L))

Check for
updates

ARIoTEDef: Adversarially Robust loT Early Defense System
Based on Self-Evolution against Multi-step Attacks

MENGDIE HUANG, Xidian University, China and Purdue University, United States
HYUNWOO LEE, Korea Institute of Energy Technology, South Korea

ASHISH KUNDU, Cisco Systems Inc, United States

XIAOFENG CHEN, Xidian University, China

ANAND MUDGERIKAR, Purdue University, United States

NINGHUI LI, Purdue University, United States

ELISA BERTINO, Purdue University, United States

Internet of Things (IoT) cyber threats, exemplified by jackware and crypto mining, underscore the vulnera-
bility of IoT devices. Due to the multi-step nature of many attacks, early detection is vital for a swift response
and preventing malware propagation. However, accurately detecting early-stage attacks is challenging, as
attackers employ stealthy, zero-day, or adversarial machine learning to evade detection. To enhance security,
we propose ARIOTEDef, an Adversarially Robust IoT Early Defense system, which identifies early-stage in-
fections and evolves autonomously. It models multi-stage attacks based on a cyber kill chain and maintains
stage-specific detectors. When anomalies in the later action stage emerge, the system retroactively analyzes
event logs using an attention-based sequence-to-sequence model to identify early infections. Then, the in-
fection detector is updated with information about the identified infections. We have evaluated ARIoTEDef
against multi-stage attacks, such as the Mirai botnet. Results show that the infection detector’s average F1
score increases from 0.31 to 0.87 after one evolution round. We have also conducted an extensive analysis of
ARIoTEDef against adversarial evasion attacks. Our results show that ARIOTEDef is robust and benefits from
multiple rounds of evolution.

CCS Concepts: « Networks — Network security; « Security and privacy — Network security; - Com-
puting methodologies — Machine learning;

Additional Key Words and Phrases: IoT, NIDS, multi-step attack, infection identification, Seq2Seq, attention
mechanism, adversarial evasion attack

This work was supported by Cisco Research, NSF grants 2112471 and 2229876, Purdue University, and Xidian University.
Authors’ Contact Information: Mengdie Huang, School of Cyber Engineering, Xidian University, Xi’an, Shaanxi, China
and Department of Computer Science, Purdue University, West Lafayette, Indiana, United States; e-mail: huan1932@
purdue.edu; Hyunwoo Lee, Korea Institute of Energy Technology, Naju-si, South Korea; e-mail: hwlee@kentech.ac.kr;
Ashish Kundu, Cisco Systems Inc, San Jose, California, United States; e-mail: ashkundu@cisco.com; Xiaofeng Chen, School
of Cyber Engineering, Xidian University, Xi’an, Shaanxi, China; e-mail: xfchen@xidian.edu.cn; Anand Mudgerikar, De-
partment of Computer Science, Purdue University, West Lafayette, Indiana, United States; e-mail: amudgeri@purdue.edu;
Ninghui Li, Department of Computer Science, Purdue University, West Lafayette, Indiana, United States; e-mail:
ninghui@purdue.edu; Elisa Bertino, Department of Computer Science, Purdue University, West Lafayette, Indiana, United
States; e-mail: bertino@purdue.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2023 Copyright held by the owner/author(s).
ACM 2577-6207/2023/06-ART15
https://doi.org/10.1145/3660646

ACM Trans. Internet Things, Vol. 5, No. 3, Article 15. Publication date: June 2024.


https://orcid.org/0000-0003-3705-7345
https://orcid.org/0000-0001-7490-9936
https://orcid.org/0000-0003-1499-5558
https://orcid.org/0000-0001-5858-5070
https://orcid.org/0000-0002-7148-0000
https://orcid.org/0000-0001-8207-9717
https://orcid.org/0000-0002-4029-7051
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3660646
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3660646&domain=pdf&date_stamp=2024-06-17

15:2 M. Huang et al.

ACM Reference Format:

Mengdie Huang, Hyunwoo Lee, Ashish Kundu, Xiaofeng Chen, Anand Mudgerikar, Ninghui Li, and Elisa
Bertino. 2024. ARIoTEDef: Adversarially Robust IoT Early Defense System Based on Self-Evolution against
Multi-Step Attacks. ACM Trans. Internet Things 5, 3, Article 15 (June 2024), 34 pages. https://doi.org/10.1145/
3660646

1 INTRODUCTION

The Internet of Things (IoT) is a network of physical objects embedded with electronics, soft-
ware, and network connectivity. It allows physical objects to collect and exchange data, and to
be remotely sensed and controlled across the network infrastructure. IoT technologies combine
the physical world with computer-based systems, creating countless opportunities for innova-
tive applications. However, since IoT devices often have access to assets such as sensitive data,
cyber-physical systems, and user credentials [10], they are valuable targets for attackers. IoT de-
vices commonly suffer from inadequate hardening and infrequent patching. Developing security
techniques for IoT devices is critical yet complex, as their resource constraints make defending
themselves a challenge.

Attack campaigns aimed at compromising IoT devices often involve multiple steps to establish a
foothold in the target system. A collection of these steps is called a multi-step attack or multi-stage
attack [19, 38, 48]. For instance, in botnet campaigns such as Reaper [25] or Mozi [41], the attacker
starts by scanning ports for any vulnerable entry points of the target device, then attempts to take it
over by performing dictionary attacks [44] or zero-day attacks [3]. Once the attacker establishes a
foothold, it can maintain persistence in the system to perform actions such as spreading malware to
other devices, exfiltrating confidential data, or stealing credentials. We refer to the steps executed
by the attacker to establish a foothold in the targeted system as the early stages and the subsequent
steps as the later stages. Early detection of malicious behavior is critical for spotting potential
attacks and preventing the spread of attack effects.

However, it is challenging to detect early-stage threats with both high precision and high recall.
In other words, it is difficult to achieve low false positives (FPs) and false negatives (FNs) at the
same time. The reason is that to gain a foothold in the target system, the adversary typically utilizes
sophisticated techniques to evade the network intrusion detection system (NIDS), such as
performing stealthy attacks to camouflage their activities (e.g., distributed SSH brute-forcing [21])
or exploiting completely unknown device vulnerabilities (e.g. zero-day attacks) [25, 42, 45].

Some existing work makes use of deep neural networks (DNNs) that are better at learning
complex abnormal patterns for network intrusion detection, such as HAM (Hierarchical Attention
Model) [29] and SAAE-DNN [50], which use a stacked autoencoder and a gated recurrent unit to
strengthen the traffic feature learning, respectively. However, to detect such attacks and reduce
FNs, intrusion detectors that are optimized too strict on the threshold of anomaly class may also
falsely identify legitimate changes and noise in the actual network environment as intrusions, thus
generating a significant number of FPs and low F1 score [20]. Furthermore, as machine learning
(ML) models are increasingly used as detectors, an attacker also attempts to evade detection by
crafting adversarial samples which are typically created by adding adversarial perturbations to the
original non-adversarial data (clean samples) with the intention of causing misclassification [14,
31, 51]. Existing IoT early defense efforts against early-stage attacks rarely consider this new type
of threat.

In this article, to address those issues, we propose an ARIoTEDef (Adversarially Robust IoT
Early Defense) system against a cyber kill chain. A cyber kill chain is a framework to break down
a complex cyber attack into mutually non-exclusive stages or layers [52]. We focus on a cyber

ACM Trans. Internet Things, Vol. 5, No. 3, Article 15. Publication date: June 2024.


https://doi.org/10.1145/3660646
https://doi.org/10.1145/3660646

ARIoTEDef: Adversarially Robust loT Early Defense System 15:3

Reconnaissance B: 0.466---
_| ;51 Window [ ] . __@ R:0.412--
Manager iz S 1: 0.031--

Captured Window Action (2. PerStepd Event | 4: 0.087.-
Packets (Feature Vector) Detectors

i Word (¢=1) oo Sequence Source IP Address

H B:0.4, 0.1, 02, 0.5, ®>0 Analyzer Timestamp

i o R03,,03,02,_04, r

Embeddi I.o.1, 03, 02, 0.0, __, 0 — —
oo i ‘ mbedding ,F.A:ov_z 03 04 0.1 ‘ Translatmn/ (O l

Sequence ! t R Tagged Sequence > Detector
of Events i Hyperparameter d  Sentence of Events =/ Updater

Fig. 1. Architecture of ARIoTEDef.

kill chain consisting of three stages where networking communication is involved: early-stage
reconnaissance, early-stage infection, and later-stage action. The ARIoTEDef system is designed to
identify more infection anomalies through the following process (Figure 1):

—First, we use three independent binary classifiers as per-step detectors to detect malicious
network traffic in three stages: reconnaissance, infection, and action.

—Second, we generate several sequences of network events from the probabilities output by
per-step detectors. Each event contains four probability features, indicating the probabil-
ity that the traffic belongs to the four categories of reconnaissance, infection, action, and
benign.

—Hereafter, we use a sequence analyzer to further identify infection events by traversing the
log of the events backward when detecting anomalies related to the action stage of the kill
chain. The main purpose of this step is to detect early-stage infection events and normal
events that were misclassified by the infection detector.

—Finally, according to our designed self-evolution strategy, we retrain the infection detec-
tor with identified events to improve its classification performance on clean samples and
robustness to adversarial evasion samples.

Essentially, when the per-step detector first encounters an unknown early-stage infection pat-
tern, it may not achieve high recall. However, once the sequence analyzer recognizes the presence
of an early-stage infection through the later-stage action pattern, the corresponding early-stage
infection pattern is identified and the infection detector is prompted to learn it. As a result, ARIoT-
EDef will be capable of recalling such early-stage infection attacks later on. The main challenge is
to correlate events in two different stages with potentially long intervals (e.g., correlating a UDP
flood in the action stage with several dictionary attack packets present in the infection stage).

To address this problem, we adopt the sequence-to-sequence (Seq2Seq) translation model
used in language translation tasks. We introduce a novel probability-based embedding method
to encode past events into kill chain steps and design an attention-based infection identification
algorithm to correlate the encoded events with long-term dependencies in different steps. Exper-
imental results show that our designed Seq2Seq-based analysis algorithm helps to identify infec-
tion events leading to malicious action events. Moreover, our proposed self-evolution mechanism
based on identified infection events also improves the robustness of the infection detector against
evasion attacks.

As ARIOTEDef is an NIDS that deploys pre-trained lightweight ML models capable of rapidly
detecting intrusion events, it is friendly to resource-constrained IoT scenarios, and only self-
evolution involves a small amount of computation. In particular, we note that, depending on the
specific hardware characteristics of the IoT devices, training involved in the evolution can also be

ACM Trans. Internet Things, Vol. 5, No. 3, Article 15. Publication date: June 2024.



15:4 M. Huang et al.

performed on an edge server and not necessarily directly on the IoT devices, as in the case of the
device-edge split architecture for IoT host-based intrusion detection [37]. In addition, our system-
atic and automated method for early detection and self-evolution is beneficial to organizations that
perform threat hunting [47]. According to a survey [8], many organizations value threat hunting
because it is helpful for early detection and faster repair of vulnerabilities. However, 88% of the
respondents say that their current systems for threat hunting are immature in terms of formal
processes and automation. It shows the value of ARIoTEDef since it meets such requirements.
In summary, we make the following contributions:

— We propose ARIoTEDef, an adversarial robust NIDS framework, to detect infections in the
early stage of multi-step attacks against IoT devices. We are the first IoT early defense
work that considers the robustness of the detector against ML-based adversarial infection
attacks.

— We design an event sequence analysis algorithm based on Seq2Seq structure and an atten-
tion mechanism to identify infection events that already existed by linking past events. It
benefits the detection of infection events that were previously misclassified by the infection
detector.

— We carry out comprehensive experiments to assess the effectiveness and robustness of AR-
IoTEDef. Results show that our approach is feasible and effective without loss of generality.
The self-evolution strategy also improves the performance when applied to other NIDSes.

—We implement a proof-of-concept of the ARIoTEDef system and publicly release it.

An extended abstract of this article was published in ESORICS [28]. The main differences be-
tween this work and the conference version are as follows. First, we added two brand new sections,
Sections 7 and 8, focusing on enhancing self-evolution strategies to reduce FNs and validating the
robustness of our defense system against ML-based adversarial and non-adversarial evasion at-
tacks by presenting comprehensive experimental results. Detailed computation, storage, time cost
analysis, and robustness performance comparison with other robust training solutions have also
been provided. Second, we describe the algorithm principle of adversarial evasion attacks in the
new Section 3.2. In addition, we present an interpretation of our defense system’s ability to be
robust against multiple evasion attacks from an architectural design perspective in Section 4.2.
Finally, we optimized the entire content, including emphasizing motivation and contributions re-
lated to robustness in Section 1, improving preliminaries in Section 3, refining threat models and
clarifying system architecture in Section 4, and enhancing algorithm formalization in Section 5.
We provide some of the abbreviations and notations used throughout this article in Table 1.

2 RELATED WORK
2.1 NIDS for loT

Kalis [33] is a self-adapting, knowledge-driven NIDS system, which collects knowledge about the
network’s features autonomously and selects relevant detection techniques. Fu et al. [12] designed
an NIDS that models the steps of a protocol with an automaton. Upon receiving a packet, the
automaton corresponding to the packet protocol executes a transition. If there is any deviation
in the execution of a protocol, the NIDS raises the alarm. DoT [39] is a federated self-learning
anomaly detection system, which builds on device-type-specific communication profiles and raises
an alarm upon detecting deviations concerning these profiles. To capture diverse device-type-
specific communication profiles, it uses a federated learning approach for aggregating profiles
from large numbers of clients. Unlike those systems, the focus of ARIoTEDef is to identify infection
events from an attacker’s actions, which is independent to the goals of those systems.

ACM Trans. Internet Things, Vol. 5, No. 3, Article 15. Publication date: June 2024.



ARIoTEDef: Adversarially Robust loT Early Defense System 15:5

Table 1. Abbreviations and Notations

Abbreviation | Meaning Notation |Meaning

IoT Internet of Things x Clean Sample
ARIOTEDef | Adversarial Robust IoT Early Defense € Perturbation Budget
NIDS Network Intrusion Detection System | ||§|| < € | Adversarial Perturbation
ML Machine Learning x* = x + & | Adversarial Sample

DL Deep Learning w Window

Seq2Seq Sequence-to-Sequence e Event (Class Probability Distribution for the Window)
LSTM Long Short-Term Memory e Event Sequence

TP True Positive d Decimal Places

FN False Negative z Word (Embedded Event)
TN True Negative z Word Sequence

FP False Positive y Tag

FNR False Negative Rate = % y Tag Sequence

FPR False Positive Rate = % B Benign

Recall Recall = % R Reconnaissance
Precision Precision = % I Infection

F1 F1 score = 2 %}M A Action

The Abbreviation is DNN, corresponding Meaning is Deep Neural Netwok.

