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ABSTRACT
Machine learning based phishing website detectors (ML-PWD) are
a critical part of today’s anti-phishing solutions in operation. Un-
fortunately, ML-PWD are prone to adversarial evasions, evidenced
by both academic studies and analyses of real-world adversarial
phishing webpages. However, existing works mostly focused on
assessing adversarial phishing webpages against ML-PWD, while
neglecting a crucial aspect: investigating whether they can deceive
the actual target of phishing—the end users. In this paper, we �ll
this gap by conducting two user studies (==470) to examine how hu-
man users perceive adversarial phishing webpages, spanning both
synthetically crafted ones (which we create by evading a state-of-
the-art ML-PWD) as well as real adversarial webpages (taken from
the wild Web) that bypassed a production-grade ML-PWD. Our
�ndings con�rm that adversarial phishing is a threat to both users
and ML-PWD, since most adversarial phishing webpages have com-
parable e�ectiveness on users w.r.t. unperturbed ones. However,
not all adversarial perturbations are equally e�ective. For example,
those with added typos are signi�cantly more noticeable to users,
who tend to overlook perturbations of higher visual magnitude
(such as replacing the background). We also show that users’ self-
reported frequency of visiting a brand’s website has a statistically
negative correlation with their phishing detection accuracy, which
is likely caused by overcon�dence. We release our resources [5].
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1 INTRODUCTION
After nearly three decades of research [31], phishing attacks are

still rampant. According to the FBI’s 2022 crime data [1], phishing is
the topmost form of cybercrime, with reported victim loss allegedly
increasing by over 1000% since 2018. In this context, phishing web-
sites are a type of online scam used by attackers to steal sensitive
information such as login credentials, �nancial information, or per-
sonal data. To increase their e�ectiveness, phishing websites aim to
mimic legitimate ones [6], thereby tricking unaware and distracted
victims—who may not notice subtle di�erences in their appearance.

Recently, numerous automatic PhishingWebsite Detectors (PWD)
have been proposed, which can rely on blocklists [59], or be entirely
data-driven [10]. The former works by checking whether a given
website is included in their (public or private) blocklist, which con-
sists of URLs (collected, e.g., from well-known repositories—such
as PhishTank [2]). However, blocklist-based anti-phishing meth-
ods, despite their low false positive rates, cannot detect “novel”
phishing websites [76]. These shortcomings can be compensated
via data-driven techniques. Among these, Machine Learning (ML)
algorithms seek to autonomously learn (by “training” on a given
dataset) to identify patterns that may not be discernible to the hu-
man eye. The remarkable performance of ML methods in computer
vision [48] led to many e�orts to investigate their e�ectiveness in
various �elds—including that of phishing website detection. In par-
ticular, ML-based phishing website detectors (ML-PWD) can detect
previously unseen phishing websites while maintaining low rates
of false positives [10], which can be achieved by analyzing either
textual or visual features from any given webpage (e.g., [17, 53]).

Motivation. Machine learning has now become mainstream
even for the detection of phishing webpages [27]. However, ML
is prone to evasion attacks, which entail crafting an “adversarial
phishing website” (APW) by introducing imperceptible perturba-
tions (located, e.g., in the HTML [10], or in some visual element [49]
of a webpage) that fool an ML-PWD. Unfortunately, security practi-
tioners persist in not addressing such a threat [9] (despite abundant
alarms from academia [62, 65]). In this context, we observe that
recent interview studies [19, 37, 55] about adversarial ML (AML) in
practice are based on the participants’ (self-reported) understanding
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of AML’s concepts, thereby focusing on the question “What is the
practitioners’ awareness of AML?”. We argue that to (i) establish
whether AML is truly a threat and, if so, (ii) convince practitioners to
take AML into consideration while designing their ML systems, the
focus should be on the question “What is the impact of AML on the
end-users in practice? That is: does AML fool users as much as it fools
MLmodels?”. This paper revolves around investigating this dilemma
for phishing website detection. Compared to existing works that
only focus on using AML to attack ML-PWD (e.g., [10, 49]), our
work advances existing knowledge by examining how human users
perceive adversarial phishing webpages that evade ML-PWD.

Problem Statement. To explore the users’ perception of APW,
our paper revolves around answering four research questions (RQ):
RQ1 Are adversarially perturbed phishing webpages more easily

detectable by users—w.r.t. unperturbed ones? (§5.2)
RQ2 Are some perturbations more likely to deceive users? (§5.2)
RQ3 Howmuch do users’ background (e.g., age, gender, expertise)

correlates with their phishing detection skills? (§5.3)
RQ4 What cues do users typically look for (and potentially rely

on) to judge the legitimacy of any given website? (§6)
To answer our RQ, we conduct (§4) two user studies (==470). The
�rst focuses on assessing how well users can distinguish legitimate
webpages from “unperturbed” phishing webpages. The second is
to assess how well users can distinguish “adversarial” phishing
webpages from legitimate webpages. Overall, we obtained over
7k responses encompassing various classes of webpages including:
legitimate and ‘unperturbed’ phishingwebpages, four types of APW
(crafted through well-known AML techniques), as well as APW
“from the wild Web” that bypassed production-grade ML-PWD (§3).

C������������. After analysing the results of our user studies
both quantitatively and qualitatively, we derive three key-�ndings.
(1) Adversarial phishing is a threat to both users and ML. In

particular, three out of the four adversarial perturbations we
considered have comparable e�ectiveness in deceiving users
when compared to unperturbed phishing webpages—but the
latter cannot bypass the ML-PWD. We argue that user studies
are a necessary step that is currently missing in most AML re-
search on phishing detectors (see §2). Speci�cally, it is crucial to
compare adversarial phishing webpages with unperturbed phish-
ing webpages to make sure APW do not sacri�ce e�ectiveness
against users in favor of an improved evasion rate.

(2) Not all adversarial perturbations are equally e�ective. In
particular, adversarial webpages with added typos are more
noticeable to users, as con�rmed by statistical tests.
The reasoning provided by participants also indicates that tex-
tual indicators play amajor role in their decision-making process.
In addition, we verify that adversarial phishing pages “from the
wild Web” (which bypassed production-grade ML-PWD) are
more detectable by users than unperturbed phishing pages.

(3) As a surprising and counter-intuitive observation, users’ self-
reported frequency of visiting a brand’s website has a sta-
tistically signi�cant negative correlation with their phish-
ing detection accuracy. Users who claimed to frequently visit
websites of a given brand performed worse on the phishing
webpages targeting this brand. We suspect this is correlated to
prior �ndings that familiarity leads to overcon�dence [63, 79]

Finally, our work can serve as a benchmark for future research on
evasion attacks against ML-PWD, since it facilitates assessing their
e�ectiveness on end users. To this purpose, we release our user study
questionnaires, codebook, data, and code we developed [5].

2 BACKGROUND AND RELATEDWORK
To set the stage for our contribution, we raise the attention

on some simple security concepts, which we use as a sca�old to
position our paper within existing literature. We provide exhaustive
background (covering ML-PWD and adversarial ML) in Appendix C.

Phishing in a Nutshell. From a security standpoint, the goal
of a phisher (i.e., the attacker) is to trick a human user to, e.g., input
their private (or sensitive) data, or click on a malicious link.

R�����: bypassing a given detector (despite being necessary)
is not su�cient for a phishing webpage to be successful.

