (SCI-
PT). Similar to all other SCI-PT methods,56−59 it consists of a
variational step and a perturbative step. In the variational step, a
set of important determinants is iteratively selected by the heat-
bath algorithm and the subspace eigenvalue problem is solved.
In the perturbative step, the previously obtained variational
energy is corrected by Epstein-Nesbet perturbation theory60,61

to estimate the FCI energy. A semistochastic51 scheme is utilized
to reduce the cost. In this section, index i and a represent
determinants inside or outside of the current variational space.
2.1. Heat-Bath Sampling. Given a set of initial

determinants, the multi-reference wave function

| = |c D

D

i i

i (1)

is obtained by diagonalizing the Hamiltonian in the current
space of important determinants. Then new determinants
that satisfy the heat-bath criterion

| | >H cmax
D

ai i 1

i (2)

are added to the space . Here = | |H D H D
ai a i

is the
Hamiltonian matrix element and ϵ1 is a user defined parameter
and is usually set to as small as possible. The HCI criterion is
di/erent from the one used in CIPSI,56 which is based on the
contribution of a determinant Da to the perturbative correction
to the wave function

>
|

H c

E E

D ai i

0 a

1

i

(3)

Although the HCI criterion is not optimal at picking out the
important determinants, the variational space formed by the two
methods is still nearly the same.62 Moreover, this inexpensive to
evaluate selection criterion is implemented even more eBciently
by avoiding generation of the determinants that do not meet the
criterion, speeding up both variational and perturbative stages of
the algorithm. For more detailed discussion on eBcient
implementation of SHCI, we refer the readers to previous
works.51,63

2.2. Stochastic Perturbation Theory. After the variational
stage, a perturbative step is performed to estimate the FCI
energy by Epstein-Nesbet perturbation theory,

=

| |

i

k

jjjjjjj

y

{

zzzzzzz
E

E E
H c

1

D D

ai i2

0 a
a i (4)

where denotes the set of determinants that are connected to at
least one determinant in by a nonzero Hamiltonian matrix
element. Since the vast majority of terms in the double sum
contribute negligibly, they can be discarded without significant
loss of accuracy and the perturbative correction can be
approximated by a “screened sum”,

=

|

i

k

jjjjjj

y

{

zzzzzz
E

E E
H c( )

1

D

ai i2 2
0 a

( )

a

2

(5)

where H c
ai i

2 includes only terms with |Haici| > ϵ2 and the outer
sum is over the determinants |Da⟩ that meet this criterion. In
order to achieve good accuracy, this parameter ϵ2 has to be small.
Thus, even with a “screened sum”, we might still encounter a
memory bottleneck of having to store all the determinants |D

a

and their perturbative contribution in memory.
To further reduce the memory cost, we utilize the

semistochastic perturbation theory to estimate the perturbative
correction. In our semistochastic perturbation approach, a

deterministic perturbative calculation with a relatively loose d

2
is

performed first (termed as E ( )D d

2 2 ). The error caused by this
loose parameter is then corrected stochastically by a much
tighter ϵ2. In this step, a few tens to hundreds of variational
determinants are sampled, and the perturbative correction is

calculated using both d

2
and ϵ2 (termed as E ( )S

2 2 and E ( )S d

2 2 ),
the final perturbation correction is estimated by

= + [ ]E E E E( ) ( ) ( ) ( )D d S S d

2 2 2 2 2 2 2 2 (6)

The key point to this scheme is that E ( )S

2 2 and E ( )S d

2 2 are
calculated using the exact same set of determinants and thus
reduce the stochastic error significantly, with almost no increase
in memory or computer time.
2.3. Excited States.With the four-component Hamiltonian

being used, spin−orbit coupling and all other relativistic e/ects
are taken into account naturally, thus S

z
is no longer a good

quantum number, the wave function becomes eigenfunction of
the total angular momentum J. The 2S + 1 fold degeneracy of a
spin multiplet thus breaks into several sets of states
corresponding to di/erent J values with 2J + 1 fold degeneracy.
This energy splitting between di/erent J states can be measured
experimentally to determine the zero-field splitting (ZFS), and
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they are usually very small compared to the absolute energies of
the molecule.
In order to compute these excited states, the heat-bath

criterion needs to be modified. It has been done in two di/erent
ways previously,52,62 the first is to replace the ground state CI
vector by the maximum values among all CI vectors

| | | | >H cmax max
D

ai
s

i

s

states

( )
1

i (7)