2.2 Detection of Multi-Step Attacks

BotHunter by Gu et al. [16] detects malware infections by tracking communication flows be-
tween internal assets and external entities and applying dialog-based correlation. Haas and Fischer
et al. [17] proposed a graph-based alert correlation (GAC). They use a graph-based clustering al-
gorithm to cluster alarms based on their similarity. Then, each cluster is labeled considering the
communications between attackers and victims within the cluster. Finally, the clusters are corre-
lated based on the labels. Milajerdi et al. [34] proposed Holmes, which models the attacks with
a kill chain. From audit logs, they generate a provenance graph, find adversarial activities based
on pre-defined rules, and map the activities to the corresponding kill chain step. Han et al. [18]
proposed Unicorn, which exploits provenance graphs to detect advanced persistent threats and
uses the clustering approach to detect anomalies without prior knowledge of advanced persistent
threat patterns. Our work differs from those approaches in three aspects:

— Goals: They use correlation algorithms to automatically detect multi-step attacks, whereas
our approach aims to automatically identify infection vectors and update NIDS after seeing
anomalies in the action step.

— Logs: Although correlation algorithms can be used to identify infection windows, these
methods primarily rely on host events, such as process-related events. Applying such meth-
ods requires scaling IoT devices, which is something we want to avoid.

— Techniques: The preceding methods mainly rely on graphs to analyze the causality between
events, whereas ARIoTEDef uses an attention mechanism-based Seq2Seq neural network
to correlate event windows.

3 PRELIMINARIES
3.1 Cyber Kill Chain

A cyber kill chain refers to the multi-step chain of activities an attacker conducts to establish a
persistent and undetected presence in a targeted cyber infrastructure [52]. Although the number
and the name of steps vary, these kill chains commonly break down an attack into the following

ACM Trans. Internet Things, Vol. 5, No. 3, Article 15. Publication date: June 2024.



15:6 M. Huang et al.

five steps: reconnaissance, infection, lateral movement, obfuscation, and actions on targets [19,
48]. Since an NIDS can issue alerts on reconnaissance and infection steps with higher priority and
can also detect network attack actions such as DDoS, in our work, we model a multi-step attack
using a kill chain consisting of the following three steps:

— Reconnaissance: In the first stage, the attacker collects information about the target system
to identify the target’s weaknesses and potential attack opportunities. This may involve
searching publicly available information, scanning networks and systems, collecting social
engineering data of target employees, and so on.

— Infection: In this stage, the attacker selects the appropriate attack tool to weaponize the pre-
vious reconnaissance results, such as embedding malware into documents, links, or other
carriers, then delivers them to the target system through e-mail attachments, malicious
links, infectable external devices, or other means.

— Action: In the final stage, the attacker executes attacks based on their ultimate goals, such
as data exfiltration, system disruption, and network spreading. The specific actions taken
will depend on the attacker’s motivations, such as directing bots to perform a DDoS attack
with UDP flooding in botnets.

The reconnaissance and infection stages are early stages in a cyber attack, as they occur before
the attacker has gained a foothold in the target system. In contrast, the action stage occurs after
the attacker has established a foothold and is considered a later stage in the multi-step attack
process.

3.2 Adversarial Evasion Attacks

Adversarial evasion attack refers to a type of attack in which attackers try to use adversarial ML
techniques to evade detection by security systems. Concerning NIDS, these attacks are designed
to make malicious activities or network anomalies appear benign or normal, thus bypassing ML-
based network intrusion detection algorithms. Unlike conventional evasion attacks based on tech-
niques such as packet segmentation, encryption, and obfuscation, in an adversarial evasion at-
tack [13, 31, 35, 43], the attacker aims to craft the adversarial sample x* by adding a slight adver-
sarial perturbation § to the original input x, also known as the clean sample. Commonly, techniques
used for generating adversarial samples in adversarial ML can be divided into two types according
to the goal of the adversary:

— Untargeted attack: The attacker aims to find a perturbation that maximizes the model’s
prediction error L without focusing on a particular target class. The optimization objective
is shown in Equation (1), where fy denotes a DNN model with trainable parameters 0, €
denotes the [, norm-measured maximum value of allowable perturbation &, y;y. is the
ground truth label of x, and L is the loss function, which is set to cross-entropy loss by
default.

n}:}X L(fG(X*)a ytrue) = | max L(f@(x +6), ytrue) (1)

1611 <e

— Targeted attack: The attacker aims to find a perturbation that leads to the desired misclas-
sification to the target class y;4rge¢. The optimization objective is shown in Equation (2).

I’I}l(i*n L(fo(x"), ytarget) = min L(fp(x +9), ytarget) (2)

1511y <e

In other domains, such as multi-class image classification, adversarial samples can often be
constructed from clean samples from any class. However, for the binary (benign/malicious)

ACM Trans. Internet Things, Vol. 5, No. 3, Article 15. Publication date: June 2024.



ARIoTEDef: Adversarially Robust loT Early Defense System 15:7

Table 2. Black-Box Adversarial Evasion Attacks against Per-Step Detectors

Reconnaissance Detector | Infection Detector Action Detector
Input € IterNum  QueryNum
TP FN  Recall (%) | TP FN Recall (%) | TP FN Recall (%)
Clean - - - 3,064 13 99.58 126 192  39.62% | 112 11 91.06
Boundary 1.0 500,000 100,000 3,064 13 99.58 126 192  39.62% | 112 11 91.06
HopSkipJump - 500,000 100,000 3,064 13 99.58 126 192 39.62% |112 11 91.06

classification-based NIDS, adversarial attacks usually refer to adversarial evasion attacks, and ad-
versarial samples used in adversary attacks are usually only constructed from malicious samples,
to mislead target detection into predicting them as benign. Thus, the adversarial evasion sample
x* = x + § can be generated according to the optimization objective of the untargeted attack with
the ground truth label y;,,. setting to malicious, or be constructed according to the optimization
objective of the targeted attack with the target label y;4, 4 setting to benign. In this work, we only
consider adversarial evasion samples and abbreviate them as adversarial samples. For example, we
refer to adversarial evasion samples constructed from clean samples originally belonging to the
infection category as adversarial infection samples.

According to the level of knowledge an adversary has about the target system, the threats faced
by the NIDS from adversarial evasion attacks are mainly divided into the following two types:

— White-box adversarial attack: The adversary has complete knowledge and access to the
target system, including its architecture, parameters, and internal workings. With this in-
formation, the attacker can craft highly optimized adversarial samples.

— Black-box adversarial attack: The attacker has no knowledge about the target system. Typ-
ically, the attacker only has access to the input and output of the model and relies on tech-
niques such as input manipulation, query optimization, and exploration to understand the
target model and craft adversarial samples based on the local surrogate model.

In our work, we focus only on white-box adversarial attacks for two reasons. First, a model’s
resilience to white-box attacks provides a more comprehensive evaluation of its robustness. If a
model can withstand white-box attacks, it is more likely to be robust against various other types
of attacks as well. Second, our preliminary experiment results show that the per-step detectors,
when trained according to a standard approach without self-evolution, are robust against black-
box adversarial attacks, such as Boundary [4] and HopSkipJump [6]. Table 2 shows that such
black-box attacks are unable to evade the per-step detectors even with large perturbation budgets,
iteration rounds, and query times. However, they are not robust against white-box adversarial
attacks.

3.3 Long Short-Term Memory Based Seq2Seq Model with the Attention Mechanism

A Seq2Seq model consisting of two main components, an encoder and a decoder, is a deep learn-
ing (DL) model commonly used for tasks involving sequence data, such as machine translation,
text summarization, and speech recognition [49]. In our work, we build both the encoder and de-
coder structures of the Seq2Seq model on typically Long Short-Term Memory (LSTM) units [15]
and refer to it as an LSTM-based Seq2Seq model (Figure 2). The two main components of the LSTM-
based Seq2Seq model are as follows:

— Encoder: In the Seq2Seq model, the unified goal of the encoder is to capture essential infor-
mation from the entire input (word) sequence and generate a representation. In the LSTM-
based Seq2Seq model, hy is the initial hidden state of the encoder. Each element of the input

ACM Trans. Internet Things, Vol. 5, No. 3, Article 15. Publication date: June 2024.



15:8 M. Huang et al.

i
Encoder @11 @12 Qp—1p-1 @1 Output Sequence
: : : oL V2
a1 A2 Op-1 Ain 1o {1 A
Q0,1 Qo2  Aon-1 Aon | — |
) : , LU < s

i B 1
} hO{LSTMJ m -[LSTM] ha, .. h"‘ Fn_ i So {LSTMJ A {LSTM] 52, S
| } } | A ! L]

Z Z Zn : Yo Y1

ilnput Sequence i Decoder

Fig. 3. LSTM-based Seq2Seq architecture with attention.

sequence {z;}! , is fed into the LSTM cell one by one to generate encoder hidden states
{hi}1,, and the final hidden state h, of the LSTM is used as the target representation.

— Decoder: In the LSTM-based Seq2Seq model, the decoder uses the representation h, gener-
ated by the encoder as the initial decoder hidden state sy, and generates the output sequence
{yi}!_, step by step, with each step representing a timestep. {s;};_, denotes the decoder’s
hidden states. During training, the decoder is fed with the ground truth output sequence up
to the current timestep to predict the next element. However, during inference or testing,
the decoder uses its own predictions as input for the next timestep. The decoder generates

an element at a timestep until a pre-defined maximum length is reached.

However, Cho et al. [7] have shown that the performance of the model degrades as the length n
of the input sequence increases, which is called the bottleneck problem. The reason for this problem
is that information loss occurs in the representation due to its fixed size. Specifically, it often fails
to capture the interdependencies between elements that are far apart in a sequence.

To enhance the performance of the Seq2Seq model, an attention mechanism 2, 30] is often incor-
porated between the encoder and decoder (Figure 3). The motivation for the use of the attention
mechanism is to make the decoder focus on different parts of the input sequence according to
relevance while generating each element in the output sequence. To this end, the attention mech-
anism requires the decoder not only to refer to the current hidden state s of the decoder but also
to a context vector c at each timestep, which is a weighted average of all hidden states {h;}? , of
the encoder. Then, the context vector ¢ and the hidden state vector s of the decoder are concate-
nated and given as input to the LSTM cell. With the context vector, the decoder will focus more
on certain hidden states of the encoder related to the current state of the decoder.

For example, when the next element to be returned by the decoder is yi, k € {1,2,...,t}, each
hidden state of the encoder h;,i € {1,2,...,n}, is associated with an attention weight aj_; ;, which
reflects the relevance of the encoder hidden state h; to the current decoder state s;_;. Attention
weight is determined by the alignment score that quantifies the amount of attention. The most
widely used scoring function is the dot product, by which the alignment score is obtained by
multiplying the hidden states of the encoder with the state of the decoder. Every time the decoder

ACM Trans. Internet Things, Vol. 5, No. 3, Article 15. Publication date: June 2024.



ARIoTEDef: Adversarially Robust loT Early Defense System 15:9

predicts an element in the output sequence, a set of attention weights is updated according to the
latest hidden state of the decoder to obtain a new context vector. Therefore, when the length of
the output sequence is t, t context vectors will be calculated according to Equation (3).

e = Y aesihik = {12, 1) 3)
i=1

4 ARCHITECTURE OF ARIOTEDEF

In this section, we introduce the design principles and the framework of ARIoTEDef. We first de-
scribe the threat model faced by ARIoTEDef and its main properties, then describe the architectural
components of ARIoTEDef.

4.1 Design Principles

4.1.1 Threat Model. ARIoTEDef is designed to analyze network packets exchanged between the
protected network and the Internet. We assume that ARIoTEDef is not compromised, and therefore
it does not manipulate the exchanged packets. We consider two main evasion attack models: the
black-box non-adversarial attack model and the white-box adversarial attack model:

— Black-box non-adversarial attack model: We assume that attacks are launched from the In-
ternet by using remote network access. In other words, we assume that IoT devices are
not compromised when they are initially deployed in the network, and that the attacker
does not have physical access to the IoT devices or direct access to the wireless network
to which these devices are connected. In this work, we refer to attack samples made based
on this kind of threat model as black-box non-adversarial attack samples or clean evasion
samples.

— White-box adversarial attack model: We assume that the attacker has complete knowledge
of the architecture, algorithms, and parameters of the target model. These attacks exploit
vulnerabilities in DNN-based classifiers to construct adversarial evasion samples from the
clean evasion samples. In this work, we refer to attack samples made based on this kind of
threat model as white-box adversarial attack samples.

4.1.2  Main Properties. To be strong against threats, ARIoTEDef is designed to adhere to the
following properties:

— Network based: It works with network packets and does not require any change to IoT de-
vices, avoiding any computational burden on IoT devices and enabling instant deployment.

— Anomaly based: 1t is capable of detecting unknown patterns and is also appropriate for the
simple communication behaviors of IoT devices.

— Cyber kill chain based: It understands multi-step attacks based on the cyber kill chain and
deploys classifiers specialized for these steps.

— Infection identifying: When a later-stage action event of a multi-step attack is detected, it
analyzes past events to identify infection events.

— Self-evolution: The infection detector is retrained with identified infection events.

— Adversarial robust: The evolved infection detector is robust to adversarial evasion attacks
using adversarial samples.

4.2 System Architecture

ARIoTEDef consists of four main components (see Figure 1): Window Manager, Per-Step Detectors,
Sequence Analyzer, and Detector Updater. The detailed workflow of each module is as follows.

ACM Trans. Internet Things, Vol. 5, No. 3, Article 15. Publication date: June 2024.



15:10 M. Huang et al.

4.2.1 Window Manager (Packets — Window). ARIOTEDef works on a flow-based window,
where a network flow is defined as a 5-tuple consisting of the used protocol, source/destination IP
address, and source/destination port. The window manager is responsible for collecting packets
for each flow and sliding the window according to two parameters: window output period and
window length. At each window output period, the window manager outputs a window vector.
The elements of this window vector correspond to the 84 flow features considered by the network
traffic analyzer CICFlowMeter [27]. The value of each feature in a window vector is calculated
from all packets within the window length.