Given the above, all those papers (e.g., [10, 11, 24, 49, 57]) showing
that ML-PWD can be evaded via “adversarial perturbations” – while
useful for investigating some robustness properties of ML – could
hardly provide a compelling case that “adversarial examples are a
problem in reality”. Indeed, doing so would necessitate a double
form of assessment, entailing both machine and human: �rst, it is
necessary to craft an adversarial webpage and show that it bypasses
a functional ML-PWD (i.e., a false negative); then, it is necessary to
assess whether humans (i.e., the true target of phishing) are still
tricked by such a webpage. Perhaps surprisingly, however, such
systematic assessments are missing from current literature.

Research Gap. Scienti�c literature on phishing defense can
be divided in two categories: technical papers (e.g., [10, 49, 50, 52,
53]), which propose (or attack) a given solution; and user studies
(e.g., [8, 35, 82]), which seek to investigate the response of humans to
phishing (useful for phishing training and education). However, to
the best of our knowledge, none of these categories have questioned
how humans respond to phishing webpages crafted to bypass ML-
PWDs. Indeed, from an “adversarial ML” perspective, technical
papers typically stop after showing that a given ML-PWD has
been evaded (e.g., [11, 57]); whereas user studies either entailed
“phishing” webpages that have been crafted ad-hoc (e.g., [35, 58]) or,
even when real phishing webpages were considered (e.g., [8, 12]),
the role of ML was irrelevant. Hence, the question: “Are adversarial
webpages a problem in reality?” is still open. As a matter of fact,
recent �ndings [9] revealed that theML-PWDof a security company
had over 9k false negatives in one month—some of which entailed
“perturbations” that most laymen would notice (see Fig. 5).

Related Work. We acknowledge, however, that the limitations
of prior work are well-justi�ed. Indeed, technical papers can be
complex, and carrying out user studies on top of devising a scientif-
ically sound and relevant contribution is challenging; whereas user
studies require the availability of ML-powered PWD, which are
becoming popular only in recent years. Nonetheless, we found three
works which partially overlapwith ours. (1)Abdelnabi et al. [6], after
proposing an ML-PWD, discuss a user study (in the Appendix, with
limited details) wherein participants were shown the webpages that
bypassed the proposed ML-PWD and asked to rate “how trustwor-
thy” such webpages were. The purpose of the user study, however,
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is to assess user agreements with their proposed similarity metric,
and thus it does not involve the assessment of adversarial phishing
pages or their comparison with benign/unperturbed phishing pages.
(2) Lee et al. [49] attack an ML-PWD which exclusively focuses on
the logo of well-known brands, and then carry out a user study
asking participants how similar an adversarial logo was w.r.t. an
original logo: the problem is that the logo is only a single element
in a webpage (i.e., the webpage could be still detected by other au-
tomated mechanisms). Finally, (3) Draganovic et al. [29] carry out a
user study entailing 18 webpages that bypassed a single component
of a real ML-PWD; however, the user study is designed di�erently
(participants were not informed that it was a phishing exercise—
which may lead to unreliable answers) and there is no comparison
with non-adversarial webpages—preventing assessment of our RQ.

O��G���. In this paper, we seek to overcome the shortcomings
of prior work. Speci�cally, we investigate the response of human
users to “adversarial” phishing webpages1 that evaded ML-PWD
(both real ones and custom-made); then, we compare such results
with the ones from user assessments of “non-adversarial” phishing
webpages. The rationale is that attackers are less interested in
crafting adversarial webpages that, despite evading ML-PWD, can
be easily spotted by end-users—i.e., their �nal target.

3 DATA COLLECTION & GENERATION
To answer our research questions, we design user studieswherein

participants are asked to examine a mixed set of phishing and le-
gitimate webpages. A crucial part of our research is that we want
to investigate the response of users to adversarial webpages that
bypassed ML-based detectors (both synthetic ones, as well as real
products); indeed, this is necessary to determine whether adver-
sarial webpages represent a problem “in reality”. Therefore, before
describing our user studies, we explain how we obtained a set of
adversarial webpages that we can use for our user studies. Fig. 1
summarizes the work�ow of our experimental methodology.

Data Collection
ML

Phishing
Classifier 

Adversarial
Phish. Pages User Study Analysis

Fig. 1: Work�ow of our study.

Overview. We �rst obtain a dataset having benign and phishing
webpages—which will be used to develop a custom ML-PWD. Then,
after ensuring that our ML-PWD obtains good performance (i.e.,
high true positives with low false positives) in “non-adversarial”
scenarios, we will use the phishing webpages in our dataset as
the basis to craft adversarial phishing webpages. Such adversarial
examples will then be tested against our custom ML-PWD. If they
can evade the detection, we will consider them for our user study.

Dataset. To develop a state-of-the-art ML-PWD, we rely on
the phishing dataset by Chiew et al. [23]. This dataset (used also,
e.g., in [66]) contains 30k webpages: 15k are benign (source: Alexa
top) and 15k are phishing (source: Phishtank [2]). We consider this
dataset because, for each sample, it provides the HTML content as
1We focus on phishing “on theWeb”. Other forms of phishing (such as via email [68]
or phone calls [14]) and their detection (with or without ML) are orthogonal research
areas to this paper (albeit some of our �ndings can be relevant also to these areas).

well as supporting �les (e.g., CSS) and all the image components.
This allows us to craft realizable perturbations on these webpages,
thereby yielding adversarial webpages with high realistic �delity.
Other existing datasets (e.g., [11, 53]) do not allow this, since they
lack CSS and/or image �les. Finally, although our chosen dataset
was released in 2018, its webpages still resemble the ones of the
“current” version (as of Sept. 2023) of the corresponding websites.

Custom ML-PWD. We �rst use the dataset [23] of benign and
phishing webpages to train a ML-PWD. Then we add perturbations
to a phishing webpage, aiming to trigger a false negative by the
ML-PWD. In more detail, our ML-PWD relies on the random forest
algorithm (thanks to its superior performance over other ML algo-
rithms, as reported by many prior works [10, 76]).2 In particular,
we rely on the code (and features3) provided by [10] to develop our
ML-PWD, for which we use 80% of the dataset for training and use
the remaining 20% for testing. Our ML-PWD obtains performance
comparable with the state-of-the-art, having a true positive rate
of 0.98 and a false positive rate of 0.04 (results aligning with prior
works [10, 66]). These results con�rm that our ML-PWD (which
we release [5]) is a valid candidate for our research.

Custom Adversarial Phishing Webpages. We adapt existing
AML methods [10, 84] to generate adversarial phishing webpages
“in a lab” (�%, -!01). More speci�cally, we selected four types of per-
turbations4 that should evade our custom ML-PWD, each yielding
an adversarial phishing webpage having diverse visual cues:

(1) �%, -!01_img: we insert a small array of images to the bot-
tom of the web page (footer), as shown in Fig. 4(a).

(2) �%, -!01_typo: we randomly insert typos to the text content
of the web page as shown in Fig. 4(b).

(3) �%, -!01_pswd: we make the password visible for the pass-
word input box, as shown in Fig. 4(c).

(4) �%, -!01_bg: we randomly add a background image to the
web page, as shown in Fig. 4(d).

The �%, -!01 that bypass our ML-PWD will be used for the user
study.We note that related work from Lee et al. [49] did not evaluate
webpages but focused on logos only.

Real Adversarial Phishing Webpages. A prior work [9] iden-
ti�ed 100 adversarial phishing websites “from the wild Web” that
bypassed a production-grade ML-PWD (reliant on visual similarity)
in July 2022. A close inspection shows that these adversarial pages
adopt various evasion strategies such as using blurry logos and
adding background patterns (example in Fig. 5 in the Appendix).
We will use this set (denoted as �%, -,8;3) to examine5 the user
perception on adversarial webpages crafted by real phishers—for
which we provide more details in Appendix A.