The second way is to use the averaged CI vector

| |

>H

c

max
no. of statesD

ai

s

i

s

states

2

1

i

(8)

As has been discussed before,52 the second way is more
appropriate for handling the small splitting and near degeneracy
originating from the relativistic Hamiltonian.We thus use eq 8 as
the heat-bath criterion for excited states calculations.

3. SHCI IN SPINOR BASIS

In this work, our relativistic SHCI implementation works on
complex-valued spinor reference wave function, any 2c or 4c
Hamiltonian that works in a spinor basis can readily be used.
With the 2c/4c Hamiltonian being used, the spin symmetry and
point group symmetry which are commonly used in non-
relativistic calculations no longer hold, we instead have Kramer
symmetry and double group symmetry that work for the four-
component Hamiltonian. In the current implementation, we do
not assume symmetry between barred and unbarred spinors,
only permutation symmetry and complex-conjugated symmetry
are utilized. Here, p, q, r, and s denote a general molecular spinor
index.

| = |pq rs rs pq( ) ( ) (9)

| = | *pq rs qp sr( ) ( ) (10)

With the electron integrals being complex, the resulting
Hamiltonian matrix at the variational stage is also a complex-
valued Hermitian matrix, a complex version of the Davidson
algorithm has been implemented in our previous work to solve
the complex-valued eigenvalue problem.However, the heat-bath
criterion in eq 2 and its variant for multiple roots in eq 8 as well
as the perturbation correction in eq 4 are not influenced by the
complex nature of the Hamiltonian since they both use the
magnitude of Haici.
3.1. Implementation. Here we briefly describe the

implementation and the steps of the leading order cost of the
algorithm. There are three major operations during the
variational stage: identify the important determinants, construct
the Hamiltonian matrix, and diagonalize the matrix. In the
current implementation, all the nonzero elements of the
Hamiltonian are stored in memory using a list of lists (LIL)
format. In the LIL format, we store a list of column indexes and a
list of corresponding nonzero Hamiltonian matrix elements for a
given determinant. The determinants are stored in a list of bit-
packed strings that represent the occupation of the active
molecular spinors. Since spin is no longer a good quantum
number, the use of auxiliary lists implemented in the
nonrelativistic case becomes complicated and more auxiliary
lists are required. To simplify the problem, we noticed that if two
determinants are connected by a single or double excitation,

then there exists a determinant with N − 2 electrons occupied
associated with both determinants. This idea can date back to
Harrison et al.’s full configuration interaction (FCI) implemen-
tation64 that is used in the relativistic FCI implementation by
Bates et al.37We can further say that, if a set of determinants are
associated with the sameN− 2 determinant, then they all have a
nonzero Hamiltonian matrix element with each other according
to the Slater−Condon rule. Tomake use of this fact, we generate
a list of all the N − 2 determinants, and then record all the N
determinants associated with each N − 2 determinant. When
constructing the Hamiltonian, we canmake use of these two lists
to help us find the connected determinants rather than searching
the entire variation space. Also at each step, only the matrix
elements associated with the newly added determinants are
handled instead of constructing the Hamiltonian matrix from
scratch every step.
Once the Hamiltonian is generated, a complex version of

Davidson algorithm is used to obtain the lowest few eigenvalues
where the most expensive step is Hamiltonian wave function
multiplication which scales as O(kNV), where k is proportional
to the fourth power of the number of electrons and is equal to
the number of columns of the Hamiltonian matrix with nonzero
values for a given determinant. The Hamiltonian matrix is
currently stored in memory, and it is the largest bottleneck in a
variational calculation.
The semistochastic perturbation scheme is identical to its

nonrelativistic variant, for detailed discussion, we recommend
readers follow previous work by one of the authors.