For example, suppose that the window output period is 2 and the window length is 5. When
outputting a window at time ¢t = 5, the window vector consists of flow feature values computed
from all packets captured between t = 0 and t = 5. Since the window output period is 2, the next
window vector will be output at ¢ = 7, where the feature values are computed from all packets
captured between t = 2and t = 7.

4.2.2  Per-Step Detectors (Window — Event). The main purpose of per-step detectors is to map
an arbitrary window to one or more steps in a cyber kill chain. In other words, the packets within
a window may only correspond to one step in a multi-step attack, or may correspond to multiple
steps at the same time. In this work, we model a multi-step attack as three steps in a cyber kill
chain: reconnaissance, infection, and action. To this end, we design three binary classifiers, called
reconnaissance detector, infection detector, and action detector, respectively, as per-step detectors
in ARIOTEDef to detect whether there is a corresponding anomaly in an arbitrary window. Once
a window vector is given to ARIOTEDef, each per-step detector takes it as input and determines
whether it contains any anomalous patterns for the corresponding step. If so, ARIoTEDef marks
the input window vector with the name of the corresponding step.

For example, we call a given window a reconnaissance window if the reconnaissance detector
detects an anomaly from the window vector. If the infection detector also detects an anomaly
from this window vector, we call it both a reconnaissance window and an infection window. This
process provides a precedence relation between windows according to the kill chain steps.

The rationale behind this modular design is as follows. First, the detectors specialized in differ-
ent steps are more effective, as they have higher accuracy than a single monolithic detector that
detects all events of the steps altogether [46]. Second, ARIoTEDef mainly focuses on preventing
infections by identifying infection patterns and improving the infection classifier. The modular ap-
proach allows for an efficient evolution of the system as whenever an anomaly at a step is detected,
ARIOTEDef can upgrade the infection detector individually without affecting the other detectors.
Third, such modular design helps with explainability for attacks. With the detection results, our
modular architecture can provide information about the attack step (e.g., Reconnaissance, Infec-
tion, or Action) that the adversary is performing, which is helpful to understand the attack in detail
and possibly contain/block the attack. Finally, in terms of security, ARIoTEDef is more resilient to
attempts aimed at evading detection as the attack needs to avoid detection by all detectors.

Since there may be FPs or FNs in the output of per-step detectors, we let each per-step detector
not only output the binary classification result (benign/malicious) but also output the confidence
score—that is, the score level of the detection result, to prompt FPs and FNs. In other words, each
per-step detector outputs a score for the malicious class and a score for the benign class. ARIoT-
EDef takes the product of the benign scores output by the three per-step detectors as the global
confidence score of the benign category, then applies the softmax function to normalize the con-
fidence scores of the four categories of reconnaissance, infection, action, and benign to produce a
probability distribution. We call an output of per-step detectors module an event that contains a
window, three labels (indicating whether the window belongs to each per step, respectively), and
four probabilities (normalized confidence scores for the four categories).

ACM Trans. Internet Things, Vol. 5, No. 3, Article 15. Publication date: June 2024.



ARIoTEDef: Adversarially Robust loT Early Defense System 15:11

4.2.3 Sequence Analyzer (Sequence of Events — Identified Infection Events). To correct FPs and
FNs of the infection detector, we design an event sequence analyzer to identify infection events
that lead to detected action events. Our proposed infection identification algorithm is based on a
Seq2Seq translation model, which is implemented based on the LSTM cells and an attention mech-
anism. This algorithm takes a sequence of past events with a certain length as input. Each event
is represented as a four-dimensional probability vector consisting of four confidence scores as-
signed by per-step detectors. Then, the identification algorithm analyzes the input event sequence
according to the entire context and predicts a unique step in the kill chain for each event, resulting
in an output step sequence with the same length as the input. Finally, ARIoTEDef selects the steps
predicted to be infection from the output step sequence and returns the corresponding infection
events.

4.2.4 Detector Updater (Identified Infection Events — Updated Infection Detector). The detec-
tor updater is responsible for updating the infection detector using the infection events tagged
by the sequence analyzer. This module first assigns infection labels to infection windows in the
identified infection events. Then, according to the adopted self-evolution strategy, it uses these
newly prepared infection window samples and original training samples for the infection detec-
tor as the training set to retrain the binary classifier of the infection detector. In addition, the
self-evolution of infection detectors also brings sustainable growth in adversarial robustness to
the infection detector. On the one hand, benefiting from the introduction of the attention mech-
anism, the sequence analyzer can combine the long context information in the event sequence to
focus on the non-sensitive features of the input sample, thereby identifying more complex mali-
cious traffic patterns that are difficult to be identified by the infection detector, such as adversarial
evasion samples. As the infection detector is updated with relabeled adversarial evasion samples,
the adversarial robustness of the model is also enhanced in the process of forcing the detector to
learn small changes in the input space. On the other hand, since the adversarial samples used by
the evolution of the infection detector come from the attacker rather than actively constructed
by the defender, it avoids the high time overhead required for adversarial sample generation and
enhances the adaptability to constantly updated adversarial attack methods.

5 FORMALIZATION OF ARIOTEDEF

In this section, we describe in detail the algorithms of ARIOTEDef. We first formally define the
problem to be solved and then present the solutions we propose through a probability-based
embedding algorithm and an attention-based translation algorithm. Finally, we discuss the self-
evolution strategy for the infection detector.

5.1 Problem Definitions
In the following definitions, we use the notation a.b to indicate an attribute b of a.
Definition 1 (Tag). Tag refers to the label assigned to the event by the sequence analyzer. We

denote the collection of tags that can label events by the set £ = {B, R, I, A}, where B, R, I, A denote
Benign, Reconnaissance, Infection, and Action, respectively.

Definition 2 (Event). An event e = (w, [, p,t) in the event set & is a tuple with four attributes:

—e.w is a vector representing the window in the event e.

—e.l =(r,1,a) is a tuple with three attributes indicating the label of the window e.w. Each
attribute indicates the result of the window e.w being predicted by the per-step detector
and the attribute values e.l.r,e.l.i,e.l.a € {0, 1}. Taking e.l.r as an example, when e.l.r = 0,

ACM Trans. Internet Things, Vol. 5, No. 3, Article 15. Publication date: June 2024.



15:12 M. Huang et al.

it means that e.w is predicted as benign by the reconnaissance detector; when e.l.r = 1, it
means that e.w is predicted as malicious by the reconnaissance detector.

—e.p=(b,r,i,a) is a tuple with four attributes representing the confidence scores of the
windows e.w on the four categories. The attribute values e.p.b,e.p.r,e.p.i,e.p.a de-
note the probability given by the per-step detector that the window e.w belongs to
the benign, reconnaissance, infection, and action classes, respectively. Attribute values
ep.b,epr,epiepac[0,1]andepb+epr+epi+ep.a=1.

—e.t represents the tag assigned to the event e by the infection identification algorithm,
where e.t € L = {B,R,I, A}

Our goal is to identify infection events in the early stages of the cyber kill chain by backtracking
past events from anomalies in known action steps. To this end, we model the backtracking process
as an event tagging problem, described as follows.

PrROBLEM 1 (EVENT TAGGING PROBLEM). Lete = {ej,e,...,e,} € & be an input event sequence
where & is a set of all event sequences over the event set &, and lety = {y1,y2,...,yn} € L* be an
output tag sequence where L* is a set of all tag sequences over the tag set L. Our goal is to design a
function g : & — L* that takes an input sequence e and outputsy.

The main challenge for solving this problem is the long-term dependencies between events.
Specifically, infection events always precede action events, but the time interval between these
two events can be long. For example, in the Mirai botnet attacks [1], the device, to be used as a
bot, is first infected by the attacker using a dictionary attack. Then, the attacker can launch a UDP
flood attack toward the victim a long time after the infection event. To this end, ARIoTEDef should
be able to correlate distant events. For example, after detecting a UDP flood pattern in the action
step, a dictionary attack pattern in the infection step can be identified by backtracking past events.

To address this issue, we use language translation techniques in natural language processing,
since even words that appear to be far apart can have significant relationships in natural language.
Many techniques have been proposed to capture such dependency [5]. Our idea is that if we can
model events as words and event sequences as sentences in the language, then we can address our
problem by using language translation techniques. To this end, we split the preceding Problem 1
into two problems to solve one by one:

(1) Model the event as a representation vector that can reflect the correlation information
between events, just like the representation vector of words in natural language processing.

(2) Translate the event sequence with a long-distance relationship between events into an
equal-length tag sequence—that is, predict a category label for each event in the input
sequence.

We formalize the preceding two subproblems as follows.

SUBPROBLEM 1 (EMBEDDING PROBLEM). Let e = {ej,ey,...,e,} € E be an input event sequence
of length n, and letz = {z1, 2, ..., zn} € Z* be an input word sequence, where Z* is a set of all word
sequences over an input word set Z. Our goal is to define an input word set Z and an embedding
function e : & — Z*, which takes e as input and outputs z.

SUBPROBLEM 2 (TRANSLATION PROBLEM). Let z = {z1,23,...,2,} € Z* be an input word se-
quence, and lety = {y1, Yz, ..., yn} € L" be an output tag sequence. Our goal is to design a transla-
tion functiont : Z* — L* that takes z as an input and outputs'y, thus labeling all of the embedded
windows represented as words in the word sequence z.

ACM Trans. Internet Things, Vol. 5, No. 3, Article 15. Publication date: June 2024.



ARIoTEDef: Adversarially Robust loT Early Defense System 15:13

5.2 Solution
Our solution to the preceding problems consists of the following three steps:

— Probability distribution assignment: Each event is assigned a probability distribution e.p
indicating the confidence that the window e.w belongs to each class.

— Probability-based embedding: Encodes the probability distribution e.p of an event e into a
word in the language.

— Attention-based translation: Translates a sequence of embedding events represented by
words into corresponding tags, with each word corresponding to only one tag.

5.2.1 Probability Distribution Assignment. The per-step detectors in ARIoTEDef are responsi-
ble for assigning a probability distribution to each event. Recall that the per-step detectors detect
reconnaissance, infection, and action patterns in a given window. Each detector is a binary classi-
fier for benign and malicious events, trained with window samples from the corresponding step.
For instance, the classifier of the infection detector is trained according to a standard approach
on an infection window dataset, which consists of normal window samples and abnormal win-
dow samples from telnet dictionary attacks, Log4j attacks, or other attacks aimed at infecting IoT
devices. The classifier structure of each per-step detector is customizable. However, note that the
performance of the classification algorithm of the per-step detector will affect the performance of
ARIOTEDef, because the infection identification algorithm in the sequence analysis module is run
over the output of the per-step detectors. Our results show that LSTM-based per-step detectors
perform best for classification (see Section 6.4).

Each per-step detector assesses the probability of the window belonging to its corresponding
step. For instance, the reconnaissance detector might assign a 0.68 probability to the window
being reconnaissance, whereas the infection detector could assign a 0.53 probability to the
window indicating infection. We convert the probabilities into one probability distribution using
the softmax function and finally output the distribution as an event. For example, an event might
carry a probability distribution of (0.46,0.31,0.11,0.12), signifying that the probabilities of the
corresponding window being benign, reconnaissance, infection, and action are 0.46, 0.31, 0.11,
and 0.12, respectively.

5.2.2  Probability-Based Embedding. To address Subproblem 1, we design a novel probability-
based embedding algorithm, as shown in Algorithm 1.

We represent each event e in the input event sequence as a word z in the input word sequence,
which is a vector of four probabilities summing to 1. One issue is that the preceding input word
set is infinite, which would be inappropriate for a language translation model based on finite input
word sets. Thus, we change the input set to be finite. To this end, we introduce a hyper-parameter d,
which is the number of decimal places to round off the probabilities. Given d € N, let P be {p|p =
round(q,d),0 < g < 1}, where round(a, b) is a function that rounds off a to b of decimal places.
With d, the input set is changed to Z = {(b,r,i,a)|b,r,i,a € P and b +r + i+ a = 1}. However,
rounding off does not guarantee that the sum of the rounded probabilities is always 1. To avoid the
case that the sum is not 1, we first sort the probabilities by the decimal part to be rounded off. Then,
we round up the first one or two probabilities or down the last one or two to ensure that the sum
of the resulting probabilities is 1. For example, (0.466...,0.412...,0.031...,0.087...) became
(0.5,0.4,0.0,0.1) when d = 1 (see the boldface numbers in Figure 1). Note that d determines the
number of input words in the word set.

5.2.3 Attention-Based Translation. To address Subproblem 2, we apply the attention mechanism
to the LSTM-based sequence analyzer to label the events in the input event sequence one by one.
The flow of infection event identification is as follows (see Algorithm 2):

ACM Trans. Internet Things, Vol. 5, No. 3, Article 15. Publication date: June 2024.



15:14 M. Huang et al.

ALGORITHM 1: Probability-Based Embedding e

Input: Sequence of events s = (eq,...,e,) and d
Output: Sequence of words (Sentence) z = (z1, . .., 2zn)
Initialize: z[:] =[]

1:
2:

10:
11:
12:
13:
14:
15:

3
4
5
6:
7
8
9

fork=1,2,...,ndo
sort ex.p.b, ex.p.r, ex.p.i, ex.p.a by the decimal part to be rounded off in descending order
if more than two decimal parts are larger than 5 then
Round down the last one or two probabilities to ensure sum = 1
Round off the rest of the probabilities
else if more than two decimal parts are smaller than 5 then
Round up the first one or two probabilities to ensure sum = 1
Round off the rest of the probabilities
else
Round off the probabilities
end if
> r(a, b): the result of rounding up/down/off a to b of decimal places
zr = (r(eg.p.b,d),r(er.p.r,d), r(eg.p.i,d), r(eg.p.a,d))
Add a word zj. to Sequence z
end for

ALGORITHM 2: Attention-Based Translation ¢

Input: Sequence s; = (e1, ..., epn), Decimal Place d
Output: Sequence s,
Initialize: so[:] =0

1:
: Plsem = LSTM(se)

: Fattention = Attention(rigs,)
: rpp = Feedforward(rattention)
s rsm = Softmax(rpr)

[
(=]

I R SRR

se = ProbabilityBasedEmbedding(s;, d)

B> rem = (Pbl,PrlsPil,Pal), cees (anaprnapin,Pan)

:fork=1,2,...,ndo

ep.t = argmax((pbk’prk’pik?pak))
Add ey to sequence s,

: end for

— Input: The input sequence consists of a series of events, each of which has a probability
distribution assigned by the per-step detectors.