4 USER STUDY: SET-UP
We carry out two user studies. The �rst, serving as a baseline,

examines how well users can distinguish legitimate webpages from
2We empirically verify this assumption also holds on our dataset (see Appendix B.1).
3At the high level, features are extracted from various components from the HTML
such as tags, login forms, javascript, CSS, iFrame, and footers—all of which have been
successfully used by prior works [38, 57]. The complete list is in Appendix A.
4Speci�cally, we consider perturbations in the “website-space” (formalized in [10]);
and employ the techniques proposed in [84], which yield successful evasions.
5We note that neither Lee et al. [49] nor Abdelnabi et al. [6] considered real phishing
webpages that bypassed a production-grade ML-PWD.
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“unperturbed” phishing webpages. The second examines how well
users can distinguish “adversarial” phishing webpages (APW) from
legitimate ones. Henceforth, we refer to the �rst user study as
baseline study, and to the second as adversarial study.

4.1 Candidate Webpages
ConsideredBrands. To conduct ameaningful research, we only
consider webpages representing well-known brands.6 Hence, we
select 15 popular brands typically targeted by phishing attacks [4]:
Adobe, Amazon, Apple, AT&T, Bank of America, DHL, Dropbox, eBay,
Facebook, Google, Microsoft, Outlook, Paypal, Wells Fargo, Yahoo.

Webpage Classes For these selected brands, we construct a
user study dataset spanning the following classes of webpages:

• Legitimate. For each brand, we retrieve the (legitimate) web-
page corresponding to the brand’s homepage.

• Unperturbed Phishing. For each brand, we randomly sample
two phishing webpages from our chosen dataset (cf. §3).

• �%, -!01. For each brand and perturbation type, we select
one adversarial webpage that bypassed our ML-PWD.

• �%, -,8;3 . From the 100 webpages collected in [9], we �nd
28 of them matching 8 of our target brands,7 hence we ran-
domly draw from these 28 (examples in Appendix A).

Overall, our user studies entail 15 legitimate, 30 unperturbed phish-
ing webpages, 60 �%, -!01 webpages, and 28 �%, -,8;3 webpages.

4.2 Questionnaire Design
Both of our user studies are designed as questionnaires following

a similar structure, depicted in Table 1. In what follows, we describe
this common user study process from a participant’s perspective.
General Procedure. At a high-level, the questionnaires con-
sist of three parts. (1) A participant starts by reading a consent
form stating their rights and the study’s objectives. Afterwards,
the participant reads a brief introduction about phishing attacks
and phishing websites. We explicitly inform the participants that
the study is about detecting phishing websites. This is considered
a “highly-primed” setting, i.e., participants may be more prepared
to detect phishing websites than they would in the real world. We
use this setting to estimate the upper-bound performance of users.
This e�ect has been shown in previous phishing studies (e.g., [40])
where highly prompted participants have a better phishing de-
tection performance than unprompted participants. (2) Then, the
participant will view a total of 15 webpages (as screenshots, taken
in high resolution and tailored for desktop browsers), covering all
our 15 brands. The participant is asked to assess the legitimacy of
each shown webpage. For the baseline study, each participant will
view 7 legitimate pages and 8 unperturbed phishing pages. For the
adversarial study, each participant will view 7 legitimate pages, 4
�%, -!01 (one for each perturbation type), and 4 �%, -,8;3 . The
webpages to present to each user are randomly chosen, but we
ensure the benign-to-phishing ratio and also that any given user
will not see two (or more) screenshots of the same brand—thereby
ensuring consistency, since all users will see 15 screenshots of 15
di�erent brands). Furthermore, the order of the pages is randomized
6Indeed, some users may not be familiar with some less-popular brands, and their
responses would have limited value for the purpose of our RQ.
7These include Apple, AT&T, DHL, Dropbox, Google, Microsoft, Outlook, and Paypal.

Study Pages Seen by Each Participant Participants

Baseline 7 Legitimate + 8 Unperturbed Phishing 235

Adversarial 7 Legitimate + 4 �%, -!01 + 4 �%, -,8;3 235

Table 1: Summary of our user studies. We report the classes of web-
pages that each participant views and the number of participants.

for each participant to avoid order bias [32] (this was not done by
Lee et al. [49] or Abdelnabi et al. [6]). (3) Finally, the participant
will answer some exit questions to report demographic informa-
tion such as age, gender, education, and knowledge of phishing
and the considered brands. For attention check, at the end of the
main experiment we show a screenshot of a popular social network
(Twitter/Instagram) and ask whether it represents a bank website.
Detailed Questions. Under each screenshot, we include two
questions: “How do you rate the legitimacy of this webpage?” [Q1],
and “What speci�c components/indicators on the webpage have in-
�uenced your choice?” [Q2]. For Q1, the participant is asked to rate
the legitimacy of the web page from 1 to 6: 1 (de�nitely phishing),
2 (very probably phishing), 3 (probably phishing, but not sure), 4
(probably legitimate, but not sure), 5 (very probably legitimate) and
6 (de�nitely legitimate). The six-point Likert scale does not include
a “neutral” option to encourage participants to draw a conclusion.
For Q2, the participant provides open-ended answers via a text box.

For the exit questions, we �rst inquire the participant’s familiar-
ity with the considered brands—“Do you know these brands/compa-
nies/services?” and “Please rate how often you visit the websites of
these brands”. The participant provides a binary answer for the �rst
question and uses a 4-point Likert scale for the second. Then, we
inquire about gender, age, education, and technical background in
cybersecurity. Our complete questionnaire is in our repository [5].

4.3 Recruitment, Ethics, and Demographics
Our study was approved by our IRB. We follow the Menlo re-

port [15] and do not deploy any phishing webpage on the Web (we
only show screenshots). We recruited participants from Proli�c be-
tween Jul./Aug. 2023. We choose Proli�c over other platforms (e.g.,
MTurk) for the high-quality work from Proli�c [61]. Participation
in our study is anonymous and voluntary, and participants have
unlimited time to read the consent form. Participants can withdraw
their consent at any time without any risk. We did not collect any
personally identi�able information [43], nor sensitive data [3]. We
recruit participants from the U.S. (because we use websites from the
U.S.). After �ltering out low-quality answers (based on attention
check), our sample8 encompasses ==470 participants (235 for each
study). The age distribution ranges from 18 to 70+, with 240 males
and 220 females (6 non-binary and 4 prefer not to say). We provide
in Table 5 more details on the demographics. Each participant can
only join once and receive $2.2 compensation. On average, each
participant spent 18.1 minutes on each questionnaire.

5 DETECTION RESULTS (QUANTITATIVE)
We �rst focus on answering RQ1–RQ3. To this purpose, we

perform a quantitative analysis of the responses we collected for
8Our user studies have a population that is larger than most previous user studies
on (non-adversarial) phishing webpages [16]. Speci�cally, most works ([7, 8, 12, 13,
26, 39, 45, 46, 67, 68, 83]) have less than 100 participants, while six ([29, 35, 58, 77, 82])
have [100–400] participants. Only the work by Purkait et al. [64] has more participants
(621) than ours, but it was carried out in 2014.
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our two user studies. We begin by reporting the results at a high-
level (§5.1), and then perform formal regression analyses (§5.2 and
§5.3) to assess the statistical signi�cance of our observations.