4. RELATIVISTIC HAMILTONIAN

4.1. 4c Hamiltonian. The four-component DC(B)
Hamiltonian can be written as

= + +H h i g i j V( )
1

2
( , )

i

D

i j

NN

(11)

= + ·I ph i c c
Z

r
( ) ( ) ( )

D i i

A

A

iA

2
4

atoms

(12)

ßß
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( )( )

2ij

i j

ij

i j

ij

i ij j ij

ij

Coulomb Gaunt

3

gauge

Breit

(13)

where α = (αx, αy, αz), αx, αy, αz and β are the 4 × 4 Dirac
matrices

= = =
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0

0

0

I

, , ,

0

0

x

x

x
y

y

y
z

z

z

2

2

2

2

2

2

2 2

2 2 (14)

σx, σy, and σz are the Pauli matrices.
After the adoption of the no-pair approximation, the

Hamiltonian in the second quantization form becomes

= +
† † †H h a a g a a a a

1

2
pq

pq p q

pqrs
pq rs p r s q,

(15)
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where the p, q, r, and s indices represent positive energy spinors.
This no-pair Hamiltonian is what relativistic SHCI actually uses
when doing a four-component correlation calculation.
4.2. X2CAMF Hamiltonian. In this work we use an

X2CAMF Hamiltonian proposed by Liu et al.20 to treat spin−
orbit coupling. In a standard X2C calculation, the bare Coulomb
term is used as the two electron operator. The spin-dependent
Coulomb interaction and the entire Breit term are then missing.
To overcome this shortcoming the molecular mean field
approach17 was previously proposed, whereby, a 4c Dirac
Hartree−Fock calculation is performed on the entire molecule
and then X2C transformation of the entire Fock matrix is carried
out. All the non-Coulomb terms as well as the spin−orbit part of
the Coulomb terms are absorbed into the one-body operator in a
mean-field fashion. The disadvantage is that one still needs to do
a molecular 4c calculation which is usually expensive. In the
AMF approach, only atomic calculations are performed and then
a separate X2C transformation for each atom is carried out. This
approach relies on the local nature of the spin−orbit coupling.
By doing the atomic calculation, one can also exploit the high
symmetry in atoms which can greatly reduce the cost. A recent
work by Zhang et al.23 utilizes this feature and is implemented
for the full DCB Hamiltonian.
AMF Hamiltonian.We start from the spin-separation scheme

for the DC Hamiltonian to derive the atomic mean-field (AMF)
Hamiltonian. The Coulomb operator can be partitioned into a
spin-free part and a spin-dependent part.

= +g g g
pq rs pq rs pq rs,

C

,

C,SF

,

C,SD

(16)

The full DCB Hamiltonian can thus be regrouped as

= + +

+

† † †

† †

H h a a g g a a a a

g a a a a

1

2
( )

1

2

pq

pq p q

pqrs
pq rs pq rs p r s q

pqrs
pq rs p r s q

DCB

,

C,SD

,

Breit

,

C,SF

(17)

Although the Breit term can also be split into a spin-free term
and spin-dependent term,65 it is still grouped together with the
spin-dependent Coulomb term and treated within the atomic
mean-field approximation. The atomic mean-field approxima-
tion is then introduced to treat the spin-dependent Coulomb
and Breit terms

= +g n g g g g( )
pq

A i A

i pi qi pi qi pq i i pq i i

AMF

,

C,SD,A

,

Breit,A

,

C,SD,A

,

Breit,A

A

A A A A A A A A A

(18)

where the superscript A denotes the integral on each atom, iA
and n

i
A

denote an occupied molecular orbital and the

corresponding occupation number. The DCB Hamiltonian
can then be approximated as

+ +
† † †H h g a a g a a a a( )