— Embedding: Events in the input sequence are converted into words one by one, and each
word consists of four probabilities.

— LSTM-based encoder: After embedding the event sequence as a word sequence, the word
sequence is input to the LSTM-based encoder, which outputs a hidden representation that
encodes the information of the entire input sequence.

— Attention: After generating the final hidden state of the encoder, all hidden states of the
LSTM-based encoder and the current hidden state of the decoder are fed into an attention
layer. The attention layer first calculates a set of attention weights, reflecting the relevance
of each hidden state of the encoder to the next output prediction of the decoder. Then, all
hidden states of the encoder are weighted and averaged according to the attention weights,
and the result is output as a context vector.

ACM Trans. Internet Things, Vol. 5, No. 3, Article 15. Publication date: June 2024.



ARIoTEDef: Adversarially Robust loT Early Defense System 15:15

— LSTM-based decoder: The LSTM layer of the decoder takes the current decoder hidden state,
the context vector, and the previous decode word as inputs, and outputs a decoded word
along with the updated decoder hidden state. When the decoder prepares to output a trans-
lated word at each timestep, it needs to recompute its associated context vector until the
output sequence reaches the upper limit.

— Feedforward and softmax: We add a feedforward layer and a softmax layer. They output
four probabilities for each input word. Each probability represents the degree to which an
input word is translated into an output word.

— Output: Finally, each input word representing an embedded event in the input sequence is
translated into the output word representing the tag category with the highest probability.

With the attention mechanism, ARIoTEDef analyzes a given sequence in the context between
events. As words of the same form may have different meanings in the context of the sentence,
events with the same distribution may also belong to different steps in the context of the sequence.
For example, some events with the same distribution may belong to Benign or Infection, depend-
ing on whether an action event is in the sequence or not. In the attention mechanism, the attention
weights are evaluated concerning different steps and positions in sequences. Thus, it helps to dis-
tinguish the differences between the events that have the same distribution but belong to different
steps and identify infection events related to an action event in the sequence.

5.3 Self-Evolution Strategies

The self-evolution strategies are used to guide the detector updater to retrain the binary classifier
of the infection detector with the events identified by the sequence analyzer.

Definition 3 (Evolution Set). Let A be a set of events tagged as infection by the infection detector.
Let B be a set of events tagged as infection by both the infection detector and the LSTM-based
translation model with the attention mechanism. Let C be a set of events tagged as infection by the
infection detector but tagged as benign by the LSTM-based translation model with the attention
mechanism. In general, 8 and C are two subsets of A that satisfy A = B |J C. We label all events
in set B as infection and all events in set C as benign.

We consider three different self-evolution strategies. Let D;,r_sq be the original training set
for training the infection detector:

— Strategy 1: The binary classifier of the infection detector is retrained over a retraining
set, consisting of windows in all events in 8, windows in all events in C, and D;,r_¢rq.
For example, suppose that there are five events ey, e, €3, 4,65 € A (i€, e;.l.i =1 for i =
{1,2,3,4,5}) and the attention-based infection identification algorithm provides the infor-
mation that three events ey, e5, e4 € B C A are infection events (i.e., e;.t = es.t = eq.t = I).
Then, ARIoTEDef updates the infection detector with e;.w, e;.w, e4.w labeled as Infection,
e3.w, es.w labeled as Benign, and Dipr_trq.

— Strategy 2: This strategy is similar to Strategy 1 except that it only uses windows in all
events in 8 and Dj,f_;rq, which adds the information about the true positives (TPs)
to the updated model. In the preceding example, e;.w, e;.w, e,.w labeled as Infection and
Dinf-1rq are used to retrain the infection detector.

— Strategy 3: This strategy is similar to Strategy 1 except that it only uses windows in all
events in C and D;,¢_srq, which aims to reduce the FPs of the updated model. In the pre-
ceding example, e3.w, es.w labeled as Benign and Dy, are used to retrain the infection
detector.

ACM Trans. Internet Things, Vol. 5, No. 3, Article 15. Publication date: June 2024.



15:16 M. Huang et al.

The main purpose of this definition is not only to strengthen the knowledge of infection de-
tectors on known infection patterns but also to identify benign events that are misclassified as
infection by the infection detector so that they can be used to reduce the FPs of the evolved infec-
tion detector.

6 EXPERIMENTS IN THE REGULAR SETTING

This section presents the experimental analysis of ARIOTEDef on the clean dataset without DL-
based adversarial evasion samples. We implement a proof-of-concept prototype and build a testbed
for evaluation using a dataset related to the Mirai botnet [1] and the Log4j attack [36].

6.1 Experimental Setup

6.1.1 Implementation. We use the pcapy library [9] to capture packets and the Keras library [23]
to implement neural networks and other ML-related functions.

6.1.2  Model. The LSTM layer consists of 100 units for our attention-based neural network with
0.5 for the dropout rate and 0.2 for the recurrent dropout rate. The subsequent attention layer uses
a dot product as a scoring function. Finally, the feedforward layer consists of 64 units. We use
sparse categorical cross entropy as the loss function.

6.1.3 Dataset. We generate datasets considering the following two scenarios:

— Mirai botnet campaign [1]: This includes the telnet dictionary attack as an infection ac-
tivity. We use a publicly available IoT intrusion dataset from academia [22]. It contains
captured packets from the real world and consists of diverse types of packets including
benign packets, port scanning packets, telnet dictionary attack packets, and flooding pack-
ets, as separate files. We extract packets from the files and combine them into one dataset.
We label port scanning packets to reconnaissance, the telnet dictionary attack packets to
infection, and the flooding packets to action. We add benign telnet login packets to degrade
the performance of the infection detector, because benign telnet login packets are similar
to the telnet dictionary attack packets. By adding the benign telnet login packets, the FPs
of the infection detector may increase. The detail of making a different Mirai botnet dataset
based on the work of Kang et al. [22] and implemented script is described in Section 6.2.

— Log4j attack [36]: This includes the Log4j attack as an adversary’s infection activity. We
build our testbed based on mininet [26], run multi-step attacks, and capture the packets.
The resulting dataset includes the port scanning packets as reconnaissance, the Log4j attack
packets as infection, and the flooding packets as action. The dataset also contains benign
HTTP POST packets from which the Log4Shell attack packets are difficult to discern.

6.1.4 Testbed. We perform our experiments on one machine with an i7-4700 CPU @ 3.60-GHz
eight-core processors and 16 GB of RAM. To evaluate the performance of ARIOTEDef with the
practical scenarios, we replay the packets from the preceding dataset with Tcpreplay [24]. The
generated packets are captured by ARIoTEDef.

6.1.5 Experiments. We measure the performance for the following three cases for a given test
set. We report averaged results of 30 trials per scenario:

— Baseline: We see how many infection events can be correctly detected by the infection
detector learned only with the training set.

— Attention: We evaluate how well our attention-based infection identification algorithm
works over a sequence of events.

ACM Trans. Internet Things, Vol. 5, No. 3, Article 15. Publication date: June 2024.



ARIoTEDef: Adversarially Robust loT Early Defense System 15:17

1.0

—

o

& 0.5 Bl Baseline

m 0.0 3 Attention
d=0 d=1 d=2 d=5 d=10 d=15 — ¢
(4) (286)  (1.77e+5) (1.67e+14)(1.67e+26) (1.67e+41) peheahibntatn

d (# of words)

Fig. 4. Impact of the probability-based embedding.

— Update: We measure the performance of the infection detector evolved with the identified
infection events on a different test set.

6.2 Dataset Generation

In our experiment, we use the dataset from Kang et al. [22] as discussed in Section 6.1.3. It consists
of several files that capture packets related to the Mirai botnet. In detail, it includes the ARP spoof-
ing packets, host discovery packets, or other flooding packets. Among them, we use the following
packets in our experiments:

— Benign: These packets are normal packets exchanged between benign entities.

— Port scanning: These packets are simple SYN packets to scan open ports at a targeted device.
These packets are labeled as reconnaissance.

— Brute force: These packets are used to perform dictionary attacks with pre-defined creden-
tials to infiltrate a target device. We label these packets as infections.

— Flooding: These packets are SYN/ACK/HTTP/UDP flooding packets to cause a DoS condi-
tion on a victim. These packets are tagged as action.

Due to the limited number of datasets, we manipulate the existing dataset to create new diverse
pcap files, which contain different attack patterns (e.g., types, order, and timing). For example,
we want to generate a dataset with a specified number of infection packets at a certain time and
several UDP flooding packets for a particular time. To this end, we implement a data manipulation
script, which works as follows:

(1) A new scenario file is created. The starting time of the scenario is 0.

(2) A list of files that contain interesting packets is specified with the starting time and
the duration. In detail, the list consists of several pairs (<file name> <starting time>
<duration>), which means that the packets are randomly extracted from <file name> and
inserted into the new scenario file at time <starting time> for <duration>. For example,
brute force.pcap, 10, 2 means that the packets from brute force.pcap are inserted into the
new scenario at time 10 for 2 seconds.

(3) All packets are extracted from the files in the list and put into the new scenario file ap-
propriately. We allow overlaps between different packets.

(4) Finally, the IP addresses of the packets are modified to the loopback addresses.

6.3 Impact of Probability-Based Embedding

We assess the impact of our probability-based embedding on the performance of our attention-
based translation by varying the value of the hyper-parameter d (Figure 4), which is the number
of decimal places to round off the probabilities.

Overall, the F1 score increases from the Baseline when Attention is used. Furthermore, we see
that Attention works best with d = 1. Note that the larger the value of d is, the higher the number
of elements in the set. For d > 1, the number of elements is higher than 10°, which we believe is too

ACM Trans. Internet Things, Vol. 5, No. 3, Article 15. Publication date: June 2024.



15:18 M. Huang et al.

o 1.0

8

O

oo H B ; S i

Ll

=~ 0.0 [0 Attention
Logistic Decision Random Feed- LST™M
Regression Tree Forest forward

Fig. 5. Impact of classifiers of per-step detectors.

large for mapping to only four variables in the output word set. The worst increment is at d = 0,
where the one-hot encoding is used. The result shows that the one-hot encoding is ineffective for
Attention, as it cannot capture dependency between words. Hereafter, we fix d = 1 in the other
experiments.

6.4 Impact of Classifiers of Per-Step Detectors

As Attention relies on probabilities assigned by per-step detectors (see Figure 1), we carry out
some experiments to understand the impact of different types of classifiers for the per-step de-
tectors on the performance of Attention. As classifiers, we use logistic regression, decision tree,
random forest, the feedforward neural network, and LSTM. Note that LSTM here is the classifier
architecture of the infection detector, not the encoder layer before the attention layer in Attention.
We evaluate each classifier with and without the Attention and calculate the F1 score.

We find that the neural networks are compatible with Attention (Figure 5). The increments of the
F1 score for both neural network algorithms are 0.29 (Feedforward) and 0.48 (LSTM), respectively,
whereas for other algorithms it is less than 0.08. Notably, LSTM is the one classifier that works
best with Attention. Compared with other algorithms, LSTM is the only algorithm that considers
the context of windows, which explains the result. After breaking down the result of the neural
networks, we find that Attention contributes to increasing precision while maintaining recall. This
result shows that the attention mechanism assigns higher weights to features that are useful for
finding FP results in the detectors.

The reason non-neural network algorithms show worse performance is because of their as-
sumption. Logistic regression shows poor performance due to its linear boundary assumption.
The decision tree shows high precision with low recall, which means that it is over-fitted. Fur-
thermore, the difference in F1 score between the decision tree with and without Attention is only
0.01. The reason is that the decision tree does not produce a probability and thus is not compatible
with our embedding scheme. In addition, the decision tree has high variance and is very sensitive
to small changes in the input, which makes it highly deterministic. It results in loss of information
when encoding different steps of the attack. Although the problem is alleviated by using the ran-
dom forest, we find that the random forest also does not perform well with Attention for similar
reasons. Therefore, we use LSTM for our classifiers of the per-step detectors hereafter.

6.5 Comparison with Other Identification Algorithms

We compare Attention with other traditional identification algorithms for sequences. We consider
the following three algorithms:

— Highest probability: Highest probability tags a window to the step with the highest proba-
bility assigned by the per-step detectors. If the probabilities are identical for a window, the
algorithm labels the window in the order of Benign, Action, Reconnaissance, and Infection.
The order is based on the number of samples in our dataset.

— Viterbi: Viterbi [11] is based on a hidden Markov model and estimates a sequence of hidden
states from an observed sequence with memory-less noise.

ACM Trans. Internet Things, Vol. 5, No. 3, Article 15. Publication date: June 2024.



ARIoTEDef: Adversarially Robust loT Early Defense System 15:19

—
(=)

g EEE Precision
&3 0.5 3 Recall
o 8. mmm F1 Score

"" Highest Probability  Attention Episode Tree Viterbi

Fig. 6. Comparison with other identification algorithms.

1.0 —
8 I Precision
= 0.5 3 Recall
- 0.0 I F1 Score

Baseline Strategy 1 Strategy 2 Strategy 3

Fig. 7. Impact of self-evolution strategies.

— Episode tree: An episode tree is a collection of window sequences. Based on the training set,
we build an episode tree using the tree generation algorithm by Mannila et al. [32]. The
episode tree identifies infection windows if a given window sequence matches a branch of
the episode tree, which contains infection windows.

The results (Figure 6) show that the attention-based algorithm outperforms the other algorithms.
The F1 score of the attention-based algorithm is 0.85. The performance of the episode tree (0.46)
and Viterbi (0.20) is even worse than the highest probability (0.65).

The episode tree is a simple pattern-matching algorithm; thus, it depends on how many patterns
are captured from the training set. Therefore, the episode tree can be easily over-fitted, which ac-
counts for high precision and low recall of its result. Viterbi shows the worst performance due to its
memory-less assumption which makes the algorithm unable to capture long-term dependencies.