5.1 Overview (how good are our respondents?)
We report the overall performance of both user studies in Fig. 2,

showing how well our participants correctly recognized each web-
page.9 By comparing the results of the two user studies (useful
for RQ1), we observe that our participants exhibit a similar per-
formance in identifying legitimate webpages (86% for the baseline
study, and 88% for the adversarial study). In contrast, and perhaps
worryingly, we found that their ability to recognize phishing web-
pages is much worse; intriguingly, however, it appears that our
respondents can more easily discern adversarial phishing webpages
(62%) than “unperturbed” ones (51%).

Fig. 2: Overview of baseline and adversarial study (7, 050 responses)

In Fig. 3, we focus on the detection rates for phishing webpages.
Speci�cally, we break down the results for the adversarial phishing
webpages (�%, -!01 and �%, -,8;3) and compare them with the
“unperturbed” ones of the baseline study (useful for RQ2). This
more detailed comparison reveals that our respondents are not
easily tricked adversarial perturbations entailing ‘typos’ (i.e., the
detection rate for�%, -!01_typo is 85%). However, they appear to be
unable to spot other types of perturbations (i.e., the detection rate
for the other three types of �%, -!01 ranges between [50–56%]).
Finally, the detection rate of �%, -,8;3 aligns with the general
trend (63%), suggesting that adversarial webpages “from the wild
Web” are less e�ective at fooling real users.

Fig. 3: Detection rate for di�erent types of phishing webpages.

Observations: (1) Our respondents can be deceived by phishing
webpages. (2) Some adversarial perturbations are easy to spot by
humans. (3) Adversarial webpages from the real world are less
e�ective than “unperturbed” phishing webpages.

5.2 Statistical Analysis: Websites (RQ1 and RQ2)
To answer RQ1 and RQ2, we perform a rigorous analysis to

ascertain the statistical signi�cance of our previous �ndings.

Method. We choose a mixed-e�ects logistic regression model
(used in many similar studies [16, 83]) to model the process of a
user classifying a given webpage. The dependent variable (~) is the
correctness of the user’s classi�cation result for this webpage. The
answer is coded as “1” if the classi�cation is correct, and “0” other-
wise. We model webpage types and user familiarity with the brand
9To do this, we take the responses to [Q1] for every screenshot and considering ratings
[1–3] as a “legitimate” classi�cation, and ratings [4–6] as a “phishing” one (see §4.2).

Variable Estimate (V) Std. Err. p-value

Intercept 0.161 0.146 0.271

Website type: Reference = Unperturbed Phishing
Legitimate 1.912 0.073 <0.001***
�%, -!01_img 0.049 0.144 0.734
�%, -!01_typo 1.723 0.193 <0.001***
�%, -!01_pswd 0.185 0.145 0.202
�%, -!01_bg -0.075 0.144 0.605
�%, -,8;3 0.484 0.089 <0.001***

Knowledge of Website: Reference = NO
YES -0.034 0.145 0.812

Frequency of Visiting: Reference = Rarely or Never
Sometimes or Frequently -0.169 0.059 0.004**

Table 2: Webpage Classi�cation Analysis – Logistic mixed-e�ects re-
gression model: we predict whether a website is classi�ed correctly by a user,
based on the type of website, the user’s knowledge of this website/brand,
and the user’s frequency of visiting the website. Statistical signi�cance is
denoted by *** (? < 0.001), ** (? < 0.01), and * (? < 0.05) [25].

as �xed e�ects (independent variables). We treat each participant as
a random e�ect because the same user has viewed 15 webpages (i.e.,
repeated measures). In this model, we have 3 independent variables
(G) related to the webpage: (1) webpage type, (2) the user’s prior
knowledge of this webpage’s brand, and (3) the user’s frequency
of visiting webpages of this brand. We include (2) and (3) for a
simple intuition: if a user is familiar with a brand and visits its
webpages regularly, they would be well-acquainted with its typical
appearance, and thus are more likely to have a better detection
accuracy. For webpage type, we have 7 types, and we treat “unper-
turbed” phishing webpages as the reference to compare with other
6 types. For knowledge of the website, we code the answer into a
binary format and use “No” as the reference. For the website visit
frequency, we also code the answer into a binary format and use
“Rarely or Never” as the reference.

Results. The model is summarized in Table 2. We report stan-
dard metrics including Estimate, Standard Error. and p-value for the
hypothesis tests. Estimate (V) describes the e�ect of each predictor
variable on the dependent variable while holding all other predic-
tor variables constant. The sign of Estimate indicates the direction
in which the dependent changes with the independent variables.
A positive sign means that as the independent variable increases,
the dependent variable also increases; otherwise, the dependent
variable decreases. Std. Err. represents the average distance that the
observed values fall from the regression line. The p-value describes
whether the relationships observed in the samples by chance; the
in�uence was considered statically signi�cant when ?<0.05.

Analysis. The results in Table 2 con�rm our earlier observa-
tions from descriptive statistics. First, w.r.t. “unperturbed” phishing
webpages, we �nd that legitimate webpages are statistically sig-
ni�cantly easier to detect (V=1.912, ?<0.001). Second, among the
adversarial webpages, we �nd two types that are statistically easier
to detect by users: �%, -!01_typo (V=1.723, ?<0.001), indicating that
even though the typo is subtle, it has raised suspicion of users; and
�%, -,8;3 (V=0.484, ?<0.001), revealing that while some adversarial
webpages from the wild Web can bypass production-grade ML-
PWD, they indeed make users more suspicious (w.r.t. “unperturbed”
phishing pages). Finally, we did not �nd statistically signi�cant dif-
ferences between “unperturbed” phishingwebpages and other types
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of APW. These include adversarial phishing webpages with image
footers (�%, -!01_img), or visible passwords (�%, -!01_pswd), or
with changed background images (�%, -!01_bg): all these APW
can bypass state-of-the-art ML-based detector and yet do not raise
more suspicion from users’ perspectives.

Table 2 also shows an intriguing phenomenon regarding how
users’ familiarity with the brand correlates with their detection
performance. First, we did not �nd statistically signi�cant evidence
that users’ prior knowledge of a brand in�uences their detection.
However, users’ frequency of visiting the brand’s webpages has a
statistically signi�cant negative correlation with their detection cor-
rectness (V=�0.169, ?=0.004). In other words, users are more likely
to make incorrect guesses about webpages of brand that they visit
“sometimes or frequently”, compared with another that they “rarely
or never” visit. This may suggest that familiarity with the brand
could lead to overcon�dence, i.e., where one’s judgmental con�-
dence exceeds one’s actual performance in decision-making [63, 79].

T�������� (RQ1-2): We make four statistically signi�cant �nd-
ings. From a user perspective, compared to “unperturbed” phish-
ingwebpages: (1) adversarial phishingwebpages with typo-based
perturbations are easier to detect; (2) adversarial phishing web-
pages found in the wild Web are more recognizable; (3) adversar-
ial perturbations such as inserting images to the footer, making
the password visible, or adding a background image, do not make
phishing webpages more suspicious. Finally, (4) users are more
likely to misdetect webpages that they visit more frequently.

5.3 Statistical Analysis: Users Attributes (RQ3)
We now turn our attention to RQ3, and rigorously examine how

users’ attributes in�uence their phishing detection performance.

Method. We construct a user model using a linear regression
model (used in many related studies [16, 64]). The dependent vari-
able is a user’s correct answer rate (i.e., accuracy) among the 15
pages they viewed. The independent variables include various user
attributes such as demographic factors, technical backgrounds,
knowledge of phishing, and time spent on the survey. We code
the independent variables in a binary format, except for the time
spent on the questionnaire (which is numerical).