1

2
pq

pq pq p q

ijkl
pq rs p r s q

DCB,AMF AMF

,

C,SF

(19)

X2C Transformation. Now we apply the standard X2C
transformation13 to this Hamiltonian. To derive the X2C
transformation, one first replaces the small component (ΨS)
with the pseudo-large-component (ΦL)

=

·p

c2

S L

(20)

The matrix Dirac equation can then be written in a modified
form

=

i

k

jjjjjjjjjj

y
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V T

T W T
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T
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0

0
4

L

L

L

L

2 2

(21)

in which V is the potential matrix, T is the kinetic energy matrix,
and W is the potential matrix for small components (σ·p)V(σ·
p).
In order to decouple the large and small component, a

transformation matrix U that can block diagonalize the matrix
equation is introduced

= = =
+
†

†

†

†

i

k

jjjjjjj

y

{

zzzzzzz

i

k

jjjjjj

y

{

zzzzzz
U U U U

R

R

U
I X

X I

,
0

0

,
N D N D

(22)

UD achieves the decoupling and UN renormalizes the
Hamiltonian to the nonrelativistic metric. The transformed
matrix features a block diagonal form; electronic and positronic
degrees of freedom are completely decoupled

=
†

+i

k

jjjjjj

y

{

zzzzzz
Uh U

h

h

0

0
D

D

D (23)

To construct +
h
D
, only R+ and X is required, thus we introduce

the X matrix that relates ΨL and ΦL

= X
L L (24)

and the R+ matrix that relates decoupled electronic wave
function and the original large component wave function.

=
+ +

R
L (25)

= = +
+ †

R S S S S X TX( ) ,
2

1 1/2
2

(26)

The +
h
D
or the hX2C can be written as

= { + + + }
+† † † +

h R h X h h X X h X R( )
D

LL

D

LS

D

SL

D

SS

X2C (27)

Note the above transformation only transforms the one-electron
Dirac Hamiltonian, so we call it one-electron X2C Hamiltonian
(hX2C−1e). The AMF term is transformed atomically. For each
atom, a 4c calculation is performed, and the atomic Fock matrix
takes the place of hD to determine the atomic X and R matrices.
These atomic X and Rmatrices are then used to transform hAMF

to h2c,AMF. The X2CAMF Hamiltonian23 is then written as

= + +h h E g EH ( )
1

2
ij

ij ij ij

ijkl
ijkl ijkl

X2CAMF X2C 1e 2c,AMF NR

(28)

5. RESULTS

5.1. Computational Details. We present calculations to
evaluate the photoelectron detachment energies (DE) of AuH

2

which result in the formation of neutral open-shell molecule
AuH2 in di/erent states. We also calculate the zero-field splitting

(ZFS) of +
NpO2

2 . The X2CAMF Hamiltonian is computed
using the X2CAMF package by Zhang.66 The X2CAMF
Hartree−Fock (HF) calculations are performed through the
socutils code by one of the authors.67 The SHCI calculations are
performed using the ZSHCI module of the Dice code by the
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authors.68 The input and output for all calculations can be
accessed from a public repository.69 All the SHCI calculations
use an ϵ2 value of 10

−10 a.u., and the stochastic errors are
converged to 5 × 10−6 a.u. in order to recover the degeneracy
between Kramer doublets. We extrapolate to the FCI limit by
fitting the total energy Etot = Evar + E2 with respect to the PT2
correction E2.