6.6 Impact of Self-Evolution Strategies

We carry out an experiment to assess the impact of the three strategies discussed in Section 5.3.
We compare the performance of the baseline with that of the infection detector updated according
to the three strategies. Strategy 1 is the strategy that uses identified infection events, identified
benign events, and the original training set for retraining. Strategy 2 is the strategy that only uses
identified infection events and the original training set for retraining. Strategy 3 is the strategy
that only uses identified benign events and the original training set for retraining. We use those
three strategies to evolve the infection detector for one round—that is, the infection detector was
only updated once.

The results (Figure 7) show that all updated infection detectors outperform the baselines in terms
of precision and F1, regardless of the strategy used. Compared with other strategies, Strategy 2
works best (highest F1 score of 0.87) with the highest precision (0.82). Strategy 1 has an F1 score
of 0.82 and a precision of 0.77, and Strategy 3 has an F1 score of 0.72 and a precision of 0.64. We
conclude that the self-evolution strategy affects the performance of the infection detector. The
results show that many benign samples are classified as malicious under Strategy 1 and Strategy
3 (more FPs), resulting in worse performance on precision and F1 score compared to Strategy 2.

6.7 Comparison with Other Attention-Based NIDSes

We compare our NIDS via the LSTM-based Seq2Seq model with an attention mechanism with
existing attention-based NIDSes concerning two aspects. First, we assess whether the performance
of LSTM after being evolved is comparable to the performance of those NIDSes. Second, we assess

ACM Trans. Internet Things, Vol. 5, No. 3, Article 15. Publication date: June 2024.



15:20 M. Huang et al.

Il Baseline
3 Update

o
()]

F1 Score

o
=)

LSTM HAM SAAE-DNN

Fig. 8. Comparison with other attention-based NIDSes.

whether our attention-based identification is also beneficial to them. In our analysis, the following
two approaches are considered:

—HAM: HAM [29] employs two attention layers: the feature-based attention layer and the
slice-based attention layer. The former weighs the features and the latter calculates an
attention score for a time window considering a specific number of previous windows.
Finally, the NIDS predicts the next window with the neural network.

—SAAE-DNN: SAAE-DNN [50] is based on a stacked autoencoder with the attention mecha-
nism. It consists of two autoencoders. In between an encoder layer and a latent layer of each
autoencoder, an attention layer is inserted. The latent nodes of the second autoencoder are
connected to the four-layer neural network, which finally outputs the classification result.

In the experiments, we use two test sets (referred to as set; and set,) with different networking
patterns. First, we evaluate the F1 score of LSTM, HAM, and SAAE-DNN on both set; and set,.
Then, we apply our self-evolution Strategy 2 to update the models based on the result on set;. We
refer to the evolved models as Updated LSTM, Updated HAM, and Updated SAAE-DNN, respec-
tively. Finally, we measure the F1 score of the updated models on set;. We compare the results of
LSTM, HAM, SAAE-DNN, and their updated models on set; (Figure 8).

Our conclusions are as follows. First, our Updated LSTM outperforms HAM and SAAE-DNN.
The F1 score of the original LSTM (standard trained infection detector) is only 0.14, which is lower
than the scores of HAM (0.19) and SAAE-DNN (0.77). However, the F1 score of LSTM becomes the
highest (0.92) after being evolved. These results show that our self-evolution strategy can achieve
a classifier performance comparable to the one of existing NIDSes. Second, existing NIDSes can
benefit from our approach. After being evolved, the F1 scores of HAM and SAAE-DNN increase
from 0.19 to 0.42 and from 0.77 to 0.86, respectively.

7 ENHANCED SELF-EVOLUTION STRATEGIES

Although the self-evolution strategy based on Definition 3 is effective in reducing the FPs of the
infection detector, it does not take into account those real malicious events that may be misclas-
sified as benign by the infection detector. Especially when there are adversarial evasion attacks
against DNN-based detectors, both these adversarial infection windows and non-adversarial in-
fection windows that are easy to escape detection by infection detectors also need to be included
in the relabeling range of our sequence analyzer. To this end, we further redefine the evolution set
and improve the previous self-evolution strategies.

Definition 4 (Enhanced Evolution Set). The definitions of set A and C are consistent with Defi-
nition 3, except that set B is defined here as a set of events tagged as infection by the LSTM-based
translation model with the attention mechanism. As a result, set C is the only subset of A. We
label all events in set 8 as infection and all events in set C as benign.

Compared with the definition of set B in Definition 3, in Definition 4, set 8 not only contains
samples that are predicted as infection by both the sequence analyzer and the infection detector
at the same time but also contains samples that are only predicted as infection by the sequence

ACM Trans. Internet Things, Vol. 5, No. 3, Article 15. Publication date: June 2024.



ARIoTEDef: Adversarially Robust loT Early Defense System 15:21

analyzer. Since the definition of set 8 only affects Strategy 1 and Strategy 2, we describe them
under the new definition as follows, and we let D;,¢_;r, be the original windows training set for
training the infection detector:

— Strategy 1: The binary classifier of the infection detector is retrained over a retrain-
ing set, consisting of windows in all events in B, windows in all events in C, and
Dinf-tra- For example, suppose that there are five events ey, e;, e3, e4, 65 € A (ie., €;.1.i =
1 for i ={1,2,3,4,5}) and the attention-based infection identification algorithm pro-
vides the information that five events e, ey, eq4, 5,67 € B are infection events (ie.,
e;.t = e3.t = eq.t = eg.t = e;.t = I). Then, ARIoTEDef updates the infection detector with
€1.w, e2.W, e4.W, €s. W, e7.w labeled as Infection, e3.w, es.w labeled as Benign, and Dj,r_trq.

— Strategy 2: This strategy is similar to Strategy 1 except that it only uses windows in all
events in B and D, f_;rq, which adds the information about the TPs to the updated model.
In the preceding example, e;.w, €. w, e4.w, €5. W, e7.w labeled as Infection and Dinf-tra are
used to retrain the infection detector.

The main purpose of the new definition is not only to identify actual benign events but also to
identify actual malicious events that are misclassified as benign by the infection detector so that
they can be used to reduce the FNs of the infection detector after evolving. In addition, those ad-
versarial evasion samples that are easily misclassified as benign by the infection detector will also
be relabeled and used to retrain the infection detector under the enhanced self-evolution strategy.

Due to the utilization of the attention mechanism, the event sequence analyzer based on the
Seq2Seq translation model can track the actual infection event by combining the reconnaissance
event and action event that occurred before and after the infection event, so it has sharper identifi-
cation capabilities than the per-step infection detector on complex adversarial infection behaviors.
Therefore, evolving the infection detector using the prediction results of the sequence analyzer
as supervisory information can improve its performance in identifying both conventional (non-
adversarial) and ML-based adversarial infection behaviors.

8 EXPERIMENTS IN THE ADVERSARIAL SETTING

This section provides the experimental analysis on clean datasets and adversarial datasets consist-
ing of DL-based adversarial evasion samples.

8.1 Experimental Setup

We maintain the same model setting as that in Section 6. However, updates have been made in
terms of the testbed, adversarial attack dataset, and evaluation content.

8.1.1 Testbed. We conducted the experiments on an NVIDIA GeForce P8 GPU and CUDA V12.0.
We implemented the adversarial evasion attacks using the Adversarial Robustness Toolbox [40].

8.1.2 Dataset. We use the reconnaissance dataset, infection dataset, and action dataset gener-
ated based on the Mirai dataset [1] with the method described in Section 6. Then, we use a Standard
Scaler normalization function to scale the feature values of each window sample in the dataset to
a normal distribution with a mean of 0 and a standard deviation of 1. Information about the nor-
malized dataset is shown in Table 3. The value range (MinVal, MaxVal) of the normalized input
samples will be passed to the adversarial sample generation algorithm as a parameter.

8.1.3  Adversarial Evasion Samples Generation. To evaluate the robustness of ARIOTEDef against
white-box attacks (see Section 3.2), we consider the following two well-known adversarial example
generation algorithms:

ACM Trans. Internet Things, Vol. 5, No. 3, Article 15. Publication date: June 2024.



15:22 M. Huang et al.

Table 3. Normalized Dataset

. Training Set Test Set
Windows Dataset -
Total BenNum MalNum | MinVal MaxVal | Total BenNum MalNum [ MinVal MaxVal
Reconnaissance 14,410 7,205 7,205 -2.44 96.18 (4,233 1,156 3,077 -3.30 21.12
Infection 19,818 9,909 9,909 -2.37 140.73 |4,233 3,915 318 -3.30 21.12
Action 19,152 9,576 9,576 -3.04 138.32 (4,233 4,110 123 -3.30 21.12

— FGSM: FGSM (Fast Gradient Sign Method) [13] is a one-step adversarial attack that perturbs
input by adding perturbation based on the sign of the gradients of the loss function w.r.t.
the input. However, FGSM may produce less effective perturbations in complex DNNs.

— PGD: PGD (Projected Gradient Descent) [31] is an iterative version of FGSM. It applies
FGSM multiple times with small per-step budget sizes and then projects the perturbations
back to a pre-defined e ball to ensure that the perturbations remain within a reasonable
range. PGD is effective against a broader range of models.

We input the clean samples one by one in the original dataset to the adversarial example gener-
ation algorithm to obtain corresponding adversarial samples. According to the terminology used
in the literature, the collection of clean samples is referred to as clean dataset, and the collection of
adversarial samples is referred to as adversarial dataset. Thus, we refer to the original infection test
set shown in Table 3 as the clean infection test set and the set of adversarial evasion samples gen-
erated from the infection samples in the clean infection test set as the adversarial infection test set.
Note that the clean infection test set contains clean benign and clean infection samples, whereas
the adversarial infection test set only contains adversarial infection samples. When generating
adversarial samples, we need to set the following budget parameters:

— Perturbation budget e: This parameter determines the maximum allowable adversarial per-
turbation on the clean sample x. The value range of (¢ + x) is (MinVal, MaxVal).

— Step size €;4: This parameter determines the per-step maximum allowable perturbation.

— Maximum number of iterations n;;.: This parameter determines the maximum number of
iterations a clean sample is allowed to be perturbed when making an adversarial sample.

8.2 Impact of Budget Settings of Adversarial Evasion Attacks

We first train the reconnaissance detector, infection detector, and action detector using the clean
training sets. After training for 40 epochs with a batch size of 32, we obtain a baseline reconnais-
sance detector with a clean accuracy (accuracy on the clean test set) of 96.48%, a baseline infection
detector with a clean accuracy of 94.80%, and a baseline action detector with a clean accuracy
of 97.73%. Then, we conduct the robustness evaluation experiments on two early-stage baseline
detectors, a reconnaissance detector and an infection detector, using the white-box FGSM and
PGD attacks. We employ optimization methods for untargeted attacks and targeted attacks (see
Section 3.2) to construct adversarial reconnaissance samples and adversarial infection samples,
respectively. In addition, we explore different perturbation budget settings.

Results in Table 4 show that under the optimization approach for untargeted attacks, with the
perturbation budget € set to 1.0, step size €;r. set to 0.5, and the number of iterations n;;, set
to 20, PGD most frequently achieves the highest attack success rate. We also conduct white-box
adversarial attacks on the action detector, but the success rate is almost 0. Therefore, in all of the
following experiments, we use the strongest PGD adversarial samples generated in the preceding
setting (e =1.0, €z =0.5, njz. =20) to evaluate the robustness of the infection detector.

ACM Trans. Internet Things, Vol. 5, No. 3, Article 15. Publication date: June 2024.



ARIoTEDef: Adversarially Robust loT Early Defense System 15:23

Table 4. Performance of Pre-Evolved Detectors on White-Box Adversarial Samples

Input Reconnaissance Detector Infection Detector

Optimize Name € €jte nNite| TP FN FNR (%) Recall(%)| TP FN FNR (%) Recall (%)
- Clean - - - 3,064 13 0.42 99.58 126 192 60.38 39.62

FGSM 0.5 - - 66 3,011 97.86 2.14 5 313 98.43 1.57

FGSM 1.0 - - 48 3,029 98.44 1.56 0 318 100.00 0.00
Untargeted

PGD 05 0.25 20 48 3,029 98.44 1.56 5 313 98.43 1.57

PGD 1.0 05 20 29 3,048  99.06 0.94 0 318 100.00 0.00

FGSM 0.5 - - 67 3,010 97.82 2.18 110 208 65.41 34.59

FGSM 1.0 - - 52 3,025 98.31 1.69 96 222 69.81 30.19
Targeted

PGD 0.5 0.25 20 89 2,988 97.11 2.89 100 218 68.55 31.45

PGD 1.0 05 20 239 2,838 92.23 7.77 4 314 98.74 1.26

8.3 Impact of the Threshold of the Sequence Analyzer

To analyze event sequences and identify infection events, we train a Seq2Seq translation model
based on the LSTM cells and the attention mechanism according to the standard training strategy.
We set the sequence length to 10—that is, every 10 events form an event sequence. Since ARIoT-
EDef uses equal-length sequence translation, the output is a tag sequence with a length of 10 as
well. The event samples used for training and testing the sequence analyzer are generated by three
per-step detectors from the infection window dataset.

We can see from Table 3 that the number of benign samples in the infection test set is much
larger than the number of infection samples. Thus, for the sequences of events, the benign events
in a sequence will appear much more frequently than the infections. Since the attention-based se-
quence analyzer refers to contextual events when predicting each event, under such a mechanism,
benign events can easily have benign scores close to 0, whereas malicious events cannot easily
have malicious scores close to 1. As a result, the score threshold between benign and malicious
categories has a key impact on the performance of the sequence analyzer.

To identify as many TP and true negative (TN) samples as possible during the self-evolution
of ARIoTEDef, we train the sequence analyzer with different thresholds and random seeds and
evaluate its performance on the clean infection test set. The experimental results are shown in
Table 5. The results show that when using the commonly used score threshold of 0.5, the Seq2Seq
model exhibits a very low false-positive rate (FPR) but has a high false-negative rate (FNR),
which shows that many malicious events are mislabeled as benign. After we reduce the score
threshold to 0.1, there is a clear improvement in the FNR. This shows that some of the malicious
samples that were mislabeled in the previous threshold setting are correctly tagged under the
current setting. In addition, the FNR increases but to a limited extent. Through multiple tries, we
found that when the threshold is set to 0.01, an ideal balance can be achieved between precision
and recall. More intuitively, such a threshold results in the highest average F1 score. Therefore, in
all of the following experiments, we use a threshold of 0.01 for the sequence analyzer.