Results and Analysis. We display the results in Table 3, show-
ing the absence of statistically signi�cant evidence that users’ demo-
graphic factors a�ect their phishing detection performance. Instead,
a user’s prior knowledge of phishing has a statistically signi�cant
in�uence. More speci�cally, users with prior knowledge of phish-
ing are more likely to achieve a higher detection accuracy (V=0.036,
?=0.008). Even though the estimate V is small, the di�erence is
statistically signi�cant. Our result (in the context of adversarial
webpages) is slightly di�erent from prior user studies on phish-
ing [34, 40, 45, 64, 72] wherein researchers found that demographic
factors such as gender or age have in�uenced users’ detection per-
formance. Finally, the time a user spent on the survey does not seem
to have a signi�cant in�uence on the user’s detection accuracy.

T�������� (RQ3): We did not �nd statistically signi�cant evi-
dence that demographic factors a�ect users’ detection accuracy.
A user’s prior knowledge of phishing is a signi�cant predictor.

Variable Estimate (V) Std. Err. p-value

Intercept 0.693 0.018 <0.001***

Gender: Reference = Female
Male -0.001 0.013 0.964

Age: Reference = Younger (<= 39)
Older (>39) -0.004 0.012 0.751

Education: Reference = Lower (< Bachelor)
Higher (>= Bachelor) -0.004 0.013 0.783

Phish knowledge: Reference = NO
YES 0.036 0.013 0.008**

Computer knowledge: Reference = NO
YES 0.029 0.019 0.122

Security knowledge: Reference = NO
YES -0.003 0.029 0.931

Time Spent on Survey -0.001 0.001 0.293

Table 3: User Attribute Analysis – Linear regression model: we predict a
user’s detection accuracy based on the user’s attributes such as demographic
factors, technical background, and knowledge of phishing. Statistical signif-
icance is denoted by *** (? < 0.001), ** (? < 0.01), and * (? < 0.05) [25].

6 USERS’ REASONING (QUALITATIVE)
We now address RQ4. Recall (see §4.2) that, for every webpage

shown in the questionnaire, we also asked (with [Q2]) partici-
pants (P) to point out the cues that in�uenced their rating (of [Q1]).
Here, we qualitatively analyze the open-form answers through a
thematic analysis [74] (which has been used also in [9]).

Codebook. Given that we focus on adversarial phishing web-
pages, our qualitative coding is based on the data from the adver-
sarial study. In total, we have 3, 525 responses from 235 participants
from the adversarial study. Two authors (i.e., coders) have worked
together to code the answers. A primary coder �rst codes 27% of the
responses, which serves as the foundation for creating a compre-
hensive codebook. Subsequently, both the primary and secondary
coders independently code 10% of the responses that have not yet
been coded. We use Cohen’s Kappa (^) statistic to assess the agree-
ment between coders. In cases where ^<0.7, both coders meet up
to discuss and resolve discrepancies and re�ne the codebook, po-
tentially also re-examining and re-coding responses that exhibit
inconsistencies. This iterative process continues until a satisfactory
agreement is reached, i.e., ^>0.7 [56]. In our �nalized codebook, we
have ^=0.718, indicating good inter-coder reliability [33]. With this
codebook (which we release [5]), we thematically coded 1 307 valid
responses (37%) that mentioned any webpage elements [9] (e.g.,
logo, background) or their feeling of the webpage. Speci�cally, 737
responses are from webpages rated as “phishing” and 541 responses
are from webpages rated as “legitimate”.

6.1 Why is the webpage legitimate/phishing?
We �rst investigate what led our participants to derive that a

givenwebpage is legitimate or phishing. For the sake of this analysis,
we ignore the ground truth of each webpage, since we are interested
in the users reasoning of what they think is phishing (or not).

“I think this is Phishing because...” Among the 737 responses
on webpages rated as phishing, the most prevalent factor is “text
content” (282, 38%). Other top-3 factors are “layout” (170, 23%) and
“functionality” (168, 23%) of the webpage. Fewer responses (66, 9%)
mentioned image content. (We omit factors whose prevalence is
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below 9%.) We run pairwise Chi-squared tests to compare the num-
ber of responses mentioning text content (the most prevalent) and
those mentioning each of the other factors. We con�rm that the dif-
ferences are statistically signi�cant (all comparisons have ?<0.001).

Among the 282 text-related responses, 119 of them (42%) men-
tioned the presence of typos. For example, P404 stated “The spelling
of the word Outlook is not right”. This is consistent with prior stud-
ies [30, 54] reporting that typos hurt the perceived credibility of a
webpage. Other text-related responses encompassed factors such as
“grammar” (67, 24.5%) and “style” (44, 15.6%). E.g., P1013 mentioned
“The font does not look like the regular Google font that I usually see”.

Regarding other prevalent factors, layout (23%) refers to the orga-
nization of di�erent components of the webpage, which is a known
factor that in�uences the perceived credibility of websites [18]. E.g.,
P496 stated “This does not look like the regular Google login page at
all; it looks really o� so it seems super sketchy.” The functionality
(23%) denotes the speci�c tasks that the website can help users to
accomplish. E.g., P520 mentioned “This does not appear to be a cor-
rect website for DHL since they would not ask you to log in typically
to track”. Nonetheless, participants expected that phishing websites
would have a way to collect user data. As such, such information-
gathering functionality can raise suspicion. E.g., P825, in response
to the page shown in Fig. 6 (Appendix A), stated “it asked for the
credit card number and therefore looks like it phishing”.

In comparison, fewer responses mentioned image content (66,
9%). E.g., P860 mentioned “The image seems o� from what I am usu-
ally used to”. Among these, 25 responses mentioned the background,
e.g., P1202 stated “The background isn’t moving like on the real site”.

“I think this is Legitimate because...” Among the 541 re-
sponses for webpages rated as legitimate, 249 (46%) did not mention
any speci�c factor but describe how the participant “feels” about the
webpage. E.g., P154 stated: “(It) looks like PayPal login page”. Only
few responses mentioned speci�c factors. E.g., 26 (5%) mentioned
“no misspellings or poor grammar”, suggesting that correct writing
is regarded as an indicator of legitimacy (albeit this could be in�u-
enced by previously viewed webpages having typos). Finally, we
report that some users may rely on misinformed strategies. E.g., P54
stated: “Google is a very reputable and credible search engine”, sug-
gesting that a brand’s reputation is an indicator of trustworthiness
(which is exactly what phishers use to trick their victims).

T�������� (RQ4): After determining the legitimacy of a web-
page, users motivate their decision by describing their “feelings”
if they believe the webpage to be legitimate. In contrast, when
they think the webpage is phishing, they mention more speci�c
indicators—most of which entail textual content errors.

6.2 What do users write on adversarial samples?
In an attempt to exhaustively answer RQ4, we further enrich our

analysis by performing a break down of the participants’ reasoning
on the speci�c type of APW (cf. §3) included in our adversarial study.
For this investigation (and contrarily to what we did in §6.1), we
must account for the ground truth of each webpage.

APW-Lab. We recall (cf. Fig. 3) that our participants performed
very well on �%, -!01_typo, for which we coded 93 responses.
Among these, a large majority (69, 74%) mentioned “typo” (after

making a correct detection). Intriguingly, 15% (14) provided reasons
that have nothing to do with �%, -!01_typo (despite still rating
them as phishing). E.g., P668 stated: “�gures do not look normal”.
The remaining 11% incorrectly labeled the webpage as legitimate
(e.g., “Everrything looks normal” [P621]).