62 The extrapolation error is estimated to be one-
fifth of the di/erence between the calculated energy with the
smallest value of ϵ1.
5.2. Vertical Detachment Energy of AuH2

−. The
photoelectron spectrum of AuH

2
was accurately measured by

Liu et al.70 In the experiment work, the vibrational spectra of X
state and A state are well resolved and were discussed carefully
(Figure 1). The X state is the ground state of the AuH2 and it has

a bent geometry, peak “a” to peak “k” are considered to be the
result of vibrational progression, the peak “a” corresponds to the
adiabatic detachment energy (ADE), peak “h” with the highest
intensity is deemed to be the vertical detachment energy (VDE).
The spacing between these peaks (except for peak “k”) can be fit
well using the anharmonic vibrational model:

= + +E ( 1/2) ( 1/2)h h e

2
(29)

Peak “l” to peak “o” are assigned to be vibration levels of the A
state, but the spacing between them do not fit into this model
well. The authors proposed a slightly bent structure for A. More
recent work by Sorbelli et al.71 used X2C-EOM-CCSD to
calculate the system and reinterpret the spectrum. They have
proposed that state A has a linear structure, the unusual behavior
in the peak “l” to “o” was explained as the pseudo-Jahn−Teller
(PJTE) e/ect. They claimed that the PJTE induces a symmetry
breaking along the asymmetric stretching coordinate, the

centrosymmetric linear nuclear configuration thus becomes a
saddle point and the most stable configuration would be an
asymmetric configuration. Here we calculated the vertical
detachment energies (VDE) from the experimentally measured
X band up to E band. The main focus in this work is not to give
any new explanation to this spectroscopy problem but rather to
have a comparison with the EOM-CCSD results especially when
SHCI can give near exact results to see how they compare. The
geometry = = °r( 1.647 Å, 180 )Au H H Au H is taken from the
experiment work.70 The X2CAMF-HF wave function for closed
shell AuH

2
is used for both AuH

2
and AuH2 calculation as the

reference wave function.
The VDEs from X state up to E state using EOM-CCSD with

both X2CAMF and X2CMMF Hamiltonian and SHCI with
X2CAMFHamiltonian under di/erent active spaces are listed in
Table 1. Both Hamiltonians contain relativistic e/ects up to the
Gaunt term. The Dyall’s triple-ζ basis set72,73 is used for all
atoms based on results from a previous theory paper.71One large
EOM-CCSD calculation which correlates virtual spinors up to
100 hartree is also performed and is used to estimate the missing
dynamic correlation in the SHCI calculation with 124 spinors
correlated as shown in eq 30. The extrapolation error are within
0.007 eV for all 82 spinor calculations and 0.016 eV for 124
spinor calculations.

= +E E E Ecomposite
SHCI

124spinors
SHCI

124spinors
EOMCC

100Hartree
EOMCC

(30)

We start by looking at the di/erence between X2CAMF and
X2CMMF Hamiltonian from EOM-CCSD calculations at three
di/erent active spaces. The energy of X2CAMF is systematically
lower by 1 meV than X2CMMF for state X and state A. For the
other four states, the X2CAMF energy is higher than X2CMMF
for around 4 meV. This di/erence between the two di/erent
Hamiltonians is consistent and also much smaller than other
uncertainties in the calculations.
Then we may compare the EOM results and SHCI results

with 82 spinors and 124 spinors active space. In the 82 spinors
calculation, the X state and A state are misordered for both
methods. If we compare the VDEs for state A to state E between
the methods, we notice that the EOM-CCSD systematically
underestimates them by 0.255 to 0.273 eV while it only
underestimates the X state by 0.088 eV. When the larger active
space with 124 spinors is used, the EOM-CCSD still
underestimates the VDEs compared to the near-exact SHCI
results, but the discrepancy reduces to within 0.130 to 0.156 eV.
The VDE for the X state, however, behaves di/erently. The VDE
from SHCI decreases while the EOM-CCSD VDE increases.
While the composite SHCI energy gives a good agreement with
experiment for the X state and A state, the VDE from the B state

Figure 1. Vibrational resolved PES spectra for X state and A state from
the experiments published in paper 70.