8.4 Robustness of the Evolved Infection Detector in Adversarial Setting |

8.4.1 Adversarial Attack and Defense Setting I. Assume that the attacker launches a total of N
rounds of adversarial evasion attacks against ARIoOTEDef. The clean infection test set (see Sec-
tion 8.1.3) is denoted as X, and the pre-evolved infection detector is denoted as My. In Adversarial
Setting 1, the attacker constructs adversarial infection samples based on the same clean infection
test set and the latest evolved target infection detector each time to launch an adversarial eva-
sion attack. Note that since the adversarial infection samples used in each attack round are crafted

ACM Trans. Internet Things, Vol. 5, No. 3, Article 15. Publication date: June 2024.



15:24 M. Huang et al.

Table 5. Performance of the Sequence Analyzer on a Clean Test Set

Threshold Seed TP FN TN FP FNR(%) FPR(%) Precision(%) Recall(%) F1(%) Accuracy (%)

0 75 277 3869 3 78.69 0.08 96.15 2131 34.88 93.37
1 93 259 3870 2  73.58 0.05 97.89 2642 4161 93.82

05 2 62 290 3,872 0 8239 0.00 100.00 1761 29.95 93.13
3 60 292 3871 1 8295 0.03 98.36 1705  29.06 93.06

Average 73 280 3871 2  79.40 0.04 98.10 2060  33.88 93.35

0 117 235 3,869 3 66.76 0.08 97.50 3324 4958 94.37

1 126 226 3,857 15  64.20 0.39 89.36 3580 5112 94.29

0.1 2 79 273 3845 27 77.56 0.70 74.53 2244 3450 92.90
3 76 276 3,863 9 7841 0.23 89.41 2159 3478 93.25

Average 100 253 3859 14 7173 0.35 87.70 2827 42.49 93.70

0 138 214 3,841 31  60.80 0.80 81.66 3920  52.98 94.20

1 163 189 3,771 101  53.69 2.61 61.74 4631 5292 93.13

0.01 2 158 194 3,695 177  55.11 457 47.16 4489  46.00 91.22
3 154 198 3782 90  56.25 2.32 63.11 4375  51.68 93.18

Average 153 199 3,772 100  56.46 2.58 63.42 4354  50.89 92.93

based on different target models, they belong to different adversarial data distributions. The spe-
cific process of attack and defense is as follows:

—1In the 1st round of attack, the attacker constructs an adversarial dataset AdvX; based on
X and M, then sends it to the target NIDS. ARIoTEDef relabels AdvX; according to the
improved evolution strategy described in Section 7, and then uses relabeled AdvX; for
retraining M, to obtain the 1st updated infection detector M;.

—1In the 2nd round of attack, the attacker constructs AdvX, based on X and M, then sends
it to the target NIDS. ARIoTEDef continues to relabel AdvX,, and then uses the relabeled
AdvuX, to retrain M; to obtain the 2nd updated detector M.

—The attacker continues with successive rounds of attack, following the strategies from prior
rounds, and ARIoTEDef performs relabeling and retraining, as in the previous rounds.

—1In the last round of attack, the attacker constructs an adversarial dataset AdvXy based on
X and M1, then sends it to the target NIDS. ARIoTEDef relabels AdvXy, and then uses
relabeled AduXy to retrain My_; to obtain the Nth updated infection detector My .

For the evaluation of ARIOTEDef in the Adversarial Setting I, for the evolved detector My, we
use the adversarial test set AduXy,; constructed based on X and My to evaluate the white-box
robustness of My and use X to evaluate the performance of My on the clean test set.

8.4.2  Performance of the Evolved Infection Detector on Adversarial Samples. We answered the
following research questions based on experimental data:

—Does the FN of the infection detector on white-box adversarial samples decrease after mul-
tiple rounds of evolution?
—How many rounds of evolution can the detector be robust to white-box adversarial attacks?

We conducted experiments with different numbers of self-evolution rounds and repeated the
experiments with multiple random seeds. According to Table 3, the clean infection test set contains
3,915 clean benign samples and 318 clean malicious samples. In each round of adversarial evasion
attack, we construct adversarial infection samples based on these clean infection samples and the

ACM Trans. Internet Things, Vol. 5, No. 3, Article 15. Publication date: June 2024.



ARIoTEDef: Adversarially Robust loT Early Defense System 15:25

Table 6. Performance of the Evolved Infection Detector on White-Box Adversarial Samples (AdvSetting I)

Evolution Round 0 20 40 80

Seed - 0 1 2 average 0 1 2 average | 0 1 2 average

TP 0 194 198 227 206 232 233 212 226 229 305 250 261

FN 318 124 120 91 112 86 85 106 92 89 13 68 57

FNR (%) 100.00 | 38.99 37.74 28.62 35.12 |[27.04 26.73 33.33 29.04 |27.99 4.09 2138 17.82

Recall (%) 0.00 | 61.01 62.26 7138 64.88 |[72.96 73.27 66.67 70.96 |72.01 95.91 7862 82.18
Adversarial Setting | Adversarial Setting |

w

S

S)
o
o
5]

N
a
S

s Recall
BN FNR

FN Value / TP Value
bR N
o &8 8 8 8
4T
0z

FNR Value / Recall Value (%)

N IS @
o o o

0

MO M20 M40 M80
Evolved Model Evolved Model

Fig. 9. Average performance of the evolved infection detector on adversarial samples (AdvSetting I).

updated infection detector in the previous round and then use them to attack the target system.
After each round of evolution, we construct adversarial infection samples based on these 318 clean
infection samples and the latest update of the infection detector to form a white box adversarial
infection test set. The evaluation results for our proposed self-evolution strategy on the infection
detector against white-box adversarial attacks are shown in Table 6.

We observe that the pre-evolved infection detector (evolution round is 0) is hardly robust against
the white-box adversarial PGD attack, since all adversarial infection samples are misclassified as
benign, resulting in an FNR close to 100%. After self-evolution, the recall of the updated infection
detector significantly improves. After 20 rounds, 40 rounds, and 80 rounds of self-evolution, the
average recall of the infection detector increases to 64.88%, 70.96%, and 82.18%, respectively. In the
best case, the recall of the infection detector even increases from 0% to 95.91%. Such results show
that the self-evolution strategy effectively improves the ability of infection detectors to identify
more deceptive malicious samples.

From the average trend shown in Figure 9, we can see that the robustness of the detector is
proportional to the number of evolution rounds. The reason is that the more adversarial samples
the detector has seen during retraining, the more familiar it is with the patterns of adversarial
infections, and it is thus better at identifying anomalies on unseen adversarial test samples.

Since the distribution of adversarial data keeps changing over multiple rounds of evolution,
the robustness improvement of the detector is also continuous. In general, within 30 rounds of
evolution, the accuracy of the infection detector on white-box adversarial samples can increase to
more than 50%, and the FNR starts to converge to 20% since round 40, as shown in Figure 10.

8.4.3 Performance of the Evolved Infection Detector on Non-Adversarial Samples. We answered
the following research question based on experimental data:

—Does the FP of the infection detector on non-adversarial samples (clean data) increase after
multiple rounds of evolution?

ACM Trans. Internet Things, Vol. 5, No. 3, Article 15. Publication date: June 2024.



15:26 M. Huang et al.

Adversarial Setting | Adversarial Setting | Adversarial Setting |

)

g 100 S 100 100

E k:

e 80 £ 80 @ 80

- — °

B g 5

g 60 8 60 § 60

& g )

2 3 2

2 40 < 40 E
c

§ k3 3

g 20 & 2 O 20

E g

z

g o g o 0

0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
Evolution Round Evolution Round Evolution Round

Fig. 10. Impact of the number of evolution rounds on robustness against white-box attack (AdvSetting I).

Adversarial Setting | Adversarial Setting | Adversarial Setting |

100 — 100 100
— FPR

80 80 80

60 60 60

40 40 40

20 20

Recall (%) on Clean Test Set

FNR and FPR (%) on Clean Test Set
Accuracy (%) on Clean Test Set

e ————————
0 0 0
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
Evolution Round Evolution Round Evolution Round

Fig. 11. Impact of the evolution round on performance on the clean test set (AdvSetting I).

Table 7. Performance of Evolved Infection Detector on a Clean Test Set (AdvSetting I)

Evolution Round Seed TP FN TN FP FNR(%) FPR(%) Precision (%) Recall (%) F1(%) Accuracy (%)

0 - 126 192 3,887 28 6038  0.72 81.82 39.62  53.39 94.80
0 215 103 3,793 122 3239 3.2 63.80 67.61  65.65 94.68

1 214 104 3,766 149 3270  3.81 58.95 67.30 6285 94.02

20 2 292 26 3719 196  8.18 5.01 59.84 91.82 7246 94.76
average 240 78 3,759 156 2442  3.98 60.86 7558 66.98 94.49

0 238 80 3,676 239 2516  6.10 49.90 74.84  59.87 92.46

1 234 84 3,671 244 2642  6.23 48.95 7358  58.79 92.25

40 2 214 104 3783 132 3270 337 61.85 6730 64.46 94.42
average 229 89 3,710 205 28.09  5.24 53.57 7191 61.04 93.05

0 229 89 3685 230 27.99 587 49.89 7201 58.94 92.46

1 305 13 3712 203 4.09 5.19 60.04 9591  73.85 94.90

80 2 250 68 3,770 145 2138 370 63.29 78.62  70.13 94.97
average 261 57 3,722 193 17.82  4.92 57.74 8218  67.64 94.11

Since the ideal robustness improvement cannot be at the expense of the performance of the
detector when dealing with non-adversarial black-box attacks, we evaluate the performance of
the evolved infection detector on the clean test set. We collected performance data for the evolved
detectors on the clean test set under different evolution rounds and random seed settings. Note
that the samples in the clean test set are not used in retraining. Results are shown in Table 7.

We observe that compared with the pre-evolved infection detector (evolution round is 0), the
evolved infection detector significantly improves concerning the recall, F1, and an overall un-
changed accuracy on the clean test set. From Figure 11, we can see that, compared with the

ACM Trans. Internet Things, Vol. 5, No. 3, Article 15. Publication date: June 2024.



ARIoTEDef: Adversarially Robust loT Early Defense System 15:27

sharp drop of average FNR of the evolved infection detector on the clean test set, the FPR in-
crease on the clean test set is very weak. This suggests that the evolved infection detector has
a stronger ability to identify truly malicious samples (decreased FNR), including those that are
non-adversarial. Note that the detector learns to predict some low-confidence abnormal patterns
(such as adversarial malicious patterns) as positive during the retraining process, which leads the
detector to judge the negative category more strictly than before evolution. Thus, some normal
patterns with low confidence can be easily misclassified as anomalies, resulting in a slightly in-
creased FP. However, we can see from the stable accuracy rate close to 95% and the increasing F1
score that the slight decline in precision is almost negligible compared to the significant increase in
recall.

8.5 Robustness of the Evolved Infection Detector in Adversarial Setting Il

8.5.1 Adversarial Attack and Defense Setting 1. Assume that the attacker launches a total of N
rounds of adversarial evasion attacks against ARIoOTEDef. The clean infection test set introduced in
Section 8.1.3 is denoted as X, and the pre-evolved infection detector is denoted as M,. In Adversarial
Setting II, in each new round of adversarial attack, the adversary will not only craft adversarial
samples based on the latest evolved detector, but also use a clean infection test set different from
the previous round of attacks. To carry out the experiments, we split the clean infection test set X
into N sub-datasets X, Xs,..., XN, XN+1-

When training without evolution, the clean infection test set is consistent with that described
in Table 3. For N rounds of evolution, we split the original clean test set into N + 1 sub-test sets.
The number of benign samples and the number of malicious samples in each sub-test set are the
same. The specific process of attack and defense is as follows:

—1In the 1st round of attack, the attacker constructs an adversarial dataset AdvX; based on X;
and My, then sends it to the target NIDS. ARIoTEDef relabels AdvX; according to the im-
proved evolution strategy described in Section 7, then uses relabeled AdvX; for retraining
M, to obtain a 1st updated detector M.

—1In the 2nd round of attack, the attacker constructs AdvX, based on X, and M;, then sends it
to the target NIDS. ARIoTEDef continues to relabel AdvX,, and then uses relabeled AdvX,
to retrain M; to obtain a 2nd updated detector M.

—The attacker continues with successive rounds of attack, following the strategies from prior
rounds, and ARIoTEDef performs relabeling and retraining, as in the previous rounds.

—1In the last round of attack, the attacker constructs an adversarial dataset AdvXy based
on Xy and My_1, then sends it to the target NIDS. ARIoTEDef relabels AdvXy, then uses
relabeled AduXN to retrain My_; to obtain an Nth updated detector My.

In Adversarial Setting II, for the evolved detector My, we use the adversarial test set AdvXn+1
constructed based on Xpn,; and My to evaluate the white-box robustness of My and use Xy 41 to
evaluate the performance of My on the clean test set. We simultaneously record the performance
of two neighboring evolved detectors on an unseen clean test set (M, and M; on X,, M; and M,
on Xs,...,My_1 and My on Xy41) to analyze the impact of each (1st, 2nd, ..., Nth) round of
evolution on the performance of the detector. The main difference between Adversarial Setting II
and Adversarial Setting I is that a new clean dataset is used to construct adversarial samples in
each attack round.

8.5.2  Performance of the Evolved Infection Detector on Adversarial Samples. We let the infection
detector evolve for 5 rounds, 10 rounds, and 20 rounds sequentially. According to the number of
evolution rounds, the original infection test set is divided into several sub-datasets (Table 8).

ACM Trans. Internet Things, Vol. 5, No. 3, Article 15. Publication date: June 2024.



15:28 M. Huang et al.

Table 8. Clean Test Sets Used in Adversarial Setting 1

Evolution Round Test Set Num Test Set Size Benign Num in Each Test Set Malicious Num in Each Test Set

0 1 4,233 3,915 318
5 6 705 652 53
10 11 383 355 28
20 21 201 186 15

Table 9. Performance of the Evolved Infection Detector on White-Box Adversarial Samples (AdvSetting I1)

AdvSet Size 53 28 15

Evolution Round 0 5 0 10 0 20

Seed - 0 1 2 average| - 0 1 2 average| - 0 1 2 average

TP 0 3 17 3 8 0 6 6 0 4 0 1 1 1 1

FN 53 50 36 50 45 28 22 27 28 24 15 14 14 14 14

FNR (%) 100.00 [ 94.34 67.92 94.34 85.53 |100.0078.57 78.57 100.00 85.71 |100.00 93.33 93.33 93.33 93.33

Recall (%) 0.00 | 5.66 32.08 5.66 14.47 0.00 | 2143 2143 0.00 14.29 0.00 6.67 6.67 6.67 6.67
Adversarial Setting Il Adversarial Setting Il

40 <=
e
E 2 60
@ 30 Bl Pre-evolved = . Pre-evolved
; = Evolved 8 = Evolved
[ 24
20 g 40
[
i - )
0 0
5 10 20 5 10
Evolution Round Evolution Round

Fig. 12. Average performance of the evolved infection detector on adversarial samples (AdvSetting II).