Concerning�%, -!01_img, we have coded 61 responses. Notably,
only 13% (8) pointed out the ‘correct’ adversarial perturbation (i.e.,
images on footer). E.g., P544 stated: “low quality and strange icons
at the bottom, which a legit site would not have”. In contrast, 48% (29)
mentioned other reasons. E.g., P210 stated: “Adobe doesn’t require
logging in to view something in it to my knowledge”. The remaining
39% incorrectly labeled the webpage as legitimate (e.g., “norton
certi�cate makes me think it’s more legit than not.” [242]).

For �%, -!01_pswd, we coded 137 responses. The majority (70,
51%), despite stemming from a correct detection, have nothing to do
with our perturbation: only 8% (11) pointed out the visible password
as a potential phishing indicator (e.g., “password �eld is plain text”
[P1306]; or “the password is not hidden” [P937]). The rest 41% in-
correctly labeled the webpage as legitimate (e.g., “As a Wells Fargo
customer who was literally just checking their account before starting
this study I can assure you this is legitimately legit” [P86]).

We coded 89 responses for �%, -!01_bg. Surprisingly, only 4% (3)
of responses mention our inserted perturbation. In contrast, 48% (43)
justify their (correct) phishing detection by mentioning unrelated
factors. E.g., P971 stated: “too many big competing brands at the top”.
The rest 49% incorrectly labeled the page as legitimate (e.g., P321
stated: “good grammar, good syntax, appropriate colors, logo”).

For each type of APW above, we again run a Chi-squared test to
compare the number of correct phishing detections that mention
the inserted perturbation w.r.t. other factors (we do not include
misclassi�cations). The results show that the number of mentions
of inserted perturbations is statistically signi�cantly lower than
other factors, with ?<0.001 for all four perturbation types.

T������� (RQ4): Even though participants can recognize an
APW as “phishing”, they rarely pinpoint the perturbation that
makes the webpage “adversarial” (as long as it is not text-based).

APW-Wild. We coded 594 responses for adversarial webpages
“from the wild Web”.10 We recall (§5) that our participants are bet-
ter at detecting �%, -,8;3 (w.r.t. unperturbed phishing webpages),
so we attempt to explain this. Driven by our previous �ndings
(§6.1), we scrutinized whether the reason lies in text-related fac-
tors. Among the justi�cations for correct detections, we found that
22% (131) mention text-related factors (e.g., P1246 wrote “‘Forgot-
ten password’ doesn’t seem right”). More speci�cally, the responses
mention typo, grammar, and text-style issues 8%, 6%, and 6%, re-
spectively. Some (18%, 107) mentioned layout (e.g., P362 wrote “bad
css”), whereas others (16%, 94) mentioned functionality (e.g., P795
wrote: “(It) should be one form of 2FA”). Few 9% (56) mention the logo
(e.g., P1007 wrote “The Google logo is wrong.”); and even less (7%,
40) mentioned other visual elements such as background color (e.g.,
P108 wrote: “Google login prompt is not with a gray background”).
Finally, 205 (35%) incorrectly labeled ther webpage as legitimate
10We do not make claims on the “correct identi�cation” of the perturbation (as we did
for �%, -!01): this is because we cannot be sure of which perturbation was applied
by the (real) attackers who crafted the webpages in �%, -,8;3 . See Appendix A.
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(e.g., “Nothing misleading” [P119]). We run a Chi-squared test, and
con�rm the number of mentions of text indicators is higher than
functionality, logo, and other visual elements, with statistical signif-
icance (?<0.01 for all pairs). However, the di�erence between text
indicators and layout is not statistically signi�cant (?=0.082).

7 DISCUSSION AND FUTUREWORK
We compare our �ndings with related studies in Appendix B.3.

Limitations. First, our study is limited to participants from
the U.S. given we are primarily assessing phishing sites targeting
the US-based brands. Future work may consider recruiting par-
ticipants from di�erent countries and expanding the set of target
brands. Second, our evaluation is intentionally set to be highly
primed to examine the upper-bound performance of users. This
can be di�erent from real-world scenarios wherein users are of-
ten “unprepared” when encountering phishing websites. A similar
setting is explored by Draganovic et al. [29], but they also admit
the limitation of this approach. Third, to protect users, we only
present phishing screenshots (to prevent users from accidentally
clicking on malicious links or leaking their information). However,
this also prevents interacting with the website which can be a part
of the human’s detection process. Furthermore, our screenshots
are for desktop browsers, and hence we do not claim that our re-
sults generalize to other platforms (e.g., smartphones). Fourth, to
focus on adversarial phishing webpages, we excluded URLs from
our evaluation. Even though prior studies [26, 51, 82] showed that
most users cannot e�ectively utilize URLs as identity indicators of a
website, the presence of URLs may help users judge the overall legit-
imacy of a webpage together with other indicators. Finally, in this
work we have considered perturbations that (i) bypass the detector,
while being (ii) physically realizable and (iii) noticeable by users.
Even though we considered various types of perturbations, there
are virtually in�nite ways one can take to achieve this purpose.
Hence we do not claim that our results can generalize to all types
of adversarial tactics used by attackers. We endorse future work to
consider other types of perturbations (e.g., the ones considered by
Lee et al. [49]), potentially by using our resources [5].

Implications for “Technical” Web Security. For research
focused on adversarial phishing attacks (e.g., [10, 24, 49, 50, 69]),
we argue that bypassing an ML-PWD is necessary but not su�cient
for a phishing webpage to be successful. The adversarial phishing
webpages should be also assessed with users. More importantly, it
is vital to compare adversarial phishing webpages with unperturbed
phishing webpages to ensure the adversarial perturbations do not
make the webpages signi�cantly less e�ective on users (in favor of
bypassing ML-PWD). E.g., in our study, we �nd that certain adver-
sarial perturbations (e.g., typos) are more easily noticed by users
despite their high evasion success rate against ML-PWD. This de-
fect would be otherwise unknown without a user study. Another
implication is that visual adversarial perturbations seem to be e�ec-
tive against both ML-PWD and users, which should be considered
in future work when robustifying ML-PWD. Finally, we stress that
some of our visual perturbations were “large” (e.g., �%, -!01_bg
entailed replacing the entire background—see Fig. 4), but they still
allowed the webpage to bypass the ML-PWD (both ours and the
production-grade one—see Fig. 5) and deceive the users. This is in

stark contrast with most AML research in computer vision, wherein
the goal is to apply “imperceptible” perturbations (e.g., [20, 71]).
Hence, we endorse future research to explore perturbations having
a higher magnitude. Finally, our �ndings (and overarching mes-
sage) are useful for practitioners: ML-based detectors are prone to
make mistakes; however, in the phishing context, a “false negative”
can be either trivially detected by a user (in which case, it is not a
problem); or also fool the user (in which case, it becomes a problem).
By identifying which adversarial strategies bypass both system and
users, security operators can determine which threat to prioritize
(in our case, �%, -!01_bg tend to be very e�ective).

Implications to User Education. Researchers have studied
ways to improve users’ ability to recognize phishing websites
through training and education [47, 58, 82]. Our results show that
users overlook ‘visual’ adversarial perturbations (w.r.t. text-based
ones). One possible future direction is to increase user awareness
of such adversarial phishing webpages. However, we believe there
is an inherent risk in doing so. Indeed, adversarial phishing web-
pages have certain visual artifacts that deviate them from authentic
phishing webpages—helping users recognize such artifacts may
help users with phishing detection. However, the lack of such ar-
tifacts does not mean the website is trustworthy. In our study, we
have observed signs of over-trusting known/familiar websites. For
example, a user’s frequency of visiting a brand’s website negatively
predicts the user’s phishing detection accuracy on this brand.