Table 1. VDEs (in eV) of AuH2
− with 5d and 6s Electrons Correlateda

82 spinors 124 spinors up to 100 hartree

EOM EOM SHCI EOM EOM SHCI EOM EOM SHCI

State MMF AMF AMF MMF AMF AMF MMF AMF (composite) expt

X 3.517 3.516 3.604 3.545 3.544 3.521 3.666 3.665 3.641 3.678

A 3.292 3.292 3.560 3.627 3.626 3.744 3.792 3.791 3.909 3.904

B 4.019 4.023 4.296 4.499 4.504 4.653 4.740 4.745 4.895 4.635

C 4.123 4.127 4.398 4.582 4.587 4.741 4.834 4.838 4.992 4.785

D 5.128 5.131 5.372 5.510 5.513 5.643 5.768 5.771 5.902 5.745

E 5.600 5.604 5.859 6.007 6.011 6.167 6.275 6.280 6.435 6.220

aThe EOM results underestimate energy of state A at all active spaces.
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to E state are all overestimated while the reference EOM results
achieve a better agreement with experiment values. This good
agreement with experiments is likely caused by some fortuitous
error cancellation. The composite VDE of X state and A state
agrees with the experiment value better than the EOM-CCSD
result. In particular, if one looks at the di/erence between
energies of the X and the A states, the EOM-CCSD always gives
a smaller gap between the two states since it underestimates the
energy of the A state.
5.3. NpO2

2+. The rather stable actinyl ions, AnO2
n+, as well as

their derivatives have interesting electronic structures and
magnetic properties due to the similar order of SOC and crystal
field e/ects and have therefore drawn people’s attention.
Previous work by Gendron et al.74,75 has systematically studied

the neptunyl ion +
NpO2

2 and its derivative using multireference
methods and includes SOC bymeans of state interaction. A state
interaction version of DMRG76 and our previous one-step SHCI
treatment of SOC52 have been used to calculate the energies of
the neptunyl ion. It is worth mentioning that all the previous
calculations are based on di/erent spin-free reference wave
functions, and include the SOC terms at the correlation level.
We use the uncontracted ANO-RCC basis77 for Np and the

uncontracted cc-pVTZ basis78 for O. The linear geometry with
both Np−O bond lengths of 1.70 Å is taken from the work of
Gendron et al.74 A fraction occupation X2CAMF-HF is used as
the reference state. The one open-shell electron is averaged in 4
spatial orbitals to give equal description on the four lowest
Kramer doublets. The energies of the four doublets from this
work as well some previous results are tabulated in Table 2. The

extrapolation error for all states are within 80 cm−1. The spinor
calculation gives di/erent results than the previous spin−orbit
calculations, where the splittings between 2Φ states and 2Δ
states relative to the ground state are generally smaller. The
di/erence can be attributed to the higher accuracy of the
reference wave function in our present X2CAMF calculations
where the orbital relaxation due to SOC is fully included, while
in other calculations, SOC is only taken into account at the
correlation level. Though the influence is generally not that large
for lighter elements, Np is heavy enough so that the di/erence
between the spinor reference and the scalar reference can be
large.

6. CONCLUSIONS

We have extended the SHCI algorithm to treat general two-
component Hamiltonian for both the ground and excited states.
Our calculations show that SHCI is capable of treating the

relativistic Hamiltonian with over 100 spinors. Application on
VDEs of AuH2 gives a better gap between the X state and A state
which outperforms EOM-CCSD at the same basis set. The low

energy spectrum of +
NpO2

2 demonstrates that for such heavy
elements, it is necessary to include relativistic e/ects at the SCF
level.
The current method still has two limits, the variational

Hamiltonian is very memory intensive because of the need to
store the Hamiltonian and limits the variational space to a few
million determinants. Thus, an eBcient method to obtain the
variational wave function is needed. A matrix-free eigensolver
based on the coordinate descent algorithm79 is in development.
Due to the number of electrons and large basis used in a
relativistic calculation, even SHCI cannot treat a suBcient
number of orbitals in the active space to account for dynamical
correlation. Work in this direction is underway, we are working
on a relativistic phaseless auxiliary field quantum Monte
Carlo80,81 with the relativistic HCI wave function as the trial
state.82
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