We answered the following questions based on experimental data:

—Does the FN of the infection detector on white-box adversarial samples decrease after mul-
tiple rounds of evolution?

—Does the number of adversarial samples used in each attack round affect the effectiveness
of the self-evolution strategy for robustness improvement?

To ensure the fairness of the experiment, when evaluating the pre-evolved detector (baseline
model), we also used an adversarial test set of the same size as that for evaluating the evolved
detector. We set three random seeds for multiple experiments. The performance of the detector
before and after evolution on the white-box adversarial test set is shown in Table 9.

We observe that in tAdversarial Setting II, the pre-evolved infection detectors all have a recall
of 0 when evaluated on adversarial test sets of different sizes. This suggests that the pre-evolved
detector has difficulty in identifying adversarial infection samples designed to masquerade as be-
nign. After 5, 10, and 20 rounds of evolution, the average recall of the infection detector increased
to 14.47%, 14.29%, and 6.67%, respectively, showing that evolution helps to reduce FNs and increase
TPs. In addition, we can see from Figure 12 that the number of adversarial samples in each attack
and defense round does not essentially affect the effectiveness of the self-evolution strategy. For
example, in 20 rounds of evolution, even when there are only 15 adversarial infection samples in

ACM Trans. Internet Things, Vol. 5, No. 3, Article 15. Publication date: June 2024.



ARIoTEDef: Adversarially Robust loT Early Defense System 15:29

Adversarial Setting Il Adversarial Setting Il Adversarial Setting Il

60 2
” & 100 —— Round=20, AdvSet Size=15 100
s ] —— Round=10, AdvSet Size=28
£ 50 W\ £ 80 —— Round=05, AdvSet Size=53 7 0
] =
£ £ 5
- . © o
® 40 —— Round=20, AdvSet Size=15 o 60 o 60
@ —— Round=10, AdvSet Size=28 9 by
S 30 —— Round=05, AdvSet Size=53 2 E 40
g T m— s =
< o 3
§ 20 L 2 O 20 —— Round=20, AdvSet Size=15
z = —— Round=10, AdvSet Size=28
T —— Round=05, AdvSet Size=53

] 0 0
10 &

2 3 4 5 0 1 2 3 4 5
Evolution Round Evolution Round Evolution Round

o
-
N
w
IS
@
o
=

Fig. 13. Impact of the number of adversarial attack samples on the performance (AdvSetting II).

each round of attack, the FNR of the evolved detector is still lower than that before evolution,
indicating that the white-box robustness of the detector resulting from the evolution increases.

In general, the more adversarial samples used in each round of attack, the more beneficial the
self-evolution strategy is to the improvement of robustness, because more adversarial samples
mean that the model will be trained on a wider variety of situations. If only a small number of
adversarial samples are used, the adversarial perturbation patterns that the model can learn are
very limited, making it difficult to generalize to other unknown perturbation patterns. However,
thanks to the multi-step detection approach and the attention mechanism, if adversarial samples
are generated based on unknown patterns, these samples can be detected as malicious with high
probability, and thus the infection detector can be retrained properly.

To assess the impact of the size of the adversarial dataset on the improvement of robustness, we
collected performance data for the first 5 rounds in 10-round evolution and 20-round evolution and
compared them with the performance of 5-round evolution. The results are shown in Figure 13.
Although not every round of adversarial samples with a larger size can win the race with the
infection detector (because the number of adversarial samples used for evolution also depends on
the prediction by the sequence analyzer), we can conclude that the higher the number of attack
samples, the more the number of FNs decreases. The number of attack samples depends on the
attacker’s behavior, whether the attacker is fast and sends a lot of malicious samples in a short
time or is slow and sends malicious samples over long periods. The more attack samples sent, the
more beneficial the self-evolution strategy is to improve the robustness of the system. However,
for both types of behavior, ARIoTEDef is robust because of the multi-detector approach.

8.5.3  Performance of the Evolved Infection Detector on Non-Adversarial Samples. We answer the
following question based on experimental data:

—Does the FP of the infection detector on non-adversarial samples (clean data) increase after
multiple rounds of evolution?

We performed 5 rounds, 10 rounds, and 20 rounds of evolution on the infection detector, and
evaluated the performance of the detector on the clean test set before and after each round of
evolution. It is worth emphasizing that the test set used for the evaluation before and after any
round of evolution is the same, but the test sets between different rounds of evolution are various.
The purpose of this design is to ensure that the test samples never participate in the retraining
of the detector. The specific construction method of the test set is described in Section 8.5.1. We
repeated the experiment using three random seeds and show the results in Figure 14.

The left column graph and right column graph of each x-axis coordinate point show the perfor-
mance of the detector on the clean test set before and after the corresponding round of evolution,
respectively. We observe that the self-evolution strategy results in only a very slight increase in

ACM Trans. Internet Things, Vol. 5, No. 3, Article 15. Publication date: June 2024.



15:30 M. Huang et al.

Adversarial Setting Il Adversarial Setting Il Adversarial Setting Il
_ 100w gefore the current round _ 100 mmm Before the current round _ 100w gefore the current round
% W After the current round $ B After the current round g W After the current round
7 80 7 80 7 80
] G) @
= = =
§ g §
§ o0 g e § o0
] ) ]
c c c
S 0 S 0 S 0
< S g
x @ x
T 2 & 2 T 20
w w H w
o R S 0 J O 1 1 o B . - . _thead
0 1 2 3 4 5 01 2 3 4 5 6 7 8 9 10 012345678 091011121314151617181920
Evolution Round Evolution Round Evolution Round
Adversarial Setting Il Adversarial Setting Il Adversarial Setting Il
% 100 © 100 % 100
2] n 2]
? @ @
2 80 2 80 2 80
< c <
© [ I
o o o
G 60 [ Before the current round o 60 w Before the current round G 60 Before the current round
& W After the current round § W After the current round & = After the current round
g g g
> > >
8 ] 8
€ 2 g 2 € 2
3 3 3
8 8 8
< < <
o 0 0
0 1 2 3 4 5 6 7 8 9 10 012345678 91011121314151617181920
Evolutlon Round Evolution Round Evolution Round

Fig. 14. Performance of the evolved infection detector on the clean test set (AdvSetting II).

the FPR under different numbers of retraining rounds. Combined with the accuracy performance
on the clean test set, the detector after multiple rounds of evolution is not only more robust against
strong white-box adversarial evasion attacks but also remains stable on non-adversarial samples.

8.6 Computational, Storage, and Time Overhead

In IoT settings, rapid data processing is crucial, requiring DNN-based NIDS to swiftly predict and
respond to potential intrusions. Our solution prioritizes lightweight models suitable for IoT scenar-
ios with limited computing and storage. To assess the applicability of our solution, we conducted
a comprehensive evaluation from the perspective of the number of model parameters, the storage
space required for deployment, and time costs in each stage.

8.6.1 Computational and Storage Overhead. We separately counted the computational over-
head of the model during training and inference. Training, typically on powerful servers without
affecting IoT devices that only need to deploy the trained model, incurs a total of 218,753 neu-
ron parameters for each per-step detector (Reconnaissance, Infection, Action) and 200,705 for the
sequence analyzer. Maximum GPU power consumption during training is 115W for per-step de-
tectors and 152W for the sequence analyzer. In the inference phase, with the architecture, weights,
optimizer status, and other information of the model stored in HDF5 format, each per-step detector
and sequence analyzer has a size of 2.6M and 2.4M, respectively.

8.6.2 Time Overhead. We also independently analyzed the time overhead of different modules
in ARIOTEDef during training and inference, detailed in Figure 15. In the training phase, per-
step detectors (Reconnaissance, Infection, Action) converge within 40 epochs, whereas each epoch
takes 0.75s, 1.05s, and 1.0s, respectively. The sequence analyzer, due to the need to learn more
complex event sequence patterns, takes an average of 12.25s per epoch.

In the inference phase, when the trained models are used for prediction, the per-step detector
(represented by the infection detector) only takes 0.007s to predict a window, and the sequence
analyzer tags an event sequence in 0.065s. In addition, assuming that the attacker sends 318 ad-
versarial samples in each round, the time overhead of evolution will be related to the number of

ACM Trans. Internet Things, Vol. 5, No. 3, Article 15. Publication date: June 2024.



ARIoTEDef: Adversarially Robust loT Early Defense System

Standard Train Per-Step Detector

—— Reconnaissance
—— Infection
— Action

Cost Time (seconds)
I G S

°
>

8135

Cost Time (se
BB B
LS S

15

110

Standard Train Sequence Analyzer

Cost Time (seconds)

0.10

°
5
g

Predict

—— Infection Detector
—— Sequence Analyzer

QAN A

_—4 L

Cost Time (seconds)
B8 8288838

15:31

Infection Detector Evolve

A

—_—

e e —

—— 40 epochs per round
—— 30 epochs per round
—— 20 epochs per round

4 10 20 30 40 0 10 20 30 0 0 5 10 15 20 0 5 10 15 20
Training Epoch Training Epoch Evolution Round Evolution Round

Fig. 15. Time cost in the training and inference phases.

Performance on Adversarial Samples
100

Performance on Adversarial Samples

Seed-0  Seed-1

Performance on Adversarial Samples Performance on Adversarial Samples
100 100

Seed-0  Seed-1

300 = PGD-AT
BN ARIOTEDef
80 80

HL

Seed-1

»
g

S
8

60
- PGD AT
W ARIOTEDef

= PGD-AT
. ARIOTEDef

FN Value
TP Value
&

a0

FNR Value (%)

g8
Recall Value (%)

20

g

" PGD-AT
W ARIOTEDef
—

80
60
40
20

0

Seed0  Seed-1

.. )
0

Average

0 0

Seed-2  Average

Seed2  Average Seed-0 Seed-2 Seed-2

Average

Fig. 16. Adversarial robustness performance comparison on white-box adversarial samples.

Performance on Clean Test Set
100 100
. PGD-AT

W ARIOTEDef

Performance on Clean Test Set Performance on Clean Test Set Performance on Clean Test Set

W= PGD-AT
W ARIOTEDef

m PGD-AT
W ARIOTEDef

100

60 60 60 60

a0 40 40 40

20 L 20 20 20
0 L t L 0 0

Seed0  Seed-1  Seed2  Average Seed0  Seed-1  Seed2  Average Seed-0  Seed-l  Seed2  Average Seed0  Seed-1

W PGD-AT

m ARIOTEDef

FPR Value (%)
Precision Value (%)
F1 Value (%)
Accuracy Value (%)

°

Seed-2  Average

Fig. 17. Regular performance comparison on the clean test set.

epochs required for retraining the infection detector in each round. Under the default setting of
40 epochs, it takes about 55s for per-round evolution.

8.7 Robustness Performance Comparison with Existing Work

To fully demonstrate the robustness performance of ARIoTEDef in adversarial environments, we
also compare it with the powerful PGD-based Adversarial Training (PGD-AT) [31], which is
most often chosen as a strong baseline for robustness comparisons. It involves creating adversar-
ial samples based on the original training samples and incorporating them into the training set to
optimize the model. However, different from PGD-AT, which assumes that the defender has prior
knowledge of adversarial attack methods and can actively construct adversarial samples, we do
not generate adversarial samples but only capture and use advanced sequence analyzers to tag ad-
versarial samples. Therefore, we not only relax the assumptions about the defender’s capabilities
but also avoid expensive generation overhead. As can be seen from Figure 16, after three experi-
ments, the recall of the 80-round evolved infection detector on white-box adversarial samples is
8.38% higher than that of PGD-AT trained detector on average. This suggests that more adversarial
infection samples are correctly identified. In addition, as shown in Figure 17, our evolved model
also has higher precision (27.13% higher), F1 score (22.11% higher), accuracy (10.39% higher), and
a lower FPR (11.82% lower) on non-adversarial infection and benign samples than the PGD-AT
trained detector on average. This indicates that fewer actual normal samples are misclassified as
infection.

ACM Trans. Internet Things, Vol. 5, No. 3, Article 15. Publication date: June 2024.



15:32 M. Huang et al.

9 CONCLUSION

In this article, we introduced ARIoTEDef, a kill chain-based approach for early detection of persis-
tent attacks against IoT devices. To improve the robustness of the infection detector, ARIoTEDef
adopts a feedback strategy that backtracks past events to identify infection events when anomalies
at the later steps are detected. We showed that ARIoTEDef is not only effective in detecting non-
adversarial black-box infection attacks but also improves the robustness of the infection detector
against DL-based adversarial white-box attacks. In the case of PGD, the most powerful white-box
adversarial attacks to our knowledge, our experiments showed that after 20 rounds, 40 rounds,
and 80 rounds of self-evolution, the average recall of the infection detector on the evasion attack
improves from 0% to 64.88%, 70.96%, and 82.18%, respectively. We plan to enhance our approach
with host information, such as system calls and CPU/memory and resource usage, and more steps
of the cyber kill chain, such as lateral movement and obfuscation, as part of future work. The
implementation of the source codes is released at https://github.com/ariotedef.

REFERENCES

[1] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Durumeric, J. A. Halderman, L. Inv-
ernizzi, M. Kallitsis, D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman, N. Sullivan, K. Thomas, and Y.
Zhou. 2017. Understanding the Mirai botnet. In Proceedings of the USENLX Security Symposium. 1093-1110.

[2] D.Bahdanau, K. H. Cho, and Y. Bengio. 2015. Neural machine translation by jointly learning to align and translate.
In Proceedings of International Conference on Learning Representations (ICLR’15). 1-15.

[3] L. Bilge and T. Dumitras. 2012. Before we knew it: An empirical study of zero-day attacks in the real world. In
Proceedings of the ACM Conference on Computer and Communications Security (CCS’12). ACM, New York, NY, USA,
833-844.