C����������.Wepresent two user studies (==470) to assess how
humans perceive adversarial webpages that bypass ML-based
phishing website detectors. We con�rm the threat of adversarial
phishing webpages to end-users and compare the e�ectiveness
of di�erent types of adversarial perturbations. We argue that
assessing the users’ response to adversarial webpages should be
a mandatory step to evaluate evasion attacks in the context of
phishing webpage detection. Our work can serve as a benchmark
for future research, and we openly release all our resources [5].
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A EXTRA DETAILS AND DESCRIPTIONS

APW-Wild. We used a dataset from the recent SaTML’23 pa-
per [9]. The authors worked with a security company to release 100
“adversarial” phishing webpages created by real-world attackers
that bypass the company’s commercial (and ML-powered) detector.
Furthermore, the authors of [9] performed a coding exercise in
which two researchers tried to infer the “evasive strategy” used by
the attacker to (allegedly) bypass the target ML-PWD. We report
the results of such coding in Table 4, taken verbatim from [9].

Evasive Strategy Count Evasive Strategy Count

Company name style 25 Logo stretching 11
Blurry logo 23 Multiple forms - images 10
Cropping 20 Background patterns 8
No company name 16 “Log in” obfuscation 6
No visual logo 13 Masking 3
Di�erent visual logo 12

Table 4: Frequency of evasive strategies in 100 phishing pages that
were poorly analyzed by a commercial ML-PWD (source: [9]).

We make two remarks, re�ecting practical issues of �%, -,8;3 .
• As also acknowledged by the authors of [9], it is di�cult
to verify whether the inferred strategy is the true strategy
of the attackers. Indeed, obtaining certainty about such tac-
tics would require one to ask the attacker that crafted the
phishing webpage (in other words, a “probatio diabolica”).

• We do not have access to the commercial detector used by
the security company contacted in [9]. Hence, it is di�cult
to verify whether the “inferred” perturbation (according to
our participants) is the true (or only) cause for evasion.

Therefore, it is di�cult to control the perturbation type in �%, -
,8;3 (§6.2), hence we do not attempt to run statistical analyses (like

Demographics Baseline Adversarial Total

Gender
Male 125 115 240
Female 104 116 220
Non-binary / third gender 5 1 6
Prefer not to say 1 3 4

Age
18-29 41 45 86
30-39 68 72 140
40-49 59 38 97
50-59 42 44 86
60-69 15 25 40
70 or above 10 8 18
Prefer not to say 0 3 3

Education
Some high school or less 3 2 5
High school diploma or GED 33 25 58
Some college, but no degree 34 43 77
Associates or technical degree 31 25 56
Bachelor’s degree 103 97 200
Graduate or professional degree 31 41 72
Prefer not to say 0 2 2

Phish knowledge
Yes 157 137 294
No 72 86 158
Prefer not to say 6 12 18

Computer knowledge
Yes 44 39 83
No 188 190 378
Prefer not to say 3 6 9

Security knowledge
YES 20 10 30
No 211 221 432
Prefer not to say 4 4 8

Total 235 235 470

Table 5: Participants’ Demographics (all from the US).

we did for �%, -!01). Instead, we treat �%, -,8;3 as a collection
of various evasion strategies observed in the real world.

Features. For our custom ML-PWD, we rely on the HTML fea-
tures proposed in [10]. Speci�cally: freqDom, objectRatio, metaScripts,
commPage, commPageFoot, SFH, popUp, anchors, rightClick, dom-
Copyright, nullLnkWeb, nullLnkFooter, brokenLnk, loginForm, hid-
denDiv, favicon, hiddenButton, hiddenInput, URLBrand, iframe, css,
statBar. For more details, refer to the artifact documentation of [10].

Screenshots. Our user study involve 15 popular U.S. website
brands. For each brand, we have 2 unperturbed phishing pages, 1
legitimate webpage, 4 types of �%, -!01 pages, and a [0–7] �%, -
,8;3 pages. Speci�cally: 0 for Adobe, Amazon, BOA, eBay, Facebook,
Wells Fargo, Yahoo; 1 for Paypal; 2 for Apple, DHL, Dropbox; 3 for Outlook;
4 for Microsoft; 7 for Google, AT&T.

Fig. 5 shows two�%, -,8;3 pages used in our study with a weird
background pattern and a blurry logo. Fig. 6 is an adversarial phish-
ing webpage (�%, -,8;3) that asks for credit card information.

B EXTRA EXPERIMENTS AND ANALYSES
B.1 Choice of Random Forest

Our custom ML-PWD relies on the Random Forest classi�cation
algorithm. This choice was driven by the �ndings of abundant prior
work, which demonstrated that Random Forests outperformed other
classi�cation algorithms for phishing website detection [10, 57, 76],
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(a) APW-Lab_img (b) APW-Lab_typo (c) APW-Lab_pswd (d) APW-Lab_bg

Fig. 4: Example screenshot of lab-generated adversarial phishing pages targeting Paypal. We include two types of perturbations: (a) adding
small images to the footer, (b) introducing typos, (c) making the password visible, and (d) adding a background image.

(a) APW-Wild: weird background pattern (b) APW-Wild: blurry logo

Fig. 5: Some APW-Wild pages (taken from [9]) used in our user study.

Fig. 6: An adversarial phishing page asking for credit card data.
To further justify our selection, however, we have empirically
veri�ed this claim holds also on our chosen dataset.

We have performed an experiment wherein we compare Random
Forest with two other well-known classi�cation algorithms: Linear
Regression [50] and a Deep Convolutional Neural Network [80].
Speci�cally, we consider our dataset and perform a train:test split
of 80:20 (the same as in our paper and common in prior-work [10]).
Then, we learn a classi�er based on each of our considered algo-
rithms and verify its performance (TPR and FPR) on the test set.
We repeat this experiment �ve times for each algorithm (by ran-
domly choosing the train:test partitions with the same split). On
average: Random Forest has TPR=0.98 and FPR=0.04; Linear Regres-
sion has TPR=0.8, FPR=0.09; Convolutional Neural Network has

TPR=0.91, FPR=0.09. These results con�rm our intution and
provide further evidence that our choice is appropriate.

Notably, we are the �rst to perform such an experiment on our
dataset [23], so these results can be used by future work. Low-level
details of this evaluation are available in our repository [5].