[4] W. Brendel, J. Rauber, and M. Bethge. 2018. Decision-based adversarial attacks: Reliable attacks against black-box
machine learning models. In Proceedings of the International Conference on Learning Representations (ICLR’18). 1-12.

[5] S.Chaudhari, V. Mithal, G. Polatkan, and R. Ramanath. 2021. An attentive survey of attention models. ACM Transac-
tions on Intelligent Systems and Technology 12, 5 (2021), 1-32.

[6] J. Chen, M. L Jordan, and M. J. Wainwright. 2020. HopSkipJumpAttack: A query-efficient decision-based attack. In
Proceedings of the IEEE Symposium on Security and Privacy (S&P’°20). IEEE, 1277-1294.

[7] K. Cho, B. Van Merrienboer, D. Bahdanau, and Y. Bengio. 2014. On the properties of neural machine translation:
Encoder-decoder approaches. In Proceedings of the 8th Workshop on Syntax, Semantics, and Structure in Statistical
Translation (SSST’14). 103-112.

[8] E. Cole. 2016. Threat hunting: Open season on the adversary. SANS Institute Information Reading Room 1, 1 (2016),
1-23.

[9] CoreSecurity. 2014. Pcapy. Retrieved April 24, 2024 from https://github.com/helpsystems/pcapy

[10] D. Dingee. 2019. IoT, Not People, Now the Weakest Link in Security. Retrieved April 24, 2024 from https://devops.
com/iot-not-people-now-the-weakest-link-in-security/

[11] G.D. Forney. 1973. The Viterbi algorithm. Proceedings of the IEEE 61, 3 (1973), 268-278.

[12] Y.Fu, Z.Yan,]. Cao, O.Koné, and X. Cao. 2017. An automata-based intrusion detection method for Internet of Things.
Mobile Information Systems 1, 1 (2017), 1-13.

[13] I J. Goodfellow, J. Shlens, and C. Szegedy. 2015. Explaining and harnessing adversarial examples. In Proceedings of
the International Conference on Learning Representations (ICLR’15). 1-11.

[14] A.Goodge, B. Hooi, S. K. Ng, and W. S. Ng. 2020. Robustness of autoencoders for anomaly detection under adversarial
impact. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI’20). 1244-1250.

[15] A. Graves. 2012. Long short-term memory. In Supervised Sequence Labelling with Recurrent Neural Networks. Studies
in Computational Intelligence, Vol. 385. Springer, 37-45.

[16] G.Gu,P. A. Porras, V. Yegneswaran, M. W. Fong, and W. Lee. 2007. BotHunter: Detecting malware infection through
IDS-driven dialog correlation. In Proceedings of the USENILX Security Symposium. 1-16.

[17] S.Haas and M. Fischer. 2018. GAC: Graph-based alert correlation for the detection of distributed multi-step attacks.
In Proceedings of the Annual ACM Symposium on Applied Computing (SAC’18). ACM, New York, NY, USA, 979-988.

[18] X. Han, T. Pasquier, A. Bates, J. Mickens, and M. Seltzer. 2020. UNICORN: Runtime provenance-based detector for
advanced persistent threats. In Proceedings of the Network and Distributed System Security Symposium (NDSS’20).
1-18.

ACM Trans. Internet Things, Vol. 5, No. 3, Article 15. Publication date: June 2024.


https://github.com/ariotedef
https://github.com/helpsystems/pcapy
https://devops.com/iot-not-people-now-the-weakest-link-in-security/
https://devops.com/iot-not-people-now-the-weakest-link-in-security/

ARIoTEDef: Adversarially Robust loT Early Defense System 15:33

[19]
[20]
[21]
[22]
[23]
[24]

[25]

[26]

[27]

[28]

[29]
[30]
[31]
[32]

[33]

[34]

[35]

[36]
[37]
[38]

[39]

[40]
[41]

[42]

[43]

E. Hutchins, M. Cloppert, and R. Amin. 2011. Intelligence-driven computer network defense informed by analysis of
adversary campaigns and intrusion kill chains. Information Warfare & Security Research 1, 1 (2011), 80.

K. A. Jallad, M. Aljnidi, and M. S. Desouki. 2020. Anomaly detection optimization using big data and deep learning
to reduce false-positive. Journal of Big Data 7, 1 (2020), 1-12.

M. Javed and V. Paxson. 2013. Detecting stealthy, distributed SSH brute-forcing. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (CCS’13). ACM, New York, NY, USA, 85-95.

H. Kang, D. Ahn, G. Lee, J. Yoo, K. Park, and H. Kim. 2019. IoT Network Intrusion Dataset. Retrieved April 24, 2024
from https://ieee-dataport.org/open-access/iot-network-intrusion-dataset

Keras. 2016. Home Page. Retrieved April 24, 2024 from https://keras.io/

F. Klassen and AppNeta. 2018. Tcpreplay. Retrieved April 24, 2024 from https://tcpreplay.appneta.com/

B. Krebs. 2017. Reaper: Calm Before the IoT Security Storm. Retrieved April 24, 2024 from https://krebsonsecurity.
com/2017/10/reaper-calm-before-the-iot-security-storm/

B. Lantz, B. Heller, and N. McKeown. 2010. A network in a laptop: Rapid prototyping for software-defined networks.
In Proceedings of the ACM SIGCOMM Workshop on Hot Topics in Networks (HotNets’10). ACM, New York, NY, USA,
1-6.

A. H. Lashkari. 2018. CICFlowMeter Features. Retrieved April 24, 2024 from https://github.com/ahlashkari/
CICFlowMeter/blob/master/ReadMe.txt

H. Lee, A. Mudgerikar, A. Kundu, N. Li, and E. Bertino. 2022. An infection-identifying and self-evolving system for
IoT early defense from multi-step attacks. In Proceedings of the European Symposium on Research in Computer Security.
549-568.

C. Liu, Y. Liu, Y. Yan, and J. Wang. 2020. An intrusion detection model with hierarchical attention mechanism. IEEE
Access 8 (2020), 67542-67554.

M. T. Luong, H. Pham, and C. D. Manning. 2015. Effective approaches to attention-based neural machine translation.
In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP’15). 1412-1421.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. 2018. Towards deep learning models resistant to adver-
sarial attacks. In Proceedings of the International Conference on Learning Representations (ICLR’18). 1-28.

Heikki Mannila, Hannu Toivonen, and A. I. Verkamo. 1997. Discovery of frequent episodes in event sequences. Data
Mining and Knowledge Discovery 1, 3 (1997), 259-289.

D. Midi, A. Rullo, A. Mudgerikar, and E. Bertino. 2017. Kalis: A system for knowledge-driven adaptable intrusion
detection for Internet of Things. In Proceedings of the IEEE International Conference on Distributed Computing Systems
(ICDCS’17). IEEE, 656-666.

S. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. Venkatakrishnan. 2019. Holmes: Real-time apt detection through
correlation of suspicious information flows. In Proceedings of the IEEE Symposium on Security and Privacy (S&P’19).
IEEE, 1137-1152.

S. M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. 2016. DeepFool: A simple and accurate method to fool deep neural
networks. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’16). IEEE, 2574~
2582.

Msehgal. 2021. Protect Your IoT Devices from Log4j 2 Vulnerability. Retrieved April 24, 2024 from https://live.
paloaltonetworks.com/t5/community-blogs/protect-your-iot-devices-from-log4j-2-vulnerability/ba-p/453381

A. Mudgerikar, P. Sharma, and E. Bertino. 2019. E-Spion: A system-level intrusion detection system for IoT devices.
In Proceedings of the ACM Asia Conference on Computer and Communications Security. ACM, New York, NY, 493-500.
J. Navarro, A. Deruyver, and P. Parrend. 2018. A systematic survey on multi-step attack detection. Computers &
Security 76 (2018), 214-249.

T. D. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni, N. Asokan, and A. R. Sadeghi. 2019. DIoT: A federated self-
learning anomaly detection system for IoT. In Proceedings of the IEEE International Conference on Distributed Com-
puting Systems (ICDCS’19). IEEE, 756-767.

M. 1. Nicolae, M. Sinn, M. N. Tran, B. Buesser, A. Rawat, M. Wistuba, V. Zantedeschi, N. Baracaldo, B. Chen, H. Ludwig,
Tan M. Molloy, and Ben Edwards. 2018. Adversarial Robustness Toolbox v1.0.0. arXiv preprint arXiv:1807.01069 (2018).
C. Osborne. 2021. This Is Why the Mozi Botnet Will Linger On. Retrieved April 24, 2024 from https://www.zdnet.
com/article/this-is-why-the-mozi-botnet-will-linger-on/

D. Palmer. 2022. This Sneaky Hacking Group Hid Inside Networks for 18 Months without Being Detected. Re-
trieved April 24, 2024 from https://www.zdnet.com/article/this-sneaky-hacking-group-hid-inside-networks-for-18-
months-without-being-detected/

N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami. 2016. The limitations of deep learning
in adversarial settings. In Proceedings of the IEEE European Symposium on Security and Privacy (EuroS&P’16). IEEE,
372-387.

ACM Trans. Internet Things, Vol. 5, No. 3, Article 15. Publication date: June 2024.


https://ieee-dataport.org/open-access/iot-network-intrusion-dataset
https://keras.io/
https://tcpreplay.appneta.com/
https://krebsonsecurity.com/2017/10/reaper-calm-before-the-iot-security-storm/
https://krebsonsecurity.com/2017/10/reaper-calm-before-the-iot-security-storm/
https://github.com/ahlashkari/CICFlowMeter/blob/master/ReadMe.txt
https://github.com/ahlashkari/CICFlowMeter/blob/master/ReadMe.txt
https://live.paloaltonetworks.com/t5/community-blogs/protect-your-iot-devices-from-log4j-2-vulnerability/ba-p/453381
https://live.paloaltonetworks.com/t5/community-blogs/protect-your-iot-devices-from-log4j-2-vulnerability/ba-p/453381
https://www.zdnet.com/article/this-is-why-the-mozi-botnet-will-linger-on/
https://www.zdnet.com/article/this-is-why-the-mozi-botnet-will-linger-on/
https://www.zdnet.com/article/this-sneaky-hacking-group-hid-inside-networks-for-18-months-without-being-detected/
https://www.zdnet.com/article/this-sneaky-hacking-group-hid-inside-networks-for-18-months-without-being-detected/

15:34 M. Huang et al.

[44]
(45]
[46]
(47]
(48]
(49]
(50]

[51]

(52]

B. Pinkas and T. Sander. 2002. Securing passwords against dictionary attacks. In Proceedings of the ACM Conference
on Computer and Communications Security (CCS’02). ACM, New York, NY, USA, 161-170.

Check Point Research. 2017. IoTroop Botnet: The Full Investigation. Retrieved April 24, 2024 from https://research.
checkpoint.com/2017/iotroop-botnet-full-investigation/

M. Sarkar. 2000. Modular pattern classifiers: A brief survey. In Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics (SMC’00). IEEE, 2878-2883.

Sqrrl. 2018. A Framework for Cyber Threat Hunting. Retrieved April 24, 2024 from https://www.threathunting.net/
files/framework-for-threat-hunting-whitepaper.pdf

B. E. Strom, A. Applebaum, D. P. Miller, K. C. Nickels, A. G. Pennington, and C. B. Thomas. 2018. MITRE ATT&CK:
Design and Philosophy. Technical Report. MITRE.

L. Sutskever, O. Vinyals, and Q. V. Le. 2014. Sequence to sequence learning with neural networks. In Proceedings of
Advances in Neural Information Processing Systems (NeurIPS’14). 1-9.

C. Tang, N. Luktarhan, and Y. Zhao. 2020. SAAE-DNN: Deep learning method on intrusion detection. Symmetry 12,
10 (2020), 1695.

N. Wang, Y. Chen, Y. Hu, W. Lou, and Y. T. Hou. 2021. MANDA: On adversarial example detection for network
intrusion detection system. In Proceedings of the IEEE Conference on Computer Communications (INFOCOM’21). IEEE,
1-10.

T. Yadav and A. M. Rao. 2015. Technical aspects of cyber kill chain. In Proceedings of the International Symposium on
Security in Computing and Communication (SSCC’15). 438-452.

Received 22 August 2023; revised 2 February 2024; accepted 24 March 2024

ACM Trans. Internet Things, Vol. 5, No. 3, Article 15. Publication date: June 2024.


https://research.checkpoint.com/2017/iotroop-botnet-full-investigation/
https://research.checkpoint.com/2017/iotroop-botnet-full-investigation/
https://www.threathunting.net/files/framework-for-threat-hunting-whitepaper.pdf
https://www.threathunting.net/files/framework-for-threat-hunting-whitepaper.pdf

	1 INTRODUCTION
	2 RELATED WORK
	2.1 NIDS for IoT
	2.2 Detection of Multi-Step Attacks

	3 PRELIMINARIES
	3.1 Cyber Kill Chain
	3.2 Adversarial Evasion Attacks
	3.3 Long Short-Term Memory Based Seq2Seq Model with the Attention Mechanism

	4 ARCHITECTURE OF ARIOTEDEF
	4.1 Design Principles
	4.2 System Architecture

	5 FORMALIZATION OF ARIOTEDEF
	5.1 Problem Definitions
	5.2 Solution
	5.3 Self-Evolution Strategies

	6 EXPERIMENTS IN THE REGULAR SETTING
	6.1 Experimental Setup
	6.2 Dataset Generation
	6.3 Impact of Probability-Based Embedding
	6.4 Impact of Classifiers of Per-Step Detectors
	6.5 Comparison with Other Identification Algorithms
	6.6 Impact of Self-Evolution Strategies
	6.7 Comparison with Other Attention-Based NIDSes

	7 ENHANCED SELF-EVOLUTION STRATEGIES
	8 EXPERIMENTS IN THE ADVERSARIAL SETTING
	8.1 Experimental Setup
	8.2 Impact of Budget Settings of Adversarial Evasion Attacks
	8.3 Impact of the Threshold of the Sequence Analyzer
	8.4 Robustness of the Evolved Infection Detector in Adversarial Setting I
	8.5 Robustness of the Evolved Infection Detector in Adversarial Setting II
	8.6 Computational, Storage, and Time Overhead
	8.7 Robustness Performance Comparison with Existing Work

	9 CONCLUSION
	REFERENCESendgraf 