B.2 E�ects of Similar Perturbations
We �nd it instructive to perform a low-level analysis of our

results by focusing on subcategories of our �%, -!01 perturbations.
• �%, -!01_img. We always add the same image at the bottom
of the page. However, for webpages that are “long” (meaning
that the user has to scroll down), the TPR=0.27, whereas for
webpages that are “short” (meaning that the user can see
the whole page without having to scroll), the TPR=0.58. This
result is expected, since our perturbation is not apparent to
users (who need to scroll down to notice it).11

• �%, -!01_bg. We always replace the original background
with the same image. However, for some brands the tran-
sition between the added background and the embedded
objects in the webpage is “smooth”, leading to a TPR=0.456.
In contrast, others webpages have some objects which are
put in front of the background, resulting in a “rough” tran-
sition which is more apparent to users (TPR=0.568). This
result is also expected, since users can point out more easily
that there is something ‘phishy’ about the latter category.12

• �%, -!01_typo. Some introduced typos entail alsowords that
represent the targeted brand (e.g., “Adobe”! “Adibe”). In these
cases, users score higher (TPR=0.87) than for those cases in
which the typo a�ect words that do not include the brand
(TPR=0.83). This result is sensible, since users are less likely
to be fooled by a typo a�ecting the name of the brand.13

• �%, -!01_psw. We always insert the string “123456” in the
password �eld. However, for some webpages, this �eld is
anticipated by the word “Password”, which clearly denotes
a �eld which expects a password input; in contrast, other
webpges do not have such a word14, making it unclear what

11Long pages: BOA, Dropbox. Short pages: all pages of the other 13 brands.
12“Rough”: Wells Fargo, Apple, AT&T, DHL, Facebook. “Smooth”: 10 remaining brands.
13Typos in brand: Adobe, Apple, Dropbox, Ebay, Facebook, Wells Fargo.
14These webapges are: Apple, AT&T, BOA, Dropbox, Facebook, Microsoft, Outlook,
Paypal, Yahoo. The lack of the word is because the term “password” was included in
the �eld itself. Therefore, by �lling the �eld with our perturbation, we replaced the
term “password”, leading to this word disappearing from the webpage altogether.
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this �eld (and, hence, our inserted string) may refer to. We
�nd it surprising that the TPR for the latter is higher than
the former (TPR=0.57 vs 0.55), since we would expect that a
user would �nd it suspicious that a clearly labeled password
�eld has a (weak) password in plaintext (and not obfuscated).

We invite the reader to check our repository [5] for better under-
standing these subcategories—and how they appear to users.

B.3 Comparing with Prior Phishing Research.
Our work examines how users perceive adversarial phishing web-

pages, which has never been studied in prior works. This provides
an interesting data point to contrast with prior studies on generic
phishing websites and emails [16]. We discuss four points. (1) Prior
studies show that men perform better on phishing detection tasks
(website [41, 45], email [79, 81]) and a few studies show that women
perform better (website and email [60]). Our analysis does not �nd
statistically signi�cant di�erences among genders (§5.3). (2) Prior
studies show that elders are more susceptible to phishing web-
sites [29, 45, 72]. We again do not �nd statistically signi�cant dif-
ferences with respect to age groups (§5.3). (3) Our study echoes
prior results that phishing knowledge correlates positively with
users’ phishing detection performance [28]. However, surprisingly,
we �nd that the frequency of a user visiting a target brand’s web-
site negatively correlates with the user’s ability to detect phishing
webpages targeting this brand (§5.3). An explanation is that “fa-
miliarity with a brand” leads to overcon�dence [63, 79]. This may
align with the prior observation that people feel more comfort-
able with (i.e. trusting) websites that they are familiar with [75].
(4) Prior studies have independently shown that typos [34, 54],
webpage layout [18], and webpage visual appearance [8] would
in�uence the perceived credibility of websites (and unperturbed
phishing webpages). Under the context of adversarial phishing, our
study shows that participants are signi�cantly more sensitive (§6.1)
to adversarial perturbations related to typos and text in general
(w.r.t. other visual perturbations). This �nding also emerged from a
concurrent (and complementary) work [29] focusing on Europe.

C ADDITIONAL BACKGROUND: PHISHING
WEBSITE DETECTION AND ML SECURITY

Phishing websites are a never-ending problem that continue to
pollute theWeb, and rule-based countermeasures, such as blocklists,
cannot cope with such a threat [59]. To provide some form of
protection against “novel” phishing websites, modern anti-phishing
schemes leverage data-driven techniques [76], such as machine
learning (ML). Indeed, thanks to the capability of ML models to
“automatically learn from data”, it is possible to develop phishing
website detectors (PWD) that can identify (and, consequently, block)
malicious webpages before they are displayed to the end-user—the
actual target of a phishing attack.
ML-PWD. Abundant scienti�c literature proposed ML-driven
PWD (ML-PWD), which can analyze various data-types to discrim-
inate benign from phishing webpages. For instance, some solutions
analyze the underlying HTML of a given webpage [42], or the char-
acters that compose its URL [78], or a combination of the two [10].
Finally, recent approaches rely on deep learning (DL) to compute
the visual similarity between two webpages [6], or some of its ele-
ments (such as the logo [52]). Due to the promising results of these

defenses, production-grade PWD now integrate some form of ML to
prevent their users from falling victim to a phishing hook [9, 27, 73].

Security of ML. The increasing (and not yet fully understood)
successes of ML led to abundant papers to scrutinize its secu-
rity [20] in adversarial environments. It is now well-known that
ML-powered detectors are prone to evasion attacks, wherein (tiny)
“adversarial perturbations” are added to a given input sample, so
as to induce the detector to misclassify it—thereby triggering a
false negative. Such a vulnerability has been investigated by thou-
sands of research e�orts [9], all of which showed that – no matter
what – ML models can be easily bypassed (even “adversarially ro-
bust” ones [22]). Unfortunately, this problem also a�ects ML-driven
PWD [10, 24, 49, 50]. For instance, some works (e.g. [69]) evidenced
that the detection rate of some ML-PWD dropped from 95% to 0
by manipulating just a few features. Moreover, even production-
grade ML-PWD exhibit the same weakness: both Google’s [50] and
BitDefender’s [70] anti-phishing schemes have been defeated.

Practitioners Viewpoint. Interestingly, however, there is abun-
dant evidence showing that ML developers do not have the ML-
speci�c weaknesses among their priorities [9]. In 2020, Kumar et
al. [44] did the �rst investigation on AML from the perspective of
industry practitioners, which indicated only 5 out of 28 organiza-
tions had a working knowledge of AML. In 2021, [21] investigated
the ML practitioners’ thoughts on ML security and privacy, and
participants said “I Never Thought About Securing My Machine
Learning Models”. Even in a 2022 survey [36], only 28.7% of ML
practitioners reported AML knowledge. Simply put, there is a clear
gap between AML research and practice, which is not acceptable
given the widespread deployment of ML into operational systems.
Our paper seeks to rectify this mismatch—which, in the PWD con-
text, presents intriguing properties that are currently overlooked.

Adversarial Phishing: is it real? Evidence suggests that real
attackers are turning to AML techniques to evade (ML-)PWD. For
instance, the authors of [9] identi�ed over 9000 phishing websites
that evaded a commercial detector, and released a snippet of 100
“adversarial webpages” (which we use for this paper for�%, -,8;3).
Interestingly, these phishingwebsites (distributed “in thewildWeb”)
have various deviations from their legitimate counterparts, and
bypassed a PWD empowered by ML which was designed to catch
phishing websites that “perfectly mimic” a legitimate website. Even
other researchers who collected and analyzed real-world phishing
websites [6, 53] observed that some of these phishing websites
often have some deviations from the legitimate brands. Intuitively,
attackers are re�ning their o�ensive techniques and adapting to
state-of-the-art defenses: if a phishing website exactly replicates
the legitimate webpage, they can be trivially detected by comparing
their visual similarities (e.g., [6, 53]). Of course, these “adversarial
phishing tactics” may deviate from traditional AML techniques
used in the computer vision domain [20], since real attackers use
domain expertise to craft their phishing hooks. In this work, we
consider perturbations that lead to visual changes in the phishing
webpage (otherwise, there would be no need to collect the response
of users). However, some perturbations can very well be invisible
(and still lead to successful evasion, as demonstrated in [10]).
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